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REGULARITY OF FLAT FREE BOUNDARIES FOR A

p(x)-LAPLACIAN PROBLEM WITH RIGHT HAND SIDE

FAUSTO FERRARI AND CLAUDIA LEDERMAN

Abstract. We consider viscosity solutions to a one-phase free boundary prob-
lem for the p(x)-Laplacian with non-zero right hand side. We apply the tools
developed in [D] to prove that flat free boundaries are C1,α. Moreover, we
obtain some new results for the operator under consideration that are of inde-
pendent interest.

1. Introduction and main results

In this paper we study a one-phase free boundary problem governed by the
p(x)-Laplacian with non-zero right hand side. More precisely, we denote by

∆p(x)u := div(|∇u|p(x)−2∇u),

where p is a function such that 1 < p(x) < +∞. Then our problem is the following:

(1.1)





∆p(x)u = f, in Ω+(u) := {x ∈ Ω : u(x) > 0},

|∇u| = g, on F (u) := ∂Ω+(u) ∩Ω.

Here Ω ⊂ R
n is a bounded domain, p ∈ C1(Ω), f ∈ C(Ω)∩L∞(Ω) and g ∈ C0,β(Ω),

g ≥ 0.
This problem comes out naturally from limits of a singular perturbation problem

with forcing term as in [LW1], where the authors analyze solutions to (1.1), arising
in the study of flame propagation with nonlocal and electromagnetic effects. On
the other hand, (1.1) appears by minimizing the following functional

(1.2) E(v) =

∫

Ω

(
|∇v|p(x)

p(x)
+Q2(x)χ{v>0} + f(x)v

)
dx

studied in [LW3], as well as in the seminal paper by Alt and Caffarelli [AC] in the
case p(x) ≡ 2 and f ≡ 0. We refer also to [LW4], where (1.1) appears in the study
of an optimal design problem.

We are interested in the regularity of the free boundary for viscosity solutions
of (1.1). This problem has been already faced in [LW2] for weak solutions with the
aid of the techniques developed in [AC].

Key words and phrases. free boundary problem, singular/degenerate operator, variable expo-
nent spaces, regularity of the free boundary, non-zero right hand side, viscosity solutions.
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2 FAUSTO FERRARI AND CLAUDIA LEDERMAN

In the present work we are following the strategy introduced in the important
paper by De Silva [D], that was inspired by [S], for one-phase problems and linear
non-divergence operators. [D] was further extended to two-phase problems in dif-
ferent settings, see [DFS1, DFS2, DFS3]. The same technique was applied to the
p-Laplace operator (p(x) ≡ p in (1.1)) for the one phase case, with p ≥ 2, in [LR].
See also [LT].

In the linear homogeneous case, f ≡ 0, (1.1) was studied for viscosity solutions
in the pioneer works by Caffarelli [C1, C2]. The results in [C1, C2] have been
widely generalized to different classes of homogeneous elliptic problems. See for
example [CFS, FS1, FS2] for linear operators, [AF, F1, F2, Fe1, W1, W2, RT] for
fully nonlinear operators and [LN1, LN2] for the p-Laplacian. See also [ART].

As already mentioned, problem (1.1) was originally studied in the linear homo-
geneous case in [AC], associated to (1.2). These techniques were generalized to the
linear case with f 6≡ 0 in [GS, Le]. In the homogeneous case, to a quasilinear uni-
formly elliptic situation [ACF], to the p-Laplacian [DP], to an Orlicz setting [MW]
and to the p(x)-Laplacian with p(x) ≥ 2 [FMW]. Finally, (1.1) with 1 < p(x) < ∞
and f 6≡ 0 was dealt with in [LW2].

In this paper we show that flat free boundaries of viscosity solutions to (1.1)
are C1,α. In the forthcoming work [FL] we prove that Lipschitz free boundaries of
viscosity solutions to (1.1) are C1,α.

Our main result is the following (for the precise definition of viscosity solution
to (1.1) we refer to Section 2)

Theorem 1.1 (Flatness implies C1,α). Let u be a viscosity solution to (1.1) in B1.
Assume that 0 ∈ F (u), g(0) = 1 and p(0) = p0. There exists a universal constant
ε̄ > 0 such that, if the graph of u is ε̄−flat in B1, in the direction en, that is

(1.3) (xn − ε̄)+ ≤ u(x) ≤ (xn + ε̄)+, x ∈ B1,

and

(1.4) ‖∇p‖L∞(B1) ≤ ε̄, ‖f‖L∞(B1) ≤ ε̄, [g]C0,β(B1) ≤ ε̄,

then F (u) is C1,α in B1/2.

In addition to the assumptions already stated above, we suppose that

(1.5) ∇p ∈ L∞(Ω)

and that there exist positive numbers pmin, pmax, such that

(1.6) 1 < pmin ≤ p(x) ≤ pmax < ∞.

In Theorem 1.1 the constants ε̄ and α depend only on pmin, pmax and n (the
dimension of the space).

The proof of Theorem 1.1 is based on an improvement of flatness, obtained via
a compactness argument which linearizes the problem into a limiting one. The key
tool is a geometric Harnack inequality that localizes the free boundary well, and
allows the rigorous passage to the limit.

Let us point out that carrying out, for the inhomogeneous p(x)-Laplace operator,
the strategy devised in [D] required the development of new tools. In fact, the p(x)-
Laplacian is a nonlinear operator that appears naturally in divergence form from
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minimization problems, i.e., in the form divA(x,∇u) = f(x), with

λ|η|p(x)−2|ξ|2 ≤
∑

i,j=1n

∂Ai

∂ηj
(x, η)ξiξj ≤ Λ|η|p(x)−2|ξ|2, ξ ∈ R

n.

This operator is singular in the regions where 1 < p(x) < 2 and degenerate in the
ones where p(x) > 2.

Some results for this type of operators we needed to use to achieve our goals
are available in the literature for weak solutions (in the sense of Definition 3.1 in
Section 3). These results are Harnack inequality (see [Wo]) and C1,α estimates
(see [Fa] and [FZ]). However, the program followed in [D] relies on solutions of the
corresponding equations in a viscosity sense (see [CIL]).

The equivalence between weak and viscosity solutions of ∆p(x)u = f was proved
in [JJ, JLM, MO] in the case of the p-Laplacian (i.e., for p(x) ≡ p) and in [JLP]
in the case of the homogeneous p(x)-Laplacian (i.e., for f ≡ 0). To our knowledge
there is no such result in the literature for the inhomogeneous p(x)-Laplacian.

Hence, in order to proceed with the arguments in [D], we prove in Theorem 3.2
that weak solutions of ∆p(x)u = f are indeed viscosity solutions. This new result
is of independent interest, since it may be applied in other contexts.

On the other hand, the approach in [D] requires the use of barriers of the type
w(x) = c1|x−x0|

−γ−c2, together with suitable modification of them. In the present
work we are able to employ the same kind of barriers. Showing that they are also
appropriate to deal with the inhomogeneous p(x)-Laplace operator was a nontrivial
and delicate task, that we perform in Lemma 4.2. Again, the difficulty relies on the
nonlinear singular/degenerate nature and x dependence of our equation and also
on the presence of the logarithmic term appearing in the nondivergence form of the
operator (see (3.1)).

The results in Lemma 4.2 are new even for p(x) ≡ p in the range 1 < p < 2.
These barriers, which are novel in the p(x)-Laplace context, are different from
the ones used in the literature for this operator (see, for instance, [FMW, Wo,
LW4]). Consequently, our results in Lemma 4.2 have possible applications to other
situations.

We would like to stress at this stage that partial differential equations with non-
standard growth have been receiving a lot of attention and that the p(x)-Laplacian
is a model case in this class. A list of applications of this type of operators in-
cludes the modelling of non-Newtonian fluids, for instance, electrorheological [R] or
thermorheological fluids [AR]. Also non-linear elasticity [Z1], image reconstruction
[AMS, CLR] and the modelling of electric conductors [Z2], to cite a few.

The fact that solutions to the inhomogeneous p(x)-Laplacian are locally of class
C1,α plays a critical role in the analysis of this paper. A comprehensive account
for sharp conditions for regularity of solutions of some elliptic equations with non-
standard growth can be found in [AM] and [Fa].

We finally remark that our main result, Theorem 1.1, is applied in the companion
paper [FL] to prove that Lipschitz free boundaries of viscosity solutions of (1.1) are
C1,α.

Our work is organized a follows. In Section 2 we provide notation and basic
definitions, and we also present an auxiliary result on a Neumann problem which
will be used in the proof of Theorem 1.1. In Section 3 we discuss the relationship
between the different notions of solutions to ∆p(x)u = f we are using. In particular,
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we prove Theorem 3.2 which shows that weak solutions to ∆p(x)u = f are viscosity
solutions of the same equation. In Section 4 we prove some auxiliary results, which
include Lemma 4.2, concerning the existence of barrier functions for ∆p(x)u = f .
Next, in Section 5 we prove a geometric Harnack inequality for problem (1.1). In
Section 6 we prove an improvement of flatness lemma. Finally, in Section 7 we
prove our main result, Theorem 1.1. For the sake of completeness, we also include
an Appendix at the end of the paper where we introduce the Sobolev spaces with
variable exponent, which are the appropriate spaces to work with weak solutions
of the p(x)-Laplacian.

2. Basic definitions, notation and preliminaries

In this section, we provide notation and basic definitions we will use throughout
our work. We also present an auxiliary result on a Neumann problem that will be
applied in the paper.

Notation. For any continuous function u : Ω ⊂ R
n → R we denote

Ω+(u) := {x ∈ Ω : u(x) > 0}, F (u) := ∂Ω+(u) ∩ Ω.

We refer to the set F (u) as the free boundary of u, while Ω+(u) is its positive phase
(or side).

Below we give the definition of viscosity solution to problem (1.1) and we deduce
some consequences. In particular, we refer to the usual C-viscosity definition of
sub/supersolution and solution of an elliptic PDE, see e.g. [CIL].

First we need the following standard notion.

Definition 2.1. Given u, ϕ ∈ C(Ω), we say that ϕ touches u from below (resp.
above) at x0 ∈ Ω if u(x0) = ϕ(x0), and

u(x) ≥ ϕ(x) (resp. u(x) ≤ ϕ(x)) in a neighborhood O of x0.

If this inequality is strict in O \ {x0}, we say that ϕ touches u strictly from below
(resp. above).

Definition 2.2. Let u be a continuous nonnegative function in Ω. We say that u
is a viscosity solution to (1.1) in Ω, if the following conditions are satisfied:

(i) ∆p(x)u = f in Ω+(u) in the weak sense of Definition 3.1, see Section 3.

(ii) For every ϕ ∈ C(Ω), ϕ ∈ C2(Ω+(ϕ)). If ϕ+ touches u from below (resp.
above) at x0 ∈ F (u) and ∇ϕ(x0) 6= 0, then

|∇ϕ(x0)| ≤ g(x0) (resp. ≥ g(x0)).

Next theorem follows as a consequence of Theorem 3.2 in Section 3.

Theorem 2.3. Let u be a viscosity solution to (1.1) in Ω. Then the following
conditions are satisfied:

(i) ∆p(x)u = f in Ω+(u) in the viscosity sense, that is:

(ia) for every ϕ ∈ C2(Ω+(u)) and for every x0 ∈ Ω+(u), if ϕ touches u
from above at x0 and ∇ϕ(x0) 6= 0, then ∆p(x0)ϕ(x0) ≥ f(x0), that is,
u is a viscosity subsolution;

(ib) for every ϕ ∈ C2(Ω+(u)) and for every x0 ∈ Ω+(u), if ϕ touches u
from below at x0 and ∇ϕ(x0) 6= 0, then ∆p(x0)ϕ(x0) ≤ f(x0), that is,
u is a viscosity supersolution.
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(ii) For every ϕ ∈ C(Ω), ϕ ∈ C2(Ω+(ϕ)). If ϕ+ touches u from below (resp.
above) at x0 ∈ F (u) and ∇ϕ(x0) 6= 0, then

|∇ϕ(x0)| ≤ g(x0) (resp. ≥ g(x0)).

Remark 2.4. If p(x) ≡ p or f ≡ 0, then any function satisfying the conditions of
Theorem 2.3 is a solution to (1.1) in the sense of Definition 2.2 (see Remark 3.3).

We introduce also the notion of comparison sub/supersolution.

Definition 2.5. We say that v ∈ C(Ω) is a strict (comparison) subsolution (resp.

supersolution) to (1.1) in Ω if v ∈ C2(Ω+(v)), ∇v 6= 0 in Ω+(v) and the following
conditions are satisfied:

(i) ∆p(x)v > f (resp. < f) in Ω+(v);
(ii) If x0 ∈ F (v), then

|∇v(x0)| > g(x0) (resp. |∇v(x0)| < g(x0)).

Notice that by the implicit function theorem, according to our definition, the
free boundary of a comparison sub/supersolution is C2.

As a consequence of the previous discussion we have

Lemma 2.6. Let u be a viscosity solution to (1.1) in Ω. If v is a strict (comparison)
subsolution to (1.1) in Ω and u ≥ v+ in Ω then u > v in Ω+(v)∪F (v). Analogously,
if v is a strict (comparison) supersolution to (1.1) in Ω and v ≥ u in Ω then v > u
in Ω+(u) ∪ F (u).

Notation. From now on Bρ(x0) ⊂ R
n will denote the open ball of radius ρ centered

at x0, and Bρ = Bρ(0). A positive constant depending only on the dimension n,
pmin, pmax will be called a universal constant. We will use c, ci to denote small
universal constants and C, Ci to denote large universal constants.

The rest of the section is devoted to the study of the linearized problem associated
with our free boundary problem (1.1). That is, the classical Neumann problem for
a constant coefficient linear operator. Precisely, we consider the following boundary
value problem:

(2.1)

{
Lp0 ũ = 0 in Bρ ∩ {xn > 0},

ũn = 0 on Bρ ∩ {xn = 0}.

Here 1 < pmin ≤ p0 ≤ pmax < ∞, ũn denotes the derivative in the en direction of ũ
and

(2.2) Lp0u := ∆u+ (p0 − 2)∂nnu.

Theorem 1.1 will follow via a compactness argument combined with regularity
properties of solutions to (2.1), namely Theorem 2.9.

We use the notion of viscosity solution to (2.1). We recall standard notions and
a regularity result for viscosity solutions to (2.1).

Definition 2.7. Let ũ be a continuous function on Bρ ∩ {xn ≥ 0}. We say that
ũ is a viscosity solution to (2.1) if given a quadratic polynomial P (x) touching ũ
from below (resp. above) at x̄ ∈ Bρ ∩ {xn ≥ 0},

(i) if x̄ ∈ Bρ ∩ {xn > 0} then Lp0P ≤ 0 (resp. Lp0P ≥ 0), i.e. Lp0 ũ = 0 in
the viscosity sense in Bρ ∩ {xn > 0};
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(ii) if x̄ ∈ Bρ ∩ {xn = 0} then Pn(x̄) ≤ 0 (resp. Pn(x̄) ≥ 0).

Remark 2.8. Notice that in the definition above we can choose polynomials P that
touch ũ strictly from above/below. Also, it suffices to verify that (ii) holds for

polynomials P̃ with Lp0 P̃ > 0 (see [D]).

We will use the following regularity result for viscosity solutions to the linearized
problem (2.1). For the proof we refer to Theorem 7.4 in [MS].

Theorem 2.9. Let ũ be a viscosity solution to (2.1) in B1/2 ∩ {xn ≥ 0}. Then,

ũ ∈ C2(B1/2 ∩ {xn ≥ 0}) and it is a classical solution to (2.1).

Moreover, if ‖ũ‖∞ ≤ 1, then there exists a constant C̄ > 0, depending only on
n, pmin and pmax, such that

(2.3) |ũ(x) − ũ(0)−∇ũ(0) · x| ≤ C̄r2 in Br ∩ {xn ≥ 0},

for all r ≤ 1/4.

3. Different notions of solutions to p(x)-Laplacian

In this section we discuss the relationship between the different notions of solu-
tions to ∆p(x)u = f we are using, namely weak and viscosity solutions.

We start by observing that direct calculations show that, for C2 functions u such
that ∇u(x) 6= 0,

∆p(x)u = div(|∇u|p(x)−2∇u)

= |∇u(x)|p(x)−2
(
∆u+ (p(x)− 2)∆N

∞u+ 〈∇p(x),∇u(x)〉 log |∇u(x)|
)
,

(3.1)

where

∆N
∞u :=

〈
D2u(x)

∇u(x)

|∇u(x)|
,

∇u(x)

|∇u(x)|

〉

denotes the normalized ∞-Laplace operator.
First we need (see the Appendix for the definition of Sobolev spaces with variable

exponent)

Definition 3.1. Assume that 1 < pmin ≤ p(x) ≤ pmax < ∞ with p(x) Lipschitz
continuous in Ω and ‖∇p‖L∞ ≤ L, for some L > 0 and f ∈ L∞(Ω).

We say that u is a weak solution to ∆p(x)u = f in Ω if u ∈ W 1,p(·)(Ω) and, for
every ϕ ∈ C∞

0 (Ω), there holds that

−

∫

Ω

|∇u(x)|p(x)−2∇u · ∇ϕdx =

∫

Ω

ϕf(x) dx.

We next prove

Theorem 3.2. Let p and f be as in Definition 3.1. Assume moreover that f ∈
C(Ω) and p ∈ C1(Ω).

Let u ∈ W 1,p(·)(Ω) ∩ C(Ω) be a weak solution to ∆p(x)u = f in Ω. Then u is a
viscosity solution to ∆p(x)u = f in Ω.

Proof. Let us show that u is a viscosity supersolution to ∆p(x)u = f in Ω.
Step I. We will first prove the result under the extra assumption that f ∈

W 1,∞(Ω) and p ∈ C1,β(Ω), for some 0 < β < 1.
In fact, let v ∈ C2(Ω) such that v touches u from below at x0 ∈ Ω, with

∇v(x0) 6= 0. We will show that

(3.2) ∆p(x0)v(x0) ≤ f(x0).



REGULARITY OF FLAT FREE BOUNDARIES FOR THE p(x)-LAPLACIAN 7

Let us fix r > 0 such that Br(x0) ⊂ Ω. From Theorem 1.1 in [Fa] we know that

u ∈ C1,α in Br(x0), for some 0 < α < 1. We can assume that α ≤ β.
Since v touches u from below at x0, we know that ∇u(x0) = ∇v(x0) 6= 0. Then,

we can choose r small enough so that

c1 ≤ |∇u(x)| ≤ C1 in Br(x0), (c1, C1 positive constants).

Now, arguing as in Theorem 3.2 in [CL] we deduce that u ∈ W 2,2
loc (Br(x0)) and

it is a solution to the linear uniformly elliptic equation

∆p(x)u =
n∑

i,j=1

aij(x)uxixj +
n∑

i=1

bi(x)uxi = f in Br(x0)

where

aij(x) = |∇u|p(x)−2
(
δij + (p(x)− 2)

uxiuxj

|∇u|2

)
,

and

bi(x) = |∇u|p(x)−2
(
pxi(x) log |∇u|

)
,

with

β1|ξ|
2 ≤

n∑

i,j=1

aij(x)ξiξj ≤ β2|ξ|
2, ∀ξ ∈ R

N , ∀x ∈ Br(x0),

for β1, β2 positive constants. It follows (see, for instance, Theorem 9.19 in [GT])
that u ∈ C2,α in Br(x0).

Since v touches u from below at x0, we have ∇u(x0) = ∇v(x0) and D2u(x0) ≥
D2v(x0) and then,

f(x0) = ∆p(x0)u(x0)

=

n∑

i,j=1

|∇u(x0)|
p(x0)−2

(
δij + (p(x0)− 2)

uxi(x0)uxj(x0)

|∇u(x0)|2

)
uxixj(x0)

+

n∑

i=1

|∇u(x0)|
p(x0)−2

(
pxi(x0) log |∇u(x0)|

)
uxi(x0)

≥ ∆p(x0)v(x0).

That is, (3.2) holds.

Step II. We now assume that f and p are as in the statement and we will show
that u is a viscosity supersolution to ∆p(x)u = f in Ω.

Again, let v ∈ C2(Ω) such that v touches u from below at x0 ∈ Ω, with ∇v(x0) 6=
0. We will show that

(3.3) ∆p(x0)v(x0) ≤ f(x0).

Assume that ∆p(x0)v(x0) > f(x0). Then, there exist r > 0 and σ > 0 small such
that

(3.4)
|∇v(x)| > σ in Br(x0),

∆p(x)v(x) > f(x) + σ in Br(x0).
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We now take pk ∈ C1,β(Br(x0)), for some 0 < β < 1, with 1
2 (1 + pmin) ≤

pk(x) ≤ pmax, pk ≤ p in Br(x0) and ‖∇pk‖L∞ ≤ 2L, and fk ∈ W 1,∞(Br(x0)),
||fk||L∞ ≤ 2||f ||L∞ , such that

(3.5)
fk → f uniformly on Br(x0),

pk → p and ∇pk → ∇p uniformly on Br(x0).

Let uk ∈ W 1,pk(·)(Br(x0)) be the (weak) solutions to

∆pk(x)uk = fk in Br(x0),

uk = u on ∂Br(x0).

Using Theorem 4.1 in [FZ] and Theorem 1.2 in [Fa], we get that uk ∈ C1,α in

Br(x0), for some 0 < α < 1, ||uk||C1,α(Br(x0))
≤ C and

(3.6) uk → u uniformly on Br(x0).

Moreover, from the results in Step I we know that, for every k, uk is a viscosity
supersolution to ∆pk(x)uk = fk in Br(x0).

We fix ε > 0 and define

ṽ(x) = v(x) − ε|x− x0|
2.

Since there holds (3.4), we can choose ε small enough so that

(3.7)
|∇ṽ(x)| >

σ

2
in Br(x0),

∆p(x)ṽ(x) > f(x) +
σ

2
in Br(x0).

Now, from (3.5) and (3.7), we get

(3.8) ∆pk(x)ṽ(x) > fk(x) +
σ

4
in Br(x0), if k ≥ k0.

We now take 0 < δ < ε
4r

2. Recalling (3.6), we can choose k ≥ k0 such that

|uk − u| < δ in Br(x0),

so that we have
uk + δ > ṽ in Br(x0),

uk(x0)− δ < ṽ(x0).

We now take

t̄ = inf
{
t ∈ R / uk + t ≥ ṽ in Br(x0)

}
.

Then, |t̄| ≤ δ and

(3.9)
uk ≥ ṽ − t̄ in Br(x0),

uk(x̄) = ṽ(x̄)− t̄, for some x̄ ∈ Br(x0).

Suppose x̄ ∈ ∂Br(x0). Then,

uk(x̄) = ṽ(x̄)− t̄ = v(x̄)− εr2 − t̄ ≤ u(x̄)− εr2 + δ ≤ uk(x̄) + 2δ − εr2,

a contradiction since we have chosen δ < ε
4r

2.
Then x̄ ∈ Br(x0) and (3.9) says that ṽ − t̄ touches uk from below at x̄. Since

∇ṽ(x̄) 6= 0, we get

∆pk(x̄)ṽ(x̄) ≤ fk(x̄).
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This contradicts (3.8) and we conclude that (3.3) holds. So u is a viscosity super-
solution to ∆p(x)u = f in Ω.

The proof that u is a viscosity subsolution to ∆p(x)u = f in Ω follows similarly.
�

Remark 3.3. As already mentioned in the Introduction, the equivalence between
weak and viscosity solutions to the p(x)-Laplacian with right hand side f ≡ 0 was
proved in [JLP]. On the other hand, this equivalence, in case p(x) ≡ p and f 6≡ 0
was dealt with in [JJ] and [MO]. See also [JLM] for the case p(x) ≡ p and f ≡ 0.

We also obtain the following result that will be used in the proof of Lemma 5.1

Proposition 3.4. Let p and f be as in Definition 3.1. Let B2r(x0) ⊂⊂ Ω.
Let u ∈ W 1,p(·)(Ω) ∩ L∞(Ω) be a weak solution to ∆p(x)u = f in Ω such that

c1 ≤ |∇u(x)| ≤ C1 in B2r(x0), c1, C1 positive constants.

Then, u ∈ W 2,n(Br(x0)) and it is a strong solution to the linear uniformly
elliptic equation

n∑

i,j=1

aij(x)uxixj +

n∑

i=1

bi(x)uxi = f in Br(x0)

where

aij(x) = |∇u|p(x)−2
(
δij + (p(x)− 2)

uxiuxj

|∇u|2

)
,

and

bi(x) = |∇u|p(x)−2
(
pxi(x) log |∇u|

)
,

with

β1|ξ|
2 ≤

n∑

i,j=1

aij(x)ξiξj ≤ β2|ξ|
2, ∀ξ ∈ R

N , ∀x ∈ Br(x0),

for β1, β2 positive constants, depending only on c1, C1, pmin, pmax.

Proof. We take fk ∈ W 1,∞(B2r(x0)), ||fk||L∞ ≤ 2||f ||L∞ , such that

fk → f in L1(B2r(x0)).

Let uk ∈ W 1,p(·)(B2r(x0)) be the (weak) solutions to

∆p(x)uk = fk in B2r(x0),

uk = u on ∂B2r(x0).

Using Theorem 4.1 in [FZ] and Theorem 1.2 in [Fa], we get that uk ∈ C1,α in

B2r(x0), for some 0 < α < 1, ||uk||C1,α(B2r(x0))
≤ C and

uk → u, ∇uk → ∇u uniformly on B2r(x0).

Then, for k large,
c1
2

≤ |∇uk(x)| ≤ 2C1 in B2r(x0).

Now, arguing as in Theorem 3.2 in [CL], we deduce that, for k large, uk ∈ W 2,2
loc (B2r(x0))

and it is a solution to the linear uniformly elliptic equation
n∑

i,j=1

akij(x)(uk)xixj
+

n∑

i=1

bki (x)(uk)xi
= fk in B2r(x0)
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where

akij(x) = |∇uk|
p(x)−2

(
δij + (p(x)− 2)

(uk)xi
(uk)xj

|∇uk|2

)
,

and

bki (x) = |∇uk|
p(x)−2

(
pxi(x) log |∇uk|

)
,

with

β1|ξ|
2 ≤

n∑

i,j=1

akij(x)ξiξj ≤ β2|ξ|
2, ∀ξ ∈ R

N , ∀x ∈ B2r(x0),

for β1, β2 positive constants, depending only on c1, C1, pmin, pmax. Moreover, akij ∈

Cα(B2r(x0)) and ||bki ||L∞(B2r(x0)) ≤ C̄.
It follows (see, for instance, Lemma 9.16 and Theorem 9.11 in [GT]) that

uk ∈ W 2,n
loc (B2r(x0)) ∩ L∞(B2r(x0)) and ||uk||W 2,n(Br(x0)) ≤ C̃,

for some positive constant C̃. Then, passing to the limit k → ∞, we get the desired
result. �

4. Auxiliary results

In this section we prove some results that will be of use in our main theorem.
Namely, a Harnack inequality for an auxiliary problem of p(x)-Laplacian type and
an existence result of barrier functions for the p(x)-Laplacian operator.

In the next result we assume for simplicity that ||f ||L∞(Ω) ≤ 1, but a similar
result holds for any f ∈ L∞(Ω). We have

Lemma 4.1. Assume that 1 < pmin ≤ p(x) ≤ pmax < ∞ with p(x) Lipschitz
continuous in Ω and ‖∇p‖L∞ ≤ L, for some L > 0. Let x0 ∈ Ω and 0 < R ≤ 1

such that B4R(x0) ⊂ Ω. Let v ∈ W 1,p(·)(Ω) ∩ L∞(Ω) be a nonnegative solution to

(4.1) div(|∇v + e|p(x)−2(∇v + e)) = f in Ω,

where f ∈ L∞(Ω) with ||f ||L∞(Ω) ≤ 1 and e ∈ R
n with |e| = 1. Then, there exists

C such that

(4.2) sup
BR(x0)

v ≤ C
[

inf
BR(x0)

v +R
(
||f ||L∞(B4R(x0))

1
pmax−1 + C

)]
.

The constant C depends only on n, pmin, pmax, ||v||L∞(B4R(x0)) and L.

Proof. We define A : Ω× R
n → R

n

A(x, ξ) = |ξ + e|p(x)−2(ξ + e).

Then equation (4.1) takes the form

divA(x,∇v) = f(x) in Ω.

We first observe that, for every ξ ∈ R
n,

|A(x, ξ)| = |ξ + e|p(x)−1 ≤ C1|ξ|
p(x)−1 + C1,

where C1 depends only on pmax. On the other hand, for every ξ ∈ R
n,

(4.3)

〈A(x, ξ), ξ〉 = |ξ + e|p(x)−2〈ξ + e, ξ〉

= |ξ + e|p(x) − |ξ + e|p(x)−2〈ξ + e, e〉

≥ |ξ + e|p(x) − |ξ + e|p(x)−1.
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Now, if |ξ + e| ≤ 2, we get from (4.3)

(4.4)
〈A(x, ξ), ξ〉 ≥ |ξ + e|p(x) − 2p(x)−1

≥ C2|ξ|
p(x) − C3,

where C2 and C3 depend only on pmax. If |ξ + e| > 2, we obtain from (4.3)

(4.5)

〈A(x, ξ), ξ〉 ≥ |ξ + e|p(x) − |ξ + e|p(x)−1

= |ξ + e|p(x)(1− |ξ + e|−1)

≥
1

2
|ξ + e|p(x) ≥ C4|ξ|

p(x) −
1

2
,

where C4 depends only on pmax. Then, from (4.4) and (4.5) we deduce

〈A(x, ξ), ξ〉 ≥ C5|ξ|
p(x) − C6,

where C5 and C6 depend only on pmax. Now the result follows from Theorem 1.1
in [Wo]. �

We now continue with a technical result concerning the existence of barrier
functions for the p(x)-Laplacian operator.

Lemma 4.2. Let x0 ∈ B1 and 0 < r̄1 < r̄2 ≤ 1. Assume that 1 < pmin ≤ p(x) ≤
pmax < ∞ and ‖∇p‖L∞ ≤ ε1+θ, for some 0 < θ ≤ 1. Let c0, c1, c2 be positive
constants and let and c3 ∈ R.

There exist positive constants γ ≥ 1, c̄, ε0 and ε1 such that the functions

w(x) = c1|x− x0|
−γ − c2,

v(x) = q(x) +
c0
2
ε(w(x) − 1), q(x) = xn + c3

satisfy, for r̄1 ≤ |x− x0| ≤ r̄2,

(4.6) ∆p(x)w ≥ c̄, for 0 < ε ≤ ε0,

(4.7)
1

2
≤ |∇v| ≤ 2, ∆p(x)v > ε2, for 0 < ε ≤ ε1.

Here γ = γ(n, pmin, pmax), c̄ = c̄(pmin, pmax, c1), ε0 = ε0(n, pmin, pmax, r̄1, c1), ε1 =
ε1(n, pmin, pmax, r̄1, c0, c1, θ).

Proof. Without loss of generality we can assume that x0 = 0. We will divide the
proof into five steps.

Step 1. For simplicity, we assume first that c1 = 1. Let us fix p ∈ R, 1 < pmin ≤
p ≤ pmax < ∞ and γ > 0. Let us consider x ∈ R

n \ {0}.
Then, w(x) = |x|−γ − c2 and ∇w = −γ|x|−γ−2x, so that

∇w

|∇w|
= −

x

|x|
.

Moreover

D2w = γ(γ + 2)|x|−γ−2 x

|x|
⊗

x

|x|
− γ|x|−γ−2I

= γ|x|−γ−2

(
(γ + 2)

x

|x|
⊗

x

|x|
− I

)
.

(4.8)



12 FAUSTO FERRARI AND CLAUDIA LEDERMAN

As a consequence

Tr(D2w) = γ|x|−γ−2 ((γ + 2)− n) .(4.9)

Thus

∆pw = |∇w|p−2

(
∆w + (p− 2)〈D2w

∇w

|∇w|
,
∇w

|∇w|
〉

)

= γp−1|x|−(γ+1)(p−2)|x|−γ−2

(
(γ + 2)− n+ (p− 2)〈[(γ + 2)

x

|x|
⊗

x

|x|
− I]

x

|x|
,
x

|x|
〉

)

= γp−1|x|−γ(p−1)−p (γ + 2− n+ (p− 2)(γ + 1))

= γp−1|x|−γ(p−1)−p (γ(p− 1) + p− n)

≥ γp−1|x|−γ(p−1)−p (γ(pmin − 1) + pmin − n) ≥ γp−1|x|−γ(p−1)−p,

(4.10)

if γ > 0 is such that

(4.11) γ(pmin − 1) + pmin − n ≥ 1.

On the other hand,

D2v =
c0
2
εD2w.

Then, for x such that ∇v(x) 6= 0,

∆pv = |∇v|p−2

(
∆v + (p− 2)〈D2v

∇v

|∇v|
,
∇v

|∇v|
〉

)

=
c0
2
ε|∇v|p−2

(
∆w + (p− 2)〈D2w

∇v

|∇v|
,
∇v

|∇v|
〉

)

=
c0
2
γε|∇v|p−2|x|−γ−2

{
(γ + 2)− n+ (p− 2)〈[(γ + 2)

x

|x|
⊗

x

|x|
− I]

∇v

|∇v|
,
∇v

|∇v|
〉

}

=
c0
2
γε|∇v|p−2|x|−γ−2

{
(γ + 2)− n+ (p− 2)

[
(γ + 2)〈

x

|x|
,
∇v

|∇v|
〉2 − 1

]}

=
c0
2
γε|∇v|p−2|x|−γ−2

{
(γ + 2)

[
1 + (p− 2)〈

x

|x|
,
∇v

|∇v|
〉2
]
− n− p+ 2

}
.

(4.12)

We also observe that

(4.13) 0 ≤ 〈
x

|x|
,
∇v

|∇v|
〉2 ≤ 1.

Hence, in case pmin ≤ p ≤ 2, it follows from (4.12)

∆pv ≥
c0
2
γε|∇v|p−2|x|−γ−2 {(γ + 2)(1 + p− 2)− n− p+ 2}

=
c0
2
γε|∇v|p−2|x|−γ−2 {(γ + 2)(p− 1)− n− p+ 2}

≥
c0
2
γε|∇v|p−2|x|−γ−2 {(γ + 2)(pmin − 1)− n} ≥

c0
2
γε|∇v|p−2|x|−γ−2,

(4.14)

if γ > 0 is such that

(4.15) (γ + 2)(pmin − 1)− n ≥ 1.
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Moreover, in case 2 < p ≤ pmax, it follows from (4.12)

∆pv ≥
c0
2
γε|∇v|p−2|x|−γ−2 (γ + 2− n− p+ 2)

≥
c0
2
γε|∇v|p−2|x|−γ−2 (γ + 4− n− pmax) ≥

c0
2
γε|∇v|p−2|x|−γ−2,

(4.16)

if γ > 0 is such that

(4.17) γ + 4− n− pmax ≥ 1.

We now fix
(4.18)

γ = γ(n, pmin, pmax) = max

{
1,

1 + n− pmin

pmin − 1
,

1 + n

pmin − 1
− 2, n+ pmax − 3

}
.

Then, γ = γ(n, pmin, pmax) ≥ 1 and γ satisfies (4.11), (4.15) and (4.17). Hence we
obtain from (4.10), (4.14) and (4.16) that for every p ∈ [pmin, pmax] and x ∈ R

n\{0}

(4.19) ∆pw ≥ |x|−γ(p−1)−p,

(4.20) ∆pv ≥
c0
2
ε|∇v|p−2|x|−γ−2, if ∇v(x) 6= 0.

Step 2. We now assume that c1 > 0 is arbitrary. We fix γ = γ(n, pmin, pmax) ≥ 1
as above, given by (4.18). It is not hard to see that similar computations as those
in Step 1, but with c1 > 0 arbitrary, imply that for every p ∈ [pmin, pmax] and
x ∈ R

n \ {0}

(4.21) ∆pw ≥ c1
p−1|x|−γ(p−1)−p,

(4.22) ∆pv ≥
c0
2
c1ε|∇v|p−2|x|−γ−2, if ∇v(x) 6= 0.

Step 3. We now observe that there holds

∇v = en +
c0
2
ε∇w.

Then, for r̄1 ≤ |x| ≤ r̄2,∣∣∣|∇v| − 1
∣∣∣ =

∣∣∣|∇v| − |en|
∣∣∣ ≤

∣∣∣∇v − en

∣∣∣ =
∣∣∣
c0
2
ε∇w

∣∣∣

=
c0
2
c1εγ|x|

−γ−1 ≤
c0
2
c1εγr̄

−γ−1
1 ≤

1

2
,

if we let ε ≤ ε̄1 = ε̄1(n, pmin, pmax, r̄1, c0, c1) and therefore,

(4.23)
1

2
≤ |∇v| ≤ 2, for ε ≤ ε̄1.

So the first assertion in (4.7) follows.

Step 4. We now consider p(x) a Lipschitz continuous function such that 1 <
pmin ≤ p(x) ≤ pmax < ∞.

We first observe that, for any R ≥ 1,

tp(x)−1
∣∣ log t

∣∣ ≤ tpmin−1
∣∣ log t

∣∣ ≤ C1(pmin), if 0 < t < 1,

tp(x)−1
∣∣ log t

∣∣ ≤ tpmax−1
∣∣ log t

∣∣ ≤ Rpmax−1 logR if 1 ≤ t ≤ R,

so that

(4.24) tp(x)−1
∣∣ log t

∣∣ ≤ C2(pmin, pmax, R), if 0 < t ≤ R.
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It then follows from (4.23) and (4.24) that, for r̄1 ≤ |x| ≤ r̄2,

(4.25) |∇v|p(x)−1
∣∣ log |∇v|

∣∣ ≤ C3(pmin, pmax), if ε ≤ ε̄1.

We also have, for r̄1 ≤ |x| ≤ r̄2,

|∇w| = c1γ|x|
−γ−1 ≤ c1γr̄

−γ−1
1 ,

so using again (4.24), we get, for r̄1 ≤ |x| ≤ r̄2,

(4.26) |∇w|p(x)−1
∣∣ log |∇w|

∣∣ ≤ C4(n, pmin, pmax, r̄1, c1).

Step 5. We now assume that p(x) satisfies moreover that ‖∇p‖L∞ ≤ ε1+θ, for
some 0 < θ < 1. Then, from (4.25) we obtain, for r̄1 ≤ |x| ≤ r̄2,

(4.27)
∣∣∣|∇v|p(x)−2〈∇p(x),∇v〉 log |∇v|

∣∣∣ ≤ |∇v|p(x)−1
∣∣ log |∇v|

∣∣‖∇p‖L∞ ≤ ε1+θC3,

if ε ≤ ε̄1. Hence, from (4.22),(4.27) and (4.23), for r̄1 ≤ |x| ≤ r̄2,

∆p(x)v = |∇v|p(x)−2(∆v + (p(x)− 2)〈D2v
∇v

|∇v|
,
∇v

|∇v|
〉+ 〈∇p(x),∇v〉 log |∇v|〉)

≥
c0
2
c1ε|∇v|p(x)−2|x|−γ−2 − ε1+θC3

≥
c0
2
c1εC5|x|

−γ−2 − ε1+θC3 ≥
c0
2
c1εC5 − ε1+θC3 = ε(

c0
2
c1C5 − εθC3),

(4.28)

if ε ≤ ε̄1, where we have used that r̄2 ≤ 1 and C5 = C5(pmin, pmax), C5 =
min{(12 )

pmax−2, 2pmin−2}. We conclude that, for r̄1 ≤ |x| ≤ r̄2,

∆p(x)v ≥ ε(
c0
2
c1C5 − εθC3) ≥ ε

c0
4
c1C5 > ε2,

if moreover ε ≤ ε̃1 = ε̃1(pmin, pmax, c0, c1, θ). That is, the second assertion in (4.7)
follows.

Finally, from (4.26) we obtain, for r̄1 ≤ |x| ≤ r̄2,
(4.29)∣∣∣|∇w|p(x)−2〈∇p(x),∇w〉 log |∇w|

∣∣∣ ≤ |∇w|p(x)−1
∣∣ log |∇w|

∣∣‖∇p‖L∞ ≤ ε1+θC4.

Hence, from (4.21) and (4.29), for r̄1 ≤ |x| ≤ r̄2,

∆p(x)w = |∇w|p(x)−2(∆w + (p(x) − 2)〈D2w
∇w

|∇w|
,
∇w

|∇w|
〉+ 〈∇p(x),∇w〉 log |∇w|〉)

≥ c
p(x)−1
1 |x|−γ(p(x)−1)−p(x) − ε1+θC4 ≥ 2c̄− εC4,

(4.30)

if ε ≤ 1. Here we have used that r̄2 ≤ 1 and we have denoted c̄ = c̄(pmin, pmax, c1) =
1
2 min{c1

pmin−1, c1
pmax−1}. We conclude that, for r̄1 ≤ |x| ≤ r̄2,

∆p(x)w ≥ c̄,

if ε ≤ ε0 = ε0(n, pmin, pmax, r̄1, c1). This proves (4.6) and finishes the proof. �
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5. Geometric regularity results

In this section we prove a Harnack type inequality for a solution u to problem
(1.1), following the approach in [D]. We will argue assuming that
(5.1)
||f ||L∞(Ω) ≤ ε2, ||g − 1||L∞(Ω) ≤ ε2, ||∇p||L∞(Ω) ≤ ε1+θ, ||p− p0||L∞(Ω) ≤ ε,

holds, for 0 < ε < 1, for some constant 0 < θ ≤1.

The proof of Harnack inequality is based on the following lemma.

Lemma 5.1. Let u be a solution to (1.1)–(5.1) in B1. There exists a universal
constant ε̄ such that if 0 < ε ≤ ε̄ and u satisfies

(5.2) q+(x) ≤ u(x) ≤ (q(x) + ε)+, x ∈ B1, q(x) = xn + σ, |σ| <
1

20
,

and in x0 = 1
10en,

u(x0) ≥ (q(x0) +
ε

2
)+,

then

(5.3) u ≥ (q + cε)+ in B 1
2
,

for some universal 0 < c < 1. Analogously, if

(5.4) u(x0) ≤ (q(x0) +
ε

2
)+,

then

(5.5) u ≤ (q + (1− c)ε)+ in B 1
2
.

Proof. The proof follows the original one in [D] adapted by the dichotomy discussed
in [LR]. We will prove the first statement.

From (5.2) we have that u ≥ q in B1.
We also notice that B1/20(x0) ⊂ B+

1 (u). Then,

(5.6) ∆p(x)u = f in B1/20(x0).

Thus, by Theorem 1.1 in [Fa], u ∈ C1,α in B1/40(x0), where α = α(pmin, pmax, n) ∈
(0, 1) and ||u||C1,α(B1/40(x0))

≤ C, with C = C(pmin, pmax, n) ≥ 1. Here we have

used (5.1) and also that (5.2) implies that ||u||L∞(B1) ≤ 3.
We will consider two cases:

Case (i). Suppose |∇u(x0)| <
1
4 . We choose r1 > 0, r1 = r1(pmin, pmax, n) ≤

1/40 such that |∇u(x)| ≤ 1
2 in Br1(x0). In addition, there exists a constant 0 <

r2 = r2(r1) = r2(pmin, pmax, n) < r1 such that (x − r2en) ∈ Br1(x0), for every
x ∈ Br1/2(x0). We observe that ṽ = u− q satisfies

(5.7) div(|∇ṽ + en|
p(x)−2(∇ṽ + en)) = f in B 1

20
(x0).

We now apply Lemma 4.1 to the function ṽ = u − q in B4r3(x0), where r3 =
min{ r1

4 ,
r2
8 }. In particular we obtain from (4.2) that

u(x)− q(x) ≥ C−1(u(x0)− q(x0))− r3 ≥
ε

2C
− r3,

for x ∈ Br3(x0). Here C = C(n, pmin, pmax) is a universal constant because
||f ||L∞(B1) ≤ ε2, see (5.1), and ||ṽ||L∞(B1) ≤ 2.
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On the other hand, for all x ∈ Br3(x0) we obtain

ε

2C
− r3 ≤ u(x)− q(x) = u((x− r2en) + r2en)− q((x − r2en) + r2en)

= u((x− r2en) + r2en)− q(x − r2en)− r2 ≤ u(x− r2en)− q(x − r2en) +
r2
2

− r2.

As a consequence, denoting c0 = C−1 and x̄0 := x0−r2en, we get for all x ∈ Br3(x̄0)

c0
2
ε =

ε

2C
≤

ε

2C
− r3 +

r2
2

=
ε

2C
− r3 −

r2
2

+ r2 ≤ u(x)− q(x).(5.8)

Let us define the function w : D̄ → R, D := B 4
5
(x̄0) \ B̄r3(x̄0) as

w(x) = c

(
|x− x̄0|

−γ − (
4

5
)−γ

)
,

for γ = γ(n, pmin, pmax) ≥ 1 given in Lemma 4.2 (see (4.18)). We choose c =
c(n, pmin, pmax) > 0 in such a way that

w =

{
0, on ∂B 4

5
(x̄0)

1, on ∂Br3(x̄0).

As usual, we define for every x ∈ B̄ 4
5
(x̄0)

v(x) = q(x) + c0
ε

2
(w(x) − 1)

and for t ≥ 0 we set

vt(x) = v(x) + t, x ∈ B̄ 4
5
(x̄0).

We extend w to 1 in Br3(x̄0), so that it results

v0(x) = v(x) ≤ q(x) ≤ u(x), x ∈ B̄ 4
5
(x̄0).

Let

t̄ = sup{t ≥ 0 : vt ≤ u in B̄ 4
5
(x̄0)}.

Claim: t̄ ≥ c0ε
2 .

Assuming that the previous Claim holds, we obtain from the definition of v that,
in B 4

5
(x̄0), the inequality

u(x) ≥ v(x) + t̄ ≥ q(x) +
c0ε

2
w(x)

is satisfied.
On the other hand, B 1

2
⊂ B 3

5
(x̄0) and since

w(x) ≥

{
c
(
(35 )

−γ − (45 )
−γ

)
, B 3

5
(x̄0) \Br3(x̄0),

1, Br3(x̄0),

we conclude that, in B 1
2
,

u(x)− q(x) ≥ c1ε,

with 0 < c1 = c1(n, pmin, pmax) < 1 universal, as desired.
We now have to prove the Claim. We argue by contradiction assuming that

t̄ < c0ε
2 . Let y0 ∈ B̄ 4

5
(x̄0) be the contact point between vt̄ and u, where

vt̄(y0) = u(y0).
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We will prove that y0 ∈ Br3(x̄0). In fact, recalling that w vanishes on ∂B 4
5
(x̄0)

and from the definition of vt̄, we obtain

vt̄ = q −
c0
2
ε+ t̄ < u on ∂B 4

5
(x̄0),

because u ≥ q and t̄ < c0ε
2 .

We can apply Lemma 4.2 to v. Hence, there exists ε1 = ε1(n, pmin, pmax, θ) a
universal constant such that

1

2
≤ |∇vt̄| = |∇v| ≤ 2,

∆p(x)vt̄ = ∆p(x)v > ε2 ≥ f,

for every 0 < ε ≤ ε1 and for every x ∈ D = B 4
5
(x̄0) \Br3(x̄0).

On the other hand, from the definition of vt̄, we have

(5.9) |∇vt̄| ≥ |(vt̄)n| = |1 +
c0
2
εwn|,

where (vt̄)n and wn denote the partial derivatives with respect to xn of vt̄ and w.
Let us show that wn > ĉ in {vt̄ ≤ 0} ∩D, for ĉ > 0 universal.
In fact, whenever 0 < ε ≤ ε2, for ε2 universal, we have

{vt̄ ≤ 0} ∩D ⊂ {q ≤
c0ε

2
} = {xn ≤

c0ε

2
− σ} ⊂ {xn ≤

5

80
}.

On the other hand,

∇w = −γc|x− x̄0|
−γ−2(x− x̄0) = −γc|x− x̄0|

−γ−1 x− x̄0

|x− x̄0|
.

Moreover, denoting νx = x−x̄0

|x−x̄0|
, we observe that, in {vt̄ ≤ 0} ∩ D, we have

−〈νx, en〉 > 0 since

xn − (x̄0)n = xn −
1

10
+ r2 ≤ −

1

80
in {xn ≤

5

80
}.

In particular, there holds in {vt̄ ≤ 0} ∩D

wn = 〈∇w, en〉 = −γ〈νx, en〉c|x − x̄0|
−γ−1 ≥ cγ

1

80

5

4
(
4

5
)−1−γ = ĉ > 0.

Thus, from (5.9) we deduce that

|∇vt̄| ≥ 1 +
c0
2
εwn ≥ 1 +

c0
2
ĉε

in {vt̄ ≤ 0} ∩D, which implies, for ε sufficiently small,

|∇vt̄| > 1 + ε2 ≥ g,

on F (vt̄)∩D. Then vt̄ is a strict subsolution to (1.1) in D touching u at y0. Hence
y0 ∈ Br3(x̄0) and this generates a contradiction with (5.8), because

u(y0) = vt̄(y0) = v(y0) + t̄ = q(y0) + t̄ < q(y0) + c0ε.

Case (ii). Now suppose |∇u(x0)| ≥
1
4 . By exploiting the C1,α regularity of u in

B 1
40
(x0), we know that u is Lipschitz continuous in B 1

40
(x0), as well as there exist

a constant 0 < r0 = r0(n, pmin, pmax), with 8r0 ≤ 1
40 , and C = C(n, pmin, pmax) > 1

such that
1

8
≤ |∇u| ≤ C in B8r0(x0).
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In addition, since (5.6) holds, it follows by Proposition 3.4, that u ∈ W 2,n(B4r0(x0))
and it is a solution to the linear uniformly elliptic equation

Lh = f in B4r0(x0),

where

Lh = Tr(A(x)D2h(x)) + 〈b,∇h(x)〉,

A(x) := |∇u|p(x)−2

(
I + (p(x) − 2)

∇u(x)

|∇u(x)|
⊗

∇u(x)

|∇u(x)|

)
,

and
b(x) := |∇u|p(x)−2 log |∇u(x)|∇p(x).

Hence A ∈ C0,α(B4r0(x0)), b ∈ C(B4r0(x0)) and L has universal ellipticity con-
stants (depending only on n, pmin, pmax). Moreover, ||b||L∞(B4r0 (x0)) ≤ Cε1+θ, C

universal, because ||∇p||L∞(B1) ≤ ε1+θ (see (5.1)).
In this way, we conclude that u− q satisfies

Tr(A(x)D2h(x)) + 〈b,∇h(x)〉 = f − 〈b, en〉 in B4r0(x0).

Then, applying Harnack’s inequality (see, for instance, [GT], Chap. 9) and recalling
again (5.1), we obtain

(5.10)
u(x)− q(x) ≥ C1(u(x0)−q(x0))− C2(||f ||L∞(B4r0 (x0)) + ||b||L∞(B4r0(x0)))

≥ C1
ε

2
− C2(ε

2 + Cε1+θ) ≥
c0
2
ε,

for every x ∈ Br0(x0), for 0 < ε ≤ ε3. Here ε3, C1, C2 and c0 are positive universal
constants. At this point, we can repeat the same argument of Case (i) around the
point x0, considering the annulus B 4

5
(x0) \ B̄r0(x0). This completes the proof. �

The next result is the main tool in Theorem 1.1.

Theorem 5.2 (Harnack inequality). There exists a universal constant ε̄, such that
if u solves (1.1)–(5.1), and for some point x0 ∈ Ω+(u) ∪ F (u),

(5.11) (xn + a0)
+ ≤ u(x) ≤ (xn + b0)

+ in Br(x0) ⊂ Ω,

with
b0 − a0 ≤ εr, ε ≤ ε̄,

then
(xn + a1)

+ ≤ u(x) ≤ (xn + b1)
+ in Br/40(x0),

with
a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 ≤ (1− c)εr,

and 0 < c < 1 universal.

Proof. Assume without loss of generality that x0 = 0, r = 1.
We call q(x) = xn + a0. Assumption (5.11) gives that

(5.12) q+(x) ≤ u(x) ≤ (q(x) + ε)+ in B1,

since b0 ≤ a0 + ε. We distinguish three cases.

Case 1. |a0| < 1/20. We now distinguish two cases: u(x̂0) ≥ (q(x̂0) +
ε
2 )

+ or

u(x̂0) ≤ (q(x̂0) +
ε
2 )

+, where x̂0 = 1
10en.

Assume that

u(x̂0) ≥ (q(x̂0) +
ε

2
)+, x̂0 =

1

10
en,
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(the other case is treated similarly). Then, by Lemma 5.1, if ε ≤ ε̄,

(q(x) + cε)+ ≤ u(x) in B 1
2
,

for 0 < c < 1 universal, which gives the desired improvement.

Case 2. a0 ≤ −1/20. In this case it follows from (5.12) that, for ε < 1/40, 0
belongs to the zero phase of (q(x) + ε)+, which implies that 0 belongs to the zero
phase of u. A contradiction.

Case 3. a0 ≥ 1/20. In this case it follows from (5.11) that

B1/20 ⊂ B+
1 (u).

Then, denoting û = u− a0, we have

(5.13) ∆p(x)u = ∆p(x)û = f in B1/20.

Observing that ||û||L∞(B1) ≤ 2 and recalling (5.1), we obtain from the application of

Theorem 1.1 in [Fa] to û, that u ∈ C1,α in B1/40, where α = α(pmin, pmax, n) ∈ (0, 1)
and ||∇u||Cα(B1/40)

≤ C, with C = C(pmin, pmax, n) ≥ 1.

We now distinguish two cases: u(0)− q(0) ≥ ε
2 or u(0)− q(0) ≤ ε

2 .
Assume that

u(0)− q(0) ≥
ε

2
,

(the other case is treated similarly). We will proceed as in the proof of Lemma 5.1.
If |∇u(0)| < 1

4 , we argue as in Case (i) of Lemma 5.1, taking x̄0 = −r2en. Here
r2 > 0 is universal, chosen as in that lemma, and such that we also have

B1/40 ⊂⊂ Br4(x̄0) ⊂⊂ B1/20,

for an appropriate chosen universal r4 > 0. We now take r3 universal as in Lemma
5.1, let

D := Br4(x̄0) \Br3(x̄0),

and define w in D as in that lemma. Then, arguing as in that proof, we obtain

(5.14) u(x)− q(x) ≥ c1ε in B1/40,

with 0 < c1 < 1, if ε ≤ ε̄, ε̄ and c1 universal.
If |∇u(0)| ≥ 1

4 , we proceed as in Case (ii) of Lemma 5.1 and we consider the
barrier w in

D := B1/20 \Br0 ,

with r0 > 0 universal and small. We obtain again (5.14), thus completing the
proof. �

From Theorem 5.2, with the same arguments employed in [D], we obtain the
following estimate that will be crucial in the improvement of flatness procedure.

Corollary 5.3. Let u be as in Theorem 5.2 satisfying (5.11) for r = 1. Then in

B1(x0), ũε(x) =
u(x)− xn

ε
has a Hölder modulus of continuity at x0, outside the

ball of radius ε/ε̄, i.e., for all x ∈
(
Ω+(u) ∪ F (u)

)
∩B1(x0), with |x− x0| ≥ ε/ε̄,

|ũε(x)− ũε(x0)| ≤ C|x − x0|
γ .

Here ε̄ is as in Theorem 5.2, and C and 0 < γ < 1 are universal.
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6. Improvement of flatness

In this section we present the main improvement of flatness lemma. Theorem
1.1 will then be obtained by applying this lemma in an iterative way.

Lemma 6.1 (Improvement of flatness). Let u satisfy (1.1) in B1 and
(6.1)
‖f‖L∞(B1) ≤ ε2, ||g−1||L∞(B1) ≤ ε2, ||∇p||L∞(B1) ≤ ε1+θ, ||p−p0||L∞(B1) ≤ ε,

for 0 < ε < 1, for some constant 0 < θ ≤ 1. Suppose that

(6.2) (xn − ε)+ ≤ u(x) ≤ (xn + ε)+ in B1, 0 ∈ F (u).

If 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0 depending on r, then

(6.3) (x · ν − rε/2)+ ≤ u(x) ≤ (x · ν + rε/2)+ in Br,

with |ν| = 1 and |ν − en| ≤ C̃ε for a universal constant C̃.

Proof. We divide the proof of this lemma into 3 steps. We will use the following
notation:

Ωρ(u) :=
(
B+

1 (u) ∪ F (u)
)
∩Bρ.

Step 1: Compactness. Fix r ≤ r0 with r0 universal (the precise r0 will be given
in Step 3). Assume by contradiction that we can find a sequence εk → 0 and a
sequence uk of solutions to (1.1) in B1 with right hand side fk, exponent pk and
free boundary condition gk satisfying (6.1) with ε = εk, such that uk satisfies (6.2),
i.e.,

(6.4) (xn − εk)
+ ≤ uk(x) ≤ (xn + εk)

+ for x ∈ B1, 0 ∈ F (uk),

but uk does not satisfy the conclusion (6.3) of the lemma.
Set

ũk(x) =
uk(x)− xn

εk
, x ∈ Ω1(uk).

Then, (6.4) gives

(6.5) − 1 ≤ ũk(x) ≤ 1 for x ∈ Ω1(uk).

From Corollary 5.3, it follows that the function ũk satisfies

(6.6) |ũk(x)− ũk(y)| ≤ C|x− y|γ ,

for C and 0 < γ < 1 universal and

|x− y| ≥ εk/ε̄, x, y ∈ Ω1/2(uk).

From (6.4) it clearly follows that F (uk) converges to B1∩{xn = 0} in the Hausdorff
distance. This fact and (6.6) together with Ascoli-Arzela give that, as εk → 0, the
graphs of the ũk over Ω1/2(uk) converge (up to a subsequence) in the Hausdorff
distance to the graph of a Hölder continuous function ũ over B1/2 ∩ {xn ≥ 0}.

Step 2: Limiting Solution. We now show that ũ solves the following linearized
problem

(6.7)

{
Lp0 ũ = 0 in B1/2 ∩ {xn > 0},

ũn = 0 on B1/2 ∩ {xn = 0},

in the sense of Definition 2.7. Here Lp0 is as in (2.2).
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Let P (x) be a quadratic polynomial touching ũ at x̄ ∈ B1/2 ∩ {xn ≥ 0} strictly
from below. We need to show that

(i) if x̄ ∈ B1/2 ∩ {xn > 0} then Lp0P ≤ 0;
(ii) if x̄ ∈ B1/2 ∩ {xn = 0} then Pn(x̄) ≤ 0.

Since ũk → ũ in the sense specified above, there exist points xk ∈ Ω1/2(uk),
xk → x̄ and constants ck → 0 such that

(6.8) ũk(xk) = P (xk) + ck

and

(6.9) ũk ≥ P + ck in a neighborhood of xk.

From the definition of ũk, (6.8) and (6.9) read

uk(xk) = Qk(xk)

and
uk(x) ≥ Qk(x) in a neighborhood of xk,

where
Qk(x) = εk(P (x) + ck) + xn.

For notational simplicity we will drop the sub-index k from Qk.
We first notice that

(6.10) ∇Q = εk∇P + en,

thus,

(6.11) ∇Q(xk) 6= 0, for k large.

We now distinguish two cases.
(i) If x̄ ∈ B1/2 ∩ {xn > 0} then xk ∈ B+

1/2(uk) (for k large). Since Q touches uk

from below at xk, and ∇Q(xk) 6= 0, we get

ε2k ≥ fk(xk)

≥ ∆pk(xk)Q(xk)

= |∇Q(xk)|
pk(xk)−2∆Q+ |∇Q(xk)|

pk(xk)−4(pk(xk)− 2)
n∑

i,j=1

Qxi(xk)Qxj (xk)Qxixj

+ |∇Q(xk)|
pk(xk)−2〈∇pk(xk),∇Q(xk)〉 log |∇Q(xk)|

= εk|∇Q(xk)|
pk(xk)−2∆P + εk|∇Q(xk)|

pk(xk)−4(pk(xk)− 2)

n∑

i,j=1

Qxi(xk)Qxj (xk)Pxixj

+ |∇Q(xk)|
pk(xk)−2〈∇pk(xk),∇Q(xk)〉 log |∇Q(xk)|.

Using that |∇pk(xk)| ≤ εk, we obtain

εk ≥ |∇Q(xk)|
pk(xk)−2∆P + |∇Q(xk)|

pk(xk)−4(pk(xk)− 2)

n∑

i,j=1

Qxi(xk)Qxj (xk)Pxixj

− |∇Q(xk)|
pk(xk)−1| log |∇Q(xk)||.

Now, passing to the limit k → ∞ and recalling that

∇Q(xk) → en, pk(xk) → p0, εk → 0,

we conclude that Lp0P ≤ 0 as desired.
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(ii) If x̄ ∈ B1/2 ∩ {xn = 0}, as observed in Remark 2.8, we can assume that
Lp0P > 0. We claim that for k large enough, xk ∈ F (uk). Otherwise xkj ∈

B+
1/2(ukj ) for a subsequence kj → ∞ and as in case (i), passing to the limit, we get

Lp0P ≤ 0,

a contradiction. Thus, xk ∈ F (uk) for k large.
Since Q+ touches uk from below at xk ∈ F (uk) and (6.11) holds

|∇Q(xk)| ≤ gk(xk) ≤ 1 + ε2k,

which, by (6.10), gives

|∇Q(xk)|
2 = ε2k|∇P (xk)|

2 + 1 + 2εkPn(xk) ≤ 1 + 3ε2k.

Thus, after division by εk,

εk|∇P (xk)|
2 − 3εk + 2Pn(xk) ≤ 0.

Passing to the limit as k → ∞, we obtain Pn(x̄) ≤ 0 as desired.

Step 3: Improvement of flatness. From the previous step, ũ solves (6.7) and from
(6.5),

−1 ≤ ũ(x) ≤ 1 in B1/2 ∩ {xn ≥ 0}.

From Theorem 2.9 and the bound above we find that, for the given r,

|ũ(x)− ũ(0)−∇ũ(0) · x| ≤ C0r
2 in Br ∩ {xn ≥ 0},

if r0 ≤ 1/4, for a universal constant C0. In particular, since ũ(0) = 0 and also
ũn(0) = 0, we obtain

x′ · ν̃ − C0r
2 ≤ ũ(x) ≤ x′ · ν̃ + C0r

2 in Br ∩ {xn ≥ 0},

where x′ = (x1, · · · , xn−1), ν̃ = ∇x′ ũ(0) and |ν̃| ≤ C0. Therefore, for k large
enough we get

x′ · ν̃ − C1r
2 ≤ ũk(x) ≤ x′ · ν̃ + C1r

2 in Ωr(uk),

for a universal constant C1. From the definition of ũk the inequality above reads

(6.12) εkx
′ · ν̃ + xn − εkC1r

2 ≤ uk(x) ≤ εkx
′ · ν̃ + xn + εkC1r

2 in Ωr(uk).

We next set

νk =
1√

1 + ε2k|ν̃|
2
(en + εk(ν̃, 0)).

Then,
|νk| = 1, |νk − en| ≤ C̃εk,

and
νk = en + εk(ν̃, 0) + ε2kτ, |τ | ≤ C̃,

with C̃ universal. We now deduce from (6.12)

x · νk − ε2kC̃r − εkC1r
2 ≤ uk(x) ≤ x · νk + ε2kC̃r + εkC1r

2 in Ωr(uk).

If we fix r0 satisfying C1r0 ≤ 1/4 and we take k large enough so that εkC̃ ≤ 1/4 ,
we get

x · νk − εkr/2 ≤ uk(x) ≤ x · νk + εkr/2 in Ωr(uk).

Recalling (6.4), we obtain for large k

(x · νk − εkr/2)
+ ≤ uk(x) ≤ (x · νk + εkr/2)

+ in Br,

thus uk satisfies the conclusion (6.3) of the lemma, a contradiction. �
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7. Regularity of the free boundary

In this section we finally prove our main result, namely, Theorem 1.1.

Proof of Theorem 1.1. Let u be a viscosity solution to (1.1) in B1 with 0 ∈ F (u),
g(0) = 1 and p(0) = p0. Consider the sequence

uk(x) =
1

ρk
u(ρkx), x ∈ B1,

with ρk = r̄k, k = 0, 1, · · · , for a fixed r̄ such that

r̄β ≤ 1/4, r̄ ≤ r0,

with r0 the universal constant in Lemma 6.1, taking θ = 1 in (6.1).
Each uk is a solution to (1.1) with right hand side fk(x) = ρkf(ρkx), exponent

pk(x) = p(ρkx), and free boundary condition gk(x) = g(ρkx). For the chosen r̄, by
taking ε̄ = ε0(r̄)

2, the assumption (6.1) holds for ε = εk = 2−kε0(r̄). Indeed, in
B1, in view of (1.4),

|fk(x)| ≤ ||f ||∞ ρk ≤ ε̄r̄k ≤ ε2k,

|gk(x) − 1| = |g(ρkx)− g(0)| ≤ [g]0,β ρk
β ≤ ε̄r̄kβ ≤ ε2k,

|∇pk(x)| ≤ ||∇p||∞ ρk ≤ ε̄r̄k ≤ ε2k,

|pk(x)− p0| = |p(ρkx)− p(0)| ≤ ||∇p||∞ ρk ≤ ε̄r̄k ≤ ε2k.

The hypothesis (1.3) guarantees that for k = 0 also the flatness assumption (6.2)
in Lemma 6.1 is satisfied by u0. Then it easily follows, by applying inductively
Lemma 6.1, that each uk is εk−flat in B1 in the sense of (6.2), in the direction νk,

with |νk| = 1, |νk − νk+1| ≤ C̃εk (ν0 = en). Now, a standard iteration argument
gives the desired statement. �

Appendix A. Lebesgue and Sobolev spaces with variable exponent

Let p : Ω → [1,∞) be a measurable bounded function, called a variable exponent
on Ω, and denote pmax = esssup p(x) and pmin = essinf p(x). The variable exponent
Lebesgue space Lp(·)(Ω) is defined as the set of all measurable functions u : Ω → R

for which the modular ̺p(·)(u) =
∫
Ω
|u(x)|p(x) dx is finite. The Luxemburg norm

on this space is defined by

‖u‖Lp(·)(Ω) = ‖u‖p(·) = inf{λ > 0 : ̺p(·)(u/λ) ≤ 1}.

This norm makes Lp(·)(Ω) a Banach space.
There holds the following relation between ̺p(·)(u) and ‖u‖Lp(·):

min
{(∫

Ω

|u|p(x) dx
)1/pmin

,
(∫

Ω

|u|p(x) dx
)1/pmax

}
≤ ‖u‖Lp(·)(Ω)

≤ max
{(∫

Ω

|u|p(x) dx
)1/pmin

,
(∫

Ω

|u|p(x) dx
)1/pmax

}
.

Moreover, the dual of Lp(·)(Ω) is Lp′(·)(Ω) with 1
p(x) +

1
p′(x) = 1.

W 1,p(·)(Ω) denotes the space of measurable functions u such that u and the
distributional derivative ∇u are in Lp(·)(Ω). The norm
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‖u‖1,p(·) := ‖u‖p(·) + ‖|∇u|‖p(·)

makes W 1,p(·)(Ω) a Banach space.

The space W
1,p(·)
0 (Ω) is defined as the closure of the C∞

0 (Ω) in W 1,p(·)(Ω).
For further details on these spaces, see [DHHR], [KR], [RR] and their references.
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