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Wavefield analysis tools for wavenumber and
velocities extraction in polar coordinates

Michelangelo Maria Malatesta, Student Member, IEEE, Jochen Moll, Member, IEEE, Pawel Kudela,
Maciej Radzienski, and Luca De Marchi, Member, IEEE

Abstract—Experimental characterization of Lamb waves in
plate–like structures overcomes the intrinsic limits of a–priori
Semi–Analytical Finite Elements simulations, where material
inaccuracies and non–idealities can not be easily considered.
Unfortunately, the experimental extraction of guided waves
dispersion curves, and especially their polar representation along
different directions of propagation at a given frequency, is not
trivial. In non-isotropic materials, such analysis is a key aspect
for a reliable and robust characterization of the waves behaviour.
In this work, by exploiting Scanning Laser Doppler Vibrometer
measurements with narrowband excitation, two different signal
processing methods for the extraction of the wavenumber polar
representation at the excitation frequency are investigated and
characterized. The first method is based on a Distance Regular-
ized Level Set algorithm, widely used in image processing and
computer vision but, to the best of author’s knowledge, never
used in the Lamb waves’ field. The second method is based on
the two-dimensional sparse wavenumber analysis which exploits
the wavefield sparse representation in the wavenumber domain.
With a precise and reliable extraction of the wavenumber charac-
teristic in the k–space, the polar representations at the excitation
frequency of phase and group velocities can be estimated. The
former, by exploiting the well-known wavenumber–frequency
relation, the latter, instead, by computing numerical derivative
among wavenumbers at multiple frequencies. The methodology
has been validated on three different composite plates with
different degrees of non-isotropy properties. The results show
the effectiveness of the two methods, highlighting the advantages
and disadvantages of both.

Index Terms—Wavefield Analysis, group velocity, phase veloc-
ity, DRLSE, Compressive Sensing, Orthogonal Matching Pursuit.

I. INTRODUCTION

LAMB waves have been extensively exploited among
years in the Non-Destructive Evaluation (NDE) and

Structure Health Monitoring (SHM) fields due to their low
attenuation along big distances and the capability to detect
internal or surface damages in thin structures [1]. On the
other hand, Lamb waves feature a multimodal and dispersive
behavior, which has to be precisely and fully characterized to
perform a reliable inspection. The waves propagation and their
dispersion curves can be modelled by Finite Element Methods
(FEM) [2] or Semi-Analytical Finite Element (SAFE) [3],
[4] formulations, such as boundary elements [5], [6], spectral
elements [7], transfer matrix methods [8] and global matrix
methods [9]. Undoubtedly, the state of the art of modelling
tools allow researchers to approach the complexity of Lamb
waves propagation and characterize, under certain approxi-
mations, the waves behaviour. Limitations occur when the
material properties are partially or not known and modelling

tools can not be exploited. Moreover, inaccuracies in the
elastic constants estimation [10], or slight deviations of the
material properties from their nominal values, such as those
due to non-homogeneity, may affect the precision and reliabil-
ity of the simulation. Thus, experimental characterization of
the structure under investigation is fundamental to support and
integrate the preliminary analysis carried on with modelling
tools.

Lamb waves dispersion curves are usually represented in
the frequency–wavenumber domain, or as phase and group
velocity profiles along specific waves propagation directions.
In isotropic materials, the extraction of the dispersion curves
along any direction fully characterizes the entire structure,
which enables velocity tuning or dispersion compensation
[11]–[13]. In literature, many experimental techniques have
been presented for dispersion curves extraction. Chang and
Yuan [14], as well as Schopfer et al. [15] exploited the Matrix
Pencil Method for ridge detection in the wavenumber domain
to extract dispersion curves from Laser Doppler Vibrometer
(LDV) measurements. Harb and Yuan [16], by exploiting an
air-coupled transducer as actuator with a specific angle of inci-
dence and a LDV, were able to compute the dispersion curves
by means of Snell laws. In [17], the same result was achieved
by measuring the phase difference and time lag between
two pulses acquired by two different transducers, placed at
different distances from the actuator. Conversely, in anisotropic
materials, the dependence of the dispersion curves with respect
to the direction - or angle - of propagation must be considered.
This can be done by repeatedly extracting the dispersion
curves along multiple directions [18]–[20]. Moreover, time–
frequency based methods effectiveness may be compromised
when the inspected structures are characterized by complex
geometries and multi–path interference. Unfortunately, in liter-
ature, there are very few examples regarding efficient methods
for the experimental extraction of dispersion curves along with
multiple directions of propagation simultaneously. In [21], an
extension of the conventional 2D analysis in the f-k domain
to 3D f-kx-ky domain is presented. For a given frequency,
the wavenumber characteristic along different directions for
different propagation modes is revealed in the kx-ky domain,
a.k.a. k–space or 2D wavenumber domain. Moreover, the
results show the possibility to perform many signal processing
techniques, such as Lamb waves decomposition, mode filtering
or short–space Fourier transform. However, the extraction of
the wavenumber polar representation in the 2D wavenumber
domain is not addressed. In general, this is a not trivial
task, since the commonly used time–frequency ridge detection



Fig. 1: Wavefield representation in the 3D Fourier Domain.

techniques [22] can not be applied to circle or elliptical shapes.
Sabeti et al. [23], instead, presented a comparative study on
compressing sensing techniques for full wavefield reconstruc-
tion from a subsampled dataset by exploiting the sparsity of
the frequency–wavenumber representation. Since the wavefield
reconstruction is based on the dispersion curves computation
the method implicitly estimates the wavenumber curves. In
particular, two techniques suitable for anisotropic plates were
addressed, namely the Anisotropic Sparse Wavefield Analysis
(ASWA) and the two–Dimensional Sparse Wavefield Analysis
(2DSWA). ASWA can achieve very high levels of compres-
sion, but can not handle edge or scatters reflections. Moreover,
it generally reconstructs only the dominant wavefield mode.
Conversely, 2DSWA cannot achieve a very high level of
compression, but it is theoretically suitable to reconstruct
reflections and multi–mode propagation. However, in [23], the
accuracy of this method in wavenumber extraction was not
characterized.

In this context, the objective of this work is twofold:
• A new robust approach to extract dispersion curves from

wavefield data is introduced. The approach is based on
the Distance Regularized Level Set (DRLSE) algorithm
[24] applied to the 3D Fourier transform of full wavefield
acquisitions. The DRLSE approach has been previously
exploited in bio–medical applications [25], [26], materi-
als characterization [27] and radar [28], but was never
applied to wavefield analysis.

• Then, the DRLSE method is exploited to characterize the
performance and limitations of the 2DSWA on multiple
wavefield datasets acquired with Scanning Laser Doppler
Vibrometers (SLDVs) and, in particular, the trade–off
between compression capabilities and accuracy of dis-
persion curves reconstruction is explored.

II. THEORETICAL BACKGROUND

A. Wavenumber polar representations

A SLDV can measure the Lamb waves wavefield in time and
space over a defined scanning area with high spatial resolution
and high signal–to–noise ratio. Therefore, it is a very attractive
technology for Lamb waves characterization and monitoring

[29]. In particular, by exploiting the frequency–wavenumber
representation of the acquired wavefield, computed by a 2D–
Fourier Transform (2DFT), it is possible to extract useful
information related to both the wavenumber as a function of
the frequency and the multimodal propagation of the waves
[30]. By exploiting a 3D–Fourier Trasform (3DFT), instead,
the wavefield in the f−kx−ky domain or 3D Fourier domain
can be computed, as depicted in Fig. 1. Each slice at a given
frequency is addressed as k–space or 2D wavenumber domain
wavefield representation. Many signal processing techniques
in the 3D Fourier domain have been developed, such as
mode separation [31], wavenumber filtering [32] and wave-
field manipulation [33]. Multiscale representations such as
those generated by multidimensional Wavelet [34] or Curvelet
transforms [35] allow to better track non-stationary effects.
It is worthy to notice that usually, a 2D spatial filtering is
performed before running the 3DFT in order to reduce the
border effects which may lead to artefacts in the transformation
domain [36]. For instance, a Gaussian window can be used
[37]. Nevertheless, the extraction of the wavenumber profile
for a fixed fi is not trivial, due to the closed–loop shape
which inhibits the exploitation of conventional ridge detection
algorithms. Recently, Ma and Yu [38] presented a maximum–
tracking based technique, in which, after the conversion from
the Cartesian U(fi,k) to the polar U(fi, r, θ) plane, for each
angle θ the radius at the maximum wavenumber index value
was extracted. The drawback of this method is the high
sensitivity to noise.

B. The Distance Regularized Level Set method

In this work, we propose to exploit the Distance Regularized
Level Set (DRLSE) algorithm [24] to analyze wavefield data.
The main advantage of Level Set (LS) algorithms for image
processing is their capability to extract contours of highly–
complex images without any parametrization. The method is
based on the representation of a closed curve as the zero
level set of an auxiliary function φ called Level Set Function
(LSF). Then, iteratively, starting from an initial LSF defined
as a binary step function of arbitrary shape, the motion of the
closed curve is developed as the evolution of the LSF. When
compared with conventional level set approaches, the DRLSE
has the advantage that does not require any re–initialization to
solve the irregularities of the LSF.

From a mathematical point of view, LSF is defined as φ :
Ω −→ < term. The level set evolution is derived as a gradient
flow that minimizes an energy functional E(φ):

E(φ) = µRp(φ) + λLg(φ) + αAg(φ) (1)

where Rp(φ) is the level set regularization term, Lg(φ) and
Ag(φ) are energy functionals, µ > 0, λ > 0 and α ∈ <
are constant coefficients for Rp(φ), Lg(φ) and Ag(φ) respec-
tively. To clarify, Rp(φ) is defined as :

Rp(φ) =

∫
Ω

p(|∇φ|) dx (2)

where p is a potential function which is defined in order to
have two minimum points (double well points) p(|∇φ|) = 0



and p(|∇φ|) = 1. In such a way, |∇φ| = 1 is maintained only
to the proximity of the zero level set, while keeping |∇φ| = 0
otherwise. This leads to achieve a strong smoothing effect and
an accurate computation during the level set evolution. Con-
versely, the Lg(φ) is an energy functional which is minimized
when the zero level contour of φ is at the actual contour of
the target image, meanwhile Ag(φ) is an energy functional
introduced to speed up the convergence. The DRLSE main
goal is to minimize the energy functional defined in (1). A
well established method to minimize an energy functional is
to find the steady state solution of the gradient flow equation
[39]:

∂φ

∂t
= −∂E(φ)

∂φ
(3)

Once the steady state is found, the contour of the figure is
extracted (for a more in–deep mathematical presentation, see
[24]).

C. 2DSWA based method

Compressing sensing techniques allow to sub–sample sig-
nals below the Nyquist sampling rate without losing informa-
tion under certain assumptions [40], [41]. In particular, the
signal has to feature sparsity, i.e. with only a few nonzero
coefficients in a transformation domain, and the samples must
be acquired randomly. These concepts can be applied to
wavefield analysis. In fact, the wavefield representation in the
wavenumber domain is sparse and, consequently, it is possi-
ble to reconstruct the wavefield on dense regular grid from
subsampled measurements. This technique is referred to as
Sparse Wavefield Synthesis (SWS) and is gaining attention in
the scientific community since it allows to reduce considerably
the acquisition time [41], especially when combined with deep
learning methods [42].

Thus, let’s consider a random sub–sampled wavefield mea-
surements y ∈ Rm:

y = Φx (4)

where Φ ∈ Rm×n is the measurement matrix and x ∈ Rn is
the full grid wavefield, i.e. without any sub–sampling. Since,
as assumption, x has a sparse representation in some model
basis Ψ ∈ Rn×n, (4) can be rearranged as:

y = ΦΨs = Θs (5)

where s is the sparse representation of x in the f-k domain, aka
the wavenumber dispersion curves, and Θ is usually addressed
as the dictionary [23]. The most suitable dictionary is chosen
by considering the analytical Lamb waves model. In particular,
the ideal Lamb wave propagation model in the frequency
domain for isotropic plate can be expressed as [43]:

y(r, ω) =
∑√

1

kn(ω)r
Gn(ω)e−jkn(ω)r (6)

where r is the actuator–receiver distance, ω is the angular
frequency, kn(ω) the n–th mode wavenumber dispersion curve
and Gn(ω) is the complex wavenumber amplitude. Equation
6 can be viewed as a linear combination of a set of bases that

constitute the wavefield, from which it is possible to define
the dictionary Θ as follows:

Θ =

√
1

knrm
e−jknrm (7)

Since (5) is an underdetermined system of equations, it can be
solved via a sparse recovery algorithm, such as the Orthogonal
Matching Pursuit (OMP) technique [44]. Thus, by solving (4)
the wavenumber dispersion curves in the f − k domain are
extracted.

Since wavefields have a sparse representation even in the
f − k − x − ky domain, as can be noticed in Fig. 1, this
approach can be extended in the corresponding 2D problem.
This method, referred to as 2DSWA, has been presented by
Sabeti and Harley in [23]. In particular, (5) can be rearranged
as follows:

Yi = Θ1SiΘ
T
2 (8)

where Yi ∈ My × Nx is the frequency-domain wavefield at
each frequency fi and Si ∈ My × Mx is the 2–D sparse
representation of the wavefield in the fi − kx − ky domain.
Θ1 ∈My ×Ny and Θ2 ∈Mx ×Nx, instead, are the left and
right dictionaries, which can be defined as spatial Fourier bases
that are synthesized with respect to Cartesian coordinates of
the grid points and the wavenumber range in each direction:

Θ1 = e−jyk
T
y (9)

Θ2 = e−jxk
T
x (10)

By exploiting 2DSWA model, it is possible to deal with
non isotropic Lamb waves propagation. In such a way, the
wavenumber polar representation at given frequencies can be
extracted enabling the analysis of direction-dependent velocity
variations in anisotropic structures [23]. An extensive descrip-
tion of the 2DSWA approach, such as the demonstration of
its performance in both isotropic and anisotropic cases, is
presented in [45]. To solve (8), a modified 2D version of
the OMP algorithm was presented in [46]. As a result, a
point cloud for each frequency of interest is extracted in
the 2D wavenumber plane. As better discussed in the next
section, by applying a fitting procedure the wavenumber polar
representation can be estimated. It is worth to notice that this
technique is better suited for low undersampling rates, i.e.
close to the Nyquist rate. On bright side, the usage of 2DSWA
does not require additional optimizations and it can handle
border reflections and multimodal reconstruction.

III. MATERIALS AND METHODS

In this work, methodologies based on DLRSE and 2DSWA
to extract the wavenumber polar representation from wave-
fields are presented. From the wavenumber polar represen-
tation at multiple frequencies, the phase and group velocity
curves can be estimated, enabling a complete experimental
wavefield characterization. In particular, three datasets ac-
quired by a SLVD on three Carbon Fiber Reinforced Plates
(CFRPs), which feature different anisotropic properties and
different acquisition strategies, have been exploited for vali-
dation. The first plate, described in [10], presents a slightly



Fig. 2: SANI wavefield in the 2D Wavenumber domain at
50 kHz. SAFE simulations of the A0, S0 and SH0 modes are
superimposed.

anisotropic characteristic (SANI dataset). The second one,
instead, refers to a unidirectional highly anisotropic plate
(HANI dataset). The last dataset (OWG) is related to a plate
made of quasi–isotropic laminates and it is freely available
(http://www.open-guided-waves.de [47]). Further details are
provided below.

A. Experimental setups

The SANI wavefield was acquired on a carbon/epoxy 16–
layers laminate. The specimen dimensions are 1200x1200 mm
with average thickness 3.9 mm and density 1522.4 kg/m3. On
the other hand, the HANI laminate features 40 layers made
of unidirectional carbon/epoxy fibers. In this case, the plate
dimensions are 1200x1200 mm for 2.85 mm of thickness
and density 1574 kg/m3. A piezoelectric PZT disk of 10 mm
diameter was attached at the centre of both the CFRP plates.
Since the layups of the specimens yield the same propagation
characteristics in all four quadrants, just one quarter of the
plate was scanned with the SLVD (Polytec PSV-400), with the
PZT disk in the upper right corner. The excitation signal was a
narrowband signal with a central frequency of 50 kHz. In the
previous works of Kudela et al. [10] and [48], the SANI and
HANI plates were characterized by broadband measurements.
In particular, the theoretical elastic constants of the SANI
and HANI laminates were estimated by means of a Genetic
Algorithm (GA) which finds the best matching between the
numerical model and experimental data. The obtained material
parameters, which are shown in TABLE I, have been used in
this work for the calculation of theoretical dispersion curves
by SAFE simulations, enabling the evaluation of the proposed
methods by reliable accuracy metrics.

The last dataset was acquired on a plate made of prepreg
material Hexply M21/T700, with dimensions 500x500 mm
and 2 mm of thickness. The laminates feature a layup [45/0/−
45/90/ − 45/0/45/90]S which makes the waves propaga-
tion quasi–isotropic. A 5 mm diameter PZT transducer was
bounded at the centre of the plate and used as actuator. The
wavefield was acquired by a SLVD (Polytec PSV-400) on one

C SANI HANI
C11 52.55 138.67
C12 6.51 5.72
C13 5.94 6.53
C22 51.83 12.36
C23 5.88 5.99
C33 10.28 11.80
C44 2.93 3.12
C55 2.92 5.11
C66 3.81 4.89

TABLE I: The optimized elastic constants of the SANI [10]
and HANI [48] plates [GPa]

quarter of the plate as acquisition window, with the PZT trans-
ducer in the upper right corner. A narrowband 60 kHz wave
was used as excitation signal. The measurements were per-
formed at a fixed temperature of 23 °C and averaged 100 times
for reducing noise. The wavefield propagation characteristics
feature a central symmetry, i.e. u(r, α) = u(r, α + π), where
u(r, α) is the wavefield in polar coordinates. Thus, to fully
characterize the dispersion curves in their polar representation,
the wavenumber must be extracted in a 180° range. Since
one quarter of the plate was scanned, the direct propagation
was fully characterized just in 90° range. Information along
with the remaining 90° was extracted by a signal processing
procedure which isolates the reflections from the plate edges
with a time filtering. Then, the filtered wavefield in the 2D
wavenumber domain is normalized and processed to enhance
the reflections contribution. An in–depth description of the
signal processing procedure is presented in the next section.

Finally, it’s worthy to mention that the proposed signal
processing can be applied to narrowband or broadband mea-
surements at any excitation frequency, taking into account
that SLDV has good, quite uniform sensitivity in the range
up to about 300kHz. Above that frequency, signal amplitudes
are weak due to material damping, noise and SLDV limited
abilities. Moreover, at lower frequencies, only A0, S0 and
SH0 modes propagate which can be captured by the SLDV. In
particular, SLDV measures particle velocities perpendicular to
the surface of the specimen, which are dominant in A0 mode.
For this reason, only the extraction of the antisymmetric mode
A0 will be addressed.

1) Fourier–DRLSE approach: The main steps of the
Fourier–DRLSE processing are shown in Fig. 3. At first, time
windowing is applied to cancel out noise and undesired edge
reflections from the wavefield. In particular, a 500 µs time
window was used in the case of SANI and HANI datasets,
while a 600 µs window was exploited in the OGW case.
Moreover, a spatial 2D Gaussian filtering defined as:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

with standard deviation σ = 0.5, has been implemented to
mitigate border artefacts. Then, the amplitude of the 3DFT
coefficients is normalized in the interval [0,1]. In Fig. 4a, the
SANI Wavefield in the 2D wavenumber domain at the funda-
mental frequency of 50 kHz is shown. As expected, the main
energetic contribution shapes the wavenumber characteristic
clearly in only one quadrant, i.e. along 90° of propagation.
By mirroring the obtained profile, it is possible to reconstruct

http://www.open-guided-waves.de


Fig. 3: DRLSE–based signal processing. URPW (f,k) is the OGW Reflected Paths Wavefield in the Fourier domain

(a) (b) (c)

(d) (e) (f)

Fig. 4: SANI and HANI wavenumber extraction: (a) SANI 3DFT output at 50 kHz. (b) SANI wavefield in the 2D wavenumber
domain after the ’symmetry processing’. (c) SANI cumulative image, (d,e) SANI DRLSE, 2DSWA output. (f) HANI DRLSE
output. The colorbars on the right refer to the plots of the same row.

the characteristic along all the 360° of propagation. Similar
results are achieved with HANI data. Conversely, in the OGW
case without any reflection filtering, shown in Fig. 5a, the
wavenumber profile in the k–space is sufficiently energetic just
in one quadrant. Information of reflections in the other quad-
rants present a very low signal–to–noise ratio. Furthermore,
because of the strong attenuation of the multiple reflection
paths, the wavenumber profile is not visible in some prop-
agation directions. To tackle these limitations, the acquired
wavefield was divided into two subsets related to distinct time
intervals, i.e. [0−400 µs] and [200 µs−600 µs]. In the first in-
terval, the direct wave was dominant, while the second interval
was mostly characterized by the presence of edge reflections.
An overlap between the two time windows was used to reduce
artifacts and maximize the wavefield energy. The two subsets

were processed with the previously described steps. After the
normalization step, the processing results of the two branches
are merged by selecting for each element of the two matrices
the highest intensity value. Then, processing which exploits
the symmetry of the waves propagation is performed. In the
SANI and HANI cases, the wavenumber profile has been
mirrored in all the quadrants. In the OGW dataset, instead,
the central symmetry property U(r, α) = U(r, α + π) has
been exploited. The result in the SANI case is depicted in
Fig. 4b. As can be observed, the A0, S0 and SH0 modes
profiles exist, even if the A0 mode features higher intensity.
In Fig.2, theoretical dispersion curves are superimposed to the
processed wavefield in the 2D wavenumber domain. Since the
DRLSE is able to reconstruct a single closed loop shape, only
one mode can be processed. Thus, a 2D wavenumber filter is



(a) (b) (c)

(d) (e)

Fig. 5: OGW wavenumber extraction: (a) 3DFT output at 60 kHz without any pre–processing. (b) U(f60 kHz,k) after the
’merge’ processing block. (c) Cumulative image. (d,e) DRLSE,2DSWA wavenumber extraction

applied. In this work, S0 and SH0 modes were filtered out to
address the extraction of the A0 wavenumber profile. Anyway,
the procedure can be theoretically carried on similarly to any
propagation mode. Before applying the DRLSE algorithm, a
further pre–processing block is necessary. Indeed, the DRLSE
is essentially an edge detection algorithm, therefore, to gen-
erate artificial edges we have processed the magnitude of
the Fourier coefficients by computing the cumulative function
of U(fi, kx, ky) along each propagation angle. Then, the
cumulative functions are interpolated in a cartesian grid. The
image amplitude is normalized and a contrast enhancement
filter is applied to further help a fast and reliable convergence
of the DRLSE algorithm. Examples of generated cumulative
images are depicted in Fig. 4c and Fig. 5c, for the SANI
and OGW cases. Finally, the DRLSE algorithm is applied
to the processed image and the wavenumber profile along
all the directions of propagation is obtained. In Fig. 4d, the
SANI final wavenumber reconstruction, superimposed to the
corresponding wavefield Fourier transform, is shown, revealing
an almost perfect overlap. Similar good results were achieved
with the OGW (see Fig. 5d) and HANI datasets (Fig. 4f). It is
worth noting that the DRLSE algorithm is able to reconstruct
correctly the entire wavenumber profile even if the information
in some angular ranges is very weak. This is a distinctive
feature of the DRLSE method and shows its robustness and
reliability in a very complicated application case. In fact,
the flexibility in the wavefield pre–processing, which can be
customized easily with respect to the specific scenario, allows
optimizing the DRLSE convergence even in datasets with low
signal–to–noise ratios.

2) 2DSWA based approach: In the 2DSWA based ap-
proach, the pre–processing consists in: i) a time windowing
to reduce the reflections; ii) a band pass filtering for sig-
nal denoising. In particular, since the fundamental excitation
frequency of the SANI and HANI wavefields is 50 kHz, the
spectral content from 42 kHz to 58 kHz was considered in
this case. Conversely, frequencies from 50 kHz to 70 kHz have
been used in the OGW case. This pre-processing is followed
by the actual compressive sensing. In particular, a random
sampling strategy with sub–sampling ratio RUN = 34.9 %,
RUN = 34.96 % and RUN = 83.3 % have been chosen for
the SANI, HANI and OGW datasets, respectively. RUN has
been computed as follows:

RUN =
NU
NNyq

(11)

where NU is the number of points on the random sample
grid and NNyq is the number of the points in the Nyquist
grid [23]. The 2DSWA method is then applied and the sparse
representation of the wavefield is obtained. The 2DSWA output
of the SANI dataset and its accordance with the corresponding
wavefield Fourier transform at 50 kHz, is depicted in Fig. 4e.
In Fig. 5e, the 2DSWA output at 60 kHz and the corresponding
Fourier representation of the OGW wavefield in the k–space
is shown. Since the 2DSWA output is a point cloud, a fitting
procedure based on Fourier series is exploited to determine
the wavenumber profile [49], after a mode filtering, if required.
Finally, the wavenumber polar representation is extracted. It is
qualitatively evident, looking at Fig. 4e and Fig. 5e, that the
2DSWA approach provides a good tracking of wavenumber
profile. In the next section, a more detailed analysis will



Fig. 6: Single–mode A0 wavenumber reconstruction for fre-
quencies from 42 kHz to 58 kHz with a step of 2 kHz by
DRLSE method. In black the theoretical A0 wavenumber
along with 0° direction of propagation by SAFE simulation.

RUN [%] Max[m−1] Average [m−1]
83.3 4.72 2.79

41.66 5.47 3.15
31.26 6.63 2.37
23.45 76.46 32.17

TABLE II: OGW wavenumber reconstruction errors by
2DSWA method varying RUN

be carried out to investigate the algorithm performance for
different subsampling ratios.

IV. RESULTS

A. Wavenumber extraction characterization

To evaluate the precision of the proposed methods, SAFE
simulations were used as reference for SANI and HANI
datasets. In particular, in Fig. 7a, 7b, 7d, and 7e, the final
DRLSE and 2DSWA outputs are superimposed to the SAFE
simulations. In both cases, the fundamental excitation fre-
quency of 50 kHz was considered. In Fig. 7c and 7f, the
DRLSE and 2DSWA errors at each propagation angle are
plotted for the SANI and HANI datasets, respectively. It can
be observed that the DRLSE results match extremely well the
simulations. The 2DSWA approach shows a lower precision,
but the wavenumber reconstruction is still satisfactory if we
take into account that a sub–sampling of about RUN = 35 %
was performed. In Fig. 7g the error characterization of the
SANI wavenumber, extracted at compression rates RUN =
34.9 %, RUN = 17.43 % and 4.36 %, is depicted. As can
be seen, the error rises by reducing RUN , especially in the
local maxima. Anyways, it remains below 8 m−1, even with a
compression rate of 4.36 %. This means that a sufficiently ac-
curate wavenumber reconstruction is possible with significant
compression levels. In Fig. 7h, the same analysis is carried
on for the HANI dataset. Similarly to the previous case, the
errors oscillate below 8 m−1. Therefore, the same conclusions
can be drawn.

In the OGW dataset, since the elastic constants optimized
by GA were not available, SAFE simulations could not be

considered as a reliable reference. Thus, we relied on the
DRLSE outputs to characterize those achieved with 2DSWA.
This is due to the fact that the DRLSE OGW wavenumber pro-
file is perfectly superimposed to the wavefield in the Fourier
domain, as it can be observed in Fig. 5d. In Fig. 7i, 7j and 7k,
the wavenumber reconstruction among different compression
rates is depicted. In TABLE II the maximum and average
errors at each compression rate are shown. The performances
at RUN = 83.3 %, RUN = 41.66 % and RUN = 31.26 %
are comparable, while the error rises dramatically at lower
RUN , such as RUN = 23.45 %. It is worthy to notice that
the compression rates are significantly higher w.r.t. the other
datasets to achieve a good estimation.

B. Phase and group velocity extraction

Once a precise wavenumber estimation is performed, the
phase and group velocity can be computed. The first quantity
is computed by exploiting the simple wavenumber–phase
velocity relationship:

vp(r, θ) =
ω

k(r, θ)
(12)

where ω is the angular frequency. Conversely, the group
velocity estimation is not trivial, since a derivative operation
is involved:

vg(r, θ) =
∂ω

∂k
(13)

In literature, the derivative is usually computed numerically
only in propagation models, where the wavenumber behaviour
among frequencies can be estimated very precisely [50].
Thanks to the high precision wavenumber reconstructions ob-
tained in this work, we propose to exploit numerical derivative
even with experimental data. In particular, in the case of
the SANI and HANI wavefields, the wavenumber W(f, r, θ)
has been extracted for frequencies from 42 kHz to 58 kHz,
with a step of ∆f = 2 kHz. In Fig.6, for instance, the A0
wavenumber profiles extracted by means of DRLSE in (kx, ky)
coordinates are shown. The blue dots are the wavenumbers
values along with the 0° direction, superimposed with the
theoretical dispersion curve in black. Then, the W(r, f)|θ=θi
profile, at each fixed propagation angle has been interpolated
by a second–order polynomial method, reducing the frequency
step to 100 Hz. Finally, the numerical derivative was com-
puted. In particular, the chosen derivation strategy is based
on calculating the central difference for interior data points.
Meanwhile, single-sided differences are computed along the
edges of the numerical vector. The procedure is then repeated
for each propagation direction. In Fig. 8, instead, the computed
phase and group velocities are shown. The estimation of the
wavenumbers was carried on by the DRLSE and 2DSWA
approaches. In the 2DSWA computations, compression rates of
RUN = 34.9 % and RUN = 34.96 % were used as references
for the SANI and HANI plates, respectively. The maximum
and average errors of the velocities w.r.t. SAFE simulations
are shown in TABLE III. The performance of the DRLSE
approach is slightly better in comparison with the 2DSWA in
both the SANI and HANI datasets, as expected. Anyway, the
2DSWA method was able to reconstruct the dispersion curves
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Fig. 7: Wavenumbers extraction results ([m−1]): (a,d) SANI,HANI DRLSE wavenumber reconstruction compared with SAFE
simulation. (b,e) SANI,HANI 2DSWA wavenumber recontruction compared with SAFE simulation. (c,f) SANI,HANI error
comparison between the two methods. (g,h) 2DSWA error analysis varying RUN for the SANI,HANI datasets. (i,j,k) 2DSWA
wavenumber reconstruction for the OGW dataset with RUN = 83%, 41%, 31%, respectively, compared with DRLSE output.
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Fig. 8: Phase and group velocity results ([m/s]) for SANI and HANI datasets. In particular: (a,b) SANI vp by DRLSE,2DSWA
methods. (c,d) SANI vg by DRLSE,2DSWA methods. (e,f) HANI vp by DRLSE,2DSWA methods. (g,h) HANI vg by
DRLSE,2DSWA methods.

(a) (b) (c)

Fig. 9: (a,b) vg error characterization at different RUN for SANI,HANI datasets. (c) SANI vg at RUN = 4.36 %
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Fig. 10: OGW dataset phase and group velocity results ([m/s]): (a,b,c) vp at RUN = 83.28 % , RUN = 41.66 % , RUN =
31.26 %. (d,e,f) vg at RUN = 83.28 % , RUN = 41.66 % , RUN = 31.26 %

Max[m/s] Average [m/s]
SANI DRLSE vp 7.48 3.84
SANI 2DSWA vp 15.31 10.9
HANI DRLSE vp 8.01 3.36
HANI 2DSWA vp 14.38 5.91
OGW 2DSWA vp 12.5 6.79
SANI DRLSE vg 14.74 5.35
SANI 2DSWA vg 17.71 10.16
HANI DRLSE vg 29.04 11.62
HANI 2DSWA vg 30.6 16.05
OGW 2DSWA vg 113.53 66.93

TABLE III: Phase and group velocity errors. In the 2DSWA
cases, RUN at 34.9 %, 34.96 % and 83.3 % were considered
for the SANI, HANI and OGW datasets, respectively

very closely with respect to the DRLSE, with a compression
rate of about 35 %. Thus, the group velocity estimation with
different compression rates has been investigated to determine
the minimum RUN achievable. In Fig. 9 the errors of the
group velocity estimations for the SANI and HANI datasets at
different RUN are depicted. As expected, by reducing RUN
the quality of the group velocities gets worse. In particular,
the SANI group velocity reconstruction can be considered
successful only for RUN = 34.95 % and RUN = 17.43 %. In
fact, even if the errors in absolute terms remain below 35m/s
at a compression rate of 4.36 %, the velocity shape in polar
coordinates is not satisfactory and do not follows anymore the
expected profile (Fig. 9c). Similarly, the HANI group velocity
is satisfactory at RUN = 34.9 % and RUN = 17.48 %. The
error rises dramatically at RUN = 6.55 %, instead.

Finally, the OGW velocity curves analysis is addressed.
W(f, r, θ) has been extracted for frequencies from 50 kHz to
70 kHz, with a step of ∆f = 2.5 kHz, and then interpolated.
To facilitate the group velocity estimation, the interpolation
frequency step was reduced to ∆f = 10 Hz. In Fig. 10 the
phase and group velocities are depicted with RUN = 83.3 %,
RUN = 41.66 % and RUN = 31.26 %, from left to right,
respectively. Nevertheless, the obtained group velocity errors
are not negligible, with a maximum of 113.53m/s and average
66.93m/s at RUN = 83.3 %. In the other cases, the errors
are even higher and, as it can be observed in Fig. 10e and
10f, the extracted profiles are distorted and do not follow
anymore the expected behaviour. Thus, it is evident that the
2DSWA approach was not able to properly reconstruct the
group velocity in this application case. On the other hand, the
phase velocity computation shows good accordance in all the
compression rates shown.

V. CONCLUSION

In this work, the wavenumber, phase and group velocities
for the A0 mode in polar coordinates at a given frequency
have been extracted experimentally from narrowband SLDV
wavefield measurements. In particular, the performance and
capabilities of two different methods have been investigated.
The first approach relies on the extraction of the wavenumber
profile in the k–space obtained by 3DFT and proper signal pre–
processing. A DRLSE algorithm has been used to precisely
determine the closed–loop ridge in the Fourier domain at a



fixed frequency. The second approach, namely the 2DSWA,
is based on subsampling the wavefield in the frequency–
space domain in order to extract the Wavenumber profile by a
two dimensional OMP strategy which exploits the inherent
signal sparsity. From the obtained frequency–wavenumber
dependencies, phase and group velocities were extracted. The
presented results showed how the DRLSE approach was
able to reliably reconstruct the dispersion curves in all the
proposed application cases. The 2DSWA showed very close
performances to the DRLSE approach in the SANI and HANI
datasets, achieving high compression levels. In such cases,
the compressive sensing strategy is very effective since sub–
sampling in the measurement stage might be exploited for
speeding up the SLDV acquisitions. On the contrary, in the
OGW dataset, which is characterized by high complexity and
low signal–to–noise ratio, the performances of the 2DSWA
are much poorer. From this analysis, it can be concluded that
the DRLSE method is a robust and reliable technique for the
wavenumber and velocities extraction in polar coordinates at a
given frequency thanks to its flexibility in the signal pre/post
processing which can be customized to the experimental data
of interest. While the 2DSWA is a viable alternative in high
signal–to–noise ratio measurements to speed up the charac-
terization of materials. As future developments, it’s worthy
to mention the possibility to further extend the proposed
DRLSE–based approach to the 3D case [51] for broadband
measurements. So far, a multi–frequency analysis can be
carried on by performing the DRLSE at each frequency, as
depicted in Fig.6. A 3D–DRLSE, instead, would speed up the
procedure enabling an automatic and complete 3D dispersion
characterization. Finally, to deal simultaneously with multiple
modes, the DRLSE will be adapted for the identification of
multiple concentric shapes.
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