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A VARIATIONAL APPROACH TO ADDITIVE IMAGE DECOMPOSITION INTO
STRUCTURE, HARMONIC AND OSCILLATORY COMPONENTS

MARTIN HUSKA ∗, AND SUNG-HA KANG†, ALESSANDRO LANZA ‡AND SERENA MORIGI §,

July 7, 2023

Abstract. We propose a non-convex variational decomposition model which separates a given image into piecewise-constant,
smooth and oscillatory components. This decomposition is motivated not only by image denoising and structure separation, but
also by shadow and spot light removal. The proposed model clearly separates the piecewise constant structure and smoothly
varying harmonic part, thanks to having a separated oscillatory component. The piecewise-constant part is captured by TV-like
non-convex regularization, harmonic term via second-order regularization, and oscillatory (noise and texture) term via a H−1-norm
penalty. There are interesting interactions between these three regularization terms. We explore effects of each regularization and
the choice of parameters carefully. We propose an efficient alternating direction method of multipliers based minimization for fast
numerical computation of the optimization problem. Various experiments are presented to show the robustness against high level
of noise, applications to soft spotlight and shadow removal, and the comparisons with other methods.

Key words: image decomposition, cartoon, harmonic, oscillatory, non-convex optimization

1. Introduction. The task of decomposing images into their semantically different contents is of great
interest in various image processing methods, such as image restoration, compression, segmentation, and object
recognition. It can simplify the characteristics of the image to achieve better results for different imaging
tasks. For example, in [9], the proposed model decomposes the given image into a piecewise-constant part
and a harmonic part. This method has advantage that the structured part, the piecewise-constant component,
is separated extremely cleanly without any noise. However, even for low levels of noise, the harmonic part
captures the general smooth field but including the noise, which eventually corrupts the image. The seminal
work of Y. Meyer [20], where the G-norm function space was introduced, proposed to separate the image into
geometric part, e.g. using TV denoising [24], and oscillatory texture or noisy part. Various work has followed
[2, 3, 4, 5, 14, 17, 23]. In [23], for example, the G-norm is approximated by a negative Sobolev norm of H−1.

In this work, we propose an additive image decomposition model, which separates an observed image
into a cartoon/structure component, a smooth part, and an oscillatory term. The structured part models
homogeneous regions with sharp edges, the smooth part presents smoothly varying intensity characterized by
small high-derivative norm, and an oscillatory term is modeled by the use of H−1-norm penalty. We assume
that the observed image f in vectorized form, f ∈ Rm of dimension m = m1 ×m2, is representable as the sum
of a piecewise-constant component v, a smooth component w, and an oscillatory component n, such that

f = v + w + n = u + n , (1.1)

where u := v + w represents the underlying noise-/texture-free piecewise-smooth image. In case of noise, the
oscillatory term n ∈ Rm in (1.1) is assumed to be i.i.d additive white Gaussian noise, i.e. n ∼ Gauss(0, σ2),
with known variance σ2. Figure 1.1 illustrates the objective of the separation task where f is a balanced sum
of v and w and a realization of Gaussian noise characterized by σ = 10. The v is the shadow-free image.
The gradient magnitude of v is obviously sparse, and the first and second derivatives of w are very small in
magnitude.

Typical image decomposition models separate image into two components. Levine in [16] proposed an
adaptive two-components decomposition model based on the edge detection of the input image, using Huber
penalty for the structure component and Lp norm for the texture part. The authors in [14] used Bounded
Mean Oscillations (BMO) space to model the oscillating patterns (texture). The model in [2] is extended
to color images in [5], providing a novel way to solve the G-norm-related subproblem, since the projection
algorithm proposed in [2] cannot be used for color images. The work [17] extended the H−1 space to the whole
family of models using H−s space. Later on in [29] the authors extended the TV-G decomposition model to
manifold-valued images, using the Lp approximation to G-norm. A rather different additive two-components
decomposition on manifolds is presented in [9] into piecewise-constant (structure) and smooth components, while
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f = v + w + n = u + n

Fig. 1.1. A noisy image f decomposed following model (1.1).

the additive white noise is handled via L2 residual. Recently, in [18] a non-convex non-smooth structure-texture
decomposition model has been presented, where the structure component is modeled via TV-like non-convex
penalty, while the H−1 space is used to approximate the G-norm for texture or noise separation. In [3], the
authors proposed a three decomposition variational model of structure, texture and noise, where the latter is
captured by the negative Besov norm.

In addition to texture/noise removal, this work is closely related to Retinex theory and shadow removal.
Retinex is a theory simulating how human perception of image intensity gets distorted under certain uneven
lighting conditions, i.e. the color-preservation property of human vision system [21]. Shadow removal and
Retinex both have similar difficulties in a way that there is a large region of smooth gradient change independent
of any edges and details of the image. The proposed method efficiently separates the shadow and soft light
effects.

The main contributions of this work are summarized as follows:

• We propose an effective three-parts additive decomposition non-convex variational model to separate
an image into piecewise-constant, smooth and oscillatory components. This shows advantage over
structure separation even for high level of noise, and shadow and spotlight removal;

• We characterize our proposed model in terms of convexity and coercivity, and we provide existence
results for the non-convexity, non-coercive variational problem;

• We develop a fast and efficient algorithm for this model, based on an Alternating Directions Method of
Multipliers (ADMM)-based minimization algorithm, and also outline a simple strategy for an effective
selection of all the parameters in the model and in the proposed ADMM algorithm.

This paper is organized in the following way. In Section 2, we propose a new three-term variational model
for image decomposition. Each of the three penalty terms is carefully considered in each subsection: Subsection
2.1 details TV-like non-convex term for piecewise-constant component, Subsection 2.2 shows the new harmonic
term, and Subsection 2.3 investigates the statistical properties of H−1-norm approximation for Gaussian noise
and the proposed H−1-norm based regularization term. In Section 3, insights on the effect of different penalty
terms are presented, and a careful discussion on the parameter selection is discussed in Section 4. In Section 5,
we discuss the existence of global minimizers for the proposed variational problem, and we describe an efficient
ADMM-based numerical method for its solution. Various numerical examples are illustrated in Section 6, which
show advantage over high level of noise, and shadow and noise removal. Comparisons with other methods are
presented. Conclusions are drawn in Section 7.

2. The proposed non-convex variational decomposition model. We propose a model which sepa-
rates a given image into piecewise-constant, smooth homogeneous and oscillatory components. For this objective,
we look into the following model problem, which decomposes a given image f into three components v, w, n
having distinct features.

{v∗, w∗, n∗} ∈ arg min
v,w,n

{
γ
(
‖∇v‖0 + ‖Hw‖22 + ‖n‖G

)
+

1

2
‖f − (v + w + n)‖22

}
, (2.1)

where the given image f ∈ Rm gets decomposed into three ideal components v∗, w∗, n∗. The `0 pseudo-norm
‖x‖0 counts the nonzero components of a vector x to induce sparsity. The operator H(·) represents a derivative
of order higher than one, in particular, we use second order derivative in this paper, and ‖ · ‖22 represents the
square of l2 norm. ‖ · ‖G is the G-norm that models the oscillatory component. The scalar value γ > 0
represents the regularization parameter balancing the regularization terms and the fidelity term.

The `0 pseudo-norm of ∇v in (2.1) forces the gradient to be sparse encouraging the recovery of piecewise-
constant components, but its combinatorial nature makes the minimization of (2.1) an NP-hard problem. Thus,
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it can be approximated by the sum of function values φ1(·; a) as follows

‖∇v‖0 := # {i | |(∇v)i| 6= 0, i = 1, . . . ,m} ≈
m∑
i=1

φ1 (|(∇v)i|; a) := R1(v), (2.2)

where φ1(·; a) : [0,+∞)→ [0, 1] is a non-convex sparsity promoting penalty function, and

|(∇v)i| =
√
|(∂hv)i|2 + |(∂vv)i|2

represents the i-th gradient magnitude in terms of `2 norm. Detailed characteristics of φ1(·; a) of this term will
be given in Section 2.1. The parameter a allows to tune the degree of non-convexity of φ1(·; a), such that φ1(·; a)
tends to the `0 pseudo-norm for a→∞. Compared with the classical convex TV prior, it promotes sparsity of
gradient norms of the cartoon component more strongly, while better preserving sharp discontinuities [10, 11].

For the recovery of smooth functions, the use of TV-like penalties is not appropriate, since fine scale
details are lost and smoothly varying features produce staircase effects. Therefore, we consider a second order
differential operator H(·) in (2.1), and we define R2(w) as

R2(w) :=

m∑
j=1

φ2(|(Hw)j |)=
m∑
j=1

|(Hw)j |2 (2.3)

where φ2 : [0,∞) → [0,∞), φ2(t) = t2. This induces w to be a smooth component with relatively small first
and second-order derivatives. We penalize deviations from a piecewise constant model by constructing R1(v)
with a gradient operator, while to penalize model roughness or bumpiness (curvature), we use in R2(w) a
second-difference operator. Using this higher-order operator yields second-order Tikhonov regularization which
favors “smooth” solutions.We present further details in Subsection 2.2.

A usual convention through the Meyer’s space approach, introduced in [20], is to define the highly oscillating
component n in terms of a vector field g, such that n = ∇ · g, where an appropriate space is chosen for the field
components g = (gh, gv). In [3], the discrete version of the Meyer’s space G is introduced as

G = {n ∈ Rm1×m2
∣∣ ∃g ∈ Rm1×m2 × Rm1×m2 s.t. n = ∇ · g},

which leads to G-norm of n defined as

‖n‖G = inf
{
‖g‖∞

∣∣ n = ∇ · g, g = (gh, gv) ∈ Rm1×m2 × Rm1×m2
}
, (2.4)

here ‖g‖∞ = maxi,j |gi,j | where |gi,j | =
√

(ghi,j)
2 + (gvi,j)

2, for gi,j being the (i, j)-th couple of the vector field g.

The space G is a very good space to model oscillating patterns such as texture as well as noise, characterized
by functions of zero mean, which attain a small norm in G space [3]. In order to overcome the computational
difficulties derived by working with ‖n‖G, the authors in [28] proposed to replace the space G with Gp = W−1,p

with 1 ≤ p < +∞, furthermore simplified for p = 2, as proposed in [23]. In this case, the space G2 is actually
replaced by the negative Sobolev space H−1 which is the dual space of H1

0 , and is endowed with the following
seminorm

‖n‖H−1 = inf

‖g‖2 =

√∑
i,j

|gi,j |2
∣∣ n = ∇ · g

 , (2.5)

which is proved to be bounded for oscillatory functions [23]. In this paper, we adopt the norm in (2.5) to model
the oscillatory component, due to its potential to allow easier-to-handle regularizers w.r.t. the classical G-norm.
Let g be defined in the image vectorized form as g ∈ R2m, g := (gh1 , g

h
2 , . . . , g

h
m, g

v
1 , g

v
2 , . . . , g

v
m)T . We define the

penalty φ3 : [0,∞)→ [0,∞) to be

R3(g) := φ3

 m∑
j=1

((ghj )2 + (gvj )2)

 , where φ3(t) := t2. (2.6)

In summary, combining the approximations (2.2), (2.3) and (2.6) with a data fitting term F(v, w, g) in the
variational model (2.1), and introducing three parameters γ1, γ2, γ3 ∈ R++, with R++ = (0,∞), to balance the
regularization terms, we propose the following minimization model

{v∗, w∗, g∗} ∈ arg min
v,w∈Rm,g∈R2m

J (v, w, g), (2.7)
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where

J (v, w, g) := γ1R1(v) +
γ2

2
R2(w) +

γ3

2
R3(g) +

1

2
F(v, w, g)

:= γ1

m∑
j=1

φ1(|(∇v)j |; a) +
γ2

2

m∑
j=1

φ2(|(Hw)j |) +
γ3

2
φ3

 m∑
j=1

((ghj )2 + (gvj )2)

+
1

2

m∑
j=1

[fj − (vj + wj + (∇ · g)j)]
2
.

Here, R1(v) is non-convex, R2(w), R3(g) and F(v, w, g) are smooth and convex functions, thus model (2.7)
is a non-convex optimization problem. In this work, we denote by R+ and R++ the sets of nonnegative and
positive real numbers, respectively. An accurate choice of the parameters γ1, γ2, γ3, affects the results. Figure
2.1 (a) shows the graphs of the penalty functions φ1(t; a) in R1(t) (solid line), φ2(t) (dashed line) in R2(t), and
φ3(t) (dot-dashed line) in R3(t). As it will be discussed in Section 4 and Section 5, a good set of parameters,
including a, allows for a suitable repositioning of the intersection points between these regularization terms to
enforce the efficacy of the proposed decomposition model.

The rest of this section discusses each proposed regularizer, followed by the effects of different penalty terms
in Section 3, leading to a discussion on the parameter selection in Section 4. In Section 5 we point out some
important characteristics of the cost functional (2.7) for its efficient minimization.

2.1. R1(v) Penalty function. The `0 pseudo-norm is often understood to be the ideal regularizer to
induce sparsity. The alternative `1 norm is the convex relaxation of the `0 pseudo-norm, and plays a fundamental
role in sparse image/signal processing. However, the `1 norm in sparsity-inducing regularizers can be considered,
in general, to be over-relaxed. A substantial amount of recent work has argued for nonconvex regularizers in
favor of their superior theoretical properties and excellent practical performances [22, 12, 25]. For the penalty
R1 in (2.7), we require the following conditions for φ1(·; a) , both for modeling and minimization algorithm;

a) be non-convex, such that the regularizer R1 promotes sparsity of the gradient magnitudes of the
piecewise-constant component v more effectively than the classical isotropic TV regularizer;

b) have the range in [0, 1] independent of the parameter a, so that the degree of non-convexity represented
by a can be freely tuned, without affecting the φ1 upper bound.

c) have a form such that the associated multi-variate proximity operator

proxαφ(q) := argmin
x∈Rm

{
φ1

(
‖x‖2; a

)
+
α

2
‖x− q‖22

}
, q ∈ Rm,

admits a closed-form expression.

Following these requirements, we chose the regularizer to be a re-parametrized and re-scaled version of the
minimax concave (MC) penalty [30], namely a simple piecewise quadratic function defined by:

φ1(t; a) =

{
−a

2
t2 +

√
2a t for t ∈

[
0,
√

2/a
)
,

1 for t ∈
[√

2/a,+∞
)
.

(2.8)

In Figure 2.1 (b), we show the plot of the MC penalty functions φ1(t; a) defined in (2.8) for three different values
a ∈ {1, 3, 9} of the concavity parameter. The solid dots on the graphs represent the points

(√
2/a, φ1

(√
2/a; a

))
which separate the non-convex quadratic piece of the penalty from the constant one. The MC penalty satisfies
the following properties:

φ1(t; a) ∈ C1
(

[0,∞)
)
∩ C∞

(
[0,∞) \

{√
2/a

} )
,

φ′1(t; a) =

{√
2a− at for t ∈

[
0,
√

2/a
)

0 for t ∈
[√

2/a,∞
) , φ′′1(t; a) =

{
−a for t ∈

[
0,
√

2/a
)

0 for t ∈
(√

2/a,∞
)
.

(2.9)

In particular, we notice that

a =
∣∣∣min
t
φ′′1(t; a)

∣∣∣ , t ∈ [0,+∞) \ {
√

2/a} ,

such that the parameter a represents the degree of non-convexity of φ1 and, hence, can be referred to as the
concavity parameter of φ1. Note that for a → ∞, the φ1(·; a) converges to the `0 pseudo-norm graph, which
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(a) (b)

Fig. 2.1. (a) Graphs of φ1(t; a) (solid line), φ2(t) (dashed line), and φ3(t) (dot-dashed line), used in R1(v), R2(w) and
R3(g), respectively. For illustration purposes, we plot scaled version of φ3 to underline how the intersection points between φ1, φ2
and φ3 can be modified by tuning the regularization parameters (more details in Section 4, in relation to equation (4.3)). (b) Plot
of the regularization term φ1(t; a) defined in (2.8) for different values of the concavity parameter a.

attains a constant 1 everywhere except at the origin, where it attains zero. This is stated by the following result
together with the sparsity promoting property of R1(v) inherited directly from the φ1(·; a) function.

Proposition 2.1. Let φ1(·; a) be the function defined in (2.9). Then for any vector v ∈ Rm we have

R1(v) :=
∑
j

φ1(|(∇v)j |; a) ≤ ‖∇v‖0. (2.10)

Let µ := minj: |(∇v)j |>0 |(∇v)j |. If

µ ≥ ā :=
√

2/a, (2.11)

then the equality in (2.10) holds.
Proof. The result (2.10) follows from the fact that 0 ≤ φ1(·; a) ≤ 1. Moreover, from the properties of φ1(·; a)

we have:

lim
a→∞

∑
j

φ1(|(∇v)j |; a) = ‖∇v‖0.

If the smallest non-vanishing gradient magnitude µ is greater than ā defined in (2.11), then φ1(|(∇v)j |; a) = 1
for every element j of nonzero gradient magnitude, thus equality holds.

We remark that (2.10) in Proposition 2.1 holds true for the vector v ∈ Rm itself, i.e.
∑
j φ1(|vj |; a) ≤ ‖v‖0.

However, we present the proposition in terms of gradient to emphasize on the ”accountability” intensity changes
for piece-wise constant parts.

The MC penalty in (2.8) provides a recognized alternative to any `p-norm based penalty, with p, 0 < p < 1,
and induces sparsity of the image gradient magnitudes more strongly than the `1 norm thus better favors
piecewise-constant solutions.

2.2. R2(w) Penalty function. The R2(w) term is designed to capture the smooth component w. We
promote sparsity of the second-order derivativesH(·) and use φ2(t) = t2. We define the regularizerR2(·) : Rm →
[0,∞) as follows

R2(w) =

m∑
j=1

φ2 (|(Hw)j |) =

m∑
j=1

[
(Hhhw)2

j + (Hhvw)2
j + (Hvhw)2

j + (Hvvw)2
j

]
=

m∑
j=1

|(Hw)j |2. (2.12)

The linear second order operator H(·) is applied to each pixel j = 1, . . . ,m of the image w ∈ Rm, which results

in a vector of second order derivatives (Hw)j = ((Hhhw)j , (Hhvw)j , (Hvhw)j , (Hvvw)j)
T

along the principal
horizontal (h) and vertical (v) directions and their mixture. This regularizer R2(·) is an extension to second-
order Tikhonov, which extends the neighborhood Laplacian discretization by adding diagonal directions to the
conventional horizontal-vertical Laplacian discretization.
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(a) (b)

Fig. 2.2. Effect of R2(w): The components v, w and n are from Figure 1.1. (a) Histograms of |∇v|, |∇w| and |∇n| ; (b)
Histograms of |Hw|, |Hv| and |Hn|. Logarithmic scale in the x-axis is applied. Notice a larger separation distance between w and
v, as well as between w and n when the new proposed H (second order derivative) is used.

The variational decomposition model in [9], which decomposes the image into piecewise constant and smooth
part, uses the gradient norm to capture smooth functions, and in [8] a combination of first and second order
derivatives is applied for reconstruction of piecewise-smooth signals. Another common way to include second
order derivatives as energy penalties is to consider the Hessian Schatten-norm regularizer, as proposed in [15].

In this paper, the proposed term R2(w) in (2.12) which not only favors the smoothness of the image, but
also the use of linear operators, allowed us to simplify the computation for w via normal equations, as detailed in
Section 5. Moreover, oscillations that usually characterize Gaussian noise present smaller magnitudes of |∇(·)|
with respect to |H(·)|, unlike what happens for smooth regions. This motivates to exploit the second order
derivatives to capture the pure smooth w image component and to increase the components’ separation.

An insight into this separation is illustrated in Figure 2.2, where (a) is the histogram of the gradient
magnitudes |(∇(·))j |, for every pixel j = 1, . . . ,m, and (b) is the histogram of the second order derivatives
magnitudes |(H(·))j | for the components v, w and n of the image illustrated in Figure 1.1; here n represents a
noise component. We notice that the minimum nonzero magnitude |Hv| attains the same value as |∇v| (where
minj: |(∇v)j |>0 |(∇v)j | = 0.39), and the maximum magnitude |Hw| attains value 0.001 that is of approximately
one order smaller than the maximum magnitude of |∇w| (where maxj |(∇w)j | = 0.012). Therefore, the use of
the second-order-based operator H(·), instead of the gradient-based operator, ∇(·), allows for a larger separation
distance between w and v. For the oscillatory (noise) component n, the nonzero gradient magnitudes range in
[0.006, 0.29], while for the nonzero second order derivatives magnitudes |Hn| ∈ [0.01, 0.64]. Again, using the
H(·) operator gives a larger separation distance between w and n components.

We note that other regularization terms can be utilized for each R1(v), R2(w) or R3(g), as long as each
regularization gives good separations, as illustrated in Figure 2.2. Otherwise, we chose simple terms, e.g. linear
operator for R2(w) and l2-norm for R3(g), for simpler and faster computation.

2.3. R3(g) Penalty function and statistical characterization of the H−1-norm for Gaussian
noise. In this section, we explore a faithful bound estimation of the H−1-norm approximation value ‖g‖2 of
‖n‖H−1 , as well as of the associated regularization term R3(g). This is under the assumption that n is white
additive Gaussian with known standard deviation σ.

The additive noise is modeled as an m1 × m2 discrete random process N := {N [i, j] : [i, j] ∈ Ω}, (Ω is
the image domain) with N [i, j] denoting the scalar random variable modeling noise at pixel [i, j]; we assume
N [i, j] zero-mean Gaussian with variance σ2. Let G be an m1 ×m2 discrete random process G := {G[i, j] =
(Gh[i, j], Gv[i, j]) : [i, j] ∈ Ω}, with G[i, j] denoting the 2-dimensional vector random variable at pixel [i, j] with
bivariate Gaussian distribution having variance σ2

g , that is,

G[i, j] ∼ Gauss
([

0
0

]
,

[
σ2
g 0

0 σ2
g

])
. (2.13)

We assume that the two components Gh[i, j] and Gv[i, j] are uncorrelated as indicated by the diagonal covariance
matrix in (2.13), while G[i, j]’s are identically distributed and correlated.
Given a single realization n := {n[i, j] ∈ R : [i, j] ∈ Ω} ∈ Rm1×m2 of the noise process N , and a single realization
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g := {g[i, j] = (gh[i, j], gv[i, j]) ∈ R2 : [i, j] ∈ Ω} ∈ Rm1×m2 of the process G, then the statistical representation
of the relation n = ∇ · g reads as

n[i, j] = Dhg
h[i, j] +Dvg

v[i, j], ∀[i, j] ∈ Ω (2.14)

with Dh, Dv linear transformations, explicitly represented by

n[i, j] =
1

δ

(
gh[i+ 1, j]− gh[i, j] + gv[i, j + 1]− gv[i, j]

)
, ∀[i, j] ∈ Ω , (2.15)

with δ ∈ R+ being the discretization step. However, since here we want to analyze the statistical characterization
of the H−1-norm we clearly will replace the realized, deterministic values n[i, j] and g[i, j] with the associated
random variables N [i, j] and G[i, j] when concerning with relationships (2.14) and (2.15). The main result on the
relation between the two discrete probabilistic distributions followed by G and N is summarized in Proposition
2.2, whereas results on the distribution of R3(G) are presented in Proposition 2.3.

Proposition 2.2. Let N be a m1 ×m2 i.i.d. Gaussian noise process with variance σ2, and G be a m1 ×m2

identically distributed and correlated random process with bivariate Gaussian distribution having variance σ2
g ,

which are related by (2.15). Then

σ2
g =

δ2σ2

4(1 + ρd)(1− ρg)
, (2.16)

where ρg and ρd are scalar values representing Pearson’s correlation coefficients between Gh[i+1, j] and Gh[i, j]
as well as between Gv[i, j + 1] and Gv[i, j], and between DhG

h[i, j] and DvG
v[i, j], respectively.

Proof. By applying the sum rule for normal variables to (2.15), we have

Gh[i+ 1, j]

δ
,
Gh[i, j]

δ
∼ Gauss(0,

σ2
g

δ2
) =⇒ DhG

h[i, j] ∼ Gauss(0, σ2
d) ,

Gv[i, j + 1]

δ
,
Gv[i, j]

δ
∼ Gauss(0,

σ2
g

δ2
) =⇒ DvG

v[i, j] ∼ Gauss(0, σ2
d) ,

and σ2
d is related to σ2

g by the following

σ2
d =

2σ2
g

δ2
(1− ρg) , (2.17)

where ρg denotes the Pearson’s correlation coefficient between Gh[i + 1, j] and Gh[i, j] as well as between
Gv[i, j + 1] and Gv[i, j]. Applying again the sum rule to (2.14), we state

N [i, j] ∼ Gauss(0, σ2) with σ2 = 2σ2
d(1 + ρd), (2.18)

where ρd is the Pearson’s correlation coefficient between DhG
h[i, j] and DvG

v[i, j]. Replacing (2.17) into (2.18),
the relation in (2.16) between σg and σ follows.

In Proposition 2.2 it is assumed that G follows a bivariate Gaussian distribution. This result was proved
experimentally by employing a Monte Carlo simulation. In particular, we generated 200,000 samples n ∈
Rm1×m2 of white Gaussian noise processes with different noise standard deviations σ = {10, 15, 20}. First, we
estimated the correlation coefficient between gh[i, j] and gv[i, j] resulting in 0.07 value which implies Gh[i, j],
Gv[i, j] in (2.13) have very small to no correlation [1]. Then we estimated the coefficients ρd and ρg in (2.16).

In Table 2.1, together with the estimated values of ρd, we report estimates of ρgh , which is the correlation
between the realizations gh[i+1, j] and gh[i, j], and ρgv , which is the correlation between gv[i, j+1] and gv[i, j],
for increasing image dimensions m = {1282, 2002, 2562, 4002, 5122, 10242, 20482, 40002}. As expected, ρgh and
ρgv are equal and we refer to them as ρg.

The estimated values of ρd and ρg, for both gh and gv, remain constant for each value of the noise standard
deviation σ, whereas with increasing dimensions m, the change follows a logarithmic growth. For an arbitrary
image dimension m, we suggest the following polynomial regression for ρd and ρg in terms of the image dimension

ρd(x = log2(m)) = 1.29× 10−5x3 − 8.35× 10−4x2 + 1.81× 10−2x+ 0.33 ,

ρg(x = log2(m)) = 2.93× 10−6x5 − 2.53× 10−4x4 + 8.72× 10−3x3 − 0.15x2 + 1.34x− 4.34 .
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Table 2.1
Pearson’s correlation coefficients for varying σ and image dimension m: ρg between adjacent pixels and ρd.

σ = 10 σ = 15 σ = 20
m ρd ρgh ρgv ρd ρgh ρgv ρd ρgh ρgv

1282 0.460 0.623 0.623 0.460 0.623 0.623 0.460 0.623 0.623
2002 0.462 0.650 0.650 0.462 0.650 0.650 0.462 0.650 0.650
2562 0.463 0.663 0.663 0.463 0.663 0.663 0.463 0.663 0.663
4002 0.464 0.681 0.681 0.464 0.681 0.681 0.464 0.681 0.681
5122 0.465 0.689 0.689 0.465 0.689 0.689 0.465 0.689 0.689

10242 0.466 0.701 0.701 0.466 0.701 0.701 0.466 0.701 0.701
20482 0.467 0.702 0.702 0.467 0.702 0.702 0.467 0.702 0.702
40002 0.467 0.702 0.702 0.467 0.702 0.702 0.467 0.702 0.702

Gh ∼ Gauss(0, σ2
g) DhG

h ∼ Gauss(0, σ2
d) DhG

h +DvG
v ∼ Gauss(0, σ2)

Gv ∼ Gauss(0, σ2
g) DvG

v ∼ Gauss(0, σ2
d) N ∼ Gauss(0, σ2 = 152)

Fig. 2.3. Histograms of sample distributions obtained by Monte Carlo simulations using 20000 samples of Gaussian noise
realizations n with standard deviation σ = 15. The red solid line is the associated theoretical probability distributions.

Assuming the number of samples sufficiently large, Monte Carlo simulations allowed the validation of the
asymptotical behavior of the variables Gh, Gv, DhG

h, DvG
v, DhG

h + DvG
v. In particular, we generated

20,000 samples of Gaussian noise realizations n with the same standard deviations σ = 15. For each sample
n the values gh, gv, Dhg

h, Dvg
v, Dhg

h + Dvg
v were computed, the normalized histogram of these values was

constructed and shown in Figure 2.3. The associated theoretical probability distributions are illustrated in solid
red line. The theoretical standard deviations σg and σd are computed by (2.16) and (2.17) respectively, and
the Pearson’s correlation coefficients ρd and ρg are given from Table 2.1. We notice that all the variables, as
expected, follow the Gaussian distributions asymptotically.

The following Proposition 2.3, which assumes i.i.d. Gaussian random processes P, therefore uncorrelated,
provides theoretical expected values for ‖P‖2 and R3(P). Even though the results in Proposition 2.3 cannot
directly apply to G due to its correlated nature, we will use them to evaluate approximations of ‖G‖2 and R3(G)
supported by encouraging simulation results. For further insight onto the sum of correlated squared Gaussian
variables we refer the reader to [7]

Proposition 2.3. Let P be an m = m1 ×m2 i.i.d. random process consisting of random variables P [i, j]
following bivariate Gaussian distribution with variance s2, then the following relationships hold:

(i) ‖P‖2 ∼ GΓ(2, 2m, s
√

2) has a Generalized Gamma Distribution with expected value

E[‖P‖2] =
√

2s
Γ(m+ 1/2)

Γ(m)
=
√

2s eln Γ(m+1/2)−ln Γ(m);

(ii) R3(P) =
(
‖P‖22

)2 ∼ GΓ(1/2,m/2, 4s4) has a Generalized Gamma Distribution with scale parameter
1/2, shape parameters m/2 and 4s4, and expected value

E [R3(P)] = 4s4(m+ 1)m.
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Proof. The sum of 2m independent squared Gaussian distributed variables of variance s2 follows a Gamma
distribution with shape parameter m and scale parameter 2s2

‖P‖22 =
∑

[i,j]∈Ω

‖P [i, j]‖22 ∼ Γ(m, 2s2). (2.19)

The distribution of the ‖P‖2 in (i) is then trivially obtained by taking the square root of the Gamma-distributed
variable (2.19) which follows the Generalized Gamma distribution

‖P‖2 =
√
‖P‖22 ∼ GΓ(2, 2m, s

√
2),

with shape parameters 2 and 2m, and scale parameter s
√

2. The Generalized Gamma distribution represents a
generalization of χ distribution for non-standard-distributed variables. The expected value is given in terms of
the Gamma function Γ(·) as

E[‖P‖2] =
√

2s
Γ(m+ 1/2)

Γ(m)
,

thus concluding (i). From (2.19), the square of the Gamma distributed variable results in

R3(P) = φ3(‖P‖22) =
(
‖P‖22

)2 ∼ GΓ(1/2,m/2, (2s2)2) ,

with expected value E[R3(P)] = 4s4 Γ(2(m/2+1))
Γ(2(m/2)) = 4s4(m+ 1)m, thus proving (ii).

Even though Proposition 2.3 cannot be directly applied for our process G due to the correlations between
pixel variables G[i, j] and G[k, l] for [i, j] 6= [k, l], for practical usage, we approximate the expected values of
‖G‖2 and R3(G) by results from Proposition 2.3 as

E[‖G‖2] ≈
√

2σg eln Γ(m+1/2)−ln Γ(m) , (2.20)

E[R3(G)] ≈ 4σ4
g(m+ 1)m . (2.21)

This is justify by the Monte Carlo simulations reported in Table 2.2, where we present a computational validation
of Proposition 2.2 and approximations (2.20)-(2.21), with 20, 000 realizations of a Gaussian noise process for
each standard deviation σ in range σ = {1, 5, 10, 20, 40, 60}/255 and sample dimension m = m1 ×m2 in range
m = {2002, 4002}. In this table, we also consider ‖g‖2 = (

∑m
i=1(ghi )2 +(gvi )2)1/2 for comparison with R3(g). For

each sample set, and for each increasing noise standard deviation values σ, we report in the first block in Table
2.2 the standard deviation σg computed according to formula (2.16) in Proposition 2.2, and the experimental
standard deviation σ̄g directly obtained from the samples. Analogously, in the second and third block of Table
2.2, we validate the approximation drawn from (i) and (ii) of Proposition 2.3 respectively. The approximate
expected values E[‖G‖2] and E[R3(G)] in Table 2.2 were calculated using the σg value in (2.16). The reported
ratios, being constant across different values of σ and close to one, indicate a low relative error introduced as a
consequence of neglecting the correlation between G[i, j] and G[k, l] for [i, j] 6= [k, l].

Based on these statistical investigations, in the following we provide a formula which relates the approxi-
mation to ‖G‖22 with the L2 norm of the noise process N .

Corollary 2.4. Let N ∈ Rm be a Gaussian noise process with known standard deviation σ, i.e. N ∼
Gauss(0, σ2Im). Then, under the approximation drawn from Proposition 2.3, we have

E[‖G‖22] ≈ C · E[‖N‖22], C ≈
2σ2

g

σ2
. (2.22)

Proof. The norm of a Gaussian noise process of arbitrary standard deviation σ distributes as ‖N‖22 ∼
Γ(m2 , 2σ

2) , while ‖G‖22 approximately distributes as defined in (2.19). Computing the ratio of the respective
expected values, we have

C ≈ E[‖G‖22]

E[‖N‖22]
≈

2mσ2
g

mσ2

9



Table 2.2
Results on σg estimations and validation of the expected values of ‖g‖2 and of the model regularization term R3(g) .

m = 2002 σ = 1 5 10 20 40 60

σg 0.70 3.49 6.99 13.98 27.96 41.94
σ̄g 0.70 3.52 7.04 14.08 28.15 42.25

σ̄g/σg 1.007 1.007 1.007 1.007 1.007 1.007

E[‖G‖2] 0.78 3.88 7.75 15.51 31.01 46.52
‖g‖2 0.78 3.90 7.81 15.62 31.23 46.86

‖g‖2/E[‖G‖2] 1.004 1.004 1.004 1.004 1.004 1.004

E[R3(G)] 0.36 225.82 3613 5.78e+04 9.25e+05 4.68e+06
R3(g) 0.38 236.07 3786 6.08e+04 9.71e+05 4.92e+06

R3(g)/E[R3(G)] 1.05 1.05 1.05 1.05 1.05 1.05

m = 4002 σ = 1 5 10 20 40 60

σg 0.73 3.66 7.32 14.63 29.27 43.90
σ̄g 0.74 3.68 7.36 14.71 29.42 44.15

σ̄g/σg 1.005 1.005 1.005 1.005 1.005 1.005

E[‖G‖2] 1.62 8.12 16.23 32.46 64.92 97.38
‖g‖2 1.63 8.16 16.32 32.63 65.26 97.95

‖g‖2/E[‖G‖2] 1.003 1.003 1.003 1.003 1.003 1.003

E[R3(G)] 6.94 4337 69400 1.11e+06 1.78e+07 8.99e+07
R3(g) 7.17 4496 71903 1.15e+06 1.84e+07 9.33e+07

R3(g)/E[R3(G)] 1.04 1.04 1.04 1.04 1.04 1.04

Table 2.3
Comparison to

√
C value computed via formula proposed by [3] and via (2.22) for different image size m.

m = 322 642 1282 2562 5122

√
C by [3] 0.843 0.906 0.965 1.021 1.073√

C by (2.22) 0.840 0.904 0.964 1.021 1.073

which concludes the proof.

This provides a statistical insight onto the distribution of the H−1-norm approximation for Gaussian noise
images. In [3], the authors propose a formula to estimate C value. An alternative formula is obtained by
substituting σg as defined in (2.16) into (2.22) for δ = 1, thus obtaining C ≈ 1

2(1+ρd)(1−ρg) . In Table 2.3, we

report the calculated values of
√
C computed by the formula (2.22) and by Proposition 3.5 in [3]. We note that

these values are extremely similar and depend on the image dimension.

3. Effects of model penalty terms. In this section, we investigate the potential of each penalty term
in the proposed variational model (2.7), to discriminate against the different image components. Towards this
aim, let us consider our idealized variational model (2.1) for additive decomposition, with terms ‖∇v‖0, ‖Hw‖2
with H(·) of second order, and ‖n‖H−1 in (2.4) evaluated by the approximation given by (2.5). A good model
is given by a choice of spaces/norms so that, with the given desired properties of v, w and n, we can obtain
‖∇v‖0 << ‖∇w‖0, ‖∇v‖0 << ‖∇n‖0, ‖Hw‖2 << ‖Hv‖2, ‖Hw‖2 << ‖Hn‖2, and finally ‖n‖H−1 << ‖v‖H−1 ,
‖n‖H−1 << ‖w‖H−1 .

To illustrate this, six different synthetic test images u1 to u6 are presented, all having the same dimension
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Table 3.1
Case study: model norms approximating values corresponding to the images u1, . . . , u6 in Figure 3.1

Chessboard z = 1π 2π 8π 16π 64π 128π

‖∇u1‖0 ≈ 513 1531 7540 15272 54944 89920
‖Hu1‖2 ≈ 5147 8868 19830 28507 57700 81730
‖u1‖H−1 ≈ 2.48e6 2.39e6 527582 255416 63056 31843

Diagonal Stripes z = 1π 2π 8π 16π 64π 128π

‖∇u2‖0 ≈ 511 1024 4096 8192 32768 65536
‖Hu2‖2 ≈ 10215 14449 28891 40856 81711 115556
‖u2‖H−1 ≈ 2.10e6 2.34e6 554548 272684 67252 33494

Blurry Stripes z = 0.5π 2π 4π 16π 32π 128π

‖∇u3‖0 ≈ 132257 232915 247452 260769 261632 261632
‖Hu3‖2 ≈ 0.27 4.36 17.45 278.93 1113 16950
‖u3‖H−1 ≈ 676799 1.99e6 1.14e6 296022 148488 38027

Blurry Chessboard z = 0.5π 1.5π 4π 8π 32π 64π

‖∇u4‖0 ≈ 142514 247336 259889 261389 261109 258047
‖Hu4‖2 ≈ 0.38 3.46 24.62 98.48 1571 6224
‖u4‖H−1 ≈ 719103 1.63e6 628639 305844 74601 37304

Shading Stripes (c, z) = (40, 4π) (40, 16π) (40, 64π) (0, 16π) (10, 16π) (80, 16π)

‖∇u5‖0 ≈ 227040 254455 261632 261632 226701 256769
‖Hu5‖2 ≈ 8.72 139.46 2204 0 34.87 278.93
‖u5‖H−1 ≈ 1.95e6 1.97e6 1.95e6 1.95e6 1.95e6 1.99e6

Noise Image σ = 1 5 10 20 40 60

‖∇u6‖0 ≈ 258999 261992 262108 262132 262139 262141
‖Hu6‖2 ≈ 2287 11396 22861 45657 91493 136451
‖u6‖H−1 ≈ 499.45 2796 5164 10581 22403 33071

m = 5122 pixels, and defined as follows:

Chessboard: u1(i, j) =

{
−80, sin(jz/512) cos(iz/512) ≤ 0

80, otherwise

Diagonal Stripes: u2(i, j) =

{
−80, sin((i+ j)z/512) ≤ 0

80, otherwise

Blurry Stripes: u3(i, j) = 80 sin(jz/512)

Blurry Chessboard: u4(i, j) = 80 sin(jz/512) cos(iz/512)

Shading Stripes: u5(i, j) = j/2 + c sin(jz/512)

Noise Image: u6(i, j) ∼ Gauss(0, σ2)

The first two images u1 and u2 are piecewise-constant scalar fields with sharp edges; u3 and u4 represent smooth-
gradient scalar fields with varying frequency of oscillations according to parameter z; u5 is a combination of
constant-gradient slope with oscillations, which represents a nonzero mean scalar field, and the image u6 is a
realization of Gaussian noise with different standard deviation σ. Figure 3.1 shows these test cases with varying
parameters z, and Table 3.1 shows the associated norm values which characterize the three penalty terms in
(2.1).

First, in Table 3.1, the piecewise-constant images such as u1 and u2 attains the smallest ‖∇u∗‖0 compared
to the other two norms ‖Hu∗‖2, and ‖u∗‖H−1 , e.g., when z = π, ‖∇u∗‖0 values are around 500, while other
norm values are much bigger. For u1, ‖∇u1‖0 is smaller compared to other norms until z = 16π, then for
z = 64π and 128π, ‖Hu1‖2 and ‖u1‖H−1 values become more comparable with ‖∇u1‖0. This effect is consistent
with the visual effect, that for z = 64π or 128π, the image no longer looks like a piecewise-constant image, but
it looks more like a texture. In fact, for z = 128π, we notice that the approximated H−1-norm values are the
smallest. Across the images, ‖∇u∗‖0 for u1 and u2 are the smallest around 500, compared to ‖∇u∗‖0 of the
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z = 1π 2π 8π 16π 64π 128π

z = 1π 2π 8π 16π 64π 128π

z = 0.5π 2π 4π 16π 32π 128π

z = 0.5π 1.5π 4π 8π 32π 64π

c = 40, z = 4π 16π 64π z = 16π, c = 0 10 80,

σ = 1 σ = 5 σ = 10 σ = 20 σ = 40 σ = 60

Fig. 3.1. Case study images u1−6 for different z values, frequencies z/2π, and standard deviations σ.

other blurry or noisy images u3 to u6 above 130,000.

Second, for blurry smooth images u3 and u4, notice the small values of ‖Hu∗‖2 < 0.5, in comparison to the
other norms above 100,000. Comparing across the images, Table 3.1 shows that the slope image u5 also give
small ‖Hu∗‖0 values, around 9 and 0, since this image is also dominated by a smooth component.

Third, as z increases, the details become finer in each row, and decreasing H−1-norm values represent
this fact accordingly. Also notice that in the last column of Table 3.1, H−1-norm values are similar around
31,000-38,000 across the rows. This gives a clear idea what level of details is preferred in H−1-norm.

Fourth, the mean of the image affects the norm values. Images u5 are combination of slope and sine functions
with increasing oscillations and fixed magnitude c = 40 (first three columns), and increasing amplitude of the
oscillating part fixing z = 16π (next three columns). As oscillations increase from left to right ‖Hu5‖2 values
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increase, but ‖∇u5‖0 and ‖u5‖H−1 values stay relatively the same. This effect is due to nonzero mean of the
texture, in such cases H−1-norm values remain large.

Fifth, for the noise images u6, H−1-norm value is always smaller compared to ‖∇u6‖0 and ‖Hu6‖2. The
H−1-norm values increase as the noise level increases. Comparing the ‖u6‖H−1 values with other images, when
σ = 60, the noisy u6 gives a similar value of H−1-norm around 33,000, this is due to the image resolution, and
the visual effect is similar across images with similar norm values. We can see that the H−1-norm value stays
small only for the noise images u6, and relatively large for non-texture but oscillating images u1−5.

The Table 3.1 shows the norm values for images in range [0, 255]. When the image intensity range changes,
the reported values would change, but their relative behavior would be preserved.

4. Model parameter selection. Learning from the previous section, we propose simple strategies for
an effective, automatic selection of all the parameters γ1, γ2, γ3 that balance the energies in the minimizing
function J in (2.7). The goal is to adjust the model parameters in such a way that each regularization term
R1(v), R2(w), R3(g) perform as well as possible. This can be achieved by balancing the energy contribution
from each term to the total energy J with suitable γ1, γ2, γ3 parameter values, such that:

γ1 ≈
1

R1(v)
, γ2 ≈

1

R2(w)
, γ3 ≈

1

R3(g)
.

We propose to estimate the values for R1(v), R2(w), R3(g) using some a priori knowledge of the image com-
ponents v, w and n.

First of all, the estimate of γ1 follows Proposition 2.1 which states that R1(v) is a good approximation
of the `0 pseudo-norm penalty. The value R1(v), defined by the sum of sparsity inducing functions φ1(·; a),
approximately represents the number of image pixels that form edges and can be estimated by simple edge
detection filters on f . Similarly, the minimum jump (µ in Proposition 2.1) can be estimated, thus in order to
satisfy (2.11) the value ā is set as

ā = τµ = τ min
j: |(∇v)j |>0

|(∇v)j | , 0 < τ < 1, (4.1)

and consequently the value for a is given by (2.11). In general, for images with values in the range [0, 1], the
value ā is less than 0.1. The higher the γ1 value, the less edges of different gradient magnitude are captured in
v.

Secondly, the penalty R2(w) is a quadratic penalty term which relies on the convex function φ2(·). We
assume that the second order derivatives of w have small magnitudes, see for examples the images u3−5 of Table
3.1. Having a priori knowledge on the smooth image component we expect, we could compute a value t̄ as

t̄ := max
j
|(Hw)j | . (4.2)

Alternatively, we experimentally set t̄ = 10−3a. Values smaller than t̄ are captured by R2(w), while higher
values should be penalized by R1(v). This suggests that t̄ be set by the abscissa of the intersection point
between the functions φ1(·) and φ2(·). This is illustrated in Figure 2.1 (a) where t̄ is marked by a circle. Then
the parameter γ2 is obtained by solving

γ2

2
φ2(t̄) = γ1φ1(t̄; a) ⇒ γ2 =

2γ1φ1(t̄; a)

t̄2
. (4.3)

This procedure allows a control over what magnitudes should be favored either by R1(v) or R2(w).
Finally, in general, the value of R3(g) depends on frequency and magnitude of the oscillatory signal as

shown in Table 3.1: R3(g) increases with signal magnitude; and decreases with increasing frequency. When
the proposed variational model (2.7) is applied to noisy images, where n represents white Gaussian noise, the
regularizer R3(g). Assuming to know the noise level σ which degraded the observed image f , we can estimate
the term R3(g) by (2.21), and set γ3 to be the inverse of its approximated expected value E[R3(g)], that is

γ3 =
1

4σ4
g(m+ 1)m

, (4.4)

where σg is defined in Proposition 2.2.
When instead the proposed variational model (2.7) is applied to images with a textured component, as

in the example illustrated in the end of Section 6, R3(g) does not follow a generalized Gamma distribution.
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v∗ :

n∗ :

Input image f γ1
γ3

= 1
10

γ1
γ3

= 1 γ1
γ3

= 10

Fig. 4.1. Effect of the ratio γ1/γ3 on the dispensation of the piecewise-constant oscillations in f into v and n.

An insight on the selection of parameter γ3 is suggested by the decomposition results v and n w.r.t. the
relative ratio γ1/γ3. The Figure 4.1 illustrates the decomposition of the input image f consisting of six different
frequencies with the same amplitude. Increasing the relative ratio γ1/γ3 shifts the oscillatory signal into the n∗

component. Suitable choices for γ3 w.r.t. a fixed γ1 allow for a good control on the scale of texture to capture
in n∗ component, in terms of frequency and/or oscillations. The larger the relative ratio γ1/γ3 is, the more
oscillations of smaller-frequencies are captured in n∗.

In summary, a general strategy for an automatic selection of the parameters γ1, γ2 and γ3, when either γ1

or γ3 can be estimated, consists of

1. computing the estimation for γ3 (alternatively γ1).
2. setting γ1 = τγ3 for τ > 1 (alternatively γ3 = τγ1 for τ < 1).
3. estimating ā via (4.1) and t̄ via (4.2).
4. computing γ2 via (4.3).

5. ADMM-based numerical solution. In this section, we first provide details on the discretization of
the differential operators. We analyze the existence and uniqueness of the optimization problem (2.7) and finally
describe an efficient algorithm, based on the ADMM strategy, to obtain the numerical solution of the proposed
variational model (2.7).

5.1. Discrete Differential Operators. Given a grayscale image z represented as a matrix m1×m2, the
first-order and the second-order differential operators at a pixel (i, j) are discretized using the following standard
finite difference approximations: (∇hz)i,j ≈ zi,j+1−zi,j , (∇vz)i,j ≈ zi+1,j−zi,j , (Hhhz)i,j ≈ zi,j−1−2zi,j+zi,j+1,
(Hvvz)i,j ≈ zi−1,j − 2zi,j + zi+1,j , (Hhvz)i,j = (Hvhz)i,j ≈ zi,j + zi+1,j+1 − zi,j+1 − zi+1,j for 1 < i < m1,
1 < j < m2. Discretizations for boundary pixels come from assuming antireflective boundary conditions for z,
[26].

If the image z is represented in column-major form as an m-dimensional column vector with m = m1m2, the
discretized first- and second-order differential operators are represented by matrices D := (DT

h , D
T
v )T ∈ R2m×m

and H := (HT
hh, H

T
vv, H

T
hv, H

T
vh)T ∈ R4m×m, respectively, with Dh, Dv, Hhh, Hvv, Hhv, Hvh ∈ Rm×m coefficient

matrices of the finite difference operators approximating the first-order horizontal and vertical partial derivatives
and the second-order horizontal, vertical and mixed horizontal-vertical partial derivatives.

Using matrices D and H, the discretized gradient and the discretized second-order differential operator at
a pixel j of the vectorized image z are defined as follows

(∇x)j ≈ (Dx)j := ((Dhx)j , (Dvx)j)
T ∈ R2 , (5.1)

(H(x))j ≈ (Hx)j := ((Hhhx)j , (Hvvx)j , (Hhvx)j , (Hvhx)j)
T ∈ R4 . (5.2)

In analogy with the continuous setting, we define the discrete version of the divergence operator in terms
of the adjoint ∇∗ of the gradient ∇ that, applied to a vector field g = (gh, gv), is

∇ · g = −∇∗g ≈ DT g .

Using these discretizations of the differential operators, and, making all the penalty terms explicit, the
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minimization problem (2.7) reads as

{v∗, w∗, g∗} ∈ arg min
v,w∈Rm,g∈R2m

J (v, w, g), (5.3)

with

J (v, w, g) = γ1

m∑
j=1

φ1 (|(Dv)j |; a) +
γ2

2
‖Hw‖22 +

γ3

2
‖g‖42 +

1

2

∥∥f − (v + w +DT g)
∥∥2

2
. (5.4)

5.2. Analysis of the model. In this section, we outline some important analytical properties of our cost
functional J in (5.4), with particular focus on its convexity and coercivity, at the aim of proving the existence
of global minimizers. We remark that some of the reported results (or their proof) depend on the discretization
choices outlined in Section 5.1 for the differential operators D and H. However, analogous results could be
obtained in a similar manner for other discretization schemes.

In the following Proposition 5.1, whose proof is provided in Appendix A, we analyze J with focus on its
convexity. To simplify the notations, we introduce the total optimization variable x :=

(
v;w; gh; gv

)
∈ R4m.

Proposition 5.1. For any γ1, γ2, γ3, a > 0 and any f ∈ Rm, the function J in (5.4) is proper, continuous,
bounded from below by zero and non-convex in x. Moreover, J is strongly convex in w and strictly convex in g
for any γ1, γ2, γ3, a > 0 and any f ∈ Rm, whereas it is convex (strongly convex) in v if parameters γ1, a satisfy

a ≤ (<)
1

γ1 λmax
⇐⇒ a = τc

1

γ1 λmax
, τc ∈ [0, 1] (τc ∈ [0, 1)) , (5.5)

where λmax ∈ R++ denotes the maximum eigenvalue of matrix DTD, which is equal to 8 for D defined in
Section 5.1.

Motivated by non-convexity of the cost function J , which does not allow us to obtain uniqueness results
for its global minimizers, in the following we analyze the behaviour of J at infinity, in particular coercivity, and
demonstrate the existence of global minimizers.

First, in the following Lemma 5.2 we provide explicit forms for the null spaces of the finite difference matrices
D and H defined in Section 5.1. Then, in Proposition 5.3 we state the existence results.

Lemma 5.2. Let z ∈ Rm be the vectorized (column-major) form of an m1×m2 image, with m = m1×m2,
and let D ∈ R2m×m and H ∈ R4m×m be the discretization of ∇ and H given in Section 5.1 which compute
the discrete first- and second-order partial derivatives of image z. Then, the null spaces of D and H are the
1-dimensional and 3-dimensional linear spaces of (vectorized) m1×m2 constant and affine images, respectively;
in formulas:

null(D) = span
(
h(1)

)
⊂ Rm, null(H) = span

(
h(1), h(2), h(3)

)
⊂ Rm, (5.6)

with basis vectors h(1), h(2), h(3) ∈ Rm defined by

h(1) = 1m , h(2) = vec

 1 2 . . . m2

...
...

...
...

1 2 . . . m2


 m1 rows , h(3) = vec


1 . . . 1
2 . . . 2
... . . .

...
m1 . . . m1


︸ ︷︷ ︸

m2 columns

. (5.7)

Proof. It follows from definitions of matrices D and H given in Section 5.1 that

null(D) = {z ∈Rm: (Dz)j = 02 ∀j = 1, . . . ,m} , null(H) = {z ∈Rm: (Hz)j = 04 ∀j = 1, . . . ,m} . (5.8)

Recalling the finite difference choices outlined in Section 5.1 and noting that here we are considering a vectorized
image z, we have:

(Dz)j =

(
0
0

)
⇐⇒

(
−1 0 1
−1 1 0

)
︸ ︷︷ ︸

D

 zj
zj+1

zj+m1

=

(
0
0

)
, (5.9)
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(Hz)j =


0
0
0
0

 ⇐⇒

 1 0 −2 0 1 0
0 1 −2 1 0 0
0 0 1 −1 −1 1


︸ ︷︷ ︸

H


zj−m1

zj−1

zj
zj+1

zj+m1

zj+1+m1

=

 0
0
0

 . (5.10)

where in (5.10) we neglected the fourth row of matrix H as it coincides with the third one. It is easy to prove
that the solutions of underdetermined linear systems in (5.9) and (5.10), which correspond to the null spaces
of coefficient matrices D ∈ R2×3 and H ∈ R3×6, respectively, read

null
(
D
)

= span
(
α0

)
⊂ R3 , null

(
H
)

= span
(
α1, α2, α3

)
⊂ R6 , (5.11)

with basis vectors α0 ∈ R3 and α1, α2, α3 ∈ R6 given, e.g., by

α0 = (1, 1, 1)T , α1 = (1, 1, 1, 1, 1, 1)T , α2 = (1, 2, 2, 2, 3, 3)T , α3 = (2, 1, 2, 3, 2, 3)T . (5.12)

A 2-dimensional visualization of the basis vectors is given in Figure 5.1. Hence, conditions (5.9) and (5.10)

α0 α1 α2 α3

1 1

1

1 11

1

1 1

2 31

2

2 3

2 22

1

3 3

Fig. 5.1. 2-dimensional visualization of basis vectors α0 ∈ R3, α1, α2, α3 ∈ R6 defined in (5.12).

are equivalent to say that image z is locally (i.e., over the local stencils for D and H) constant and affine,
respectively. In order to prove that such local properties extend to the whole image, we notice that, by shifting
one pixel horizontally or vertically (i.e., moving from pixel j to pixels j ± 1 or j ±m1), the intersection of the
shifted local stencil with the original one is made by one pixel for D and three pixels for H (see the red-bordered
stencils depicted in Fig. 5.1). This means that the local constant or affine configurations must be the same
for all pixels and, hence, the null spaces of D and H are given by the 1-d and 3-d linear spaces of (vectorized)
m1 ×m2 constant and affine images, respectively. In (5.7) we report one among the infinity of possible sets of
basis vectors for the two null spaces.

Proposition 5.3. For any γ1, γ2, γ3, a > 0 and any f ∈ Rm, the function J in (5.4) is not coercive in x,
nevertheless it admits global minimizers.

Proof. Proving that J is not coercive in x is immediate by considering how the restriction of J to the line
l(t) = (f ; 0m; 02m) + t (1m;−1m; ; 02m), t ∈ R, behaves at infinity. In fact, it follows from definition (5.4) that

lim
|t|→∞

J (l(t)) = lim
|t|→∞

γ1

m∑
j=1

φ1 (|(Df)j |; a)

 ≤ γ1m < +∞, ∀γ1, γ2, γ3, a ∈ R++, ∀ f ∈ Rm , (5.13)

where the second-last inequality comes from definition (2.8) of φ1, namely from maxt∈R+
φ1(t; a) = 1 ∀ a ∈ R++.

Proving that, in spite of non-coercivity, J admits global minimizers for any γ1, γ2, γ3, a ∈ R++ and any f ∈ Rm
is less straightforward. In fact, for f a constant image, the limit in (5.13) is equal to zero, which is the minimum
value that the (non-negative) function J can ever attain at (finite) domain points x ∈ R4m. We proceed as
follows. First, we detect all the possible paths of non-coercivity for J , namely paths towards infinity in the
domain R4m of J along which the value of J does not tend towards +∞. Then, we compute all the possible
limit values of J along these paths and, finally, we prove that these or lower values are attained by J at (finite)
domain points x ∈ R4m. This implies that, even if a global infimizer exists at infinity, then a corresponding -
i.e., characterized by the same function value - global minimizer exists as well.

Paths of non-coercivity. We start noting that the function J in (5.4) is given by the sum of four non-negative
terms. Hence, whenever the value of one of these terms goes to +∞, the value of the total function J goes
to +∞ as well. Then, the term (γ3/2)‖g‖42 is coercive in g, hence possible paths of non-coercivity for J must
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be sought by keeping g bounded (that is, letting only ‖(v;w)‖2 approach +∞). The non-convex regularization
term in J is bounded from above by γ1m < +∞, hence it does not affect coercivity of J . The sum of the two
remaining terms in J is a quadratic function of y := (v;w) ∈ R2m which can be written as

Q(y) =
γ2

2
‖Q1y‖22 +

1

2
‖Q2y − z‖22 =

1

2
yT
( Q ∈ R2m×2m︷ ︸︸ ︷
γ2Q

T
1 Q1 +QT2 Q2

)
y − zTQ2 y +

1

2
‖z‖22 , (5.14)

with

Q1 = (0m;H) ∈ R2m×2m, Q2 = (Im, Im) ∈ Rm×2m, z = f −DT g ∈ Rm . (5.15)

The Hessian matrix Q in (5.14) is symmetric positive semi-definite and its null space, given by the intersection
of the null spaces of Q1 and Q2, is given by null(Q) =

{
(v;w) ∈ R2m : v = −w, w ∈ null(H)

}
. The paths of

non-coercivity for Q are thus only those approaching at infinity a direction parallel to null(Q). Along all other
paths, Q and, hence, J tend to +∞.

Limit values. In order to compute the limit values of J along all its paths of non-coercivity, it suffices to
analyze the behaviour at infinity of the restrictions Jx0

of J to the family of parameterized affine subspaces
Sx0 ⊂ R4m, with parameter x0 =

(
v0;w0; g0

)
∈ R4m, of the form

Sx0
= x0 + V, V = span

(
ν(1), ν(2), ν(3)

)
, ν(i) =

(
h(i);−h(i); 02m

)
, i = 1, 2, 3 , (5.16)

where h(i) ∈ Rm, i = 1, . . . , 3 are defined in (5.7) and represent the basis vectors of null(H), i.e. of the subspace
of affine images (see Lemma 5.2). Based on (5.16) and on the definition of J in (5.4) , the restrictions read

Jx0
(t1, t2, t3) = J

(
x0 + t1 ν

(1) + t2 ν
(2) + t3 ν

(3)
)

= J
(
v0 + t1 h

(1) + t2 h
(2) + t3 h

(3) , w0 − t1 h(1) − t2 h(2) − t3 h(3) , g0

)

=

J̃x0 (t1,t2,t3)︷ ︸︸ ︷
γ1

m∑
j=1

φ1

(∥∥∥∥(D (v0 + t1 h
(1) + t2 h

(2) + t3 h
(3)
))

j

∥∥∥∥
2

; a

)
+
γ2

2
‖Hw0‖22 +

γ3

2
‖g0‖42 +

1

2

∥∥f − (v0 + w0 +DT g0)
∥∥2

2︸ ︷︷ ︸
Jx0

, (t1, t2, t3) ∈ R3 , (5.17)

where the latter term J x0
depends on x0 but not on (t1, t2, t3), hence the behaviour of Jx0

at infinity - i.e., for

‖(t1; t2; t3)‖2 →∞ - depends mainly on the former term J̃x0
(t1, t2, t3). It comes from the definitions of matrix

D in Section 5.1 and of vectors h(1), h(2), h(3) in (5.7) that Dh(1) = 02m, Dh(2) =
(
1m; 0m

)
, Dh(3) =

(
0m; 1m

)
.

It follows that D
(
v0 + t1 h

(1) + t2 h
(2) + t3 h

(3)
)

= Dv0 + t2(1m; 0m) + t3(0m; 1m) and, hence,

|
(
D
(
v0 + t1 h

(1) + t2 h
(2) + t3 h

(3)
))
j
| = |(Dv0)j + (t2; t3)| , j = 1, . . . ,m . (5.18)

Taking the limit, with a little abuse of notation (the limit does not formally exist), we have

lim
‖(t1;t2;t3)‖2→∞

|(Dv0)j+ (t2; t3)| =
{

+∞ if ‖(t2; t3)‖2 →∞
|(Dv0)j+ (t̄2; t̄3)| < +∞ if |t1| → ∞, (t2; t3)→ (t̄2; t̄3)∈R2 , (5.19)

j = 1, . . . ,m. Based on (5.17)–(5.19) and on the fact that limt→+∞ φ1(t; a) = 1, ∀ a ∈ R++, we can thus write

lim
‖(t1;t2;t3)‖2→∞

Jx0
(t1, t2, t3) =

{
l

(1)
x0 if ‖(t2; t3)‖2 →∞
l

(2)
x0 if |t1| → ∞, (t2; t3)→ (t̄2; t̄3)∈R2

, (5.20)

with limit values l
(1)
x0 , l

(2)
x0 ∈ R+ given by

l (1)
x0

= γ1m + Jx0
, l (2)

x0
= γ1

m∑
j=1

φ1

(
|(Dv0)j+ (t̄2; t̄3)|; a

)
+ Jx0

. (5.21)
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After noting that l
(2)
x0 ≤ l

(1)
x0 , we complete the proof by demonstrating that, for any γ1, γ2, γ3, a ∈ R++, f ∈ Rm,

x0 ∈ R4m and any (t̄1, t̄2) ∈ R2, there exists a point x = (v;w; g) ∈ R4m such that J (x) ≤ l (2)
x0 . In fact, e.g., for

x = (v, w, g) =
(
v0 +D(t̄2h

(2) + t̄3h
(3)) , w0 −D(t̄2h

(2) + t̄3h
(3)) , g0

)
∈ R4m , (5.22)

we have that J (x) = l
(2)
x0 .

Non-coercivity of function J for v and w being opposite constant images is quite evident from the expression
of J in (5.4). It is also evident that global (and also local) minimizers of J are defined modulo opposite constant
offsets for v and w, namely if x∗ =

(
v∗;w∗; g∗

)
is a minimizer for J then any y∗(t) =

(
v∗+t 1m;w∗−t 1m; g∗

)
, t ∈

R, is also a minimizer. This property, which is typical of all variational decomposition models where the cartoon
component is sought by promoting sparsity of its gradients, makes our model in some way “redundant” and lets
the employed optimization algorithm (when convergent) be a naive responsible for the selection of one among
the infinity of equivalent minimizers. In order to make this selection more transparent, different strategies at
the modelling level are possible. In Proposition 5.4 below we outline the most natural one, which ensures the
equivalence between the original model and its modified version in terms of minimum cost function value.

Proposition 5.4. For any γ1, γ2, γ3, a > 0 and any f ∈ Rm, the function J in (5.4) is constant along
straight lines in its domain R4m of direction defined by the vector

d :=
(

1m;−1m; 02m

)
. (5.23)

Hence, any constrained model of the form

x∗ ∈ argmin
x ∈ Cc,q

J (x) , (5.24)

with Cc,q ⊂ R4m one among the infinity of (4m− 1) dimensional affine feasible sets defined by

Cc,q =
{
x ∈ R4m : cTx = q with cT d 6= 0

}
, c ∈ R4m , q ∈ R , (5.25)

admits solutions and the solutions are equivalent to those of the unconstrained model (5.3)-(5.4) in terms of
(minimum) cost function value.

Proof. Proving that J (x) = J (x+ t d) ∀x ∈ R4m, ∀ t ∈ R, with d defined in (5.23), is straightforward:

J
(
x+ t d

)
= J (v+ t 1m, w− t 1m, g + t 02m)

= γ1

m∑
j=1

φ1

(
|(Dv)j +������(

D
(
t 1m

))
j
|; a
)

+
γ2

2
|(Hw)j −������(

H
(
t 1m

))
j
|2 +

γ3

2
‖g‖42 (5.26)

+
1

2

∥∥f − (v+��t 1m + w−��t 1m +DT g)
∥∥2

2
= J (x) ∀x ∈ R4m, ∀ t ∈ R , (5.27)

where in (5.26) we used the fact (stated in Lemma 5.2) that constant images are mapped to the zero vector by
matrices D and H. This implies that, if x∗ ∈ R4m is a minimizer of J , the straight line y∗(t) = x∗ + t d, t ∈ R,
contains an infinity of minimizers equivalent to x∗ in terms of function value, namely J

(
y∗(t)

)
= J

(
x∗
)
, ∀ t ∈ R.

We now notice that any (4m− 1)-dimensional affine hyperplane Cc,q defined in (5.25) is not parallel to the
vector d (due to condition cT d 6= 0), hence it intersects any straight line of direction d in one and only one
point. Therefore, if y∗(t) = x∗ + t d, t ∈ R, is a set of equivalent minimizers for J , there is one and only one
element of the set which also belongs to a feasible set Cc,q of the form in (5.25). Since according to Proposition
5.3 the function J admits global minimizers, it follows that the restriction of J to any feasible set Cc,q also
admits global minimizers which are characterized by the same (minimum) cost function value.

Solving numerically constrained models of the form in (5.24)-(5.25) is slightly more complicated (and, in
general, less efficient) than solving the unconstrained model (5.3)-(5.4). A second strategy that can be used to
eliminate redundancy of the unconstrained model without imposing hard constraints consists in adding to our
cost function J in (5.4) a “very small” regularization term capable of making J not constant on straight lines
parallel to the vector d in (5.23). This is the strategy we use in the ADMM-based numerical solver presented
in the following Section 5.3, where we implicitly add (in the sense that we add the term by directly including a
regularization matrix κ I in the system of normal equations) the regularization term (κ/2)‖x‖22, with κ ∈ R++

being a very small parameter.
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5.3. Applying ADMM to the proposed model. In this section, we illustrate in detail the ADMM-
based iterative algorithm used to numerically minimize the proposed unconstrained model (5.3)-(5.4) which
presents a good separable structure. We first resort to the variable splitting technique to deal with the non-
differentiability of the non-convex penalty term φ1(·; a). By introducing the auxiliary variable t := Dv ∈ R2m,
we formulate the following constrained optimization problem

{v∗, w∗, g∗, t} ← arg min
v,w,g,t

J (v, w, g, t), s.t. t = Dv,

with

J (v, w, g, t) = γ1

m∑
j=1

φ1 (|tj |; a) +
γ2

2

m∑
j=1

|(Hw)j |2 +
γ3

2
‖g‖42 +

1

2

∥∥f − (v + w +DT g)
∥∥2

2
.

The corresponding augmented Lagrangian functional for the optimization problem reads as

L(v, w, g, t; ρ) =γ1

m∑
j=1

φ1 (|tj |; a) +
γ2

2

m∑
j=1

|(Hw)j |2 +
γ3

2
‖g‖42

− 〈ρ, t−Dv〉+
β

2
‖t−Dv‖22 +

1

2

∥∥f − (v + w +DT g)
∥∥2

2
, (5.28)

where β > 0 is a penalty scalar parameter, and ρ ∈ R2m represents the vector of Lagrange multipliers associated
with the linear constraint t = Dv.

To simplify notations, in the following we denote by x := (v;w; g) the (4m)-dimensional column vector
formed by stacking the three optimization variables v, w ∈ Rm, g ∈ R2m. We then consider the following
saddle-point problem:

Find (x∗, t∗, ρ∗) ∈ R4m× R2m× R2m

s.t. L(x∗, t∗; ρ) ≤ L (x∗, t∗; ρ∗) ≤ L (x, t; ρ∗), ∀(x, t, ρ) ∈ R4m× R2m× R2m . (5.29)

An ADMM-based iterative scheme is applied to approximate the solution of the saddle-point problem (5.28)–
(5.29). Having zero-initialized vectors t(0) and ρ(0), the k-th iteration of the proposed alternating iterative
scheme reads as follows:

x(k+1) = argmin
x∈R4m

L(x, t(k); ρ(k)) , (5.30)

t(k+1) = argmin
t∈R2m

L(x(k+1), t; ρ(k)) , (5.31)

ρ(k+1) = ρ(k) − β(t(k+1) −Dv(k+1)) . (5.32)

For the x-subproblem (5.30), the first-order optimality conditions read (v(k+1) + w(k+1) +DT g(k+1) − f) +DT ρ(k) − βDT (t(k) −Dv(k))
(w(k+1) + v(k+1) +DT g(k+1) − f) + γ2H

THw(k+1)

D(DT g(k+1) + v(k+1) + w(k+1) − f) + 2γ3

∥∥g(k+1)
∥∥2

2
g(k+1)

 =

 0
0
0

 . (5.33)

By replacing the nonlinear term
∥∥g(k+1)

∥∥2

2
in the third equation with the value at the previous iteration k,

(5.33) reduces to the following linear system of equations

Lx(k+1) = y , (5.34)

where

L =

 I + βDTD I DT

I I + γ2H
TH DT

D D DDT + 2γ3

∥∥g(k)
∥∥2

2
I

 , y =

 f + βDT (t(k) − 1
β ρ

(k))

f
Df

 (5.35)

which is solved for x(k+1) = (v(k+1);w(k+1); g(k+1))T . The block in (5.35) containing the discretized operator
HTH slightly worsens the conditioning of the linear system. A suitable approximate solution of (5.34) is
determined by solving the following system of regularized equations

(L+ κI)x(k+1) = y (5.36)
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with a small scalar parameter κ > 0, that allows the system to be efficiently solved using iterative preconditioned
conjugate gradient linear solver.

The t-subproblem (5.31) can be written omitting the constant terms as

t(k+1) = argmin
t∈R2m

γ1

∑
j

φ1(|tj |; a)− 〈ρ, t〉+
β

2
‖t−Dv‖22

 . (5.37)

The minimization problem in (5.37), rewritten in component-wise form, is equivalent to the following m inde-
pendent 2-dimensional problems of the form

t
(k+1)
j = argmin

t∈R2

{
1

α
φ1(‖t‖2; a) +

1

2
‖t− qj‖22

}
, (5.38)

with j = 1, . . . ,m, α = β/γ1 and qj = (Dv(k))j+ρ
(k)
j /β. Necessary and sufficient conditions for strong convexity

of the cost functions in (5.38) are demonstrated in [9]. In particular, the problems in (5.38) are strongly convex
if and only if the following condition holds:

a < α =⇒ β > aγ1 =⇒ β = τ (aγ1) , for τ > 1. (5.39)

Under the assumption (5.39), the unique solutions of problems in (5.38) can be obtained in closed form as

t
(k+1)
j = min(max(ν − ζ/‖qj‖2, 0), 1) qj ,

where ν =
α

α− a
and ζ =

√
2a

α− a
.

We remark that the condition on β in (5.28) only ensures the convexity conditions (5.39) of t-subproblem
(5.38), but does not guarantee convergence of the overall ADMM scheme. In case that convexity conditions (5.39)
are satisfied, following [6], the convergence of the proposed two-block ADMM-based minimization algorithm
could be investigated in future work.

In the numerical experiments, we set the coefficient τ in (5.39) to be τ = 5, the β value to be 50, and κ in
(5.36) to be κ = 10−9. This setting has always guaranteed the ADMM convergence in our experiments.

6. Numerical Examples. In this section, we present experimental results on the additive decomposition
of synthetic and real images. We first validate the proposed variational model (2.7) for the decomposition
of images corrupted by an increasing level of additive Gaussian noise (Example 1) and different blending of
the additive components (Example 2). Then, we investigate the performance of our model when applied to
specific applications such as soft shadow removal and spotlight removal (Example 3). Finally, we compare our
proposal to three interesting variational models, namely [3], [9] and [18], proposed in literature for the additive
decomposition of images (Example 4).

The code has been implemented in Matlab environment and Windows OS. When the ground truth images
are known, quantitative measurements to evaluate the quality of the decomposition are provided by Signal-to-
Noise Ratio (SNR) values, defined by SNR(x∗, x) := 10 log10

(
‖x−E[x]‖22 / ‖x∗− x‖22

)
, with x∗ the computed

estimate of the original image x and E[x] denoting the mean value of x.

For the oscillatory component n, we report the Experimental Standard Deviation (ESD) of the signal defined
as

ESD(n) =
‖n‖2√
m

. (6.1)

Relying on the discrepancy principle, given a known, or estimated, value for the noise standard deviation σ, the
values of ESD(n) should approach to it. For all the experiments, we terminate the iterations of the ADMM
algorithm as soon as two successive iterates satisfy either of the two following conditions

k > 400 ,
∥∥x(k+1) − x(k)

∥∥
2
/
∥∥x(k)

∥∥
2
< 10−6 . (6.2)
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Example 1: Degradation by different noise levels. We test the performance of our model (2.7) in
decomposing a piecewise-smooth image f , shown in Figure 6.1 first column, obtained as a composition of a
piecewise-constant rectangle shapes v with smoothly varying illumination w, and different noise degradations n.
The test image u, in Figure 6.1 top row, represents a non-trivial case, in which, even if the w and v components
of the noisy-free image u are well-separable, (in fact |(Hw)j | ∈ [0, 0.34] and |(Dv)j | ∈ [85.14, 120.41], for all j),
the noise degradation corrupts not only the image but also the separability.

We set the model parameters following the discussion reported in Section 4. In particular, we set: ā =
0.5 minj(|(Dv)j |) = 42.57, see (2.11); and consequently a = 2/ā2 = 0.001, t̄ = 10−3ā = 0.043; γ1 = 1/#(|Dv|) =
1/1055; γ2 = γ2φ1(t̄, a)/t̄2 = 0.0012, see (4.3). The parameter γ3 is computed according to the formula (4.4)
where σg is defined for the different levels of noise. In particular, the noisy images f - see Figure 6.1 first
column - have been degraded by a Gaussian additive noise characterized by standard deviations in the range
σ = {5, 25, 35, 100} which lead to the following estimates of γ3

σ = 5 σ = 25 σ = 35 σ = 100

σg = 3.49 σg = 17.47 σg = 24.46 σg = 69.90

γ3 = 1/9.55e11 γ3 = 1/5.97e14 γ3 = 1/2.29e15 γ3 = 1/1.53e17

The results are reported in each row of Figure 6.1 (from the second column) for increasing noise level σ. In
each column, the resulting denoised image u∗ = v∗ + w∗, and its components v∗, w∗, and n∗ are shown. Even
for severely corrupted images, the effect of the proposed regularization term R3(g), weighted by an appropriate
parameter γ3, well captures the noise oscillations. It achieves ESD values close to the noise standard deviation
used to corrupt the original image. In case of strong noise, as in the last row of Figure 6.1 where the noise is
stronger than the edge magnitudes, the smallest rectangle goes into the n∗ component.

Example 2: Different Textures. In this example, we evaluate the performance of our decomposition
model when the oscillatory function represents texture component of a noisy-free image (the first column
of Figure 6.2). In particular, we kept the original components v and w as in the previous example adding
a texture pattern inside the rectangle areas. In the first row of Figure 6.2 the texture is represented by
horizontal stripes, while in the second row, the texture component is represented by a chessboard-like pattern.
In the remaining columns of Figure 6.2 we report the resulting components v∗, w∗ and n∗ respectively. Both
visually and quantitatively we can appreciate the texture captured entirely in n∗ attaining the texture image
SNR(n∗) = {21.11, 17.82}, respectively, keeping high quality reconstruction of both v∗ and w∗ as well.

Example 3: Different blending. We validate our model under different blending of the v and w image
components. This leads to different magnitudes of the first and second order derivatives, and, consequently,
affects the component separability. In Figure 6.3, the different images u are obtained by the linear mixtures of
a piecewise component v, a QR code image, and a smooth component w, namely:

u(t) := (1− t)v + t w , t ∈ [0, 1]. (6.3)

Then, they are corrupted by additive Gaussian noise of standard deviation σ = 15; the resulting degraded
images f(t) are shown in the first column of Figure 6.3 for t = {0.2, 0.5, 0.8} respectively. For visualization
purpose, the images illustrated in the second and third columns of Figure 6.3 have been slightly modified: the
image v∗TH is thresholded (TH) using mean value of v∗ as the threshold value, and the image w∗HS is histogram
stretched (HS).

For all the three blending considered, the recovered noise component n∗ approaches to the standard deviation
of the noise σ = 15, as illustrated in the last column. From top to bottom, the edges of the QR code images v
become less significant with respect to the noise contribution. The noise interferes more with edges of v, thus
achieving worse SNR(v∗) results. On the other hand, the stronger the w component is, the better its recovery
is, as highlighted by the increasing SNR(w∗) values. This experiment demonstrates how the proposed model
efficiently decomposes an image even when the contributions of each component in terms of grey-level intensities
are not equally balanced.

Example 4: Soft light and shadow removal. Our decomposition model (2.7) can be successfully applied
to remove soft shadows and soft light effects. Soft shadows and the ”dual” effect of soft light are ubiquitous, but
remain notoriously difficult to extract from photographs without damaging the underlying content. Currently
shadow removal algorithms rely on shadow detection by an initial segmentation which turns to be somehow
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u 0.4v 0.6w

SNR(fσ=5) = 21.18 SNR(u∗) = 46.05 SNR(v∗) = 46.51 SNR(w∗) = 40.64 ESD(n∗) = 4.88

SNR(fσ=25) = 7.20 SNR(u∗) = 32.00 SNR(v∗) = 30.39 SNR(w∗) = 28.88 ESD(n∗) = 24.89

SNR(fσ=35) = 4.28 SNR(u∗) = 26.63 SNR(v∗) = 24.71 SNR(w∗) = 27.49 ESD(n∗) = 34.58

SNR(fσ=100) = −4.84 SNR(u∗) = 13.78 SNR(v∗) = 10.68 SNR(w∗) = 16.72 ESD(n∗) = 99.28

Fig. 6.1. Example 1: Decomposition results for different levels of additive Gaussian noise with σ = {5, 25, 35, 100}. The
column u∗ shows clean denoised image, v∗ shows the piecewise constant part, w∗ the captured smooth part and n∗ the noise.

easy in natural scenes with umbra, but particularly difficult in case of penumbra (soft shadow), even more
challenging in case of noisy images. For shadow removal, the proposed decomposition model (2.7) is directly
applied to the noisy corrupted images, the smooth component w in (2.7) captures the shadow contribution,
while the noise is separated in the n component, and the structures are enhanced in the v component.

In Figure 6.4 (first column) we show four images corrupted by additive Gaussian noise with standard
deviation σ = {10, 10, 5, 5}, which represent the initial data f . In particular, the first two rows report images
representing optical illusion examples. The change of lightning makes us perceive the shadowed objects/areas
to be of different colors, even though in the image these parts have the same intensity. The first image is the
Logvinenko illusion in which the top faces of the cubes have the same intensity value; and the second image is
the Adelson’s checkerboard illusion where the fields (squares) A and B have the same intensity value. These
images are typically used in Retinex theory models [13, 19].

Figure 6.4 shows the separation result; the denoised image u∗, the piecewise constant part v∗, the soft
shadow in w∗ where a constant 0.5 is added for visualization purposes, and the recovered noise n∗. As we
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input image f SNR(v∗) = 28.05 SNR(w∗) = 39.42 SNR(n∗) = 21.11

input image f SNR(v∗) = 27.50 SNR(w∗) = 42.12 SNR(n∗) = 17.82

Fig. 6.2. Example 2: Decomposition results for different types of texture without noise. The column v∗ shows the piecewise
constant part, w∗ the captured smooth part and the oscillatory texture is captured in n∗.

SNR(f(0.2)) = 16.72 SNR(v∗TH) = 29.81 SNR(w∗HS) = 12.10 ESD(n∗) = 14.76

SNR(f(0.5)) = 13.31 SNR(v∗TH) = 29.27 SNR(w∗HS) = 25.72 ESD(n∗) = 14.87

SNR(f(0.8)) = 10.26 SNR(v∗TH) = 18.56 SNR(w∗HS) = 29.18 ESD(n∗) = 14.96

Fig. 6.3. Example 3: (first column) noisy image f given by blending w and v according to (6.3) for t = {0.2, 0.5, 0.8}; (second
column) v∗ component, (third column) w∗ component, (fourth column) n∗ noise.
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SNR(f) = 14.44 SNR(u∗) = 20.83 v∗ w∗ + 0.5 ESD(n∗) = 10.72

SNR(f) = 18.64 SNR(u∗) = 27.14 v∗ w∗ + 0.5 ESD(n∗) = 10.15

SNR(f) = 14.01 SNR(u∗) = 16.01 v∗ w∗ + 0.5 ESD(n∗) = 4.93

SNR(f) = 14.01 SNR(u∗) = 16.01 v∗ w∗ + 0.5 ESD(n∗) = 4.93

Fig. 6.4. Example 3: Soft shadow removal for noisy input images f in the first column. The second column shows denoised
images u∗, and the third column shows the structure part of f in v∗ components. The shadows are well separated in w∗ and shown
in the forth column, and the noise n∗ is captured in the last column.

expected the component w∗ captured the soft shadow. The ESD values clearly indicate that the noise added
to the images is accurately recovered. The soft cast shadow images illustrated in the last two rows of Figure
6.4 represent particularly difficult cases in which the input images f contain noisy-like texture located on the
tiles. Together with the image compression artifacts, the crevices ‘edges’ between the tiles are numerically
over-smoothed. The SNR values are thus slightly less significant in these cases; nonetheless, applying our
decomposition algorithm produces visibly denoised u∗, even correctly separate the soft shadow component w∗.

Finally, we demonstrate the performance of our decomposition model (2.7) on images f with a visible soft
light effect which are corrupted by additive Gaussian noise with σ = 30 (first column of Figure 6.5). The result
shows a clear separation: the denoised image u∗ = v∗ + w∗, the piecewise constant v∗ and the spot light w∗,
together with the noise component n∗. The proposed method separates the image in an excellent way, clearly
showing the details in v∗, and a clear location of spot lights in w∗.

Example 5: Comparison to related works. We explore similarities and differences to some previous
work, [3], [9] and [18], where variational formulations are adopted for the additive decomposition of images.

In Figure 6.6, we compared with the two-component decomposition model introduced in [9], which similarly
decomposes the observed noisy input f into v∗ (cartoon) and w∗ (smooth) components, treating the noise via
`2 fidelity residual. For comparison, we applied our decomposition model to the same synthetic image [9][Figure
8.5], illustrated in Figure 6.6 (first row) which has been corrupted by Gaussian noise. Increasing values of noise
degradation, i.e. standard deviation σ = {5, 15} are shown in Figure 6.6. The smaller level of noise σ = 5
corresponds to the one used in [9]. For low level of noise, results are well recovered also by the variational model
in [9]. However, the SNR values attained by our model are higher and also the quality of the decomposition
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SNR(f) = 5.56 SNR(u∗) = 19.55 v∗HS w∗HS ESD(n∗) = 29.76

SNR(f) = 7.64 SNR(u∗) = 19.98 v∗HS w∗HS ESD(n∗) = 29.59

Fig. 6.5. Example 4: Soft light removal on noisy input images f in the first column. The second column u∗ shows denoised
image, and the third column v∗ shows the structure part of f . The spot light is well separated in w∗ shown in the forth column.

is improved: the third row of Figure 6.6 shows much cleaner component w∗, validating the use of a H−1-norm
penalty to capture the oscillatory component instead of the `2 residual. For a higher level of noise, σ = 15, by
applying [9] the noise component is not well separable with respect to the v component, and the regularization
term ‖∇w‖22 under-performs compared to the ‖Hw‖22 regularization term introduced in our model (2.7). This
is confirmed by a visual comparison in the last two rows of Figure 6.6, where the smooth component w∗ using
[9] incorporates visible residuals from v and noise n. The combination of the higher-order regularization term
on w and the H−1-norm-based term on n, poses an advantage of the proposed method.

In Figure 6.7, we represent the different separation capabilities of our model compared with the three-
component variational model proposed in [3]. The model in [3] tackles the structure-texture-noise decomposition
of an observed noisy input image, using total variation, negative Sobolev, and negative Besov norms, respectively.
We recreated the piecewise-constant synthetic image presented in [3] and added an additional smooth-gradient
bell function w, as illustrated in the first row of Figure 6.7. The model in [3] decomposes the noisy corrupted
image into the square in the center as structure component, the horizontal stripes as texture component, and a
separate noise component. Our proposed model instead, separates the structure component v which combines
the square and the stripes, the noise term n, and also the smooth component w. A similar example without
the square box is shown in the second row of Figure 6.7, where v∗ contains only horizontal stripes and a higher
noise degradation. The proposed model separates them clearly, while model in [3] recovers the smooth function
w into the v∗ component producing inevitable staircases effects.

In the last example illustrated in Figure 6.8, we compare our decomposition model with the two-term
decomposition model in [18]. The authors proposed a structure-texture decomposition based on [23] with the
total variation regularizer replaced by a parametrized non-convex penalty function. Comparing the two models
term by term, the structure component term in [18] is similar to our R1(v) and their texture term is similar
to the H−1-norm based term R3(g). The additional term R2(w) makes the difference allowing for a more
significant structure decomposition u = v+w as a piecewise-smooth contribution, which better fits the mixture
composition of real images. In Figure 6.8, the comparisons to [18] are shown. Ad hoc γ3 values are selected to
enable R3(g) to capture the correct texture scales, while taking into account the influence of the relative ratio
γ1/γ3 on the final decomposition result, as shown in section 4. For the three examples of piecewise-smooth
images considered we set the parameter ratios γ1/γ3 = {0.25, 0.25, 15}. The first and second rows of Figure
6.8 show two results for two different parts of the Barbara image where we set γ1/γ3 = 0.25 which allows to
capture small-scale texture in n∗, while in v∗ only the main structure is kept. The image in the third row of
Figure 6.8 is characterized by the amount of fur texture which overwhelms the face feature edges, thus even for
the increased ratio γ1/γ3 = 15 the fur texture is not entirely captured in n∗.

The H−1-norm term captures the oscillating patterns, this includes both noise and textures at a sufficiently
small scale detail. This example demonstrates how to successfully apply our model to separate textured regions
from noisy-free images.
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u v w

σ = 5

SNR(f) = 20.93

Results using model in [9]

SNR(u∗) = 27.84 SNR(v∗) = 27.03 SNR(w∗) = 22.23 ESD(u∗ − f) = 3.02
ours

SNR(u∗) = 35.38 SNR(v∗) = 32.46 SNR(w∗) = 35.40 ESD(n∗) = 4.84

σ = 15

SNR(f) = 11.41

Results using model in [9]

SNR(u∗) = 23.60 SNR(v∗) = 14.88 SNR(w∗) = 14.08 ESD(u∗ − f) = 12.78
ours

SNR(u∗) = 24.47 SNR(v∗) = 21.19 SNR(w∗) = 26.43 ESD(n∗) = 14.74

Fig. 6.6. Example 5: Comparison to [9] for σ = {5, 15}. For low level of noise (top two rows), SNR values are higher for the
proposed method. For high level of noise γ = 15, not only the SNR values are higher for the proposed method, but also for [9] the
residues are present in w∗ and n∗.

7. Conclusion. We proposed a new method to decompose a given image f into piecewise constant, smooth
homogeneous and oscillating components which can represent noise and/or textured parts. The variational
model is composed of a TV-like non-convex regularization, to capture the piecewise constant part, a new
harmonic term, and a H−1-norm based penalty which captures the oscillating patterns. This includes both
noise and textures at a sufficiently small scale detail. In depth experimental analysis gave us an insight on
the nature of the three different metrics (norms) involved in the proposed variational model, allowing for an
interesting highlight on the interactions between these regularization terms. This led to automatic selection of
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SNR(f) = 11.83 SNR(v∗) = 26.30 SNR(w∗) = 27.71 ESD(n∗) = 9.94

SNR(f) = 4.97 SNR(v∗) = 19.05 SNR(w∗) = 17.70 ESD(n∗) = 34.29

Fig. 6.7. Example 5: Comparison to [3]. These results are obtained by applying the proposed decomposition model. The
model in [3] would decompose these images into structure, texture, and noise, thus the smooth function w∗ would be incorporated
into the structure component, resulting in staircase effects.

f u∗ v∗ w∗ + 0.4 2n∗ + 0.4

f u∗ v∗ w∗ + 0.4 2n∗ + 0.4

f u∗ v∗ w∗ + 0.4 2n∗ + 0.4

Fig. 6.8. Example 5: Structure-texture decomposition, comparison to [18]. From top to bottom we set γ1/γ3 = {0.25, 0.25, 15}.
In these images, n∗ captures the fine detailed textures.

free parameters in the cost functional. A theoretical analysis on the coercivity and convexity of the proposed
variational model highlighted the existence of global minimizers. The variational model is then solved by an
efficient ADMM-based algorithm which reduces the solution to a sequence of convex optimization subproblems.
Various experiments are presented to show the robustness against high level of noise, flexibility of decomposition
for various applications as soft light and soft shadow removal.
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Appendix A. Proof of Proposition 5.1.
Proof. It comes immediately from the definition of our cost function J in (5.4) and of the penalty function

φ1 in (2.8) that J is proper, continuous and bounded from below by zero.
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In order to demonstrate that the function J defined in (5.4) can never be convex jointly in (v;w; g) with
g = (gh; gv), it is sufficient to prove that the restriction of J to a straight line in its domain R4m is not convex
for any γ1, γ2, γ3, a ∈ R++ and any f ∈ Rm. In particular, we choose the straight line parameterized as follows

`(t) = t
(

1;−1; 0m−2︸ ︷︷ ︸
v

; 0m︸︷︷︸
w

; 0m︸︷︷︸
gh

; 1; 0m−1︸ ︷︷ ︸
gv

)
, t ∈ R . (A.1)

To derive an explicit expression for the restriction J`(t), we first introduce details on the two sub-matricesDh, Dv

of D = (DT
h , D

T
v )T which, as described in Section 5.1, represent the forward finite difference discretizations of

the first-order horizontal and vertical partial derivatives of a vectorized m1 × m2 image (with m = m1m2),
respectively. More precisely, matrices Dh, Dv ∈ Rm×m are defined by

Dh = Lm1 ⊗ Im2 , Dv = Im2 ⊗ Lm1 , Ln =


−1 1 0 0 . . .

0 −1 1 0 . . .

0 0 −1 1

...
...

. . .
. . .

 , (A.2)

where ⊗ is the Kronecker product operator and Ln ∈ Rn×n denotes the unscaled forward finite difference
operator approximating the first-order derivative of a n-samples 1-dimensional signal. We have not specified
the last row of Ln, which induces the boundary conditions for operators Dh and Dv, since the following proof
holds true independently of the chosen boundary conditions.

We note that, for v, gh, gv and Dh, Dv defined as in (A.1) and (A.2), respectively, we have

(Dv)1 = t (−1;−2) , (Dv)2 = t (1; 1) , (Dv)j = ((Dhv)j ; (Dvv)j) = 0 for j = 3, . . . ,M,

‖g‖42 = ‖gv‖42 = t4 , DT g = DT
v g

v = t (−1; 1; 0m−2) . (A.3)

Hence, replacing (A.1) into the expression (5.4) of function J and then using (A.3), we have that the restriction
J` of J to the straight line in (A.1) reads

J`(t) =
1

2
‖f‖22 +

γ3

2
t4 + γ1

(
φ1

(√
5 |t|; a

)
+ φ1

(√
2 |t|; a

))

=
1

2
‖f‖22 +

γ3

2
t4 + γ1 ×


−7 a

2
t2 +

(√
5 +
√

2
)√

2a |t| for |t| ∈
[

0,
√

2
5a

)
1− a t2 + 2

√
2a |t| for |t| ∈

[√
2
5a ,
√

1
a

)
2 for |t| ∈

[√
1
a ,+∞

) , (A.4)

where (A.4) comes easily from the definition of φ1 in (2.8). It is then immediate to note that J` is infinitely
many times differentiable for |t| ∈

(
0,
√

2/(5a)
)

and that the second-order derivative J ′′` satisfies

∀ γ2 ∈ R++, ∀ f ∈ Rm, |t| ∈

(
0,

√
2

5a

)
=⇒ J ′′` (t) = 6 γ3 t

2 − 7 γ1 a < 0 for |t| <
√

7

6

γ1a

γ3
. (A.5)

It follows from (A.4)-(A.5) that

∀ γ1, γ2, γ3, a ∈ R++, ∀ f ∈ Rm, ∃ δ ∈ R++ : J ′′` (t) < 0 ∀ |t| ∈ (0, δ) , δ = min

{√
7

6

γ1 a

γ3
,

√
2

5a

}
. (A.6)

From (A.6), we can conclude that the restriction J` in (A.4) and, hence, the total function J in (5.4), are
non-convex (in the variables t and (v;w; g), respectively) for any γ1, γ2, γ3, a ∈ R++ and any f ∈ Rm.

In order to analyze convexity of the function J in (5.4) separately with respect to the variables v, w and
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g, first we rewrite J in the three following equivalent forms:

J (v, w, g) =

Jv(v)︷ ︸︸ ︷
γ1

m∑
j=1

φ1 (|(Dv)j |; a) +
1

2
‖v‖22 + Av(v, w, g) , (A.7)

J (v, w, g) =

Jw(w)︷ ︸︸ ︷
γ2

2
‖Hw‖22 +

1

2
‖w‖22 + Aw(v, w, g) , (A.8)

J (v, w, g) =

Jg(g)︷ ︸︸ ︷
γ3

2
‖g‖42 +

1

2

∥∥DT g
∥∥2

2
+ Ag(v, w, g) , (A.9)

where Av, Aw, Ag, in (A.7)-(A.9) are affine functions of variables v, w, g, respectively. It follows that J is
convex in the variables v, w, g, if and only if Jv, Jw, Jg, in (A.7)-(A.9) are convex in the same variables.

First, we notice that the quadratic function Jw in (A.8) is clearly strongly convex for any γ2 ∈ R++,
whereas the quartic function Jg in (A.9) is strictly convex (and coercive) for any γ3 ∈ R++. Hence, the total
function J is strongly convex in the variable w and strictly convex (and coercive) in the variable g, for any
γ1, γ2, γ3, a ∈ R++ and any f ∈ Rm.

Deriving convexity conditions for Jv in (A.7) is less straightforward. First, we rewrite the penalty function
φ1( · ; a) : R+ → R defined in (2.8) in the following equivalent form

φ1(t; a) = − a

2
t2 + q(t; a) , q(t; a) :=

{ √
2a t for t ∈

[
0,
√

2/a
)

a

2
t2 + 1 for t ∈

[√
2/a,+∞

) , (A.10)

where the introduced function q( · ; a) : R+ → R is clearly continuous, convex and monotonically increasing on
its entire domain R+, for any a ∈ R++. Then, based on (A.10), we can rewrite the function Jv in (A.8) as
follows

Jv(v) =
1

2
‖v‖22 + γ1

m∑
j=1

(
−a

2
|(Dv)j |2 + q (|(Dv)j |; a)

)
=

1

2

(
‖v‖22 − γ1a ‖Dv‖22

)
+ γ1

m∑
j=1

q (|(Dv)j |; a)

=
1

2
vT
(
Im − γ1aD

TD
)
v︸ ︷︷ ︸

J (1)
v (v)

+ γ1

m∑
j=1

q (zj(v); a) , zj(v) := |(Dv)j |, j = 1, . . . ,m,︸ ︷︷ ︸
J (2)

v (v)

, (A.11)

where the introduced functions zj : Rm → R+, j = 1, . . . ,m, are all continuous and convex on their entire domain

Rm. Each term of the summation defining J (2)
v in (A.11) is convex (as composition of a convex function, zj ,

and a convex monotonically increasing function, q). It follows that J (2)
v is convex for any γ1 ∈ R++ and, hence,

the total function Jv in (A.11) is convex (strongly convex) if the quadratic function J (1)
v is convex (strongly

convex) or, equivalently, the Hessian matrix Im − γ1aD
TD of J (1)

v is positive semi-definite (definite). By
introducing the eigenvalue decomposition of the symmetric positive semi-definite matrix DTD ∈ Rm×m,

DTD = V TΛV , Λ = diag(λ1, . . . , λm) , V TV = V V T = Im , (A.12)

with λi, i = 1, . . . ,m, indicating the real non-negative eigenvalues of DTD, then we have

Im− γ1aD
TD = V TV − γ1a V

TΛV = V T (Im − γ1aΛ)V = V Tdiag (1− γ1a λ1, . . . , 1− γ1a λm) V . (A.13)

Since V is orthogonal, then the Hessian matrix in (A.13) is positive semi-definite (definite) if and only if the
diagonal matrix in (A.13) is positive semi-definite (definite), that is if and only if

1− γ1a λj ≥ (>) 0 ∀ j = 1, . . . ,m ⇐⇒ 1− γ1a λmax ≥ (>) 0 ⇐⇒ a ≤ (<)
1

γ1λmax
. (A.14)
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This proves condition (5.5), with the equivalent formulation in terms of the coefficient τ following straightfor-
wardly. We finally note that for a gradient discretization matrix D = (DT

h , D
T
v )T defined as in Section 5.1 - or,

more formally, as in (A.2) - the eigenvalues of matrix DTD are upper bounded by λmax = 8. This can be easily
derived by using Gershgorin’s theorem [27]; we refer the reader to [6] for details.
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