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Abstract: The effectiveness of variational methods for restoring images corrupted by Poisson noise
strongly depends on the suitable selection of the regularization parameter balancing the effect of the
regulation term(s) and the generalized Kullback–Liebler divergence data term. One of the approaches
still commonly used today for choosing the parameter is the discrepancy principle proposed by
Zanella et al. in a seminal work. It relies on imposing a value of the data term approximately equal
to its expected value and works well for mid- and high-count Poisson noise corruptions. However,
the series truncation approximation used in the theoretical derivation of the expected value leads
to poor performance for low-count Poisson noise. In this paper, we highlight the theoretical limits
of the approach and then propose a nearly exact version of it based on Monte Carlo simulation and
weighted least-square fitting. Several numerical experiments are presented, proving beyond doubt
that in the low-count Poisson regime, the proposed modified, nearly exact discrepancy principle
performs far better than the original, approximated one by Zanella et al., whereas it works similarly
or slightly better in the mid- and high-count regimes.

Keywords: image restoration; Poisson noise; discrepancy principle; alternating direction method of
multipliers

1. Introduction

The image restoration problem under Poisson noise corruption is a task that has been
extensively addressed in the literature as it arises in many real-world applications, where
the acquired image is obtained by counting the particles, e.g., photons, hitting the image
domain [1]. The typical image formation model under blur and Poisson noise corruption
takes the form

y = Poiss(λ) , λ = Hx̄ + b , (1)

where H ∈ Rm×n models the blur operator, which we assume to be known; y ∈ Nm and
x̄ ∈ Rn are the observed m1×m2 and unknown n1× n2 images in column-major vectorized
form (with m = m1m2 and n = n1n2), respectively; b ∈ Rm is a non-negative background
emission, and where Poiss(λ) := (Poiss(λ1), . . . , Poiss(λm))

T , with Poiss(λi) indicating
the realization of a Poisson-distributed random variable of parameter (mean) λi.

When tackling the recovery of x̄ starting from y, one has also to consider the intrinsic
constraint

x̄ ∈ Ω := {x̄ ∈ Rn : x̄ ≥ 0} , (2)

which accounts for the pixel values being non-negative.
In a probabilistic perspective [2], problem (1) and (2) can be addressed by modeling the

unknown x as a random variable. In general, the information on the degradation process
is encoded in the so-called likelihood probability density function (pdf) p(y | x), while
the prior beliefs on the unknown x are expressed by the prior pdf p(x). In the Bayesian
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framework, one aims to recover the posterior pdf, which is related to the likelihood and the
prior term via the Bayes formula:

p(x | y) ∝ P(y | x)p(x) .

with P denoting the probability mass function (pmf) that replaces the continuous pdf p to
account for the discrete nature of the data y.

According to the Maximum A Posteriori (MAP) estimation approach, the mode of
p(x | y) can be selected as a single-point representative of the posterior distribution, so that
the original problem (1) and (2) turns into:

x∗ ∈ arg max
x
{ p(y | x) p(x) }

= arg min
x
{− ln p(y | x) − ln p(x) } . (3)

In light of the constraint expressed in (2), the general form of the prior pdf reads

p(x) ∝ pc(x)p0(x) ,

with

pc(x) =
{

1 if x ∈ Ω
0 otherwise

,

and p0(x) encoding other information possibly available on x. A typical choice for p0(x) is
given by the Total Variation (TV) Gibbs prior—see [3]—which reads

p0(x) =
1
Z

exp

(
−α

n

∑
i=1
‖(Dx)i‖2

)
,

where Z > 0 is a normalization constant, α > 0 is the prior parameter and D :=
(DT

h , DT
v )

T ∈ R2n×n denotes the discrete gradient operator with Dh, Dv ∈ Rn×n, two linear
operators representing the finite difference discretizations of the first-order partial deriva-
tives of the image x in the horizontal and vertical direction. The negative logarithm of the
prior pdf p(x) thus reads

− ln p(x) = α
n

∑
i=1
‖(Dx)i‖2 + ιΩ(x) + ln Z , (4)

with ιΩ(·) denoting the indicator function of set Ω, which is equal to 0 if x ∈ Ω, or +∞
otherwise.

Concerning the likelihood pdf, first, we notice that the forward model (1) can be
usefully rewritten in component-wise (pixel-wise) form as follows:

yi = Poiss(λi) , λi = Hix + bi , i = 1, . . . , m ,

with yi ∈ N, λi, bi ∈ R+ , and where Hi ∈ R1×n denotes the i-th row of matrix H. Upon the
assumption of independence of the Poisson noise realizations at different pixels, we have:

− ln P(y | x) = − ln P(y | λ) = − ln
m

∏
i=1

P(yi | λi)

= −
m

∑
i=1

ln P(yi | λi) , λ = Hx + b ,
(5)

where P(yi | λi), which denotes the probability for yi to be the realization of a Poisson-
distributed random variable with mean λi, reads
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P(yi | λi) =
λ

yi
i e−λi

yi!
, yi ∈ N, λi ∈ R+ ,

with R+ denoting the set of non-negative real numbers. Hence, the associated negative
log-pmf reads

− ln P(yi | λi) = λi − yi ln λi + ln(yi!) . (6)

By plugging (6) into (5), the negative log-likelihood takes the following form:

− ln P(y | x) =
m

∑
i=1

( λi − yi ln λi + ln(yi!) ) . (7)

Finally, plugging (4) and (7) into (3), dropping out the constant term ln Z in (4),
readjusting the constant terms in (7) (by adding yi ln yi − yi − ln(yi!) to each term in the
sum), and then dividing the cost function by the positive scalar α, we obtain the so-called
TV-KL variational model:

x̂(µ) = arg min
x ∈Ω

{ J(x; µ) := TV(x) + µ KL(λ; y) }, λ = Hx + b , (8)

where µ = 1/α, the TV semi-norm term [4], is defined by

TV(x) =
n

∑
i=1
‖(Du)i‖2 ,

and the term KL(λ; y) indicates the generalized Kullback–Leibler (KL) divergence between
λ = Hx + b and the observation y, which reads

KL(λ; y) =
m

∑
i=1

F(λi; yi) , with F(λ; y) := λ − y ln λ + y ln y − y . (9)

Note that the adoption of the MAP strategy within a probabilistic framework yields a
minimization problem, which is typically addressed in the context of variational methods
for image restoration. The TV term and the KL divergence play the role of the regularization
and data fidelity term, respectively. Moreover, the parameter µ, which has been defined
starting from the prior parameter α, is the so-called regularization parameter balancing the
action of regularization and data fidelity terms.

The selection of a suitable value for the regularization parameter µ is of crucial im-
portance for obtaining high-quality results. This relation is highlighted by the explicit
dependence in (8) of the solution x̂ on the parameter µ. Very often, µ is chosen empirically
by brute-force optimization with respect to some visual quality metrics. However, for Pois-
son data, a large amount of literature has been devoted to the analysis of the Discrepancy
Principle (DP), which can be formulated in general terms as follows [5]:

Select µ = µ∗ ∈ R+ such that D(µ∗; y) = ∆ , (10)

where the last equality and the scalar ∆ ∈ R+ in (10) are commonly referred to as the
discrepancy equation and the discrepancy value, respectively, while the discrepancy function
D( · ; y) : R+ → R+ is defined by

D(µ; y) := KL
(

λ̂(µ); y
)
=

m

∑
i=1

(
Di(µ; yi) := F

(
λ̂i(µ); yi

))
, (11)

with function F defined in (9) and

λ̂(µ) = H x̂(µ) + b . (12)
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The DP in (10)–(12) formalizes a quite simple idea: choose the value µ∗ of the regular-
ization parameter µ in the TV-KL model (8) such that the value of the KL data fidelity term
associated with the solution x̂(µ∗) is equal to a prescribed discrepancy value ∆. However,
applying the DP in an effective manner in practice is not straightforward as several issues
concerning the computational efficiency and, more importantly, the quality of the output
solutions arise. We examine both of them more closely.

(I1) Computational efficiency. The solution function x̂(µ) of model (8) does not admit a
closed-form expression and iterative solvers must be used to compute the restored
image x̂ associated with any µ. Hence, selecting µ∗ by solving the scalar discrepancy
equation defined in (10)–(12) as an efficient preliminary step and then computing the
sought restored image x̂(µ∗) by iteratively solving model (8) only once is not feasible.

(I2) Quality of solution(s). Even if an efficient algorithm is used for the computation,
the obtained restored image x̂(µ∗) may be of such low quality that it is of no practical
use if the discrepancy value ∆ in (10) is not suitably chosen.

Issue (I1) concerning computational efficiency has been successfully addressed in [6],
where the authors propose to automatically update µ along the iterations of the minimiza-
tion algorithm used for solving the TV-KL model so as to satisfy (at convergence) a specific
version of the general DP defined in (10)–(12).

Concerning (I2), we highlight that, in the theoretical hypothesis that the target image
x̄ is known, so that λ̄ = Hx̄ + b is also known, one would select µ∗ such that the value
of the KL fidelity term associated with the solution x̂(µ∗) is equal to the value of the KL
fidelity term associated with x̄. This clearly does not guarantee that the obtained solution
x̂(µ∗) coincides with the target image x̄. However, by constraining x̂(µ) to belong to the
unique level set of the (convex) KL fidelity term containing x̄, this abstract strategy, which
we refer to as the Theoretical DP (TDP), represents an oracle for the general DP in (10)–(12).
The TDP is thus formulated as follows:

Select µ = µ∗ ∈ R+ such that D(µ∗; y) = ∆(T) ,

with ∆(T) :=
m

∑
i=1

(
δ(T)(λ̄i) := F

(
λ̄i ; yi

))
, λ̄ = Hx̄ + b ,

(13)

with function F defined in (9). Clearly, the value ∆(T) cannot be computed in practice as the
original image x̄ is not available. As in the case of the Morozov discrepancy principle for
Gaussian noise, one could replace the scalar ∆(T) with the expected value of the KL fidelity
term in (9) regarded as a function of the m-variate random variable Y . We will refer to this
version of the DP as Exact (or Expected value) DP (EDP). In the following formula

Select µ = µ∗ ∈ R+ such that D(µ∗; y) = ∆(E)(µ∗) ,

with ∆(E)(µ) :=
m

∑
i=1

(
δ(E)(λ̂i(µ)) := EYi

[
F
(
λ̂i(µ); Yi

)])
, λ̂(µ) = Hx̂(µ) + b ,

(14)

where EYi

[
F
(
λ̂i(µ); Yi

)]
denotes the expected value of F

(
λ̂i(µ); Yi

)
regarded as a function

of the Poisson-distributed random variable Yi. Nonetheless, unlike the Gaussian noise
case, the discrepancy value is not a constant but is a function ∆(E)(µ) of the regularization
parameter µ, and deriving its analytic expression is a very challenging task. A popular and
widespread strategy, originally proposed in [5] for denoising purposes and extended in [7]
to the image restoration task, replaces the exact expected value function ∆(E)(µ) with a
constant approximation coming from truncating its Taylor series expansion. We will refer
to this version of the DP as Approximate DP (ADP). It reads:
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Select µ = µ∗ ∈ R+ such that D(µ∗; y) = ∆(A) ,

with ∆(A) :=
m

∑
i=1

(
δ(A) :=

1
2

)
=

m
2

.
(15)

Despite its extensive use due to the good performance achieved in the mid- and high-
count regimes, the (15) is known to return poor-quality results in the low-count Poisson
regime [8], i.e., when the number of photons hitting the image domain is small. In fact,
in [7], where the ADP was first extended to the image deblurring task, the authors state (in
Remark 3) that the choice of the constant value δ(A) = 1/2 in (15) may not be “optimal” and
suggest replacing it with 1/2 + ε, where ε is a small positive or negative real number. As
a preliminary, qualitative proof of the possible poor performance of (15) in the low-count
regime, in the first column of Figure 1, we show the two test images phantom and cameraman,
which have been corrupted by blur and heavy Poisson noise (second column). The TV-KL
image restoration model in (8), with regularization parameter µ selected according to
the (15), has been performed. The output restorations are displayed in the third column of
Figure 1. One can see that the rough approximation δ(A) = 1/2 used in the (15) can either
return oversmoothed results, as in the case of phantom, or undersmoothed restorations,
as for cameraman.

Since its proposal in [5], the ADP has been (and still is) widely used for variational
image restoration (see, e.g., [9,10]) and it can be regarded as the standard extension of the
Morozov DP for Gaussian noise to the Poisson noise case. Then, some literature exists
working on the ADP, e.g., by proposing, analyzing, and testing its usage in KL-constrained
variational models [11] or by analyzing it theoretically [12]. However, to the best of
the authors’ knowledge, the only attempt to improve the ADP by giving a face to the ε
adjustment to the approximate, constant discrepancy value δ(A) = 1/2 is the one in [8].
The authors in [8] correctly state that ε must not be a constant, but a function ε(λ) of the
photon count level. However, they propose to take ε(λ) as the sum of the second to tenth
terms of the same Taylor expansion used in [5]. As we will highlight later in the paper, such
expansion converges only for λ approaching +∞; hence, the choice in [8] cannot aspire to
improve the performance of ADP in low-count regimes.

x̄ y x̂ by ADP [1,7] x̂ by NEDP

Figure 1. Original images (first column), observed images corrupted by blur and Poisson noise
(second column), restored images obtained by the TV-KL model (8) and (9) with µ selected according
to the approximate DP [5,7] (third column), and the proposed nearly exact DP (last column).

Contribution

The goal of this paper is to provide novel insights about the EDP and the ADP in
order to design a novel discrepancy principle capable of outperforming the classical ADP
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proposed in [5]. In more detail, we will provide a qualitative study proving that the recovery
of a closed-form expression for function ∆(E)(µ) in (14) through its Taylor series expansion
used in [5,8] is not only difficult to achieve but also theoretically unfeasible for low-count
Poisson regimes. Moreover, we will explore in detail the properties of the ADP motivating
the dichotomic behavior (i.e., oversmoothing/undersmoothing) arising upon its adoption
in the low-count regime. Finally, based on a simple Monte Carlo simulation followed by
weighted least-square fitting, we will derive a novel version of the general DP in (10)–(12)
based on a nearly exact (NE) approximation of function ∆(E)(µ) in (14), concisely referred
to as NEDP. Our approach will successfully address issues (I1)–(I2). In particular, it will be
demonstrated experimentally that NEDP can return high-quality results both for low-count
and mid/high-count acquisitions. The good performance of NEDP is anticipated in the last
column of Figure 1, where we show the output restorations achieved by using the TV-KL
model in (8) and (9) coupled with the novel µ-selection strategy.

2. Limits of the Approximate DP

The discrepancy principle proposed by Zanella et al. in [5] for Poisson image de-
noising and then extended to image restoration by Bertero et al. in [7] relies on Lemma 1
in [5], whose proof has been completed in [5] (corrigendum), which we report below for
completeness.

Lemma 1. Let Yλ be a Poisson random variable with expected value λ ∈ R++ and consider the
function of Yλ defined by

F(Yλ) = λ−Yλ ln λ + Yλ ln Yλ −Yλ = Yλ ln
(

1 +
Yλ − λ

λ

)
+ λ−Yλ . (16)

Then, the following estimate of the expected value of F(Yλ) holds true for large λ:

δ(E)(λ) = E{F(Yλ)} = δ(A) + O
(

1
λ

)
, δ(A) =

1
2

. (17)

Based on the estimate above, and implicitly assuming a sufficiently large λ (i.e.,
a sufficiently high-count Poisson regime) such that the O(1/λ) term can be neglected,
the exact DP outlined in (14) is replaced in [5,7] by the approximation given in (15) and
recalled below:

∆ = ∆(A) =
m

∑
i=1

δ(A) =
m
2

.

However, the ADP performs poorly for low-count Poisson images. Our goal here is to
highlight that the reason for this lies precisely in the constant approximation δ(E)(λ) ≈ δ(A)

used in (15) and then propose a nearly exact DP based on a much less approximate estimate
δ(NE)(λ) of the expected value function δ(E)(λ) .

For this purpose, first, we carry out a preliminary Monte Carlo simulation aimed at
highlighting the error associated with the approximation in (15). In particular, we consider
a discrete set of λ values λi ∈ [0, 8] and, for each λi, we generate pseudo-randomly a large
number (106) of realizations of the Poisson random variable Yλi . Then, we compute the
associated values of the function F(Yλi ) defined in (16) and, finally, for each λi, we obtain an
estimate δ̂(E)(λi) of δ(E)(λi) by calculating the sample mean of these function values. The
results of this simulation are shown in Figure 2. In particular, in the left figure, we report
the computed estimates δ̂(E)(λi) , whereas, in the right figure, we report the percentage
errors (with respect to the estimates) associated with using the constant value δ(A) = 1/2
as in the (15). The percentage error approaches +∞ for λ tending to zero and is in the order
of −10% for λ ∈ [1, 4]; then, as expected, it decreases (quite slowly) to zero for λ tending to
+∞. The error is thus quite large for small λ and this can explain the poor performance of
the (15) in the low-count Poisson regime.
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In order to obtain a more accurate approximation or even an exact analytical expression
for the expected value function δ(E)(λ) , we now retrace in detail the proof of Lemma 1
given in [5], and completed in [5] (corrigendum), and check if the rough truncation carried
out in [5] can be avoided.

After noting that function ln(1 + ϕ) is C∞ on its domain (−1,+∞) and considering its
Taylor expansion around 0, the Taylor theorem with the remainder in integral form allows
one to write:

ln(1 + ϕ) =
N

∑
i=1

(−1)i+1

i
ϕi + rN(ϕ) = ϕ− 1

2
ϕ2 +

1
3

ϕ3 − · · ·+ (−1)N+1

N
ϕN + rN(ϕ),

rN(ϕ) = (−1)N
∫ ϕ

0

(ϕ− t)N

(1 + t)N+1 dt , ∀ ϕ ∈ (−1,+∞) . (18)

Replacing the expansion above with ϕ = (Yλ − λ)/λ in the expression of function F
defined in (16), we obtain

F(Yλ) = Yλ

(
N

∑
i=1

(−1)i+1

i

(
Yλ − λ

λ

)i
+ rN(ϕ)

)
+ λ−Yλ

= YλrN(ϕ) + (Yλ − λ + λ)

(
N

∑
i=1

(−1)i+1

i

(
Yλ − λ

λ

)i
)
+ λ−Yλ

= YλrN(ϕ) + (Yλ − λ)

(
N

∑
i=1

(−1)i+1

i

(
Yλ − λ

λ

)i
)

+ λ

(
N

∑
i=1

(−1)i+1

i

(
Yλ − λ

λ

)i
)
+ λ−Yλ

= YλrN(ϕ) +
N

∑
i=1

(−1)i+1

i
(Yλ − λ)i+1

λi +
N

∑
i=2

(−1)i+1

i
(Yλ − λ)i

λi−1

= YλrN(ϕ) +
N

∑
i=1

(−1)i+1

i
(Yλ − λ)i+1

λi +
N−1

∑
i=1

(−1)i

(i + 1)
(Yλ − λ)i+1

λi

= YλrN(ϕ) +
N−1

∑
i=1

(
(−1)i+1

i
+

(−1)i

(i + 1)

)
(Yλ − λ)i+1

λi +
(−1)N+1

N
(Yλ − λ)N+1

λN

= YλrN(ϕ) +
N−1

∑
i=1

(−1)i+1

i (i + 1)
(Yλ − λ)i+1

λi +
(−1)N+1

N
(Yλ − λ)N+1

λN . (19)

After noting that the only random quantity in (19) is Yλ, the expected value reads

δ(E)(λ) = E[F(Yλ)] =
N−1

∑
i=0

ω
(N)
i

ηi+2[Yλ]

λi+1 + RN(λ) , (20)

with coefficients ω
(N)
i ∈ Q , i = 0, . . . , N − 1, and remainder function RN : R++ → R

given by

ω
(N)
i =


(−1)i

(i + 1) (i + 2)
for i = 0, . . . , N − 2

(−1)i

i + 1
for i = N − 1

, RN(λ) = E
[

YλrN

(
Yλ − λ

λ

)]
, (21)

and where
ηi+2[Yλ] = E

[
(Yλ − λ)i+2

]
, i = 0, 1, . . .
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denote the central moments of order i + 2 of the Poisson random variable Yλ. It is well
known (see [13], p. 162) that these moments can be obtained by the recursive formula

η1[Yλ] = 0, η2[Yλ] = λ, ηi+2[Yλ] = λ

(
dηi+1[Yλ]

dλ
+ (i + 1) ηi[Yλ]

)
. (22)

After noting that, in (20), only moments ηi+2[Yλ] with i ≥ 0 are present and that they
are all divided by λ , it is easy to verify that, by applying (22), one obtains the following
general algebraic polynomial expression:

Pi(λ) :=
ηi+2[Yλ]

λ
=

di

∑
j=0

ϑ
(j)
i λj , i = 0, 1, . . . , (23)

where ϑ
(j)
i are all integer coefficients with ϑ

(0)
i = 1 for any i = 0, 1, . . . , and where the

degrees di of polynomials Pi(λ) are given by

di =

⌊
i
2

⌋
= 0, 0, 1, 1, 2, 2, . . . for i = 0, 1, 2, 3, 4, 5, . . . , (24)

where b·c denotes the floor function. The first 8 polynomials, Pi(λ), i = 0, . . . , 7, read

P0(λ) = 1, P1(λ) = 1,
P2(λ) = 1 + 3λ, P3(λ) = 1 + 10λ,
P4(λ) = 1 + 25λ + 15λ2, P5(λ) = 1 + 56λ + 105λ2,
P6(λ) = 1 + 119λ + 490λ2 + 105λ3, P7(λ) = 1 + 246λ + 1918λ2 + 1260λ3 .

By replacing the expressions of Pi(λ) given in (23) into (20), one obtains the following
general formula:

δ(E)(λ) = E[F(Yλ)] =
N−1

∑
i=0

(
Q(N)

i (λ) :=
di

∑
j=0

ψ
(N,j)
i

λi−j

)
+ RN(λ) (25)

where the coefficients ψ
(N,j)
i ∈ Q of the rational polynomials Q(N)

i (λ) in (25) read

ψ
(N,j)
i = ω

(N)
i ϑ

(j)
i , i = 0, 1, . . . , N − 1, j = 0, 1, . . . , di,

with ω
(N)
i given in (21) and ϑ

(j)
i defined in (23).

After noting that, from (24), it follows that di ≤ i for any i = 0, 1, . . ., it is a matter of
simple algebra to verify that (25) can be equivalently and more compactly rewritten as

δ(E)(λ) = E[F(Yλ)] =
N−1

∑
i=0

γ
(N)
i
λi + RN(λ) , (26)

with γ
(N)
i ∈ Q computable coefficients. In particular, for N = 1, . . . , 9, we have
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δ(E)(λ) = 1 + R1(λ)

=
1
2
− 1

2λ
+ R2(λ)

=
1
2
+

5
6λ

+
1

3λ2 + R3(λ)

=
1
2
+

1
12λ
− 29

12λ2 −
1

4λ3 + R4(λ)

=
1
2
+

1
12λ

+
31

12λ2 +
99

20λ3 +
1

5λ4 + R5(λ)

=
1
2
+

1
12λ

+
3

12λ2 −
1003
60λ3 −

93
10λ4 −

1
6λ5 + R6(λ)

=
1
2
+

1
12λ

+
1

12λ2 +
797

60λ3 +
687

10λ4 +
713

42λ5 +
1

7λ6 + R7(λ)

=
1
2
+

1
12λ

+
1

12λ2 +
19

120λ3 −
3001
20λ4 −

39925
168λ5 −

1721
56λ6 −

1
8λ7 + R8(λ)

=
1
2
+

1
12λ

+
1

12λ2 +
19

120λ3 +
1899
20λ4 +

516833
504λ5 +

126829
168λ6 +

4007
72λ7

+
1

9λ8 + R9(λ) (27)

from which we note how, as the truncation order N increases, the coefficients γ
(N)
i stabilize

at some values, which we denote by γ
(∞)
i . Unfortunately, we are not able to obtain an

explicit analytical expression for the sequence of coefficients γ
(∞)
i (as we are not able to

obtain explicit analytic expressions for the coefficients ϑ
(j)
i defining the central moments

of a Poisson random variable). By means of the Matlab symbolic toolbox, we were able
to compute the first 34 coefficients γ

(∞)
i , i = 0, . . . , 33, shown (in logarithmic scale) in

Figure 3 (left). Determining the subsequent coefficients becomes unfeasible due the huge
computation time required. Hence, the following short discussion must be regarded as
conjectural as it relies on the assumption that the behavior of coefficients γ

(∞)
i , i = 34, 35, . . .,

can be smoothly extrapolated from the first 34 coefficients shown in Figure 3 (left). These
first 34 coefficients indicate that the coefficient sequence is positive and strictly increasing
for i ≥ 2. This implies that making the truncation order N tend to +∞, the (infinite)
weighted geometric series in (26) is divergent for λ ≤ 1. Even without analyzing the case
λ > 1, we can state that an analytical form for function δ(E)(λ) in the low-count Poisson
regime is very unlikely to be obtainable as the sum of the series in (26). In fact, there will
be, very likely, at least one pixel such that λi ≤ 1.

0 2 4 6 8

0

0.2

0.4

0.5

0 2 4 6 8

-20

0

20

40

Figure 2. Comparison between the approximation δ(A) = 1/2 of δ(E)(λ) = E{F(Yλ)} used in
the (15) proposed in [5,7] and the Monte Carlo estimates δ̂ (E)(λi) for some λi ∈ [0, 8].

We believe that it is worth concluding this section by pointing out the theoretical
reason for the non-convergence of the series in (26). Function ln(1 + ϕ) is analytical at
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ϕ = 0, but its Maclaurin series converges (pointwise to the function) only for ϕ ∈ (−1, 1].
Hence, as N tends to +∞, the Taylor series expansion in (19) converges to the function
F(Yλ) only for ϕ = (Yλ − λ)/λ ∈ (−1, 1]⇐⇒ Yλ ∈ (0, 2λ]. However, Yλ in (20) represents
a Poisson random variable with parameter λ. Hence, for N tending to +∞, the series in (20)
converges to the function δ(E)(λ) = E[F(Yλ)] only if the random variable Yλ satisfies

P(0 < Yλ ≤ 2λ) = 1 ⇐⇒
b2λc

∑
i=1

PYλ
(i) = 1 . (28)

From Figure 3 (right), where we plot the probability in (28) as a function of λ, one can
notice that condition (28) for convergence of the series in (20) is fulfilled asymptotically for
λ approaching +∞ but it is not satisfied at all for small λ values.

0 10 20 30

0

10

20

30

5 10 15
0

0.5

1

Figure 3. Visual representation of the first 34 terms of the sequence of coefficients γ
(∞)
i , i = 0, 1, . . .,

in (26) (left) and the behavior of the probability measure defined in (28) as a function of λ (right).

3. A Nearly Exact DP Based on Monte Carlo Simulation

Since it is not possible to derive analytically the expression of function δ(E)(λ) in (17),
the goal in this section is to compute a nearly exact estimate δ(NE)(λ) of function δ(E)(λ)
based on a simple Monte Carlo simulation approach analogous to that used at the beginning
of Section 2. Based on the expected shape of function δ(E)(λ)—see Figure 2(left)—here, we
consider a set of 1385 unevenly distributed λ values λi ∈ [0, 250], namely

λi ∈ {0, 0.01, 0.02, . . . , 5.99, 6, 6.1, 6.2, . . . , 65.9, 66, 67, 68, . . . , 249, 250} .

This set comes from the union of three subsets of equally spaced λ values, namely
from 0 to 6 with step 0.01, from 6 to 66 with step 0.1, and from 66 to 250 with step 1. For
each λi, we generate pseudo-randomly a very large number S = 5× 107 of samples y(j)

i ,
j = 1, . . . , S, of the Poisson random variable Yλi ; then, we compute the associated values

f (j)
i , j = 1, . . . , S, of the function F(Yλi ) defined in (16) and, finally, we calculate the sample

mean δ̂(E)(λi) and variance vi of these function values. In formula,

y(j)
i = Poiss

(
Yλi

)
, j = 1, . . . , S =⇒ f (j)

i = F
(

y(j)
i

)
, j = 1, . . . , S

=⇒ δ̂(E)(λi) =
1
S

S

∑
j=1

f (j)
i , vi =

1
S− 1

S

∑
j=1

(
f (j)
i − δ̂(E)(λi)

)2
. (29)

Notation for the sample means come from them representing estimates of the sought
theoretical means δ(E)(λi) = E[F(Yλi )] , i = 1, . . . , 1385. The obtained values

(
λi, δ̂(E)(λi)

)
and (λi, vi) are shown (blue crosses) in the first and second row of Figure 4, respectively. It
is well known that δ̂(E)(λi) and vi represent unbiased estimators of the mean and standard
deviation of the random variable F(Yλi ) and that, according to the central limit theorem,
for a very large number S of samples (which is definitely our case), the sample mean
δ̂(E)(λi) can be regarded as a realization of a Gaussian random variable with the theoretical
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mean δ(E)(λi) of the random variable F(Yλi ) and the sample variance vi divided by the
number of samples S. In formulas,

δ̂(E)(λi) = Gauss
(

δ(E)(λi) ,
vi
S

)
. (30)
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0.51
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0.5
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0.5
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100 150 200

0.5

0.501

0 2 4 6
-20
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0
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-0.2

-0.1

0

0 2 4 6
-2

-1

0

1

20 40 60

0

0.1

0.2

0.3

100 150 200

-0.04

0

0.04

Figure 4. Results of Monte Carlo simulation and weighted least-squares fitting for λ ∈ [0, 6] (first col-
umn), λ ∈ [6, 66] (second column), and λ ∈ [66, 250] (third column).

We now want to fit a parametric model f (λ; c) , with c the parameter vector, to the
obtained Monte-Carlo-simulated data points

(
λi, δ̂(E)(λi)

)
, i = 1, . . . , 1385. First, in accor-

dance with the trend of these data—see the blue crosses in the first row of Figure 4—and
recalling the expected asymptotic behavior of function δ(E)(λ) for λ approaching +∞—see
the discussion in Section 2, particularly the first two terms of the expansion in (27)—we
choose a model of the form

f (λ; c) =
1
2
+ ε(λ; c) , (31)

with function h exhibiting the following properties:

ε ∈ C0(R+), ε(0; c) = − 1
2

, ε(λ; c) ∼ 1
12λ

for λ→ +∞ .

Then, with the aim of achieving a good trade-off between the model’s ability to accu-
rately fit data and the computational efficiency of its evaluation, we choose the following
rational form for function ε:
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ε(λ; c) =
λ2 + c1λ + c2

12 λ3 + c3λ2 + c4λ− 2 c2
. (32)

Thanks to (30), fitting model f in (31) with ε as in (32) can be obtained via a Maximum
Likelihood (ML) estimation of the parameter vector c = (c1, c2, c3, c4) ∈ R4. In fact,
according to (30), the likelihood reads

L(c) =
S

∏
i=1

p
(

δ̂(E)(λi) | c
)

=
S

∏
i=1

1√
2π vi/S

exp

−1
2

(
δ̂(E)(λi)− f (λi; c)

)2

vi/S


=

1

(2π/S)
S
2

S

∏
i=1

√
vi

exp

−S
2

S

∑
i=1

(
δ̂(E)(λi)− f (λi; c)

)2

vi

 , (33)

and the ML estimate c(ML) of c can be computed as follows:

c(ML) ∈ arg max
c∈R4

L(c) = arg min
c∈R4
{− lnL(c)} = arg min

c∈R4

S

∑
i=1

wi(di − h(λi; c))2, (34)

where we dropped constants (with respect to the optimization variable c) and defined

wi :=
1
vi

, di := δ̂(E)(λi)−
1
2

, i = 1, . . . , S .

Problem (34) is a nonlinear (in particular, rational) weighted least-squares problem.
The cost function is non-convex and local minimizers exist. We compute an estimate ĉ of
c(ML) by solving (34) via the iterative trust-region algorithm 1000 times starting from 1000
different initial guesses c(0) randomly sampled from a uniform distribution with support
[−20, 20]4 and then picking up the solution ĉ yielding the minimum cost function value.
The obtained parameter estimate is as follows:

ĉ = (ĉ1, ĉ2, ĉ3, ĉ4) = (+2.5792,−1.5205,−5.6244,+17.9347) . (35)

We thus define the nearly exact estimate δ(NE)(λ) of the theoretical expected value
function δ(E)(λ) = E[F(Yλ)] as the parametric function f defined in (31), (32) with
parameter vector c equal to ĉ given in (35). In formula,

δ(NE)(λ) := f (λ; ĉ) =
1
2
+ ε(λ; ĉ) =

1
2
+

λ2 + 2.5792λ− 1.5205
12 λ3 − 5.6244λ2 + 17.9347λ + 3.0410

. (36)

In the first row of Figure 4, we plot the constant approximate function δ(A) and the
obtained nearly exact function δ(NE)(λ) , whereas, in the third and fourth row of Figure 4,
we report the errors ê (A)(λi) and ê (NE)(λi) , respectively. They are defined by

ê (X)(λi) = 100 × δ(X)(λi)− δ̂ (E)(λi)

δ̂ (E)(λi)
i = 1, 2, . . . , 1385, X ∈ {A, NE} ,

and represent the percentage errors associated with using the approximations δ(A) and
δ(NE)(λ) with respect to the very accurate Monte Carlo estimates δ̂ (E)(λi) of the true
underlying expected values δ(E)(λi) = E[F(Yλi )]. One can notice that |ê (NE)(λi)| is
around 20 times smaller than |ê (A)(λi)| for λ ∈ [0, 6] (first column of Figure 4) and around
10 times less for λ ∈ [6, 250] (second and third column Figure 4). In particular, in the low-
count Poisson regime (which we can roughly associate with λ ∈ [0, 6]), the proposed nearly
exact estimate of the theoretical expected value function δ(E)(λ) yields a percentage error
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in the order of 0.5%, whereas the constant approximation used in [5,7] leads to a percentage
error in the order of 10%. Such a large error is the reason for the poor performance of
the (15) in the low-count regime.

We thus propose the following nearly exact DP (NEDP):

Select µ = µ∗ ∈ R+ such that D(µ∗; y) = ∆(NE)(µ∗) ,

with ∆(NE)(µ) =
m

∑
i=1

(
δ(NE)(λ̂i(µ))

)
=

m
2
+

m

∑
i=1

ε(λ̂i(µ); ĉ),

λ̂(µ) = Hx̂(µ) + b ,

(37)

with function ε and parameter vector ĉ given in (32) and (35), respectively.

4. Numerical Solution via ADMM

In the following, we detail how to tackle the minimization problem in (8) and (9) when
the regularization parameter µ is automatically selected according to one of the considered
versions of the DP, namely the TDP in (13), the ADP in (15), and the NEDP in (37).

In principle, one could set a fine grid of µ-values and compute the solution x̂(µ)
corresponding to each µ. Then, among the recorded solutions, one could select the one such
that the TDP, the ADP, or the NEDP is satisfied. However, this algorithmic scheme, to which
we refer as the a posteriori optimization procedure, turns out to be particularly costly.

In [6,14], the authors propose to update the regularization parameter according to
the ADP along the iterations of the popular Alternating Direction Method of Multipliers
(ADMM) [15,16]. Here, we detail the steps of the proposed algorithmic procedure, which
can be employed for applying not only the ADP but also the TDP and the NEDP. Finally, we
remark that the case of the TDP is only addressed for explanatory purposes and it cannot
be performed in practice as x̄ is not available.

After introducing the auxiliary variables λ ∈ Rm, g ∈ R2n, z ∈ Rn, problem (8) and (9)
can be equivalently written as follows:

{x∗, λ∗, g∗, z∗} ∈ arg min
x,λ,g,z

{
n

∑
i=1
‖gi‖2+ µ

m

∑
i=1

(λi − yi ln(λi)) + ιRn
+
(z)

}
subject to: λ = Hx + b, g = Dx, z = x,

(38)

where, with a little abuse of notation, we define gi := ((Dhx)i, (Dvx)i) ∈ R2, for every
i = 1, . . . , n.

To solve problem (38), we introduce the augmented Lagrangian function,

L(x, λ, g, ρλ, ρg) =
n

∑
i=1
‖gi‖2+ µ

m

∑
i=1

(λi − yi ln(λi))

− 〈ρλ, λ− (Hx + b)〉 + βλ

2
‖λ− (Hx + b)‖2

2

− 〈ρg, g −Dx〉 +
βg

2
‖g −Dx‖2

2

− 〈ρz, z− x〉 + βz

2
‖z− x‖2

2 + ιRn
+
(z)

(39)

where ρλ ∈ Rm, ρg ∈ R2n, ρz ∈ Rn are the vectors of Lagrange multipliers associated with
the linear constraints in (38), while βλ, βg, βz ∈ R++ are the ADMM penalty parameters.

By setting u := (x; λ; g; z), ρ = (ρλ; ρg; ρz), U := Rn × Rm × R2n × Rn, and
R := Rm × R2n × Rn, we observe that solving (38) amounts to seeking solutions of
the saddle-point problem:
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Find (u∗, ρ∗) ∈ U ×R such that

L(u∗, ρ) ≤ L(u∗, ρ∗) ≤ L(u, ρ∗) ∀ (u, ρ) ∈ U ×R.
(40)

Upon suitable initialization, and for any k ≥ 0, the k-th iteration of the ADMM
algorithm applied to the solution of (40) with the augmented Lagrangian function L
defined in (39) reads

λ(k+1) ∈ arg min
λ∈Rm

L
(

x(k), λ, g(k), z(k), ρ
(k)
λ , ρ

(k)
g , ρ

(k)
z

)
, (41)

g(k+1) ∈ arg min
g∈R2n

L
(

x(k), λ(k+1), g, z(k), ρ
(k)
λ , ρ

(k)
g , ρ

(k)
z

)
, (42)

z(k+1) ∈ arg min
z∈Rn

L
(

x(k), λ(k+1), g(k+1), z, ρ
(k)
λ , ρ

(k)
g , ρ

(k)
z

)
, (43)

x(k+1) ∈ arg min
x∈Rn

L
(

x, λ(k+1), g(k+1), z(k+1), ρ
(k)
λ , ρ

(k)
g , ρ

(k)
z

)
, (44)

ρ
(k+1)
λ = ρ

(k)
λ − βλ

(
λ(k+1) −

(
Hx(k+1) + b

))
, (45)

ρ
(k+1)
g = ρ

(k)
g − βg

(
g(k+1) −Dx(k+1)

)
, (46)

ρ
(k+1)
z = ρ

(k)
z − βz

(
z(k+1) − x(k+1)

)
. (47)

In the following subsections, we discuss the solution of subproblems (41)–(44) for the
four primal variables λ, g, z, x. Since the solution of the subproblem for variable λ is the
most complicated and requires the application of the DP, it is presented last.

4.1. Solving Subproblem for g

The subproblem for g in (42) reads

g(k+1) ∈ arg min
g∈R2n

{
n

∑
i=1
‖gi‖2 − 〈ρ

(k)
g , g −Dx(k)〉+

βg

2

∥∥∥g −Dx(k)
∥∥∥2

2

}

= arg min
g∈R2n

{
n

∑
i=1
‖gi‖2 +

βg

2

∥∥∥g −w(k)
∥∥∥2

2

}
, w(k) = Dx(k) +

1
βg

ρ
(k)
g .

(48)

Solving (48) is equivalent to solving the n independent two-dimensional minimization
problems

g(k+1)
i = arg min

gi∈R2

{
‖gi‖2 +

βg

2

∥∥∥gi −w(k)
i

∥∥∥2

2

}
, i = 1, . . . , n ,

which yields the unique solution

g(k+1)
i = w(k)

i max

(
1− 1

βg‖w(k)
i ‖2

, 0

)
, i = 1, . . . , n . (49)

4.2. Solving Subproblem for z

The subproblem for z in (43) reads

z(k+1) ∈ arg min
z∈Rn

{
− 〈ρ(k)

z , z− x(k)〉 + βz

2
‖z− x(k)‖2

2 + ιRn
+
(z)
}

= arg min
z∈Rn

+

∥∥∥z− q(k)
∥∥∥

2
, q(k) = x(k) +

1
βz

ρ
(k)
z .

(50)
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Hence, the solution z(k+1) is given by the unique Euclidean projection of vector q(k)

defined in (50) onto the (convex) nonnegative orthant and admits the simple closed-form
expression

z(k)i = max
(

q(k)
i , 0

)
, i = 1, . . . , n . (51)

4.3. Solving Subproblem for x

After dropping the constant terms, the x-subproblem in (44) reads:

x(k+1) ∈ arg min
x∈Rn

{
− 〈ρ(k)

λ , λ(k+1) − (Hx + b)〉+ βλ

2
‖λ(k+1) − (Hx + b)‖2

2

− 〈ρ(k)
g , g(k+1) −Dx〉+

βg

2
‖g(k+1) −Dx‖2

2

− 〈ρ(k)
z , z(k+1) − x〉+ βz

2
‖z(k+1) − x‖2

2

}
.

(52)

By imposing a first-order optimality condition on the quadratic cost function in (52),
after simple algebraic manipulations, we obtain the following linear system of equations:(

DTD +
βλ

βg
HTH +

βz

βg
In

)
x = DT

(
g(k+1) − 1

βg
ρ
(k)
g

)
+

βλ

βg
HT
(

λ(k+1) − b− 1
βλ

ρ
(k)
λ

)
+

βz

βg

(
z(k+1) − 1

βz
ρ
(k)
z

)
, (53)

which is solvable since the coefficient matrix is symmetric positive definite and hence
nonsingular. When assuming periodic boundary conditions for x, the blur matrix H is
square, i.e., m = n, and, more importantly, DTD, HTH and—trivially—I are block circulant
matrices with circulant blocks. Hence, the linear system (53) can be solved efficiently by
one application of the direct 2D Fast Fourier Transform (FFT) and one application of the
inverse 2D FFT, each at a cost of O(n log n).

4.4. Solving Subproblem for λ and Applying the DP

The subproblem for λ in (41) reads

λ(k+1) = arg min
λ ∈Rm

{
µ

m

∑
i=1

(λi − yi ln λi)− 〈ρ
(k)
λ , λ− (Hx(k) + b)〉

+
βλ

2
‖λ− (Hx(k) + b)‖2

2

}
. (54)

After manipulating algebraically the last two terms of the cost function in (54), drop-
ping constant terms, and then dividing by the positive scalar βλ, problem (54) can be
equivalently rewritten as follows:

λ(k+1)(γ) = arg min
λ ∈Rm

{
γ

m

∑
i=1

(λi − yi ln λi) +
1
2

∥∥λ− v(k)∥∥2
2

}
,

with γ =
µ

βλ
, v(k)=Hx(k) + b +

1
βλ

ρλ . (55)

In (55), we introduced the explicit dependence of the solution λ(k+1) on the parameter
γ, which is the basis of the application of the DP. Notice that the ADMM penalty parameter
βλ is fixed; hence, γ plays the role of the regularization parameter µ in the DP applied to this
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subproblem. Problem (55) can be further simplified after noting that it can be equivalently
rewritten in component-wise (pixel-wise) form as follows:

λ
(k+1)
i (γ) ∈ arg min

λi ∈R+

{
γ(λi − yi ln λi) +

1
2
(
λi − v(k)i

)2
}

, i = 1, . . . , m . (56)

It is easy to prove that, for any γ ∈ R+ and independently of the constants yi ∈ N and
v(k)i ∈ R, all the minimization problems in (56) admit a unique solution given by

λ
(k+1)
i (γ) =

1
2

((
v(k)i − γ

)
+

√(
v(k)i − γ

)2
+ 4 yiγ

)
. (57)

We now want to apply one among the DP versions—namely, (13), (15), and the
proposed (37)—outlined in Sections 1 and 3 for selecting a value of the free parameter
γ in (57). In particular, we select γ = γ(k+1) such that γ(k+1) satisfies the discrepancy
equation, which, in accordance with the general definition given in (10)–(12), takes here
the form

G(γ; y) := D(γ; y)− ∆ = 0 (58)

where the discrepancy function reads

D(γ; y) =
m

∑
i=1
Di(γ; yi) =

m

∑
i=1

F
(

λ
(k+1)
i (γ); yi

)
, (59)

with function F defined in (9), and where the discrepancy value ∆, according to the defini-
tions given in (13), (15) and (37), takes one of the following values/forms:

∆ =



∆(T) =
m

∑
i=1

F((Hx̄ + b)i ; yi) for (13) ,

∆(A) =
m
2

for (15) ,

∆(NE)(γ) =
m
2

+
m

∑
i=1

ε
(

λ
(k+1)
i (γ) ; ĉ

)
for (37) ,

(60)

with rational polynomial function ε defined in (32) and parameter vector ĉ given in (35).
We notice that ∆(T) and ∆(A) are two positive scalars that can be computed once for all and
do not change their values during the ADMM iterations, whereas ∆(NE)(γ) is a function of
γ, which almost certainly changes its shape along the ADMM iterations (due to function
λ
(k+1)
i (γ) in (57) changing its shape when vector v(k) in (55) changes).

Summing up, the complete procedure for the DP-based update of the parameter γ
and, then, of the variable λ reads as follows:

v(k) = Hx(k) + b +
1

βλ
ρλ , (61)

γ(k+1) = root of the discrepancy equation in (58), (59), (60) , (62)

λ
(k+1)
i

(
γ(k+1)) computed by (57) , for i = 1, . . . , m . (63)

Concerning the ADP, in [6], the authors have proven that along the ADMM iterations,
the function D(γ; y) is convex and decreasing so that the existence and the uniqueness of
the solution of the discrepancy equation in (58) with ∆ = ∆(A) is guaranteed. The same
result can be immediately extended to the case of the TDP. When considering the NEDP,
the functional form of ∆(NE)(γ) is such that the above result cannot be straightforwardly ap-
plied. However, the following proposition on the existence of a solution for the discrepancy
equation (58) with ∆ = ∆(NE) holds true.
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Proposition 1. Consider the discrepancy equation in (58)–(60) with ∆ = ∆(NE)(γ) and with
vector v(k) and function λ

(k+1)
i (γ) defined as in (55) and (57), respectively, and let

t(k) := max
{

v(k), 0
}

. (64)

Then, the discrepancy equation admits a solution if the following condition is fulfilled:

∃ i : yi 6= 0 ∧ T
(

t(k), y
)

:=
m

∑
i=1

T
(

t(k)i , yi

)
≥ m

2
, (65)

where function T : R+× N→ R is defined by

T(t, y) = F(t; y)− ε(t ; ĉ) , (66)

with function F, function ε, and parameter vector ĉ given in (9), (32), and (35), respectively.

Proof. Since functions F in (9), ε in (32), and λ
(k+1)
i in (57) are all continuous, then the

function G defined in (58)–(60) with ∆ = ∆(NE)(γ) is continuous in the variable γ on its
entire domain γ ∈ R+, for any y ∈ Nm and any v(k) ∈ Rm.

Then, it is easy to prove that function λ
(k+1)
i (γ) in (57) satisfies

λ
(k+1)
i (0) = max

{
v(k)i , 0

}
= t(k)i , lim

γ→+∞
λ
(k+1)
i (γ) = yi , (67)

with vector t(k) defined in (64).
It thus follows from (67) and from the definition of functions D in (59) and ∆(NE)

in (60) that

G(0; y) = D(0; y)− ∆(NE)(0) =
m

∑
i=1

F
(

λ
(k+1)
i (0); yi

)
− m

2
−

m

∑
i=1

ε
(

λ
(k+1)
i (0) ; ĉ

)
=

m

∑
i=1

(
F
(

t(k)i ; yi

)
− ε
(

t(k)i ; ĉ
))
− m

2
= T

(
t(k), y

)
− m

2
, (68)

and that

lim
γ→+∞

G(γ; y) = lim
γ→+∞

(
D(γ; y)− ∆(NE)(γ)

)
= lim

γ→+∞

(
m

∑
i=1

F
(

λ
(k+1)
i (γ); yi

)
− m

2
−

m

∑
i=1

ε
(

λ
(k+1)
i (γ) ; ĉ

))

=
�

���
��m

∑
i=1

F(yi ; yi)−
m

∑
i=1

(
1
2
+ ε(yi ; ĉ)

)
(69)

= −
m

∑
i=1

f (yi ; ĉ) < 0 if ∃ i : yi 6= 0 , (70)

where function T in (68) is defined in (65), cancelling the first summation in (69) comes
from F(y; y) = 0 for any y ∈ R+ (see the definition of function F in (9), where y ln y = 0 for
y = 0) and (70) comes from the definition of function f in (36).

From (70) and the continuity of function G(γ; y), we can conclude that, for any y 6= 0,
the discrepancy equation G(γ; y) = 0 admits a solution if G(0; y) ≥ 0. It thus follows
from (68) that the sufficient condition in (64)–(66) holds true.

In Algorithm 1, we outline the general ADMM-based scheme used for solving im-
age restoration variational models of the TV-KL form in (8) and (9) with automatic up-
date/selection of the regularization parameter µ according to one of the considered versions
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of the DP. We refer to the general scheme as DP-ADMM, whereas the specific schemes
using one among the DP versions TDP, ADP, and NEDP will be named TDP-ADMM,
ADP-ADMM, and NEDP-ADMM, respectively. Notice that the γ-update at step 3 can be
performed by means of a derivative-free approach, such as bisection or the secant method.

Algorithm 1: General DP-ADMM approach for image restoration variational
models of the TV-KL form in (8) and (9) and automatic selection of µ via DP.

inputs: observed degraded image y ∈ Nm, emission background b ∈ Rm
+,

blur and regularization operators H ∈ Rm×n, D ∈ R2n×n

output: estimated restored image x̂ ∈ Rn

1. initialise: set x(0) = y

2. for k = 0, 1, 2, . . . until convergence do:

3. · compute γ(k+1) = µ(k+1)/βλ by (61) and (62)

4. · compute λ(k+1) by (63)

5. · compute g(k+1) by (49)

6. · compute z(k+1) by (51)

7. · compute x(k+1) by (53)

8. · compute ρ
(k+1)
λ , ρ

(k+1)
g , ρ

(k+1)
z by (45)–(47)

9. end for

10. x̂ = x(k+1)

5. Numerical Results

In this section, we evaluate the performance of the proposed NEDP in (37) for the
automatic selection of the regularization parameter µ in image restoration variational
models of the TV-KL form in (8) and (9).

Our approach is compared with the TDP and the ADP in (13) and (15), respectively.
For each criterion, we perform the ADMM-based scheme outlined in Algorithm 1. As re-
called in Section 4, the µ-selection problem along the ADMM iterations always admits a
unique solution under the adoption of the ADP and TDP. Concerning the NEDP-ADMM,
at the generic iteration k of Algorithm 1, the regularization parameter µ is updated provided
that the condition stated in Proposition 1 is satisfied. If this is not the case, the parameter
update is not performed and µ(k) = µ(k−1).

The numerical tests have been designed with the following twofold aim:

(i) to prove that the proposed NEDP criterion is capable of selecting optimal µ values
returning high-quality restoration results and, in particular, that it outperforms the
classical ADP criterion in the low-count Poisson regime;

(ii) to prove that the proposed NEDP-ADMM scheme outlined in Algorithm 1 is capable
of automatically selecting such optimal µ values in a robust (and efficient) manner.

More specifically, the latter point will be proven by showing that the iterated and the a
posteriori version of our approach behave similarly in terms of µ-selection.

The µ-values selected by the TDP, the ADP, and the NEDP applied a posteriori will be
denoted by µ(T), µ(A), µ(NE), respectively, while the output µ-value of the ADP-ADMM
and of the NEDP-ADMM scheme will be denoted by µ̂(A) and µ̂(NE), respectively.

The quality of the restorations x̂ with respect to the original uncorrupted image x̄
will be assessed by means of two scalar measures, namely the Structural Similarity Index
(SSIM) [17] and the Improved-Signal-to-Noise Ratio (ISNR), defined by

ISNR(x̂, x̄) = 10 log10
‖x̄− b‖2

2
‖x̄− x̂‖2

2
.
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For all tests, the iterations of the ADMM-based scheme in Algorithm 1 are stopped as
soon as

ε
(k)
x =

‖x(k) − x(k−1)‖2

‖x(k−1)‖2
< 10−5 , k ∈ N \ {0} ,

and the ADMM penalty parameters βλ, βg, βz are set manually so as to achieve fast con-
vergence. More precisely, in each test, the same triplet (βλ, βg, βz) of ADMM penalty
parameters is used for the three compared discrepancy principles TDP, ADP, and NEDP,
with βλ, βg, βz ∈ [0.5, 2].

We consider the four test images, each with pixel values between 0 and 1, shown in
Figure 5. The acquisition process (1) has been simulated as follows. First, the original
image is multiplied by a factor κ ∈ N \ {0} representing the maximum emitted photon
count, i.e., the maximum expected value of the number of photons emitted by the scene
and hitting the image domain. Clearly, the lower κ, the lower the SNR of the observed
noisy image and the more difficult the image restoration problem. For each image, several
values κ ranging from 3 to 1000 have been considered. Then, the resulting images have been
corrupted by space-invariant Gaussian blur, with a blur kernel generated by the Matlab
routine fspecial, which is characterized by two parameters, namely the band parameter,
representing the side length (in pixels) of the square support of the kernel, and sigma, which
is the standard deviation (in pixels) of the isotropic bivariate Gaussian distribution defining
the kernel in the continuous setting. We consider two different blur levels characterized
by the parameters band = 5, sigma = 1 and band = 13, sigma = 3. The blurred noiseless
image λ = Hx + b is then generated by adding to the blurred image a constant emission
background b of value 2× 10−3. The observed image y = Poiss(λ) is finally obtained
by pseudo-randomly generating an m-variate independent Poisson realization with mean
vector λ.

The black solid curves plotted in Figure 6a,c represent the function D(µ; y) as defined
in (11) and (12) for the first test image cameraman and κ = 5, for the less severe (first row)
and more severe (second row) blur level. They have been computed by solving the TV-KL
model in (8) for a fine grid of different µ-values, and then calculating D(µ; y) for each µ.
The horizontal dashed cyan and green lines represent the constant discrepancy values ∆(T)

and ∆(A) used in (13) and (15), respectively, while the dashed magenta curve represents the
discrepancy value function ∆(NE)(µ) defined in (37). We remark that ∆(NE)(µ) has been
obtained in the same way as D(µ; y), i.e., by computing the expression in (37) for each µ of
the selected fine grid. One can clearly observe that the intersection points between the curve
∆(NE)(µ) and the function D(µ; y) and between the line representing ∆(T) and D(µ; y) are
very close, and both at a significant distance from the intersection point detected by ∆(A).

cameraman (256× 256) brain (253× 238) phantom (246× 245) cells (236× 236)

Figure 5. Grayscale test images considered for the numerical experiments.

In Figure 6b,d, we show the INSR and SSIM values achieved for different µ-values
with κ = 5. The vertical cyan, green, and magenta lines correspond to the µ-values detected
by the intersection of D(µ; y) and ∆(T), ∆(A), ∆(NE)(µ), respectively. As a reflection of the
behavior of the discrepancy function and of the three curves, the ISNR/SSIM corresponding
to µ(T) and µ(NE) are very close to each other and almost reach the maximum of the two
curves. We also highlight that, when considering the more severe blur case, the ADP selects
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a very large µ-value, which returns very low ISNR and SSIM values—see the thumbnail
image in the right-hand corner of Figure 6d.

We are also interested in verifying that the proposed NEDP-ADMM scheme outlined
in Algorithm 1 succeeds in automatically selecting such optimal µ in a robust and efficient
way: the blue and red markers in Figure 6b,d represent the final ISNR and SSIM values,
respectively, of the image restored via NEDP-ADMM. Clearly, the markers are plotted
in correspondence of µ̂(NE), which is, as we recall, the output µ-value of the iterative
scheme NEDP-ADMM; one can clearly observe that µ̂(NE) is very close to the optimal µ(NE)

detected a posteriori by the NEDP.
As a further analysis, at the bottom of Figure 6, we report the output µ-values, the ISNR

and the SSIM values for the two blur levels, and the 11 κ-values considered to be obtained
by the ADP-ADMM (first column) and the NEDP-ADMM (second column). To facilitate
the comparison, we also report in blue/red the increments/decrements of the ISNR and
SSIM achieved by our method with respect to the approximate criterion. Notice that the
NEDP outperforms the ADP both in terms of ISNR and SSIM for the low-count acquisitions.
However, when the κ increases, the two methods behave very similarly, with the ISNR
and SSIM values obtained by the ADP-ADMM being slightly larger than those obtained
by the NEDP-ADMM. In accordance with this analysis, the output µ̂(A) and µ̂(NE) are
significantly different in low-count regimes, similar in mid-count regimes, and particularly
close in high-count regimes. Notice that this behavior can be easily explained in light of the
analysis carried out in Section 2, where we have shown that the approximation provided by
∆(A) becomes more and more accurate as the number of pixels with large values increases.

For a visual comparison, in Figures 7 and 8, we show the observed images (left column),
the restorations via ADP-ADMM (middle column) and via NEDP-ADMM (right column)
for the less and more severe blur level, respectively, and when different photon count
regimes, ranging from very low to very high, are considered. As already observed from
the ISNR and SSIM values reported at the bottom of Figure 6, we notice that for low-count
acquisitions, the µ-value selected by the ADP does not allow for a proper regularization, so
that NEDP-ADMM clearly outperforms the competitor. However, starting from κ = 15—
for the first blur level—and from κ = 40—for the second blur level—the two approaches
return similar output images.

For the second test image, brain, we report in Figure 9 the behavior of the discrepancy
function D(µ; y) and of the ISNR/SSIM curves obtained by applying the TDP, the ADP,
and the NEDP, for κ = 5 and for the two considered blur levels. In addition, in this case,
the NEDP and the TDP behave similarly and they almost achieve the maximum of the
ISNR and of the SSIM curves. In contrast, µ(A) appears to be largely underestimated with
respect to the optimal µ—which can be intended as the one maximizing either the ISNR
or the SSIM. As for the first test image, the blue and red markers, indicating the output
ISNR and SSIM, respectively, of the iterated version of our approach, are very close to the
ones achieved by applying the NEDP a posteriori, suggesting that also µ̂(NE) and µ(NE) are
very close.

From the table reported at the bottom of Figure 9, we observe that the proposed
µ-selection criterion, for every κ, returns restored images outperforming the ones achieved
via the ADP both in terms of ISNR and SSIM. The poor behavior of the ADP can be
related to the nature of the processed image, which, either for the low-count or high-count
acquisitions, presents few pixels with large values so that the approximation in (15) is
particularly inaccurate. As a signal of this, note that the output µ̂(A) is always smaller—or
significantly smaller—than µ̂(NE).

The restored images in Figures 10 and 11 reflect the values recorded in the table as, for the
two considered blur levels, the output of the NEDP-ADDM appears to be remarkably sharper
than the final restoration by ADP-ADMM, especially in low- and mid-count regimes.
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(a) (b)

(c) (d)

ADP-ADMM NEDP-ADMM Difference

κ µ̂(A) ISNR SSIM µ̂(NE) ISNR SSIM ISNR SSIM

ba
nd

=
5,
si

gm
a
=

1

3 6.1613 10.1928 0.1654 1.3228 13.4871 0.3720 +3.2942 +0.2065
5 5.8076 11.0567 0.2247 1.5100 11.7258 0.2949 +0.6690 +0.0701

10 6.5414 9.9561 0.2504 3.3778 10.0664 0.2540 +0.1103 +0.0035
15 6.4521 8.9297 0.2624 4.2140 8.7557 0.2491 −0.1740 −0.0133
20 6.7853 8.1429 0.2634 5.0019 7.9470 0.2482 −0.1959 −0.0152
30 7.7725 6.9186 0.2780 6.6048 6.8030 0.2677 −0.1138 −0.0102
40 9.5005 6.1588 0.2892 8.5250 6.0814 0.2832 −0.0774 −0.0060
50 10.2516 5.5940 0.2982 9.5042 5.5270 0.2932 −0.0670 −0.0050

100 15.3829 4.0231 0.3335 14.9409 3.9963 0.3316 −0.0267 −0.0019
500 43.4069 2.5746 0.4148 43.2463 2.5705 0.4146 −0.0040 −0.0002

1000 70.4637 2.6296 0.4509 70.3529 2.6280 0.4508 −0.0015 −0.0001

ba
nd

=
13

,s
ig

ma
=

3

3 291.2252 −5.3677 0.0156 2.2867 12.5234 0.3214 +17.8914 +0.3058
5 270.6214 −4.0339 0.0241 2.4535 10.6776 0.2393 +14.7115 +0.2152

10 117.0970 2.8109 0.0888 4.2731 8.5199 0.1657 +5.7090 +0.0769
15 20.0084 7.2967 0.1606 3.6564 6.9299 0.1322 −0.3667 −0.0283
20 25.0534 6.4344 0.1554 6.7164 6.4093 0.1444 −0.0250 −0.0109
30 35.2842 5.4458 0.1720 15.5595 5.5369 0.1659 +0.0911 −0.0061
40 30.6417 4.8883 0.1785 16.5360 4.8324 0.1688 −0.0559 −0.0097
50 21.0590 4.2611 0.1686 14.4928 4.1632 0.1607 −0.0978 −0.0078

100 29.4505 3.0947 0.1868 25.1986 3.0469 0.1835 −0.0477 −0.0033
500 75.9439 1.9758 0.2222 74.3578 1.9680 0.2216 −0.0078 −0.0006

1000 136.0108 1.9261 0.2378 134.6466 1.9233 0.2375 −0.0028 −0.0002

Figure 6. Test image cameraman. Top: discrepancy curve divided by 104 (a,c) and ISNR/SSIM values
(b,d) achieved for different µ-values with κ = 5 and Gaussian blur with parameters band = 5, sigma =
1 (first row) and band = 13, sigma = 3 (second row). Bottom: output µ-values and ISNR/SSIM values
obtained by the ADP-ADMM and the NEDP-ADMM for the two blur levels considered and different
photon counts κ.
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y ADP-ADMM NEDP-ADMM

κ = 3

κ = 5

κ = 10

κ = 15

κ = 20

κ = 30

κ = 40

κ = 50

κ = 500

κ = 1000

Figure 7. Test image cameraman. Left column: observed data y corrupted by Gaussian blur with
parameters band = 5, sigma = 1 and Poisson noise with different κ-values ranging from 3 to 1000.
Middle column: restorations by ADP-ADMM. Right column: restorations by NEDP-ADMM.
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y ADP-ADMM NEDP-ADMM

κ = 3

κ = 5

κ = 10

κ = 15

κ = 20

κ = 30

κ = 40

κ = 50

κ = 500

κ = 1000

Figure 8. Test image cameraman. Left column: observed data y corrupted by Gaussian blur with
parameters band = 13, sigma = 3 and Poisson noise with different κ-values ranging from 3 to 1000.
Middle column: restorations by ADP-ADMM. Right column: restorations by NEDP-ADMM.
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(a) (b)

(c) (d)

ADP-ADMM NEDP-ADMM Difference

κ µ̂(A) ISNR SSIM µ̂(NE) ISNR SSIM ISNR SSIM

ba
nd

=
5,
si

gm
a
=

1

3 0.0580 4.1577 0.2297 1.0580 9.7776 0.4793 +5.6199 +0.2496
5 0.3028 4.0752 0.3382 1.4745 8.6706 0.4955 +4.5953 +0.1573

10 0.6460 3.3797 0.4017 2.3046 7.0980 0.5409 +3.7182 +0.1392
20 1.0616 2.1217 0.4586 3.1936 5.3490 0.5795 +3.2272 +0.1209
30 1.4671 1.5826 0.4991 4.1296 4.4531 0.6125 +2.8705 +0.1133
40 1.8886 1.3450 0.5308 5.2176 4.0403 0.6381 +2.6953 +0.1073
50 2.2322 1.0878 0.5508 5.8860 3.5566 0.6532 +2.4688 +0.1024

100 3.8521 0.4355 0.6109 8.7490 2.3912 0.6980 +1.9557 +0.0871
500 12.9452 0.3040 0.7657 24.1260 1.5161 0.8142 +1.2121 +0.0485

1000 20.7261 0.6053 0.8150 36.1662 1.5187 0.8459 +0.9134 +0.0309

ba
nd

=
13

,s
ig

ma
=

3

3 0.0560 4.2295 0.1567 1.3193 7.9382 0.3751 +3.7086 +0.2184
5 0.2075 3.7819 0.2590 3.2337 7.3272 0.3957 +3.5452 +0.1367

10 0.6767 2.6315 0.2816 5.9275 5.7485 0.4230 +3.1169 +0.1413
20 1.0271 1.2943 0.2991 6.3652 3.9673 0.4288 +2.6730 +0.1296
30 1.3701 0.8786 0.3147 7.1293 3.1839 0.4316 +2.3053 +0.1168
40 1.8293 0.8087 0.3387 12.7947 3.3898 0.4676 +2.5811 +0.1289
50 2.0648 0.6481 0.3482 11.1175 2.9012 0.4628 +2.2531 +0.1146

100 3.7821 0.7344 0.3928 24.5532 2.9241 0.5036 +2.1897 +0.1108
500 13.5166 1.6380 0.4853 56.1196 3.0920 0.5560 +1.4539 +0.0706

1000 22.7867 2.0293 0.4857 82.6358 3.2317 0.5351 +1.2024 +0.0493

Figure 9. Test image brain. Top: discrepancy curve divided by 104 (a,c) and ISNR/SSIM values (b,d)
achieved for different µ-values with κ = 5 and Gaussian blur with parameters band = 5, sigma = 1
(first row) and band = 13, sigma = 3 (second row). Bottom: output µ-values and ISNR/SSIM values
obtained by the ADP-ADMM and the NEDP-ADMM for the two blur levels considered and different
photon counts κ.
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Figure 10. Test image brain. Left column: observed data y corrupted by Gaussian blur with
parameters band = 5, sigma = 1 and Poisson noise with different κ-values ranging from 3 to 1000.
Middle column: restorations by ADP-ADMM. Right column: restorations by NEDP-ADMM.



J. Imaging 2022, 8, 1 26 of 35

y ADP-ADMM NEDP-ADMM

κ = 3

κ = 5

κ = 10

κ = 20

κ = 30

κ = 40

κ = 50

κ = 500

κ = 1000

Figure 11. Test image brain. Left column: observed data y corrupted by Gaussian blur with
parameters band = 13, sigma = 3 and Poisson noise with different κ-values ranging from 3 to 1000.
Middle column: restorations by ADP-ADMM. Right column: restorations by NEDP-ADMM.

In Figure 12, for the test image phantom, we report the curve of the discrepancy
function D(µ; y) obtained a posteriori, as well as the curves of the ISNR and of the SSIM
for κ = 3 and the two blur levels considered. As for the test image brain, in this case, the
ADP also selects a µ-value that is far from the optimal one, either if measured in terms of
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ISNR or SSIM. On the other hand, µ(T) and µ(NE) are very close and, in particular, one can
notice that the output of the NEDP-ADMM represents the optimal compromise in terms
of ISNR and SSIM. Notice also that, when considering the larger blur level, the output
value µ̂(NE) of the NEDP-ADMM, detected by the red and blue markers, is larger than the
one selected by the a posteriori version of the NEDP. However, the difference in terms of
ISNR and SSIM is not particularly significant. This behavior is due to the use of different
penalty parameters βλ, βg, βz in the ADMM for the a posteriori and the iterated version of
our approach. In fact, when considering a large blur level, the convergence of the ADMM
is particularly slow and can be achieved upon suitable selection of the penalty parameters,
whose values may not coincide in the two scenarios addressed.

The mismatch observed in Figure 12 between the curves of the ISNR and of the SSIM
is reflected in the values reported in the bottom part of the figure, whence we can conclude
that the NEDP-ADMM outperforms the ADP-ADMM in terms of ISNR for each κ-value,
while the ADP-ADMM returns slightly better results in terms of SSIM for high-count
acquisitions. As for the test image brain, in this case, the output µ̂(A) also appears to be
significantly small. Once again, this behavior can be related to the considered image, which
is mostly characterized by pixels with very small values.

From the restorations shown in Figures 13 and 14, one can also notice that the slight
improvement in terms of SSIM does not correspond to any significant visual improvements.
In fact, along the whole range of considered photon counts κ, the NEDP-ADMM is capable
of returning sharper restorations. This reflects the tendency of ADP-ADMM applied on
the current test image in selecting not sufficiently large µ-values, so that, in the TV-KL, the
regularization term takes over. We also remark that for the current test image, the SSIM
value does not seem to be particularly meaningful.

For the fourth and final test image, cells, we show in Figure 15 the behavior of the
discrepancy function D(µ; y), as well as of the ISNR and SSIM values in the a posteriori
framework for the two blur levels and κ = 3. Note that, in the a posteriori setting, for both
blur levels, the NEDP achieves higher ISNR and SSIM values when compared to the ADP.
However, we observe that when considering the larger blur level, the output µ̂(NE) of
the NEDP-ADMM is smaller than µ(NE); this behavior can be ascribed, once again, to the
ADMM convergence issues and the different values selected for the penalty parameters.

From the values reported in the bottom part of Figure 15, we notice that the NEDP-
ADMM outperforms the ADP-ADMM in every photon count regime. Clearly, the closer
µ̂(A) and µ̂(NE), the smaller the difference in terms of ISNR and SSIM.

The restorations computed by the ADP-ADMM and the NEDP-ADMM are shown
in Figure 16 for the smaller blur level and in Figure 17 for the larger one. The obtained
results confirm the values reported in the bottom of Figure 15. Moreover, also from a visual
viewpoint, the difference between the two performances increases when going from high- to
low-count regimes.
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(a) (b)

(c) (d)

ADP-ADMM NEDP-ADMM Difference

κ µ̂(A) ISNR SSIM µ̂(NE) ISNR SSIM ISNR SSIM

ba
nd

=
5,
si

gm
a
=

1

3 0.0251 2.4956 0.4731 1.3116 10.8958 0.8290 +8.4002 +0.3559
5 0.0499 1.8412 0.6714 2.0924 10.0898 0.7928 +8.2486 +0.1213

10 0.1226 0.6924 0.7374 2.5823 8.1711 0.8169 +7.4787 +0.0795
20 0.2321 −0.0124 0.7611 4.1877 7.2274 0.7739 +7.2398 +0.0127
30 0.3824 −0.5303 0.7660 5.2651 6.7886 0.7554 +7.3189 −0.0106
40 0.5727 −0.7640 0.7775 6.4738 6.6109 0.7426 +7.3749 −0.0349
50 0.7566 −0.7936 0.7845 6.9334 6.4298 0.7631 +7.2235 −0.0214

100 1.4043 −0.6231 0.7864 10.8129 6.2304 0.7138 +6.8536 −0.0725
500 4.4672 1.3594 0.8054 27.1367 7.2687 0.6776 +5.9093 −0.1277

1000 7.0698 2.8491 0.8413 41.5306 8.1662 0.6787 +5.3171 −0.1625

ba
nd

=
13

,s
ig

ma
=

3

3 0.0246 2.6822 0.3757 2.1562 9.5223 0.7783 +6.8400 +0.4025
5 0.0449 1.9322 0.6773 3.8968 8.3637 0.7373 +6.4314 +0.0600

10 0.1201 1.0697 0.6922 3.3357 5.9521 0.7377 +4.8824 +0.0455
20 0.2047 0.4592 0.6964 5.8572 4.9162 0.7304 +4.4570 +0.0339
30 0.2833 0.2225 0.7021 11.4953 4.7800 0.6728 +4.5574 −0.0292
40 0.3716 0.0590 0.7066 18.2478 5.2786 0.6487 +5.2195 −0.0579
50 0.4720 0.0193 0.7029 16.9469 4.7202 0.6811 +4.7008 −0.0217

100 1.0801 0.0283 0.7097 29.7678 4.9542 0.6405 +4.9259 −0.0692
500 4.753 1.3551 0.7235 75.4425 6.3189 0.6341 +4.9638 −0.0893

1000 8.9802 2.3915 0.7536 124.9501 7.1415 0.6256 +4.7500 −0.1280

Figure 12. Test image phantom. Top: discrepancy curve divided by 104 (a,c) and ISNR/SSIM values
(b,d) achieved for different µ-values with κ = 3 and Gaussian blur with parameters band = 5, sigma =
1 (first row) and band = 13, sigma = 3 (second row). Bottom: output µ-values and ISNR/SSIM values
obtained by the ADP-ADMM and the NEDP-ADMM for the two blur levels considered and different
photon counts κ.
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Figure 13. Test image phantom. Left column: observed data y corrupted by Gaussian blur with
parameters band = 5, sigma = 1 and Poisson noise with different κ-values ranging from 3 to 1000.
Middle column: restorations by ADP-ADMM. Right column: restorations by NEDP-ADMM.



J. Imaging 2022, 8, 1 30 of 35

y ADP-ADMM NEDP-ADMM

κ = 3

κ = 5

κ = 10

κ = 20

κ = 30

κ = 40

κ = 50

κ = 500

κ = 1000

Figure 14. Test image phantom. Left column: observed data y corrupted by Gaussian blur with
parameters band = 13, sigma = 3 and Poisson noise with different κ-values ranging from 3 to 1000.
Middle column: restorations by ADP-ADMM. Right column: restorations by NEDP-ADMM.
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(a) (b)

(c) (d)

ADP-ADMM NEDP-ADMM Difference

κ µ̂(A) ISNR SSIM µ̂(NE) ISNR SSIM ISNR SSIM

ba
nd

=
5,
si

gm
a
=

1

3 0.3042 8.0428 0.2002 1.1719 10.1281 0.2952 +2.0852 +0.0949
5 1.1283 8.0419 0.2799 1.8656 8.7165 0.3295 +0.6745 +0.0496

10 1.7170 5.9522 0.3167 2.6968 6.5660 0.3643 +0.6137 +0.0475
20 2.4343 3.8227 0.3698 3.6823 4.4218 0.4155 +0.5991 +0.0457
30 3.2547 2.9204 0.3999 4.9249 3.4823 0.4449 +0.5619 +0.0449
40 4.1041 2.4395 0.4382 5.8986 2.9103 0.4759 +0.4707 +0.0376
50 5.0053 2.0792 0.4655 7.0349 2.4818 0.4991 +0.4026 +0.0335

100 8.4224 1.0624 0.5383 10.9451 1.3581 0.5629 +0.2957 +0.0246
500 27.1550 0.3788 0.6718 32.0158 0.5370 0.6827 +0.1581 +0.0108

1000 45.5340 0.6410 0.7221 52.7334 0.7729 0.7310 +0.1319 +0.0089

ba
nd

=
13

,s
ig

ma
=

3

3 0.3251 7.9171 0.16940 1.8841 9.4912 0.2228 +1.5740 +0.0534
5 3.6943 8.1023 0.2420 3.9060 8.1195 0.2436 +0.0171 +0.0015

10 3.5550 5.7064 0.2282 5.2098 5.8821 0.2425 +0.1756 +0.0143
20 2.9412 3.5252 0.2285 5.6999 3.9632 0.2586 +0.4380 +0.0301
30 4.1855 2.7059 0.2396 10.8952 3.2246 0.2798 +0.5186 +0.0402
40 4.3731 2.0708 0.2450 8.6807 2.4853 0.2744 +0.4145 +0.0293
50 6.1442 1.9499 0.2654 14.4495 2.3613 0.2980 +0.4114 +0.0325

100 10.0409 1.2177 0.2862 18.6804 1.52056 0.3094 +0.3028 +0.0231
500 37.5732 0.9416 0.3546 58.8299 1.1146 0.3698 +0.1730 +0.0152

1000 64.4743 1.0410 0.3871 98.0256 1.1868 0.4019 +0.1458 +0.0148

Figure 15. Test image cells. Top: discrepancy curve divided by 104 (a,c) and ISNR/SSIM values
(b,d) achieved for different µ-values with κ = 3 and Gaussian blur with parameters band = 5, sigma =
1 (first row) and band = 13, sigma = 3 (second row). Bottom: output µ-values and ISNR/SSIM values
obtained by the ADP-ADMM and the NEDP-ADMM for the two blur levels considered and different
photon counts κ.



J. Imaging 2022, 8, 1 32 of 35

y ADP-ADMM NEDP-ADMM

κ = 3

κ = 5

κ = 10

κ = 20

κ = 30

κ = 40

κ = 50

κ = 500

κ = 1000

Figure 16. Test image cells. Left column: observed data y corrupted by Gaussian blur with
parameters band = 5, sigma = 1 and Poisson noise with different κ-values ranging from 3 to 1000.
Middle column: restorations by ADP-ADMM. Right column: restorations by NEDP-ADMM.
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Figure 17. Test image cells. Left column: observed data y corrupted by Gaussian blur with
parameters band = 13, sigma = 3 and Poisson noise with different κ-values ranging from 3 to 1000.
Middle column: restorations by ADP-ADMM. Right column: restorations by NEDP-ADMM.

6. Conclusions and Future Work

We propose an automatic selection strategy for the regularization parameter of varia-
tional image restoration models under Poisson noise corruption based on a nearly exact
version of the approximate discrepancy principle originally proposed in [5]. Our approach



J. Imaging 2022, 8, 1 34 of 35

relies on Monte Carlo simulations, which have been designed with the purpose of providing
meaningful insights into the limitations of the original approximate strategy, especially in
the low-count Poisson regime. The proposed version of the discrepancy principle has then
been derived by means of a weighted least-square fitting and embedded along the iterations
of an efficient ADMM-based optimization scheme. Our approach has been extensively
tested on different images and for different photon count values, ranging from very low to
high values. When compared to the original approximate selection criterion, the proposed
strategy has been shown to drastically improve the quality of the output restorations in
low-count regimes and in mid-count/high-count regimes on images characterized by few
large pixel values.

From an analytical point of view, investigating the uniqueness of the regularization
parameter value satisfying the proposed discrepancy principle will certainly constitute
future work. From a modeling and applicative perspective, the effectiveness of the proposed
approach when applied to variational models containing regularizers other than TV or
aimed at solving inverse problems other than image restoration will be the subject of
future analysis. Finally, from an algorithmic viewpoint, a matter that deserves further
investigation is the (possibly automatic) selection of the three ADMM penalty parameters,
which can significantly affect the speed of convergence of the numerical solution scheme.
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