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Inverse problems for structured 
datasets using parallel TAP 
equations and restricted 
Boltzmann machines
Aurelien Decelle1,2, Sungmin Hwang3, Jacopo Rocchi3 & Daniele Tantari4*

We propose an efficient algorithm to solve inverse problems in the presence of binary clustered 
datasets. We consider the paradigmatic Hopfield model in a teacher student scenario, where this 
situation is found in the retrieval phase. This problem has been widely analyzed through various 
methods such as mean-field approaches or the pseudo-likelihood optimization. Our approach is based 
on the estimation of the posterior using the Thouless–Anderson–Palmer (TAP) equations in a parallel 
updating scheme. Unlike other methods, it allows to retrieve the original patterns of the teacher 
dataset and thanks to the parallel update it can be applied to large system sizes. We tackle the same 
problem using a restricted Boltzmann machine (RBM) and discuss analogies and differences between 
our algorithm and RBM learning.

Inverse problems consist in inferring information about the structure of a system from the observation of its 
configurations. Cases where the system’s variables si are binary can be studied in the framework of the inverse 
Ising model, whose parameters {Jij , hi} are tuned in order to describe the observed configurations according 
to the Boltzmann weight P(s) ∼ exp(

∑

i<j Jijsisj +
∑

i hisi) . This is the simplest distribution emerging when 
using the maximum entropy approach in order to reproduce exactly the one and two points statistics of the 
data. Successful applications of this method arise in biology1, immunology2, neurosciences3,4 as in the study of 
collective behaviors5 and financial time series6–8. In general, inferring the parameters of the model is a challeng-
ing problem since maximizing the likelihood involves the computation of the partition function Z = ∑

s P(s) , 
which is intractable in most realistic cases. On the other hand, when dealing with time-series, it is possible to 
use a simpler approach based on the dynamic (kinetic) version of the Ising model analysed in9, optimized in10 
and generalized in11–13. A recent review on this subject can be found in14.

The original attempt to solve the problem is a gradient descent algorithm known as Boltzmann learning15. 
This method is unpractical on large systems unless heuristic methods, like Monte Carlo (MC) sampling, are 
used to estimate correlations16. Nevertheless MC is slow and thus many sophisticated techniques coming from 
statistical mechanics and machine learning have been proposed as alternative approaches17–28. These methods, 
however, share one or both of the following shortcomings: (1) they require a large number of observations and 
(2) the overall performance drops significantly when the dataset is structured. This is often the case when data is 
produced from a (sub)set of many attractive states or is collected in different regimes, e.g. quiescent and spiking 
regimes in neural networks. This problem becomes particularly relevant at low temperatures and it has already 
been studied both in the sparse29 and in the dense case30,31. Pseudo-likelihood32 based methods31 were shown 
to be the best options in a wide range of temperatures. Here, we present two algorithms to compete with the 
existing state-of-the-art by posing the problem in a Bayesian framework using the Thouless-Anderson-Palmer 
(TAP) equations33 and the Restricted Boltzmann Machine (RBM)34,35. Our TAP-based algorithm will be shown 
to achieve a better quality of the results by observing far fewer configurations in the clusterized phase. Moreover, 
it allows to consider larger system size with respect to those studied in30,31.
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Results
We consider a dataset with many clusters by drawing configurations from the Hopfield model36,37. Given a set of 
N-dimensional binary independent patterns {ζµ}µ=1,...,P , teacher’s patterns, the coupling matrix of the associated 
Hopfield model is defined as Jij = N−1

∑

µ ζ
µ
i ζ

µ
j  and its Hamiltonian is Hζ (s) = −1/2

∑

ij Jijsisj . We construct 
a set of equilibrium configurations D = {sa}a=1,...,M sampled from the Boltzmann distribution

being β the inverse temperature. The task of a student is to infer the teacher’s patterns from the observation of 
D . This task differs from the one in30,31, whose focus was the inference of the coupling matrix J only.

For P = 1 , the Hopfield model is nothing but a Curie–Weiss model. In this case the posterior distribution is

where ξ  denote the student’s pattern and the problem is called dual Hopfield model38,39. This is readily established 
by absorbing the ξ-dependence of the partition function into a redefined set of variables s via s′i = ξisi . On the 
other hand, for P > 1 , this transformation is not feasible and the posterior comes from the log-likelihood

We propose an algorithm based on TAP equations to estimate the posterior associated with Eqs. (2) and (3). 
In the direct problem, i.e. the study of the Boltzmann distribution of Eq. (1), TAP equations40–44 describe the 
local magnetizations mi = �si� of the equilibrium states and their use as an inference method has been pioneered 
in43,45–49 since they can be used to approximate the intractable partition function appearing in the likelihood. 
These works paved the way to their applications in a number of problems such as error correcting codes, com-
pressed sensing and learning in neural networks, as discussed in the recent review50.

Even if TAP and mean field methods have already been used to solve inverse problems23,29–31,51, the present 
approach is completely different since we directly apply TAP to the posterior distribution (dual model) to improve 
the quality of the reconstructed network. On the dual model, the role of spins and patterns is exchanged: the 
variables (spins) are now the ξ ’s and the M sampled configurations play the role dual patterns, thus we use TAP 
equations to study the local magnetizations mi = �ξi� . We notice that a similar approach has been independently 
proposed in52 for an RBM with 2 hidden binary units, using Belief Propagation.

Single pattern.  We start by considering the simplest case P = 1 . We introduce a naive time indexing for an 
iterative scheme of the TAP equations,

where Jij = N−1
∑

a s
a
i s

a
i  , α = P/N  and Nqt = ∑

i(m
t
i )
2 . The entire set of magnetizations mt are updated to 

achieve mt+1 in a parallel way. In principle, any sophisticated time indexing schemes can be employed as long as 
it achieves the convergence to a physical state. Particularly, the so-called Approximate Message Passing (AMP) 
equations has been the focus of many studies in inference problems50. This scheme is inspired by the convergence 
issues of naive indexing in SK model even in the replica symmetric phase53. An explanation to this behavior can 
be found in54, where a less trivial time index setting is shown to improve convergence properties outside the glassy 
phase. The AMP equations exhibit convergence issues for the case of the Hopfield model in the direct problem, 
when the initial condition is chosen at random, thus in the following we adopt Eq. (4). More details about these 
issues are discussed in detail in the Methods through simulations and analytical insights.

Once solved Eq. (4), we use mi as the student estimator for the pattern ζi . In Fig. 1, we present the teacher-
student overlap q(m, ζ ) = |N−1

∑

i miζi| , where m is the solution of Eq. (4). We observe that in the ferromag-
netic-retrieval phase β > 1 , a perfect reconstruction may be realized already with a small number of samples. 
This is due to the large signal contained in the correlation matrix of the data c . In particular, we notice that in 
the ferromagnetic phase the student is able to find a pattern correlated with the teacher’s one even at M = 1 . On 
the other hand in the paramagnetic phase the signal in c is weaker and reconstruction is possible only exploit-
ing finite size effects, at the price of observing an extensive number of samples. As discussed in39, the critical 
fraction M/N of samples necessary for reconstruction corresponds to the paramagnetic-spin glass transition of 
the direct problem.

Multiple patterns.  The P > 1 case is more difficult because of the presence of the term in Eq. (3) coming 
from the partition function. However, we argue (see Methods) that this term is effectively a (soft) orthogo-
nality constraint over inferred patterns. This observation allows us to design an inference algorithm accord-
ingly. First, let us construct a time evolution of the coupling matrix Jτij with its initial condition given by 
Jτ=0
ij = N−1

∑

a s
a
i s

a
j  . At each time step τ , we consider P′ TAP students trying to learn the teacher’s patterns 

independently. Namely, the magnetizations mµ
i =

〈

ξ
µ
i

〉

 for each student evolve according to Eq. (4) from a ran-
domly initialized configuration. To escape the (unstable) fixed point at m = 0 , the absolute value of the local 
magnetization is chosen to be in the interval [0.1, 1]. Upon convergence, we evaluate the P′ solutions with the 

(1)P(s) = Z−1 exp[−βHζ (s)],

(2)P(ξ |D ) = Z(ξ)−M exp
β
2N

∑

ij

∑M
a=1 s

a
i s

a
j ξ i ξ j ,

(3)L ({ξµ}µ=1,...,P |D ) = log P({ξµ}µ=1,...,P |D ) = β

2N

∑

ij

P
∑

µ=1

M
∑

a=1

sai s
a
j ξ

µ
i ξ

µ
j −M logZ({ξµi }µ=1,...,P).

(4)mt+1
i = tanh



β

N
�

j=1

Jijm
t
j −

αβ

1− β(1− qt)
mt

i



,
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score Sµ = ∑

ij

∑M
a=1 s

a
i s

a
j m

µ
i m

µ
j  . These scores characterize the quality of the TAP fixed points and we pick the 

one with the largest score. The corresponding magnetization selected by this criterion at time τ are denoted by 
mτ . This trick is closely reminiscent of the algorithm presented in28, where the iterative steps are performed by 
evaluating the likelihood gain obtained moving in different directions and choosing the one with the largest pay-
off. Finally, in order to learn the remaining contributions, we remove the rank-1 part associated to the retrieved 
state mτ from the coupling matrix. When the student knows the actual number of patterns, this correspond to 
the rule Jτ+1

ij = Jτij − γN−1mτ
i m

τ
j  , where γ = M/P (assuming that different states are uniformly sampled in the 

dataset). We repeat these steps until no further patterns are found.
We stress that our algorithm finds solutions correlated with the patterns without any prior information, i.e. 

we start iterating the TAP equations from a random initial configuration. This is a rather remarkable property in 
comparison to the method used in29, where BP equations were guided to converge to the fixed points associated 
with the patterns using a reinforcement term aligned with the magnetizations of the states. In Fig. 2 we compare 
the P teacher’s patterns with the P′ TAP fix points learned from data generated in the retrieval phase44. We clearly 
see that all the P patterns are successfully retrieved from the first P < P′ students. In addition, let us define two 
performance measures, the simplified likelihood
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Figure 1.   Overlap between the teacher’s pattern and pattern recovered by the student when using Eq. (4) with 
P = 1 , as a function of the number of samples M, at different temperatures. System size is N = 1000 . When 
β < 1 , there exists a critical value of M ∼ O(N) below which it is impossible to infer the pattern, whereas above 
only a finite set of samples is needed.

Figure 2.   Overlap between the best TAP solutions and the teacher’s patterns. The system size is N = 1000 , the 
teacher generates P = 20 patterns at β = 2 . Inference is done with P′ = 25 students observing only M = 200 
samples, i.e. 10 per state. At each iteration step τ = 1 . . . ,P′ , we pick the best TAP solution and we plot its 
overlap with all of the teacher’s patterns. We observe clearly that the students are able to retrieve all the patterns 
from the teacher.
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and the reconstruction error ǫ = [N(N − 1)/2]−1
√

∑

i<j(J
τ
ij − J∗ij )2/

∑

i<j(J
∗
ij )

2 , where J∗ denotes the teacher’s 
coupling matrix, and Jτ is the inferred matrix at time τ , Jτij = N−1

∑τ
t=1 m

t
im

t
j  . The simplified likelihood is 

defined by neglecting the partition function in Eq. (3). In Fig. 3 their behaviors are reported as a function of 
iteration time. As expected, ǫ decreases as the students learn the patterns but then increases when the students 
start to learn the remaining noise. Similarly, the simplified likelihood L̂ develops a kink at the point where 
students learn all the patterns, that can be used as a stopping condition of the algorithm. In Fig. 4 we study the 
behavior of ǫ for different values of the temperature. As a function of β , the system sweeps through different 
regions of the phase diagram. Data is generated with a sequential Glauber dynamics and states are equally sam-
pled. In Fig. 4, we show the behavior of the error computed using the criterion discussed above with the number 

(5)L̂ = 1

2N

∑

ij

P′
∑

µ=1

M
∑

a=1

sai s
a
j m

µ
i m

µ
j ,

Figure 3.   Evolution of the error ǫ and of the simplified Likelihood L̂ , as defined in the text, with the iteration 
of the algorithm. Different lines refer to different values of M = 100, 200, 500, 1000 at β = 2 , P = 20 , N = 1000 . 
The error decreases with M and it reaches zero for M = 1000 , although we observe that even with very few 
samples, the errors are very small and, as shown on Fig. 2 the patterns are perfectly recovered. The dependency 
of L̂ on M is negligible. L̂ is rescaled in order to fit in the figure.

Figure 4.   Average error as a function of M/P for a system of size N = 1000 with a number of patterns P = 10 
(top panel) and P = 30 (bottom panel). The reconstruction is done using P′ = 2P students. The error is 
computed stopping the algorithm with the criterion described in the text. Each point represent an average over 
100 independent trials. In the retrieval phase, the error goes to zero with M.
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of observations in different regions of the phase diagram. As expected, perfect reconstruction is obtained only 
in the retrieval phase.

Another approach to perform inference is using the equivalence between Hopfield model and RBM39,44,55–60. 
In fact, the likelihood Eq. (3) can be rewritten as

with Wµ
i =

√

β
N ξ

µ
i  , which defines a RBM with Nv = N binary visible units and Nh = P Gaussian hidden units. 

Following the standard practice61, the weights Wµ
i  are learned maximizing the log-likelihood using the Persistent 

Constrastive Divergence (PCD-10) algorithm62, with 10 Monte Carlo steps to estimate the part of the log-
likelihood derivative involving the partition function. Compared to existing methods19,21,23,24,26–28, the RBM is 
both time and space efficient as the number of parameters scales as NvNh rather than N2 . The number of hidden 
units Nh plays the role of P′ , thus we consider the general setting Nh ≥ P in the following. RBM learns a set of 
weights Jrij = β−1

∑

µ W
µ
i W

µ
j  that we can compare with the teacher coupling matrix. The error between Jrij and 

J∗ij decreases during learning but it never achieves the values found with TAP. In order to monitor learning, we 
study the pseudo-likelihood S32, i.e a proxy for the likelihood that can be easily computed (see Methods). In 
Fig. 5, we show the behavior of these quantities for a dataset generated by a teacher with P patterns and using an 
RBM with Nh = P′ > P hidden units. The minimum of ǫ is achieved when the pseudo-likelihood flattens. This 
happen when all of the relevant (P) modes of the data have been learned.

Unless learning starts in the vicinity of the teacher’s patterns, final RBM weights do not reproduce them, 
contrarily to the TAP-based algorithm discussed above. In fact, the Hopfield model is invariant under a rotation 
in the pattern space30 and the student RBM can learn, at most, the subspace spanned by teacher’s patterns. To 
prove it, we consider the Singular Value Decomposition (SVD) of the dataset, and the SVD of the weights. We 
denote by {σα} the singular values of the matrix Wµ

i  and by tα the error in reconstructing the singular vector of 
the data, indexed by α , using only the singular vectors of the weight matrix. In Fig. 5, we show the emergence 
of different modes during learning. When the singular values σα of the coupling matrix emerge, the error tα 
decreases. The first P principal modes of the dataset are well represented by the subspace spanned by the singular 
vectors of the weight matrix W.

Methods
Linear stability analysis of TAP and AMP in the paramagnetic state.  Here we present the linear 
stability analysis of TAP and AMP equations in the paramagnetic state. We will focus on the direct problem 
where Jij is constructed from M random patterns. While the complete analysis is possible for arbitrary α , we find 
it more instructive to focus on the limit α → 0 as it greatly simplifies the discussion. As will be shown below, our 
results are valid if |1− β| ∼ O(1) , which is larger than O(α).

From now on, we denote by TAP the simple iterative updating scheme discussed in the text, reported here 
for convenience

(6)P({Wµ
i }µ=1,...,P |D ) ∝

M
∏

a=1

Z−1(W)

∫

d�e−
∑

µ �
2
µ/2+

∑

i,µ W
µ
i s

a
i �µ ,

Figure 5.   Upper panel: Pseudo-likelihood S and error ǫ for M during learning. Data is produced by a teacher 
Hopfield model with N = 1000 , P = 10 , M = 1000 at β = 2 . Learning is done with an RBM with Nv = N 
visible units and Nh = 15 hidden units. Lower Panel: emergence of singular values σ during learning for the 
same dataset. P = 10 modes emerge. Inset: error tα for different modes at the beginning of learning (blue line) 
and at the end of learning (orange line).
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and by AMP the iterative scheme derived in44,

where mt
i = tanh(βHt

i ) , ut = β(1− qt) and Nqt = ∑

i(m
t
i )
2 . This time index setting naturally emerges from the 

expansion of the BP equations in the large connectivity limit43.
Let us first consider the linear stability of Eq. (7). Near the paramagnetic state Mi ∼ 0 , this equation may be 

expanded into

where the second term is neglected as it is of O(α) . Performing the coordinate change with the eigenvectors of 
Jij as its basis, one obtains

where � is an eigenvalue of Jij . This implies that the paramagnetic solution becomes unstable when β�max > 1 . 
The spectrum of coupling matrix follows the Marchenko–Pastur law44. Namely, P eigenvalues are 1+ O(

√
α) and 

their eigenvectors span the same space spanned from the set of patterns. The remaining N − P eigenvalues are 
zero. Thus we find that the critical temperature is Tc = 1+ O(

√
α) (the true value is Tc = 1/(1+√

α) , found 
expanding TAP equation beyond the α → 0 limit, which is identical to the result of replica theory44.

Similarly, AMP Eq. (8) can be expanded as follows:

Because of the �− 1 term, in the limit α → 0 , the N − P eigenvalues equal to zero give the largest O(1) con-
tribution to the instability of the paramagnetic fixed point. In particular, the modes associated with patterns, 
with eigenvalues 1+ O(

√
α) , give a vanishing contribution. From the infinite temperature limit, the first T where 

this equation becomes unstable is given by − β
1−β

= −1 , i.e. Tc = 1/2 . Nevertheless, this unstable direction is 
orthogonal to the patterns and the magnetization either converges to an unphysical state or never converge (see 
Fig. 6). The negative value of the leading eigenvalue for β ∈ [1/2, 1] leads to an oscillating behavior starting from 
the paramagnetic solution, as can be seen in the second plot in Fig. 6. Similar issues with parallel updating of the 
AMP equations were discussed in50, and they can be alleviated by updating spins sequentially and introducing a 
strong dumping. Nevertheless their sequential updating leads to a much slower algorithm, without showing any 
improvement in the quality of inference in comparison to the parallel updating scheme of Eq. (7).

(7)mt+1
i = tanh



β

N
�

j=1

Jijm
t
j −

αβ

1− β(1− qt)
mt

i





(8)Ht+1
i = 1

1− ut





�

j �=i

Jijm
t
j − utHt

i −
αut

1− ut−1
mt−1

i



,

(9)mt+1
i ≃ β

N
∑

j=1

Jijm
t
j + O(α)

(10)m̃t+1
�

≃ β�m̃t
�
,

(11)m̃t+1
�

= β

1− β

[

(�− 1)m̃t
�
− O(α)

]

.

Figure 6.   Trajectories of the N magnetizations mt
i in the updating schemes of TAP, Eq. (7), and AMP, Eq. (8), 

for three different temperatures at N = 1000 , P = 1 . Most of the trajectories are very similar, thus they are 
indistinguishable. The critical value is at β = 1 . The starting point is chosen at random with the absolute value 
of the local magnetization equal to one. In the first steps, both TAP and AMP destroy the initial condition and 
create very small magnetization values. Then, once close to the paramagnetic fixed point m = 0 , AMP eqs. 
escape from it for β > 0.5 while TAP eqs. do not until β > 1 . Moreover, when leaving the paramagnetic state, 
the direction chosen by AMP is completely random, while TAP moves towards the pattern.
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A different updating scheme of the TAP equations has been recently proposed by63. This approach does not 
require to consider the fully connected limit of the BP equations and it is suitable to be applied in systems with 
dense random coupling matrices. It is based on a dynamical mean field theory which allows to study the dynamics 
of iterative algorithms in the thermodynamic limit by averaging over the noise contained in the couplings. For 
the Hopfield model, the updating scheme turns out to be

where At = β/(1+ αut) and ut is the same quantity introduced in the AMP Eq. (8). It is possible to see that 
this updating scheme does not present the issues of the AMP algorithm by repeating the same α → 0 analysis 
presented above.

In Fig.  7, we compare the performances of these three algorithms for different system sizes. We 
define Pc as the probability to converge to one of the patterns of the system with overlap greater than 0.7 
when the initial condition is chosen at random. Sequential AMP were iterated with a damping term d, i.e. 
mt+1

i = (1− d) tanh βHt+1
i + dmt

i , and d = 0.95 . For the two parallel TAP equations, (Eqs. 7–13), the itera-
tion is stopped when the average difference between mt+1

i  and mt
i is smaller than 0.001. For the AMP sequential 

algorithm the iteration is stopped when the average between tanh βHt+1
i  and tanh βHt

i  is smaller than 0.001. In 
all the cases we observe that convergence to patterns is achieved in the retrieval phase. For small values of N, 
due to finite size effect, convergence regime extends in the metastable retrieval phase too.

The instability issue of the AMP equations presented above holds for the direct problem, but it can be extended 
also to the inverse, dual problem. In this last case, where Jij = N−1

∑M
a=1 s

a
i s

a
j  , if there is enough signal in the 

data and �max > 2 , inference is possible also with parallel AMP equations. Nevertheless the analysis shows that 
obtaining time indexes from BP does not necessarily lead to good algorithms. TAP, as well as BP, equations 
describe only fixed points of the associated free energy and, in principle, any updating scheme could be used to 
solve these equations in an iterative manner, as shown in63. The relevance of this observation for other problems 
requires further analysis and, given that the AMP convergence issues are usually mitigated by considering a 
sequential updating with a strong dumping, it would be interesting to study whether a similar improvements is 
achieved when iterating TAP equations with the naive time indexing sequentially and with a strong damping, 
in problems where their parallel updating was failing.

Posterior for P>1.  We discuss the role of the difficult term arising in the posterior distribution when P > 1 . 
We show that for the simple case P = 2 , it has a clear interpretation in terms of a constraint on the orthogonality 
of the inferred patterns. In fact, let us consider

and let us define S = {i : ξ1i = ξ 2i } , such that |S| = N(1+ q)/2 , where q is the mutual overlap between the two 
patterns, Nq = ∑

i ξ
1
i ξ

2
i  . The exponent in Eq. (14) reads

where we indicate with S the complement of set S. Using again the gauge transformation s′i = ξ 1i si , Eq. (15) 
leads to

where we indicate with ZN
cw,β the partition function of a ferromagnetic Curie–Weiss model at inverse temperature 

β . We observe that the interaction depends only on their mutual overlap. If we define φ = −N logZ , we obtain

where fcw(β) is the free energy of the Curie–Weiss model at inverse temperature β . It is easy to check that φ(q) 
is a convex function with a minimum in q = 0 . Thus the term −M logZ(ξ) in the posterior can be interpreted 
as a soft regularizer for patterns orthogonality.

Restricted Boltzmann machine.  A restricted Boltzmann machine (RBM) is a particular kind of Boltz-
mann machines in which units are divided in two layers, formed by visible {si} and hidden {�µ} units, and only 
interactions Wµ

i  between units of different layers are allowed, such that the proxy probability distribution reads

where EW (s, �) = −∑

i,µ W
µ
i si�µ , and Z({W}) is the partition function,

(12)mt+1
i = tanh

(

zti + Atm
t
i

)

(13)zti = At





�

j

Jijm
t
j −mt

i



+ α(1− qt)Atz
t−1
i

(14)Z({ξ1i , ξ2i }) =
∑

s

e
β
N

∑

ij(ξ
1
i ξ

1
j +ξ2i ξ

2
j )sisj ,

(15)Hξ (s) =
2β

N

∑

i∈S,j∈S
ξ 1i ξ

1
j sisj +

2β

N

∑

i∈S,j∈S
ξ 1i ξ

1
j sisj ,

(16)Z({ξ 1i , ξ2i }) = Z
N(1+q)/2
cw,β(1+q)Z

N(1−q)/2
cw,β(1−q),

(17)φ(q) = 1+ q

2
fcw(β(1+ q))+ 1− q
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For our purposes, P(�) denotes a generic distribution over hidden units, while visible units are ±1 binary 
variables. We indicate with Nv the number of visible units and with Nh the number of hidden units. RBM has 
the property that the two conditional probabilities, P(s|�, {W}) and P(�|s, {W}) , factorize over the visible (resp. 
hidden) units. These machines are used to learn weights such that the distribution over the visible units reproduce 
the distribution of the data. In other words

(19)Z({W}) =
∫ Nh

∏

µ=1

dP(�µ)
∑

v

e−EW (s,�).

(20)P(s|{W}) =
∫ Nh

∏

µ=1

dP(�µ)P(s, �|{W})

Figure 7.   Probability of converging to a pattern when iterating Eq. (7) (left), Eq. (8) (center), Eq. (13) (right), 
starting from a random initial condition in the direct problem. This probability is estimated running 1000 
independent experiments from different realizations of the patterns and different initial conditions and counting 
the number of times that the equations converged to one of the patterns of the system with overlap greater than 
0.7, in order to exclude mixture states. The sequential updating of the AMP equations is done with a dumping 
term equal to 0.95. The performance of all these algorithms is similar, with the second one being much slower. 
The initial absolute value of the local magnetizations are mostly irrelevant in the first two cases (and it is chosen 
to be 1), but needs to be chosen small at low temperatures in the third case (and it is chosen to be 0.1).
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should reproduce as close as possible PD(s) = M−1
∑M

a=1 δs,sa . Weights can be found minimizing the KL dis-
tance between the two distribution, which is equivalent to maximizing the likelihood 

∏M
a=1 P(s

a|{W}) or the 
log-likelihood

Optimal weights can be learned by gradient ascent:

where the first average, usually referred to as positive phase, is

and the second average, usually referred to as negative phase, is

The second one is known to be difficult and it can be computed with approximate methods. One way to esti-
mate it is to use a Monte Carlo (MC). Depending on the number of steps T of the MC Markov chain, this method 
is referred to as CD-T, where CD stands for Contrastive Divergence. In the text, we discuss results obtained 
with T = 10 . When the positive term is computed over a sub set (mini-batch) of the dataset, the direction indi-
cated by the gradient does not correspond to the correct one obtained considering the whole dataset. This trick 
introduces a source of randomness in the path to the solution, and the associate learning algorithm is called 
Stochastic Gradient ascent. In our experiments we use a mini-batch size equal to 100. Since mini-batch samples 
are independent, different parallel MC can be used. In our experiments we used 100 MC chains, one per mini-
batch sample. Their initial conditions can be chosen to be the considered samples, but this quickly results in over 
fitting the parameters, since the MC dynamics spend all the time in the phase space regions close to the samples. 
When the initial condition of the MC dynamics is chosen at random and we keep track of their positions through 
different batches and epochs, this method is called Persistent CD (PCD). Our results are obtained using PCD.

As stated above, the likelihood function cannot be easily computed. Thus, we introduce the pseudo-likelihood 
that, for a model with hidden units, is defined by S = ∑Nv

r=1 Sr , where

where the term inside the log is defined by

and it is equal to

where Na is a sample dependent normalization factor,

The Pseudo-likelihood is optimized by the same set of parameters {W} that optimize the likelihood. In order 
to show this property, we can take derivatives of S:

The definition

allows to write the first term of Eq. (29) as

(21)L = 1

M

M
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(
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µ
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µ
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µ
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µ
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The second term is given by the average over samples of

and similar manipulations on the second term lead to

In the infinite sampling limit,

In fact, it is easy to show that

and, on the other hand, that

Thus the gradient of the pseudo-likelihood S vanishes on the same set of parameters {W} that solve 
0 = ∂WL , and this is the reason the pseudo-likelihood can be used to control the learning state. In practice, the 
probability in Eq. (26), can be estimated after one step of Monte Carlo:

where � is sampled from the distribution P(�|sa, {W}).
Finally, we discuss the learning of the RBM compared to our TAP based algorithm. As mentioned in the text, 

unless learning starts in the vicinity of the teacher’s patterns, final RBM weights do not reproduce them. In fact, 
the Hopfield model is invariant under a rotation in the pattern space. The dataset D analyzed by the student 
could have been produced by another set of patterns {ζ̂ µ}µ=1,...,P given by ζ̂ µi = ∑P

ν=1 Oµ,νζ
ν
i  where O is an 

orthogonal matrix. This symmetry implies that the student RBM cannot learn exactly the teacher’s patterns. 
One could think that the singular vectors of W should learn at least the principal vectors of the data (that, given 
the spherical symmetry, are not necessarily aligned along the teacher’s patterns), as discussed in59. Nevertheless 
this is true only during the initial steps of learning, when couplings are small. This is reminiscent of the results 
discussed in30, where the posterior of the problem is analyzed in a perturbative expansion. At the first order, 
corresponding to the small couplings regime, the student’s patterns are aligned along the singular vectors of the 
data at zero order. Anyway, computing higher order corrections, this relation breaks down.

In the following we show that RBM is learning the subspace spanned by the singular vectors of the data. To 
prove it, we consider the Singular Value Decomposition SVD of the dataset, D = UD�DV

T
D , where, considering 

N < M , D is a N ×M matrix, UD is a orthogonal N × N matrix, �D is a N ×M matrix, with only N diagonal 
elements different from zero, and VD is a orthogonal M ×M matrix. D represent the matrix of the dataset D , 
where each column is a sample. Similarly, we consider the SVD of the weight matrix, WT = UW�WVT

W , where 
WT is Nv × Nh , UW is a Nv × Nv orthogonal matrix, �W is a Nv × Nh matrix, with Nh diagonal elements different 
from zero, and VW is a Nh × Nh orthogonal matrix. We consider Nv = N and we decompose all of the data modes 
u
(α),D
i = [UD]iα onto the subspace spanned by the first Nh singular vectors of the weights, u(µ),Wi = [UW ]iµ , 

µ = 1, . . . ,Nh:

where {�u(µ),W }µ=1,...,Nh
 are orthogonal vectors normalized to one. We measure the behavior of
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at the beginning and at the end of learning. This quantity measures the difference between the original vector 
and its projection onto the subspace spanned by the basis {�u(µ),W }µ=1,...Nh

 . The results of this analysis are found 
in the insets of Fig. 5, where we plot these quantities at the initial stage of learning and at the end.

Conclusions
In summary, we discussed a new method to solve inverse problems with a clusterized dataset. We analyzed the 
fully connected Hopfield model in a teacher–student scenario and proposed an inference method based on the 
TAP equations working directly on the posterior distribution, i.e. the dual problem. We discussed a retrieval 
algorithm based on the parallel updating of the TAP equations with a naive indexing, showing that in our case it 
gives good results. Contrarily to previous methods, our algorithm is able at retrieving patterns, besides couplings, 
because TAP equations allows to reduces the continuous symmetry under rotation to a simple symmetry under 
permutation over the pattern labels. Finally we compare these results with those obtained with RBM, exploit-
ing their analogies with the Hopfield model. RBM is a good candidate model to perform inference with many 
variables, a task that would require a much longer execution time to methods based on the optimization of the 
pseudo-likelihood of an associate pairwise Ising model. Their ability to perform inference tasks systematically, 
as well as their performance on inferring sparse models, will be addressed elsewhere.
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