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Modal and Absolute Thermal Instability
in a Vertical Porous Layer

A. Barletta∗, M. Celli

Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy

Abstract

The conduction regime in a vertical porous layer subject to a horizontal temperature gradient is
studied. The boundaries are considered as isothermal, with different temperatures, and permeable
to the external environment. The linear stability of this basic flow state is analysed by testing the
dynamics of the normal modes of perturbation. The numerical solution of the stability eigenvalue
problem leads to the determination of the neutral stability condition. Then, the evolution in time
of localised wavepacket perturbations is investigated leading to the determination of the threshold
to absolute instability.

Keywords: Porous medium, Linear stability, Convection, Wavepackets, Permeable boundaries,
Vertical layer, Modal instability, Absolute instability

1. Introduction

The short pioneering paper by Gill [1] provides an interesting proof that natural convection
cellular patterns cannot occur in a vertical porous slab bounded by isothermal impermeable walls
kept at different temperatures. This result offered a serious physical argument supporting the use
of insulating porous materials in buildings instead of air gaps. Indeed, the absence of a transition
from a pure heat conduction regime to multicellular convection in a vertical porous slab contrasts
with the emergence of such cellular patterns in a vertical fluid layer with side heating [2]. The
work by Gill [1] was further developed by other authors [3–8] who extended the analysis to several
aspects including the nonlinear effects and the possible lack of local thermal equilibrium between
the fluid and the porous material. More recently, the study by Gill [1] has been revisited by
inspecting the effects of relaxing the assumption of impermeable boundaries. Barletta [9] provided
an evidence that multicellular patterns can indeed emerge in a vertical porous layer driven by a
horizontal temperature gradient if the boundaries are perfectly permeable. Starting from such
findings, other investigations were performed [10–13], by envisaging the presence of a horizontal
throughflow, imperfectly isothermal boundaries, lack of local thermal equilibrium and non–Darcy
quadratic form–drag effects in the porous medium.

Several stability analyses of convection heat transfer regarding, say, the Rayleigh–Bénard flow
systems are relative to small–amplitude perturbations [14–16]. Many of them are focussed on the
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concept of modal instability, by regarding the linear dynamics of normal Fourier modes and their
growth in time. Growing modes happen when the value of the Rayleigh number exceeds its neutral
stability threshold. However, the perturbations emerging in Nature are not necessarily described
by Fourier modes, but they can be modelled as localised wavepackets travelling in the streamwise
direction. Even if a given wavepacket is intrinsically a linear superposition including unstable
Fourier modes, it may well display a stable behaviour at large times, meaning that its amplitude
can be damped when time tends to infinity [16]. On the other hand, for sufficiently large values
of the Rayleigh number (generally supercritical), every wavepacket ultimately displays a growth
in time. As is well–known, this concept is the basis for the definition of the threshold to absolute
instability [15–22].

This study provides an analysis of the neutral stability condition and of the threshold to ab-
solute instability in a vertical porous channel with isothermal sidewalls kept at different uniform
temperatures. The analysis carried out by Barletta [9] is further developed by allowing for imper-
fect permeability of the boundaries. Tuning from perfect permeability to perfect impermeability is
allowed by changing a dimensionless parameter γ. The other governing parameters are the Péclet
number for the vertical flow and the Rayleigh number, proportional to the boundary temperature
difference. The analysis is carried out by employing a numerical solution of the stability eigenvalue
problem. This analysis yields the neutral stability curves and the critical Rayleigh number relative
to the modal instability, namely the possibly unstable reaction to pure Fourier mode disturbances.
Moreover, the threshold condition for the wavepacket instability, viz. the absolute instability, is
captured for wide ranges of the governing parameters.

2. Preluding argument on the experimental data

The forthcoming analysis focusses on two important elements:
a) Darcy’s law and the Oberbeck–Boussinesq approximation as a model of buoyant flows in porous
media;
b) The distinction between modal instability and absolute instability as a tool for the analysis of
the reaction of stationary flows to external disturbances.

Element a) is a cornerstone of the wider area commonly identified as convection in porous
media. There are several monographs describing the feature of such a model. We refer the reader
to the book by Nield and Bejan [23] for a discussion on the experimental support to the Oberbeck–
Boussinesq scheme within Darcy’s flow regime in porous media. The discussion of the experimental
evidence for convection in porous media provided in this book becomes particularly cogent for the
present analysis when it is relative to the onset of buoyancy–induced instability in a porous medium
saturated by a fluid. This topic is treated in Chapter 6 of Nield and Bejan [23]. Here, we mention
the classical paper by Hartline and Lister [24], where experimental evidence for the onset of the
Rayleigh–Bénard instability in a porous medium is provided. Further results were discussed by
Lister [25]. This paper offers a very wide comparison between multiple sets of experimental data,
from different authors, supporting the theoretical predictions formulated in the pioneering papers
on the modal instability in porous media by Horton and Rogers [26] and by Lapwood [27]. Lister [25]
carried out two experiments regarding convection of water which saturates either a rubberized curled
coconut fibre layer or a polymethylmethacrylate beads layer. Both these experiments corroborate
the theoretically predicted critical Rayleigh number for the onset of the modal instability and the
supercritical heat transfer rates.
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Element b) originates from the need of filling the gap between theoretical predictions and
unmatched experimental data, when the unstable response to external disturbances happens with
a basic state displaying a net flow rate in a given direction. The duality of modal and absolute
instability is predicted theoretically to model what is actually measured by an observer in a rest
reference frame while monitoring the transition to instability in a flowing fluid. The conceptual
framework of absolute instability blooms in plasma physics [28, 29], but it soon finds interesting
applications in fluid mechanics [15, 17, 30]. Experimental support to the theoretical predictions for
the absolute instability of an axisymmetric heated air–jet discharging into cold stagnant air was
found by Monkewitz et al. [31]. Lingwood [32] studied experimentally the transition to absolute
instability in the boundary layer flow over a disk rotating in a still air environment. The extension
to porous media flows of the absolute instability concept is definitely more recent. However, an
experimental validation of the absolute instability approach to the analysis of flow in a porous
medium was reported by Delache et al. [33]. By employing the absolute instability methodology,
these authors were able to improve the experimental/theoretical data comparison for the transition
to instability of the horizontal flow in a porous layer heated from below.

3. Governing equations

Let us consider a vertical plane porous channel with infinite height, finite transverse width L
and finite spanwise width H. We set the Cartesian coordinates (x, y, z) so that x is the transverse
horizontal coordinate such that −L/2 6 x 6 L/2, y is the spanwise horizontal coordinate such that
0 6 y 6 H and z is the vertical unbounded coordinate. Uniform temperatures T1 and T2, with
T2 > T1, are prescribed at the boundaries x = −L/2 and x = L/2, respectively. Furthermore,
the laterally confining boundaries at y = 0 and y = H are assumed to be thermally insulated and
impermeable.

The boundaries at x = ±L/2 are permeable to external fluid reservoirs. These reservoirs are
subject to a vertical pressure gradient given by the constant −∆p/L.

3.1. Dimensionless analysis

A scaling of the dimensional quantities is defined in order to formulate the flow problem in
dimensionless terms,

u

α/L
=

(u, v, w)

α/L
→ (u, v, w) = u,

T − T0
T2 − T1

→ T,
p

µα/K
→ p,

(x, y, z)

L
→ (x, y, z),

t

L2/α
→ t, (1)

where p denotes the local difference between the pressure and the hydrostatic pressure, here called
pressure for the sake of brevity, (u, v, w) are the Cartesian components of the seepage velocity u,
T is the temperature and T0 is its reference value, T0 = (T1 + T2)/2, α is the average thermal
diffusivity, µ is the dynamic viscosity, and K is the permeability of the porous medium.

3.2. Local balance equations

The porous medium is considered as both isotropic and homogeneous, and saturated by a New-
tonian fluid. Conditions of local thermal equilibrium and negligible viscous dissipation are assumed.
Moreover, the thermal buoyancy is modelled through the Oberbeck–Boussinesq approximation with
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Figure 1: Reference frame and sketch of the vertical and horizontal cross–sections of the porous channel

the momentum transfer described by Darcy’s law [23]. Then, the dimensionless governing equations
expressing the local balances of mass, momentum and energy are written as

∇ · u = 0, (2a)

u = −∇p+RaT êz, (2b)

σ
∂T

∂t
+ u · ∇T = ∇2T, (2c)

where Ra is the Darcy–Rayleigh number defined as

Ra =
gβ(T2 − T1)KL

να
, (3)

the unit vector along the z axis is êz, the modulus of the gravitational acceleration g is g, while
β is the coefficient of thermal expansion and ν the kinematic viscosity of the fluid. Finally, σ
expresses the heat capacity ratio, namely the ratio between the heat capacity per unit volume of
the saturated porous medium and the heat capacity per unit volume of the fluid.

3.3. Boundary conditions

The boundary conditions are given by

p± γ ∂p
∂x

= −Pe z, T = ±1

2
if x = ±1

2
,

∂p

∂y
= 0,

∂T

∂y
= 0 if y = 0, y = s, (4)
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where s = H/L is the aspect ratio of the channel cross–section and Pe = K∆p/(µα) is the
Péclet number associated with the external vertical pressure gradient, −∆p/L. We point out
that the condition ên · ∇p = 0, where ên is the unit vector normal to a given vertical plane
boundary, expresses the impermeability of that boundary as a consequence of Darcy’s law. On
the other hand, p = −Pe z yields the continuity of the boundary pressure to the pressure of the
external fluid reservoir, hence, it models the perfect permeability of the boundary. In other words,
equation (4) implies that the dimensionless parameter γ > 0 modulates the imperfect permeability
of the boundaries at x = ±1/2, including the limiting cases γ → 0 (perfect permeability) and
γ →∞ (impermeability). As a result, third kind (or Robin) boundary conditions on the pressure p
are assigned at x = ± 1/2. A detailed description of the pressure boundary conditions is provided
in Appendix A.

We mention that a diversely formulated model of the velocity condition at a permeable boundary
is described and adopted in a paper by Nyg̊ard and Tyvand [34].

3.4. Basic mixed convection flow

A stationary parallel flow solution of equations (2) and (4) exists, given by

ub = 0, vb = 0, wb = Pe+Rax, pb = −Pe z, Tb = x. (5)

We employed the subscript “b” to denote the basic flow. We also note that, on account of equa-
tion (5), the Péclet number yields the flow rate across the channel, namely∫ 1/2

−1/2
wb dx = Pe. (6)

3.5. Pressure–temperature formulation

Equations (2) can be rewritten in a different way by evaluating the divergence of equation (2b)
and by taking into account equation (2a),

∇2p = Ra
∂T

∂z
, (7a)

σ
∂T

∂t
−∇p · ∇T +RaT

∂T

∂z
= ∇2T. (7b)

Equations (7), together with equation (4), provide a pressure–temperature formulation of the flow
problem.

4. The dynamics of linear perturbations

The perturbations acting on the basic flow given by equation (5) are expressed as

p = pb + ε P, T = Tb + ε θ. (8)
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By a standard linearisation, substitution of equation (8) into equations (4) and (7) yields

∇2P −Ra ∂θ
∂z

= 0, (9a)

∇2θ − σ∂θ
∂t
− (Pe+Rax)

∂θ

∂z
+
∂P

∂x
= 0, (9b)

P ± γ ∂P
∂x

= 0, θ = 0 if x = ±1

2
,

∂P

∂y
= 0,

∂θ

∂y
= 0 if y = 0, y = s. (9c)

In fact, the perturbation parameter ε has been assumed to be so small that terms O
(
ε2
)

have been
considered as negligible.

4.1. Spanwise Fourier modes

We can expand the solution of equations (9) by employing the Fourier series,

P (x, y, z, t) =
∞∑
n=0

Pn(x, z, t) cos
(nπy

s

)
,

θ(x, y, z, t) =

∞∑
n=0

θn(x, z, t) cos
(nπy

s

)
. (10)

Equation (10) implies that the boundary conditions (9c) at y = 0 and y = s are satisfied. If we
substitute equation (10) into equations (9), we obtain

∂2Pn
∂x2

+
∂2Pn
∂z2

−
(nπ
s

)2
Pn −Ra

∂θn
∂z

= 0, (11a)

∂2θn
∂x2

+
∂2θn
∂z2

−
(nπ
s

)2
θn − σ

∂θn
∂t
− (Pe+Rax)

∂θn
∂z

+
∂Pn
∂x

= 0, (11b)

Pn ± γ
∂Pn
∂x

= 0, θn = 0 if x = ±1

2
, (11c)

for each mode with n = 0, 1, 2, . . . .

4.2. Fourier transformed governing equations

We can employ the Fourier transform for equations (11). We thus define

P̃n,k(x, t) =
1√
2π

∫ ∞
−∞

Pn(x, z, t) e−i kz dz,

θ̃n,k(x, t) =
1√
2π

∫ ∞
−∞

θn(x, z, t) e−i kz dz, (12)

so that the inversion formula yields

Pn(x, z, t) =
1√
2π

∫ ∞
−∞

P̃n,k(x, t) e
i kz dk,

θn(x, z, t) =
1√
2π

∫ ∞
−∞

θ̃n,k(x, t) e
i kz dk. (13)
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By employing equation (12), the transformed equations (11) are written as

∂2P̃n,k
∂x2

−
[
k2 +

(nπ
s

)2]
P̃n,k − i kRa θ̃n,k = 0, (14a)

∂2θ̃n,k
∂x2

−
[
k2 +

(nπ
s

)2
+ i k(Pe+Rax)

]
θ̃n,k − σ

∂θ̃n,k
∂t

+
∂P̃n,k
∂x

= 0, (14b)

P̃n,k ± γ
∂P̃n,k
∂x

= 0, θn,k = 0 if x = ±1

2
. (14c)

4.3. Stability eigenvalue problem

Time dependence can be easily factorised by setting

P̃n,k(x, t) = f(x) eλt, θ̃n,k(x, t) = h(x) eλt, (15)

where the complex growth rate λ has a direct physical meaning. Its real part λr is the actual
growth rate of each Fourier mode, so that λr > 0 means modal instability, while λr ≤ 0 means
modal stability. The threshold λr = 0 describes the neutral stability condition. The imaginary
part of λ, denoted by λi, coincides with −ω, where ω is the angular frequency of the Fourier mode.
Hence, equations (14) and (15) yield

f ′′ −
[
k2 +

(nπ
s

)2]
f − i kRah = 0, (16a)

h′′ −
[
k2 +

(nπ
s

)2
+ i k(Pe+Rax) + σλ

]
h+ f ′ = 0, (16b)

f ± γ f ′ = 0, h = 0 if x = ±1

2
. (16c)

Here, the primes denote derivatives for a function of one variable. Equations (16) define the stability
eigenvalue problem, where (f, h) is the eigenfunction while λ is the eigenvalue.

4.4. A comment on the terminology

The forthcoming analysis of the linear instability will be carried out by distinguishing two
scenarios. The first scenario is when the perturbation acting upon the basic flow state is a single
Fourier mode, having a given wavenumber k. The second scenario is when the instability is triggered
by a localised wavepacket, expressed through equations (10) and (13). The traditional term used
for the first scenario is convective instability, while absolute instability is employed for the second
scenario [15, 18]. In the present study, we prefer the term modal instability instead of convective
instability just to avoid any confusion with the heat transfer mechanism of convection which, in
the currently studied problem, is always present even under stability conditions.

5. Modal instability

The study of the conditions for the onset of modal instability starts from the analysis of equa-
tions (16). One has to identify when, for a prescribed (n, k)–mode, the growth rate λr changes from
negative to positive, thus detecting the transition from stability to instability of that (n, k)–mode.
The concept of modal instability is all based on the growth rate of a single (n, k)–mode. The time
growth of the wavepackets (13) is a different matter as it deals with the absolute instability. The
latter will be discussed in detail later on in this paper.
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Figure 2: Modal stability map for γ = 0. The black dot identifies the critical conditions, a = ac and R = Rc, relative
to the modes with r = 0.

5.1. A Squire transformation

A Squire transformation of equations (16) can be employed in order to reduce the number of
governing parameters [9]. One can define

a =
√
k2 + r2, r =

nπ

s
, S =

k

a
Ra, ξ = σω − kPe. (17)

In order to detect the neutral stability condition, we fix λr = 0. Therefore, on account of equa-
tion (17), equations (16) can be rewritten as

f ′′ − a2f − i a S h = 0, (18a)

h′′ −
[
a2 + i (aS x− ξ)

]
h+ f ′ = 0, (18b)

f ± γ f ′ = 0, h = 0 if x = ±1

2
. (18c)

5.2. An alternative scaling

A convenient way to represent the threshold to modal instability (λr = 0) is by defining the
quantity

R = k Ra = aS. (19)

Hence, equations (18) can be written as

f ′′ − a2f − iRh = 0, (20a)

h′′ −
[
a2 + i (Rx− ξ)

]
h+ f ′ = 0, (20b)

f ± γ f ′ = 0, h = 0 if x = ±1

2
. (20c)
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Figure 3: Neutral stability curves for different values of γ; black dots identify the critical condition, (ac,Rc), relative
to the modes with r = 0.

By solving numerically equations (20), neutral stability curves can be drawn in the (a,R) plane
for every given value of γ in order to illustrate the loci where λr = 0. We note that, in order to
determine the critical Rayleigh number, Rac, and wavenumber, kc, we have to minimise Ra as a
function of k along the neutral stability curve. Thus, we must set the condition ∂Ra/∂k = 0, which
can be reformulated as

∂R
∂a
− a

k2
R = 0, (21)

by utilising equation (17). We mention that, only in the case r = 0, the critical condition k = kc
and S = Sc can be sought by minimising S as a function of a along a neutral stability curve.

The numerical solution of equations (20) is achieved by employing the shooting method. Exten-
sive analyses of this method utilised for instability eigenvalue problems can be found in Straughan
[35] and in Barletta [16]. In Barletta [16], a detailed description of Octave scripts devoted to the
evaluation of the neutral stability data, as well as of the critical condition for the onset of the
instability, is also provided. Just the same methodology is adopted here, so that we refer the reader
to these books for further details.

The first important aspect to be highlighted here is that the neutral stability data found for
different values of γ always yield ξ = 0. In other words, the reduced angular frequency evaluated in
the comoving reference frame, defined by equation (17), is zero. This result is a strong argument of
numerical nature, in the absence of a rigorous formal proof, supporting the validity of the principle
of exchange of stabilities [14] in the comoving reference frame.

With reference to the case γ = 0, which means perfectly permeable boundaries, Fig. 2 shows
the regions of stability and instability, separated by the neutral stability curve. The map is in the
(a,R) plane. The main feature of the instability region is that it is bounded with the minimum
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Figure 4: Left hand frame: neutral stability curve for γ = 0 compared with the asymptotic curves defined by
equation (23). Right hand frame: neutral stability curves for different values of γ. The black dots denote the critical
points (ac, Sc) for r = 0 on each curve.

and maximum R points being settled at a = 0,

Rmin = 143.7029, Rmax = 1089.380. (22)

Equations (19) and (22) imply that the large–S behaviour of the neutral stability condition can be
described through the asymptotic formulas

S ≈ Rmin

a
=

143.7029

a
, S ≈ Rmax

a
=

1089.380

a
. (23)

The critical condition (ac,Rc) is determined by imposing equation (21) thus leading, for the modes
with r = 0, to the values

ac = 1.059498, Rc = 208.8072, Sc =
Rc
ac

= 197.0812. (24)

The values of (ac, Sc) reported in equation (24) perfectly agree with those found by Barletta [9].
Figure 3 shows the neutral stability curves in the (a,R) plane relative to values of γ increasing

above zero. The main feature displayed in this figure is that, when γ > 0, the instability region
becomes unbounded so that there exists an Rmin, but not an Rmax. Moreover, as γ increases,
the instability region tends to become a narrower and narrower strip close to the line a = 0 and
eventually, when γ →∞, this region disappears. This inference agrees with the theorem of stability
proved in the paper by Gill [1]. Black dots are reported in Fig. 3 identifying the critical condition,
(ac,Rc), for the modes with r = 0 and for given values of γ. Such critical point migrates leftward
in the (a,R) plane, as γ increases.

Figure 4 shows the neutral stability data previously employed in Figs. 2 and 3 plotted in the
(a, S) plane. The left hand frame illustrates the case of perfectly permeable boundaries (γ = 0),

10



γ ac Sc Rc Rmin

0.1 0.9554816 202.3478 193.3396 132.6872
0.25 0.8437594 214.4592 180.9519 123.8964
0.5 0.7222494 236.3743 170.7212 116.6637
1.0 0.5839582 277.5283 162.0650 110.5742
2.0 0.4495026 347.0725 156.0100 106.3383
5.0 0.3018431 501.9864 151.5212 103.2145
10.0 0.2181754 686.7910 149.8409 102.0494
20.0 0.1560460 954.5975 148.9611 101.4404
50.0 0.0993861 1493.364 148.4197 101.0660
100.0 0.0704428 2104.359 148.2370 100.9396
1000.0 0.0223236 6632.944 148.0715 100.8253

Table 1: Critical values of (a, S) for r = 0 and of Rmin for γ > 0.

where a comparison with the large–S behaviour given by equation (23) is provided through the
dashed and dotted lines. These asymptotic trends turn out to be fairly reliable especially for the
lowest branch, S = Rmin/a. The plot in the (a, S) plane evidences the minimum S feature of the
critical condition (ac, Sc) for r = 0. The right hand frame of Fig. 4 reveals that an increasing γ
means a stabilization of the basic flow, with the neutral stability curves gradually moving upward.
The black dots indicate the position of the critical point (ac, Sc) for each γ and r = 0. Such
minimum–S points move upward and leftward, showing that the onset of the instability requires
larger and larger Rayleigh numbers, together with larger and larger wavelengths. Eventually, the
limit γ →∞ describing the impermeable boundaries does not admit any instability, namely Sc →∞
as rigorously proved by Gill [1].

Table 1 reports numerical values of ac, Sc and Rmin versus γ for r = 0. These data confirm
that the gradual change from perfect permeability to perfect impermeability of the boundaries (γ
increasing from to zero to infinity) yields a stabilisation of the basic flow. The values of Rmin yield
an asymptotic evaluation of the product S a along the left hand branch of the neutral stability
curve, when S � 1.

Figure 5 shows the critical values of a, S, R versus γ for r = 0. An interesting feature displayed
by Fig. 5, and shown also by the data reported in Table 1, is that Rc attains an asymptotic value
when γ tends to infinity. In fact, the scaling of ac and Sc is with

√
γ so that the numerical data

allow one to deploy the asymptotic formulas for γ � 1,

ac '
0.706√
γ
, Sc ' 210

√
γ, Rc ' 148. (25)

The asymptotic trends given by equation (25) turn out to be in excellent agreement with the plots
of Sc and ac versus γ for r = 0 displayed in Fig. 5, in particular when γ > 10.

Out of the Squire transformed parameters (a, S), the transition to modal instability is to be
judged from the primary parameters (k,Ra) assuming that n and s or, alternately, r is prescribed.
In the case r = 0, the pair (a, S) coincides with (k,Ra) meaning that Rac coincides with Sc. For
a given r > 0, from equation (17), we have k/a < 1 and, hence, Ra > S. Thus, the modes with
r > 0 are more stable than those with r = 0. The conclusion is that the modal instability occurs
with n = 0 at its onset, whenever a finite s is prescribed. We point out that r = 0 has the twofold
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Figure 5: Left hand frame: plots of Rc and Sc versus γ for r = 0. Right hand frame: plots of ac versus γ for r = 0.
The dotted lines correspond to the asymptotic trends defined by equation (25).

meaning of n = 0 with a finite s, or n > 0 with s → ∞, i.e., no spanwise lateral confinement. On
the other hand, a fixed r > 0 may signify many different situations where n is a nonzero integer
and the aspect ratio s is finite. Hence, when s is finite, the most unstable modes are those with
n = 0. This is the reason why we do not investigate any further the determination of the critical
condition, k = kc and Ra = Rac, for the modes with r > 0.

Figure 4 suggests that, for every value of γ, there is a maximum value a = amax, such that no
modal instability is detected when a > amax. As pointed out by Barletta [9], when γ = 0, we have

amax = 1.27291. (26)

Then, if r > amax, we cannot have any modal instability. For example, if γ = 0 and s = 5, we can
have unstable modes with n = 0, 1 and 2 while, if γ = 0 and s = 3, unstable modes exist only with
n = 0 and 1. Table 2 yields some values of amax and Rac for different values of r and γ.

6. Absolute instability

After having discussed the stable/unstable behaviour of single Fourier modes, we will now
investigate the dynamics of wavepacket perturbations, expressed by the integrals introduced in
equation (13). Wavepackets may be unstable when Ra > Rac, i.e., the transition to absolute
instability is supercritical. In other words, there exists a threshold Ra = Raa, with Raa ≥ Rac,
such that all wavepacket perturbations are unstable when Ra > Raa. Here, the subscript “a” is
meant to denote the onset of unstable wavepacket perturbations, well–known in the literature as
absolute instability.

The method employed to evaluate Raa is the steepest–descent approximation [16, 36] for
wavepacket perturbations. The steepest–descent approximation is a very powerful method as it
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γ amax Rac [r = 0] Rac [r = 0.5] Rac [r = 1]

0 1.272911 197.0812 221.8501 368.2497
0.25 1.031145 214.4592 260.2111 1147.807
0.5 0.887615 236.3743 311.0859 —
1 0.720655 277.5283 440.4734 —
2 0.556062 347.0725 1011.948 —
5 0.373920 501.9864 — —
10 0.270385 686.7910 — —
20 0.193424 954.5975 — —

Table 2: Values of amax and of Rac, for modes with r = 0, r = 0.5 and r = 1, having different values of γ.

reveals that determining the large–time behaviour of the wavepackets just depends on the proper-
ties of the dispersion relation,

λ = λ(k). (27)

Starting from equations (13) and (15), one can write

Pn(x, z, t) =
1√
2π

∞∫
−∞

eλ(k)t+ikx f(z) dk, θn(x, z, t) =
1√
2π

∞∫
−∞

eλ(k)t+ikx h(z) dk. (28)

At very large times, t� 1, the absolute value of the integrals in equation (28) can be approximated
as [16]

|Pn(x, z, t)| ' F1(x, z)√
t

eRe(λ(k0))t, |θn(x, z, t)| ' F2(x, z)√
t

eRe(λ(k0))t. (29)

Here, F1(x, z) and F2(x, z) are functions of (x, z), whose evaluation is not required to assess whether
the wavepackets are expected to grow or be damped exponentially for large time. Moreover, k0
is a saddle point, namely a complex zero of λ′(k), that satisfies the holomorphy requirement [16].
In fact, there must exist a continuous deformation of the real axis in the complex k plane which
defines a path locally crossing the saddle point k0 along a line of steepest descent. The holomorphy
requirement means that the region in the complex k plane between such path and the real axis
does not contain any singular point of the function λ(k) [16]. According to equation (29), the linear
instability of the wavepacket perturbations arises when

Re(λ(k0)) > 0. (30)

Thus, the forthcoming analysis of the absolute instability is entirely grounded on the determination
of the saddle points, i.e. the roots of λ′(k) = 0, and on the check that they satisfy the holomorphy
requirement.

We start from equations (16) with the aim of imposing the saddle point condition, namely
λ′(k) = 0. We introduce the functions,

f̂ =
∂f

∂k
, ĥ =

∂h

∂k
. (31)
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Figure 6: Plots of Raa versus Pe for different values of r and γ.

Thus, by deriving all the differential equations and boundary conditions (16) with respect to k, the
resulting eigenvalue problem displays a doubled differential order. In fact, by taking into account
the condition λ′(k) = 0, we can write

f ′′ −
(
k2 + r2

)
f − i kRah = 0, (32a)

h′′ −
[
k2 + r2 + i k(Pe+Rax) + σλ

]
h+ f ′ = 0, (32b)

f̂ ′′ −
(
k2 + r2

)
f̂ − i kRa ĥ− 2k f − i Rah = 0, (32c)

ĥ′′ −
[
k2 + r2 + i k(Pe+Rax) + σλ

]
ĥ+ f̂ ′ − [2k + i (Pe+Rax)]h = 0, (32d)

f ± γ f ′ = 0, h = 0, f̂ ± γ f̂ ′ = 0, ĥ = 0 if x = ±1

2
. (32e)

Equations (32) are to be solved by fixing input values of Pe and r, as well as by imposing the
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Figure 7: Plots of Raa versus r for different values of γ with either Pe = 0 or 100. Dotted lines indicate the vertical
asymptotes where r = amax.

threshold condition for the onset of absolute instability implied by equation (29), namely Re(λ(k)) =
0. Then, equations (32) are solved numerically by employing the same shooting method mentioned
for the solution of equations (20). In this case, the output of the eigenvalue problem solution is the
list of parameters (Re(k), Im(k), Im(σ λ), Ra). Such an output has a definite meaning as Re(k) and
Im(k) are the real and imaginary parts of the saddle point k0, while Ra = Raa is the estimated
threshold to absolute instability. We say ‘estimated threshold’ since the evaluated saddle point k0
needs to be tested for its fulfilment of the holomorphy requirement discussed above. This test can
be carried out efficiently for a few sample cases by mapping the isolines of Re(λ) in the complex k
plane [16, 19].

6.1. Upflow and downflow

The analysis carried out in Section 5 revealed that the value of Pe does not influence the neutral
stability conditions, if not for the value of the angular frequency ω. In fact, since we have noted that
the neutral stability condition is accomplished with ξ = 0, equation (17) reveals that the neutrally
stable value of ω coincides with k Pe/σ.

For the absolute instability, the scenario is different as Pe is expected to influence significantly
the threshold value Ra = Raa. However, inspection of the eigenvalue problem (32) shows that just
the absolute value of Pe influences the threshold value Raa, but not its sign. In fact, if k0 is the
saddle point evaluated by solving equations (32) and λ the complex eigenvalue obtained with the
solution, then applying the change Pe→ −Pe just yields k0 → k̄0 and λ→ λ̄, while Raa does not
change, where overlines denote the complex conjugate. The proof of this result is straightforward.
One takes the complex conjugate of the eigenvalue problem (32). Then, the complex conjugate
problem can be made identical to (32) provided that one applies the transformation,

f̄ → −f, h̄→ h,
¯̂
f → −f̂ , ¯̂

h→ ĥ, k̄ → k, σλ̄→ σλ

r → r, Pe→ −Pe, Ra→ Ra, γ → γ, x→ −x. (33)
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As a consequence, one can restrict our forthcoming analysis to Pe > 0, having in mind that Raa
does not change by changing the sign of Pe, while k0 and λ are obtained by complex conjugation.
Physically, the symmetry defined by equation (33) implies a simple relation between the onset of
absolute instability for upflows (Pe > 0) and downflows (Pe < 0).

6.2. Evaluation of the threshold Raa to absolute instability

Figure 6 displays plots of Raa versus Pe for different values of γ and r = 0, 0.5 and 1. We recall
that, for every prescribed γ, instability is possible only with modes having r ≤ amax. For the values
of γ considered in Fig. 6, the values of amax are provided in Table 2. This is the reason why we
took r = 0, 0.5 and 1 with γ = 0, r = 0 and 0.5 with γ = 0.5 and 1, while we considered only r = 0
with γ = 5. Figure 6 suggests that r = 0 is the most unstable situation yielding the transition
to absolute instability. This means that, whatever is the finite aspect ratio s, the y independent
modes with n = 0 are those triggering the transition to the absolute instability. This feature is
coherent with what we inferred in section 5 on studying the modal instability. When Pe = 0, the
transition to absolute instability occurs at the onset of modal instability, namely Raa = Rac, where
the values of Rac are those reported in Table 2 for all the cases examined in Fig. 6. This is the usual
behaviour, which is physically reasonable as the vertical net flow parametrised by Pe is the cause
of the delayed transition to absolute instability relative to the onset of modal instability. Another
important phenomenon displayed in Fig. 6 is that the transition to absolute instability happens
with a Rayleigh number Raa which monotonically increases with Pe. However, the influence of the
increasing Pe becomes weaker as the permeability parameter γ increases. Thus, if Raa increases
with γ for Pe = 0, we report a higher value of Raa for γ = 0 than for γ = 0.5, 1 or 5, when
Pe = 100.

Evidence that the modes r = 0 are those leading the transition to absolute instability is provided
by Fig. 7. This figure shows that Raa monotonically increases with r and, for every given value
of γ, it approaches the vertical asymptote r = amax. Figure 7 involves just the cases Pe = 0 and
Pe = 100, but the same conclusion can be gained with other values of Pe. We recall that, when
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Figure 9: Isolines of Re(λ) in the complex k plane for Pe = 25, Ra = Raa, r = 0 and different values of γ; thin solid
lines are for Re(λ) = 0, while Re(λ) = ±1 and ±2 are the thick solid lines; the thick dashed lines are, for each γ, the
paths of steepest descent crossing the saddle points denoted as black dots.

Pe = 0, we have Raa = Rac. Then, the frame of Fig. 7 relative to Pe = 0 provides an illustration
of the property described in Section 5, namely that the modal instability occurs with r = 0 at its
onset. Again, the non–monotonic dependence on γ, already discussed with reference to Fig. 6, is
exploited also by the data reported in Fig. 7 for Pe = 100. A focus on this phenomenon is provided
with Fig. 8. In this figure, the change from a monotonic dependence on γ, displayed with Pe = 0,
to a non–monotonic behaviour with a minimum attained with γ > 0, displayed for both Pe = 50
and 100, is shown. Reference is made to the modes having r = 0 as we have already concluded
that they provide the lowest transition to absolute instability.
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Figure 10: Isolines of Re(λ) in the complex k plane for Pe = 100, Ra = Raa, r = 0 and different values of γ; thin
solid lines are for Re(λ) = 0, while Re(λ) = ±1 and ±2 are the thick solid lines; the thick dashed lines are, for each
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6.3. The holomorphy requirement

The steepest descent approximation of the Fourier integrals, such as those defined by equa-
tion (28), requires that one can deform the integration through the real axis to a contour crossing
the saddle point k0, locally, along a path of steepest descent. The deformation ought to be con-
tinuous, meaning that no singularity of λ(k) can be trapped between the deformed path in the
complex k plane and the real axis [16, 36]. In principle, one should verify that the holomorphy
requirement is satisfied for every assigned set of input parameters (r, γ, Pe). However, this test is
virtually impractical as one should check the form of the isolines of Re(λ) in every case examined.
Then, the usual approach is to discuss a few sample cases assuming that they are illustrative of the
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Pe = 25 Pe = 100

γ k0 σ Im(λ) k0 σ Im(λ)

0 1.024907− 0.3370352 i −24.23909 0.6338261− 0.3094949 i −55.87563
0.5 0.7223700− 0.2026787 i −17.45752 0.6254681− 0.2625933 i −55.46861
1 0.5854439− 0.1462960 i −14.27211 0.5328108− 0.2206786 i −48.17387
5 0.3025419− 0.04674883 i −7.495872 0.2951300− 0.1064626 i −27.94600

Table 3: Saddle points k0 and values of σ Im(λ) at transition to absolute instability with r = 0 and for different Pe
and γ.

Im(k)

Re(k)

Figure 11: A qualitative sketch of a simple pole singularity in the complex k plane drawn through the isolines of the
real part of λ(k).

general behaviour [16, 22, 37, 38].
An important feature of the stability eigenvalue problem (16) is its symmetry under the trans-

formation

k → −k̄. (34)

Then, we can just focus our attention on the half–plane Re(k) > 0 as the form of the isolines of
Re(λ) in the region Re(k) < 0 can be obtained by a simple mirror reflection [16]. Furthermore,
every saddle point k0 in the region Re(k) > 0 has a mirror twin, namely −k̄0, with the same
imaginary part and a negative real part.

We have already pointed out that the transition to absolute instability is activated by the r = 0
modes. Thus, our check of the holomorphy requirement will be restricted to the case r = 0. Two
values of the Péclet number will be considered: 25 and 100. For each value of Pe, the dependence
on γ has been tested by assuming the values: 0, 0.5, 1 and 5. Figures 9 and 10 illustrate the test
cases Pe = 25 and Pe = 100, respectively. Each frame of Figs. 9 and 10 is relative to a given γ
and displays isolines of Re(λ) in the complex k plane. Such isolines are drawn for the Rayleigh
number Raa defining the transition to absolute instability with the given values of Pe, γ and r = 0.
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The Re(λ) = constant patterns are displayed around the saddle point triggering the transition
to absolute instability and, thus, placed at the intersection of the Re(λ) = 0 lines. The path of
steepest descent, identified as a thick dashed line crossing the saddle point, is an isoline of Im(λ)
as explained, for instance, in the book by Barletta [16]. The values of σ Im(λ) for the saddle points
are those evaluated numerically by solving equations (32). Table 3 reports such values for the
cases involved in Figs. 9 and 10. The shape of the isolines drawn in Figs. 9 and 10 illustrates the
absence of singularities of the complex valued function λ(k) in the region between the deformed
path matching the line of steepest descent close to the saddle point and the real k axis. In fact, a
pole singularity is easily detected in the complex k plane as it would have the form of an attraction
point for the isolines with all possible values of Re(λ) [16, 19, 36]. This elementary behaviour is
depicted qualitatively in Fig. 11. All these considerations lead us to establish that the determined
thresholds to absolute instability, as obtained through the solution of the eigenvalue problem (32),
are coherent with the steepest–descent approximation of Fourier integrals.

7. Comparison with an experiment

Even though, to date and to the best of the authors’ knowledge, there are no available experi-
mental data regarding cases with Pe 6= 0, an interesting comparison with measurements relative to
the onset of convective rolls performed for a vertical porous slab in a basic state with a vanishing
flow rate is possible. In fact, Kwok and Chen [39] carried out an experiment involving a tall, narrow
vertical layer, 30 cm high × 2 cm wide × 11.5 cm deep, of glass beads saturated by distilled water.
The authors reported a phenomenon of convection heat transfer whose onset was evaluated at a
critical Rayleigh number equal to 66.2. Such an experimental outcome turned out to be utterly in
contrast with the conclusions drawn in the paper by Gill [1] as his theorem predicted no possible
onset of convection cells. Then, Kwok and Chen [39] provided two possible explanations for the
strong discrepancy between theory and experiments: the importance of Brinkman’s term in the
momentum balance, whereas such a term was neglected in Gill’s analysis [1]; the importance of
variable water viscosity effects. Kwok and Chen [39] numerically evaluated the expected critical
Rayleigh number by taking into account Brinkman’s term with constant viscosity and obtained
308, while by taking into account the effects of variable viscosity without Brinkman’s term they
obtained 98.3. The former value is significantly larger than the experimental datum, 66.2. More-
over, the porosity of the glass beads layer measured by Kwok and Chen [39] is 0.40. Thus, it looks
a bit too small to justify an important effect of Brinkman’s term (Nield and Bejan [23] suggest
that Brinkman’s term should be taken into account only if the porosity is larger than 0.6). On the
other hand, the variable viscosity contribution to the momentum balance looks realistic, even if it
yields a critical Rayleigh number which is larger than the measured value.

Our analysis may contribute significantly to the comparisons between theory and experiments.
In fact, by neglecting both Brinkman’s term and the temperature–dependence of the fluid viscosity,
we predict a critical Rayleigh number for the onset of the instability which, as reported by equa-
tion (24), can be as small as 197. This value is larger than the experimental datum determined by
Kwok and Chen [39], but it suggests that the impermeability conditions for the boundaries assumed
both by Gill [1] and by Kwok and Chen [39] may not be the best model for the actual experimental
setup. Trying to envisage new paths for future research, it is possible that a theoretical model
where partial permeability of the layer boundaries and variable viscosity of the fluid are accounted
for may be a good candidate for a fair comparison between theory and experiments. Another
important element which may justify the discrepancy between the actual theoretical predictions
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and experimental data is the possible subcritical nature of the instability. Straughan [4] ruled
out the possibility of a subcritical instability for a vertical porous layer, but his study is based
on the assumption of a porous layer with impermeable boundaries. No study of the nonlinear,
possibly subcritical, instability has yet been carried out by relaxing the boundary conditions from
impermeability to a model of partial permeability.

8. Conclusions

The buoyant flow in a vertical porous slab saturated by a fluid and bounded by parallel perme-
able planes at different uniform temperatures is investigated. The stability of the basic parallel flow
has been tested versus perturbations expressed as single Fourier modes, as well as versus localised
wavepacket perturbations. The former test leads us to the neutral stability condition for the onset
of the modal instability, while the latter test leads us to the identification of the threshold to abso-
lute instability. Different Fourier modes of perturbations are identified by the pair (r, k), where r
is a positive parameter which depends on the spanwise confinement of the porous slab, while k is
the wavenumber in the vertical direction. The order parameter for the transition to the instability
is the Rayleigh number, Ra, for the saturated porous medium. Other dimensionless parameters
influencing the onset of the instability are the Péclet number, proportional to the vertical flow rate,
and the parameter γ tuning the permeability of the vertical plane boundaries, where γ = 0 means
perfect permeability and γ → ∞ means impermeability. The eigenvalue problem for the linear
stability analysis has been solved leading to the identification of the transition conditions to the
modal instability and to the absolute instability. The main results obtained with this study can be
outlined as follows:

• The onset of the modal instability occurs via r = 0 modes, namely Fourier modes independent
of the spanwise coordinate y. The Péclet number does not influence the neutral stability
curves displayed in the (k,Ra) plane. The neutral stability condition involves larger and
larger Rayleigh numbers as γ increases. Eventually, when γ →∞ the numerical data support
the result rigorously proved by Gill [1]: the slab with impermeable boundaries yields no
instability. Hence, an increasing γ stabilises the basic flow.

• The threshold value of Ra for the transition to absolute instability, i.e. Raa, is an increasing
function of Pe. Physically, the larger is the vertical flow rate in the porous slab the harder is
the destabilization from a localised wavepacket disturbance. Here, harder means that larger
and larger temperature differences between the boundaries are needed for the flow to become
absolutely unstable.

• The transition to absolute instability is activated by the r = 0, or y independent, Fourier
modes. The dependence of Raa on the permeability parameter γ may be non–monotonic for
Pe > 0, this phenomenon has been illustrated for Pe = 50 and 100.

• The consistency of the steepest–descent approximation of the wavepackets at large times has
been checked by drawing the isolines of the complex–valued growth rate in the complex k
plane. The holomorphy requirement turned out to be satisfied in all the test cases considered,
involving either Pe = 25 or Pe = 100.

Much more can be done in the future to further explore these topics. In particular, the development
of a nonlinear analysis of the instability is quite interesting both to inspect the possible onset of
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subcritical instability or to evaluate the heat transfer rate at supercritical conditions. Moreover,
one may aim to shed some light on the influence of the nonlinearity on the emergence of the absolute
instability.
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Appendix A. Pressure boundary conditions

The pressure conditions describing an imperfectly permeable boundary given by a vertical plane
is based on Darcy’s law with the pressure drop driving the seepage flow across the boundary is the
difference between the boundary pressure and the external environment pressure. As this difference
is evaluated at a fixed vertical quota, it coincides with p − pext, where we consider the dynamic
pressure (the local difference between the pressure and the hydrostatic pressure) instead of the
pressure. Thus, we can write,

µ

K
u · ên = G (p− pext) , (A.1)

where ên is the outward normal to the boundary plane and G is a momentum transfer coefficient
with the dimensions of an inverse length. By employing Darcy’s law to express u · ên at the
boundary,

µ

K
u · ên = −∇p · ên. (A.2)
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By combining equations (A.1) and (A.2), we obtain

∇p · ên +G (p− pext) = 0, (A.3)

which, in a dimensionless form obtained by means of the scaling defined in equation (1), can be
rewritten as

p+ γ∇p · ên = pext. (A.4)

Here, the dimensionless parameter γ is defined as

γ =
1

GL
. (A.5)
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