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Abstract: Recently, application of high-pressure homogenization (HPH) treatments has been widely
studied to improve shelf life and rheological and functional properties of vegetable and fruit juices.
Another approach that has drawn the attention of researchers is the use of biocontrol cultures.
Nevertheless, no data on their possible combined effect on fruit juices shelf life and functionality
have been published yet. In this work, the microbial, organoleptic, and technological stability of
extremely perishable carrot juice and its functionality were monitored for 12 and 7 days (stored at
4 and 10 ◦C, respectively) upon HPH treatment alone or in combination with a fermentation step
using the biocontrol agent L. lactis LBG2. HPH treatment at 150 MPa for three passes followed by
fermentation with L. lactis LBG2 extended the microbiological shelf life of the products of at least
three and seven days when stored at 10 ◦C and 4 ◦C, respectively, compared to untreated or only
HPH-treated samples. Moreover, the combined treatments determined a higher stability of pH and
color values, and a better retention of β-carotene and lutein throughout the shelf-life period when
compared to unfermented samples. Eventually, use of combined HPH and LBG2 resulted in the
production of compounds having positive sensory impact on carrot juice.

Keywords: high-pressure homogenization; shelf life; biocontrol; safety; vegetable drink

1. Introduction

A fruit- and vegetable-rich diet has a positive impact on human health and wellbeing
due to the presence of functional and bioactive compounds, such as phenolic antioxidants,
carotenoids, vitamins, and flavonoids [1]. The World Health Organization recommends an
introduction of at least 400 g of fruit and vegetables per day in adults [2]. Therefore, their
consumption as juices, rather than fresh products, is moving in this direction [3].

The growing consumer interest in healthier food and drinks is projecting that the
global juice market will increase in the next years. Among vegetable-based products,
carrot juice is one of the most popular non-alcoholic beverages consumed in northern
Europe [4]. It is a natural source of antioxidants, such as α- and β-carotene, the precursors
of vitamin A and polyacetylene, with anti-tumor properties [4–7]. Because of its high pH
and high sugar content, spoiling and pathogenic microorganisms can easily grow, affecting
the shelf life and safety of the product [8,9]. For this reason, fresh carrot juice should be
consumed one–two days from production [10]. To extend its shelf life, thermal treatments
are commonly applied at the industrial level. However, other than being energetically
unsustainable, these treatments may result in undesirable biochemical and nutritional
changes, with negative impacts on their sensory properties (for example, pH, taste, and
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color) [11]. Another possibility is using chemical preservatives, however, this does not
always lead to satisfactory results and are not well accepted by consumers [12].

The need for more sustainable approaches has favored the development of non-
thermal technologies with the aim to preserve functional and sensorial characteristics of
products while guaranteeing their microbial stability [13–17]. Among them, high-pressure
homogenization (HPH) can significantly reduce both naturally occurring or intentionally
added microorganisms, improving the safety and shelf life of the products [16]. Moreover,
it induces physical matrix modifications (changes in pH, viscosity, and particle dimen-
sion) [18,19], increasing [20]—or not altering—the presence of functional compounds [21].
This is a very important aspect regarding food differentiation.

Other than physical treatments, addition of natural antimicrobials (essential oils) [22,23]
or biocontrol cultures [9,24] have also been proposed to replace chemical preservatives.
From an industrial point of view, use of lactic acid bacteria to ferment vegetable and non-
dairy beverages is gaining more and more interest [25,26]. In fact, fermentations that apply
tailored bacteria represent a fundamental tool to increase safety and shelf life, as well
as preserving and increasing the functionality and the sensorial properties of vegetable
drinks and juices [25,27–29]. Siroli et al. [9] described the potential of three nisin-producing
Lactococcus lactis strains (LBG2, 3LC39, and FBG1P) as a tool to stabilize fermented carrot
juice and soymilk from a microbiological point of view. In particular, strain LBG2, having
a rapid fermentation kinetic (pH reduction) and a high nisin production in carrot juice,
exerted a strong anti-listeria activity and improved the sensory profile of pre-heated carrot
juice. On the other hand, the bacteriocin nisin, the first authorized to be used as a natural
food preservative, is a natural antimicrobial with a wide range of actions [30,31]. While
numerous studies have shown the antimicrobial properties of nisin deliberately added in
vegetable juices, only a few of them have reported the use of biocontrol strains to produce
nisin in situ [9].

Since, to our knowledge, there are no studies exploring the combination of these two
sustainable approaches, the main objective of this study was to investigate the combined
effect of HPH and biocontrol culture (L. lactis LBG2) on carrot juice quality and stability.
The shelf life of the products obtained was evaluated at two different temperatures of
storage (4 and 10 ◦C). In particular, the growth kinetic of the indigenous microbes (total
mesophiles, yeasts, and coliforms) and the viability of LBG2 (when applied) were followed
over time during the storage period. Moreover, color, volatile molecule profiles, and
carotenoids were measured throughout the storage period of the carrot juice.

2. Materials and Methods
2.1. Carrot Juice

Carrot juice was prepared using fresh carrots, as described by Siroli et al. [9]. Briefly,
carrots were steeped in a solution containing 100 ppm of Sodium hypochlorite for 2 min
for sanitization [32]. Then, they were wiped up, sliced, and placed in a domestic extractor
(Russel Hobbs). The resulting extract was collected in a sterile flask. All the trials were
conducted using three biological replicates (n = 3).

2.2. Selection of the Appropriate High-Pressure Homogenization Treatment (HPH)

The carrot juice, prepared as reported above, was immediately subjected to HPH
treatment using a PANDA high-pressure homogenizer (GEA, Parma, Italy), able to reach
220 MPa, and provided with a C and a R-type valve and a thermal exchanger. The
valve assembly comprised a ceramic ball-type impact head, a stainless steel large inner
diameter impact ring, and a carbide passage head made of tungsten. The homogenizer
was previously washed with 1% NaOH water solution, hot water, and finally refrigerated
sterilized water. The test was carried out by setting two different juice inlet temperatures:
25 and 50 ◦C.

Two liters of product, at the two different temperatures, were then subjected to
different HPH treatments: 0.1 MPa and 150 MPa for 1, 3, and 5 passes. The HPH passes
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were carried out in the presence of a thermal exchanger to avoid temperature increase
caused by homogenization treatment. The samples subjected to the different treatments
were then collected in sterile containers and the total microbial load was determined
immediately after the treatment. Decimal dilutions were distributed in plate count agar
(PCA) plates (Oxoid, Milan, Italy) and colonies were counted after 48 h incubation at 30 ◦C.

2.3. Shelf-Life Assessment of Carrot Juice Considering the Combination of HPH Treatment and
Biocontrol Agent

In these trials, non-thermal treatments such as HPH and fermentation with a nisin-
producing Lactococcus lactis strain (LBG2) were combined to stabilize carrot juice. Sam-
ples were divided into three groups: (i) control; (ii) HPH; (iii) HPH plus LBG2. For the
carotenoid measurements, pasteurized (72 ◦C for 15 min) carrot juice was also considered.

2.3.1. HPH Treatment

Two liters of raw organic carrot juice was subjected to HPH treatment at 0.1 MPa
(used as control) or 150 MPa for 3 passes (selected based on the previous trial). All the
HPH treatments were performed according to the methodology reported above. The inlet
temperature of the juice was 25 ◦C and the HPH passes were carried out in the presence of
a thermal exchanger. The controls and treated samples were collected in sterilized glass
bottles prior to the shelf-life study.

2.3.2. Fermentation Agent

The biocontrol L. lactis LBG2 belonged to the Culture Collection of the Department of
Agricultural and Food Sciences, University of Bologna. This strain, isolated from cow milk,
is a nisin Z-producer [9]. The strain was also previously characterized for fermentative
potential in milk, soymilk, and carrot juice, and for nisin production, antimicrobial activity,
and modification of the volatile molecules of milk, soymilk, and carrot juice [9]. The strain
was preliminarily grown in M17 broth (Oxoid, Milan, Italy) for 24 h at 30 ◦C, then refreshed
two times in M17 broth for 24 h at 20 ◦C before the fermentation trials. The proper samples
were inoculated with the biocontrol at a concentration of 106 cfu/mL and then left to
ferment for 7 h at 30 ◦C prior to the shelf-life assessment.

2.4. Shelf-Life Assessment

All the samples were stored at two different temperatures, 4 and 10 ◦C, and followed
for 12 and 7 days, respectively. According to the temperature applied, aliquots were
collected over time (2, 6, 9, and 12 or 1, 2, 5, and 7 days, respectively) for microbiological,
sensorial, and chemical analyses.

2.5. Microbiological Analyses, pH, Nisin Concentration

Cell loads of yeasts, total coliforms, total mesophiles, and lattococci (or L. lactis LBG2)
were determined by plate counting on yeast peptone dextrose (YPD) (Oxoid, Milan, Italy),
violet red bile lactose agar (VRBA) (Oxoid, Milan, Italy), PCA, and M17, respectively.
Decimal dilutions of the samples, performed in Ringer solution [0.9% (w/v) NaCl], were
inoculated in Petri dishes incubated 48 h at 30 ◦C for YPD, M17, PCA, and 24 h at 37 ◦C
for VRBA. The pH was measured by using a pH-meter Basic 20 (Crison Instruments,
Barcelona, Spain).

Nisin activity determination was performed by the agar well diffusion method as
described by Siroli et al. [9].

2.6. Color Analysis

Color was measured by a Minolta® CR-400 colorimeter (Milan, Italy) using the CIELab
scale and Illuminant D65. The instrument was calibrated with a white tile (L* 98.03, a*
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−0.23, b* 2.05) before the measurements. Results were expressed as L*, a*, and b*. ∆E (total
color difference) was calculated according to the following Formula:

∆E =

√(
L∗ − L∗

0
)2

+
(
a∗ − a∗0

)2
+
(
b∗ − b∗0

)2 (1)

2.7. Volatile Molecule Profiles

The volatile molecule profiles were detected with GC/MS/SPME technique, as de-
scribed by Siroli et al. [9]. Briefly, the samples were analyzed immediately after the treat-
ments and after the different storage periods until reaching the shelf life. A CAR/PDMS,
75 µm fiber (SUPELCO, Bellafonte, PA, USA) was used to perform the solid-phase mi-
croextraction (SPME). The samples (5 mL) were placed in vials and incubated for 10 min at
45 ◦C. Then the fiber was exposed to the vial headspace for 30 min at 45 ◦C. The volatile
molecules adsorbed were desorbed in the gas chromatograph (GC) injector port in splitless
mode at 250 ◦C for 10 min. The headspace of the volatile compounds was analyzed using
Gas-Chromatography (GC) 6890N, Network GC System with mass spectrometry (MS)
5970 MSD (Agilent Hewlett–Packard, Geneva, Switzerland). The column used was J & W
CP-Wax 52 CB (50 m × 320 µm × 1.2 µm). The initial temperature was 40 ◦C for 1 min
and then was increased by 4.5 ◦C/min up to 65 ◦C. After that, the temperature increased
by 10 ◦C/min up to 230 ◦C and remained at this temperature for 17 min. Compounds
were identified by comparison based on a NIST 11 (National Institute of Standards and
Technology) database. Gas carrier was helium at 1.0 mL/min flow.

2.8. Carotenoid Content
2.8.1. Extraction of Carotenoids from Carrot Juice

Carotenoids were extracted from carrot juice samples according to Purkiewicz et al. [33],
with some modifications. Briefly, a volume of 0.5 mL of juice was transferred to a 10-mL
Teflon screw cap glass tube with 1.5 mL of n-hexane, 1.5 mL of acetone, and 5 mL of a 10%
(w/v) sodium chloride solution used to avoid the formation of an emulsion. The mixture
was then stirred on a vortex stirrer for 10 s and centrifuged at 662× g for 2 min. The
organic supernatant fraction was transferred to a second tube, and the extraction procedure
was repeated four times more on the residual phase with 1.5 mL of n-hexane each time.
The pooled organic extracts were washed with 2 mL of water, stirred for 10 s, and then
centrifuged at 662× g for 2 min. The separated hexane phase was moved to a 100-mL
flat bottom flask, dried under reduce pressure in a rotary evaporator (bath temperature:
25 ◦C), kept under a nitrogen flow for 30 s, dissolved in 3 mL of acetone, transferred
after a brief stirring in two 1.5-mL PP centrifuge tube, and kept at −18 ◦C until HPLC
analyses (up to three days). Solvents were of analytical grade and purchased from Merck
(Darmstadt, Germany).

2.8.2. Determination of Carotenoids by High-Performance Liquid
Chromatography (HPLC)

Analyses were carried out on a HPLC apparatus from Jasco (Tokyo, Japan), equipped
with two binary pumps (mod. PU-1580), a diode array UV-VIS detector (mod. MD-1510,
quartz flow cell, optical path: 10 mm), and an autosampler (mod. AS-2055 Plus). Data
were processed by the software ChromNAV (ver. 1.16.02) from Jasco. The solvent system
consisted of two mobile phases: (A) water, (B) acetone; both solvents purchased from
Merck were of chromatographic grade, filtered (0.45 µm), and degassed prior their use. The
gradient program was the following: 0–5 min, 35% A; 5–9 min, 35 to 10% A; 9–12 min, 10%
A; 12–14 min, 10 to 0% A; 14–17 min, 0% A; 17–19 min, 0 to 35% A; 19–30 min, 35% A as post
run (total method time: 30 min). The flow rate and the injection volume were 0.8 mL/min
and 5 µL, respectively. Chromatograms were acquired at 450 nm, whereas absorption
spectra were recorded from 400 to 650 nm. Compound separation was performed by a
Kinetex 2.6 µ C18 100A column (75 × 4.6 mm i.d., particle size: 2.6 µm) equipped with
a guard cartridge Gemini-NX (4.0 × 3 mm i.d.), both from Phenomenex (Torrance, CA,
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USA). Colum temperature was maintained at 30 ◦C throughout analyses. Before HPLC
determination, extracts were centrifuged at 15,000× g for 3 min at 10 ◦C and then filtered
in HPLC amber glass vials through RC syringe filters (diameter: 13 mm; pore dimension:
0.45 µm) from GVS Filter Technology (Indianapolis, IN, USA). Compound identification
was assessed comparing peak retention times with those of a standard compound (β-
carotene) and considering the results illustrated by Purkiewicz et al. [33]. External standard
mode was applied as a quantification method, constructing a β-carotene calibration curve
using a range between 0.00025–0.04909 mg/mL (eight calibration points, r > 0.99). Lutein
was quantified using β-carotene as a reference compound at the following concentration
levels: 0.00025–0.00491 mg/mL (five calibration points, r > 0.99). The limit of detection
(LOD) and the limit of quantification (LOQ) of the method for β-carotene were 0.00010 and
0.00023 mg/mL of juice, respectively.

2.9. Statistical Analysis

Microbial cell loads, color, and volatile profiles were analyzed using the one-way
ANOVA option of Statistica software (v. 8.0; StatSoft, Tulsa, OK, USA). The significance of
data obtained was evaluated using ANOVA followed by LSD test at p < 0.05. The volatile
molecule profiles were analyzed using a principal component analysis (PCA) performed
by Statistica software (v 8.0; StatSoft, Tulsa, OK, USA).

3. Results
3.1. Selection of the Appropriate High-Pressure Homogenization Treatment (HPH)

In a preliminary phase, the effectiveness of different hyperbaric treatments against the
microflora naturally present in carrot juice was evaluated in order to find the best condition
for reducing the naturally occurring microflora. In particular, the antimicrobial effect of
HPH treatments at 150 MPa was assessed on carrot juice considering two different inlet
temperatures (25 and 50 ◦C), and three different numbers of HPH passes (one, three, and
five). The control was represented by carrot juice subjected to a pressure treatment of
0.1 MPa for a single pass.

Table 1 shows the reduction of total mesophilic counts (TMC) immediately after the
different HPH treatments, expressed as ∆ log CFU/mL according to the homogenizing
treatment applied.

Table 1. Reduction of the total mesophilic count (TMC) expressed as ∆ log CFU/mL based on the
different HPH treatment applied (pressure, number of passes, inlet temperature). The initial load of
TMC was 5.60 log CFU/mL. Results are the mean of 3 biological repetitions (n = 3). Different letters
mean statistically different values (p < 0.05).

TMC Post Treat.

Pressure (MPa) N◦ Passes Inlet T◦ (◦C) ∆ log CFU/mL

0.1 1 25 0.03 ± 0.29 a

150 1 25 1.04 ± 0.29 b

150 3 25 1.95 ± 0.07 c

150 5 25 2.21 ± 0.77 c

0.1 1 50 0.50 ± 0.15 a

150 1 50 1.67 ± 0.16 c

150 3 50 2.08 ± 0.64 c

150 5 50 2.38 ± 0.85 c

The data obtained showed that the antimicrobial effect of the inlet temperature was
limited. In fact, for the same pressures applied the effect of the different inlet temperatures
(25 or 50 ◦C) was significant different only when one pass was applied, while no differences
were observed with more passes. As expected, the application of 0.1 MPa (atmospheric
pressure, the control) did not reduce the microbial load. In contrast, a reduction of more
than a logarithmic cycle was observed after one pass at 150 MPa, despite the inlet tem-
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perature used. Increasing the number of passes to 150 MPa resulted in an additive effect
on the observed microbial load reduction. In fact, three passes at 150 MPa led to a TMC
reduction ranging between 1.95 and 2.08 log CFU/mL, about one logarithmic cycle higher
than the cell load reduction observed with a single pass. An increase of the microbial
deactivation was also observed with the application of five passes at 150 MPa. However,
the increase in microbial load reduction was not significantly different from the three pass
treatment. In fact, it ranged between 0.26 and 0.30 logarithmic cycles, regardless of the inlet
temperature considered.

Based on these results, three passes of HPH treatment at 150 MPa with an inlet temper-
ature of 25 ◦C was selected as the optimal one to be combined with the use of L. lactis LBG2
for carrot juice stabilization. In fact, a proper reduction of natural microflora is necessary
for subsequent LBG2 fermentation to avoid the growth of spoiling microorganisms.

3.2. Samples Stored at 4 and 10 ◦C

The shelf life of the obtained carrot juices, along with their chemical and functional
stability, was then studied at 4 and 10 ◦C to simulate refrigerated and unfavorable storage
conditions, respectively. The samples considered were control (not treated carrot juice),
HPH (carrot juice subjected to HPH treatment at 150 MPa), and HPH plus LBG2 (carrot
juice subjected to HPH treatment at 150 MPa followed by fermentation by L. lactis LBG2).

3.2.1. pH

Fresh carrot juice had an initial pH of 6.58, and this value was not significantly
modified upon HPH. After HPH, part of the sample was inoculated with LBG2 (initial
concentration: 6.0 log CFU/mL) and left to ferment for 7 h, allowing L. lactis growth,
nisin production, and juice acidification. After fermentation, these samples contained
9.5 log CFU/mL of LBG2, around 13 mg/L of nisin (data not shown), and they had a final
pH of 4.68. During storage at 4 ◦C for 12 days, the pH was measured over time (Figure 1).
HPH and HPH + LBG2-treated samples showed a stable pH, with minor fluctuation over
time (final pH 6.7 and 4.4, respectively). On the contrary, control samples had a pH that
decreased from day six, reaching a value of 5.5 on day 12.
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Figure 1. pH of treated and untreated carrot juice stored at 4 ◦C and followed for 12 days. Control:
not treated; HPH: carrot juice subjected to HPH treatment; HPH + LBG2: carrot juice subjected to
HPH and then fermented with the biocontrol agent L. lactis LBG2. Different letters mean statistically
significant differences within a treatment (p < 0.05). Results are the mean of 3 biological repetitions
(n = 3).
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For samples stored at 10 ◦C, pH was followed for seven days (Figure 2). The low pH
(4.7) of the HPH + LBG2 samples remained quite constant over time, reaching pH 4.2 after
seven days. On the other hand, the control and HPH-treated sample showed a progressive
pH reduction after two days, stabilizing at 4.1 after seven days.
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not treated; HPH: carrot juice subjected to HPH treatment; HPH + LBG2: carrot juice subjected to
HPH and then fermented with the biocontrol agent L. lactis LBG2. Different letters mean statistically
significant differences within a treatment (p < 0.05). Results are the mean of 3 biological repetitions
(n = 3).

Regarding the nisin concentration, the presence of the bacteriocin was not observed in
control and HPH-treated samples (data not shown). In contrast, samples inoculated with
LBG2 contained 13 mg/L of nisin after fermentation. This value showed a progressive
decrease over time, but it never reached concentration below 4 mg/L, independent from
the sampling time and storage temperature applied (data not shown).

3.2.2. Microbiological Analyses

Fresh carrot juice was characterized by an indigenous population of 5.1 log CFU/mL
of TMC, 3.4 log CFU/mL coliforms, and 3.8 log CFU/mL of yeasts. The HPH treatment
determined an immediate reduction of about 1.6, 1.3, and 2.1 log CFU/mL for TMC, yeasts,
and total coliforms, respectively, reducing the initial microbial load as observed during
the preliminary tests. The antimicrobial potential of the fermented samples was observed
during the storage period. The shelf life of control samples stored at 4 ◦C was less than
six days. In fact, at this time point TCM values exceeded 6 log CFU/mL (Table 2). On the
contrary, HPH samples that started with a lower TMC reached 5.6 log CFU/mL only after
nine days. The addition of the biocontrol on top of the HPH treatment kept TMC stable
below 4.4 log CFU/mL during the entire 12 days. Storage at 10 ◦C allowed an increase
of TCM up to 6.4 and 9.0 log CFU/mL after two and five days, respectively, in control
samples. Those subjected to HPH showed similar TMC loads only after five and seven
days, respectively. On the other hand, samples treated with HPH and fermented with
LBG2 did not show an increase in TMC and remained below 4 log CFU/mL until the end
of the trial.
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Table 2. Total mesophilic counts (TMC) (log cfu/mL) on treated (HPH and HPH + LBG2) and untreated (Control) carrot
juice samples stored at 4 ◦C for 12 days and 10 ◦C for 7 days. Different letters mean statistically significant differences
within the same time point (p < 0.05). Results are the mean of 3 biological repetitions (n = 3).

Storage at 4 ◦C Storage at 10 ◦C

0 2 6 9 12 0 1 2 5 7

Control 5.1 ± 0.2 a 4.6 ± 0.2 a 6.7 ± 0.4 a 7.7 ± 0.2 a - 5.1 ± 0.2 a 5.7 ± 0.4 a 6.3 ± 0.2 a 9.0 ± 0.2 a -
HPH 3.6 ± 0.2 b 3.9 ± 0.1 b 3.5 ± 0.1 b 5.6 ± 0.3 b 7.2 ± 0.2 a 3.6 ± 0.2 b 3.9 ± 0.2 b 4.7 ± 0.2 b 6.4 ± 0.8 b 9.1 ± 0.5 a

HPH +
LBG2 3.5 ± 0.1 b 3.7 ± 0.1 b 3.8 ± 0.0 b 3.7 ± 0.1 c 4.4 ± 0.2 b 3.5 ± 0.1 b 3.9 ± 0.2 b 3.7 ± 0.2 c 3.8 ± 0.4 c 3.9 ± 0.1 b

Total coliforms in control samples stored at 4 ◦C were stable over time (ranging
between 3.4 and 4.1 log CFU/mL), while an initial reduction ranging between 1.8 and
2.5 log CFU/mL immediately after HPH was observed in HPH and HPH-LBG2 samples.
During the storage at 4 ◦C total coliforms reached values below the detection limit after
six days of storage in all the considered samples (data not shown). In control samples
stored at 10 ◦C, total coliforms remained stable over time (Table 3). However, in this case,
although HPH determined a reduction of total coliforms, their concentration increased
up to 2.0 log CFU/mL after five days. The fermentation with LBG2 on top of the HPH
treatment avoided this increase, maintaining total coliforms below 1 log CFU/mL after
two days and maintained this parameter for the whole period of storage.

Table 3. Total coliforms (log CFU/mL) on treated (HPH and HPH + LBG2) and untreated (Con-
trol) carrot juice samples stored at 10 ◦C for 7 days. Different letters mean statistically significant
differences within the same time point (p < 0.05). Results are the mean of 3 biological repetitions
(n = 3).

Storage at 10 ◦C

0 1 2 5 7

Control 3.4 ± 0.1 a 4.1 ± 0.1 a 3.4 ± 0.1 a 3.7 ± 0.1 a -
HPH 0.9 ± 0.1 c 1.8 ± 0.2 b 1.9 ± 0.1 b 2.0 ± 0.1 b 1.9 ± 0.2 a

HPH + LBG2 1.6 ± 0.1 b 0.9 ± 0.2 c 0.8 ± 0.1 c 0.9 ± 0.1 c 1.1 ± 0.1 b

Yeasts were around 3.8 log CFU/mL in untreated samples and their load increased
up to 4.5 log CFU/mL after nine days of storage at 4 ◦C. Application of HPH treatment
reduced yeast counts to 2.5 log CFU/mL. However, only the combination of HPH and
LBG2 was able to keep yeasts below 4 log CFU/mL for 12 days when the samples were
stored at 4 ◦C (Table 4). Storage at 10 ◦C favored the growth of yeasts in untreated samples
to 4.4 and 6.1 log CFU/mL on day two and five, respectively. Since the latter value was
already above the acceptable limit of yeast in juices, no counts were performed on day
seven. On the contrary, yeasts never exceeded the cell load of 4 log CFU/mL in treated
samples (both HPH and HPH + LBG2) during the time of storage considered.

Table 4. Yeasts (log CFU/mL) on treated (HPH and HPH + LBG2) and untreated (Control) carrot juice samples stored at 4
and 10 ◦C for 12 and 7 days, respectively. Different letters mean statistically significant differences within the same time
point (p < 0.05). Results are the mean of 3 biological repetitions (n = 3).

Storage at 4 ◦C Storage at 10 ◦C

0 2 6 9 12 0 1 2 5 7

Control 3.8 ± 0.3 a 4.4 ± 0.2 a 4.3 ± 0.5 a 4.5 ± 0.1 a - 3.8 ± 0.3 a 4.0 ± 0.1 a 4.4 ± 0.2 a 6.1 ± 0.1 a -
HPH 2.5 ± 0.2 b 3.8 ± 0.2 b 2.9 ± 0.2 b 4.1 ± 0.2 ab 4.5 ± 0.2 a 2.5 ± 0.2 b 3.0 ± 0.2 b 3.7 ± 0.2 b 3.9 ± 0.3 b 3.5 ± 0.2 a

HPH +
LBG2 2.5 ± 0.2 b 3.1 ± 0.1 c 3.3 ± 0.1 b 3.8 ± 0.1 b 3.9 ± 0.1 b 2.5 ± 0.2 b 2.9 ± 0.2 b 3.5 ± 0.1 b 3.7 ± 0.2 b 3.6 ± 0.2 a
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Independently from the storage temperature of 4 and 10 ◦C, the biocontrol agent LBG2
maintained a constant cell load, around 9.0 log CFU/mL, for the whole period of storage
(data not shown).

3.2.3. Color Analyses

Lightness (L*) and chromatic parameters (a*, b*) of treated and untreated carrot juices
were measured and compared with those of untreated samples (Table 5). Immediately after
production, HPH and HPH + LBG2-treated carrot juices showed a reduction of luminosity
L* (control 50.6, HPH 46.5, HPH + LBG2 47.9). However, in the fermented product this
decrease was not significant. Moreover, both the treated samples showed an increase of
chromatic indexes (a* control 14.8, average treated 18.6; b* control 38.8, average treated
45.8). In particular, a* and b* were higher in HPH + LBG2 (20.1 and 47.9, respectively)
than HPH alone (17.2 and 43.7, respectively). During storage at 4 ◦C for 12 days, L*
decreased in control samples while it remained stable in HPH and HPH + LBG2 samples.
Even a* stayed constant in treated samples while it increased in control. On the contrary,
b* values decreased in almost all samples considered. Overall, HPH + LBG2 treatment
maintained the three parameters with the highest scores even after 12 days. During the
storage at 10 ◦C, L* and a* were not significantly affected by the storage time, while b*
decreased in the treated samples, reaching similar values as the control after seven days.
The total color difference (∆E*ab) values between fresh juice and HPH or HPH plus LBG2,
immediately after the treatments, were 6.8 and 5.3 CIELAB units, respectively. However,
∆E*ab increased mainly in control samples over time (7.6 CIELAB units), compared with
treated samples (around 4.8 CIELAB units) at the end of storage.

Table 5. Lightness (L*) and chromatic parameters (a*, b*) measured in treated and untreated carrot juice using a tristimulus
colorimeter. All the samples were stored at 4 or 10 ◦C and followed over time for 12 and 7 days, respectively. Control: not
treated; HPH: carrot juice subjected to HPH treatment; HPH + LBG2: carrot juice subjected to HPH and then fermented
with the biocontrol agent L. lactis LBG2. Different letters mean statistically significant differences within the same time point
(p < 0.05). If no letters are added, no significant differences within a time point were observed. Results are the mean of 3
biological repetitions (n = 3).

Days of Storage at 4 ◦C Days of Storage at 10 ◦C

0 2 6 9 12 0 1 2 5 7

L* Control 50.6 ± 2.5 a 48.1 ± 2.3 ab 49.8 ± 0.5 a 49.0 ± 1.6 a 45.5 ± 0.2 a 50.5 ± 2.5 a 50.3 ± 1.3 49.6 ± 3.0 ab 49.5 ± 0.1 a -
HPH 46.5 ± 0.8 b 46.7 ± 0.6 a 46.6 ± 2.2 b 45.5 ± 0.3 b 45.1 ± 0.3 a 46.5 ± 0.8 b 48.7 ± 0.6 47.9 ± 2.1 a 44.8 ± 0.1 b 47.7 ± 2.4
HPH

+
LBG2

47.9 ± 0.6 ab 49.6 ± 0.5 b 48.7 ± 0.5 ab 47.8 ± 0.2 a 49.4 ± 0.7 b 47.9 ± 0.6 ab 49.3 ± 1.2 51.5 ± 0.1 b 44.7 ± 0.1 b 45.9 ± 1.0

a* Control 14.8 ± 3.2 a 16.7 ± 2.3 16.8 ± 0.4 a 17.3 ± 1.2 a 17.1 ± 0.5 a 14.8 ± 3.2 a 15.6 ± 1.4 a 15.6 ± 2.4 16.7 ± 2.1 a -
HPH 17.2 ± 0.7 b 16.7 ± 0.2 15.3 ± 1.9 a 16.8 ± 0.1 a 16.1 ± 0.4 b 17.2 ± 0.7 b 13.9 ± 1.0 a 14.7 ± 2.6 17.9 ± 0.1 a 18.4 ± 0.2 a

HPH
+

LBG2
20.1 ± 0.4 c 17.7 ± 0.8 21.3 ± 0.4 b 21.9 ± 0.1 b 21.2 ± 1.0 c 20.1 ± 0.4 c 18.6 ± 2.6 b 13.5 ± 0.1 22.7 ± 0.1b 21.6 ± 0.5 b

b* Control 38.8 ± 3.0 a 37.3 ± 1.1 a 39.2 ± 0.1 a 37.2 ± 1.0 a 33.7 ± 1.1 a 38.8 ± 3.0 a 38.9 ± 1.3 38.9 ± 1.2 a 39.2 ± 2.1 a -
HPH 43.7 ± 2.4 b 42.5 ± 0.9 b 40.7 ± 0.6 b 40.0 ± 0.6 b 39.2 ± 0.5 b 43.7 ± 2.4 b 41.8 ± 1.4 41.6 ± 2.7 a 41.9 ± 0.1 a 38.8 ± 3.4
HPH

+
LBG2

47.9 ± 0.9 c 43.2 ± 1.4 b 43.4 ± 0.7 c 43.1 ± 0.5 c 43.5 ± 0.6 c 47.9 ± 0.9 c 43.1 ± 3.4 34.9 ± 0.0 b 43.1 ± 0.1 b 40.9 ± 0.5

3.2.4. Influence of HPH and HPH Combined with LBG2 on the Stability of Carotenoids
and Profile Changes

Data on the carotenoids measured in the different samples are reported in Figure 3.
The total carotenoids quantified (β-carotene + lutein) in fresh carrot juice were 121.5 mg/L
of juice, which is in line with the range (30–300 mg/L) specified by AIJN. Untreated carrot
juice showed a reduction of β-carotene and lutein over time, mainly after six–seven days,
both at 4 and 10 ◦C. Application of HPH determined an instant reduction of β-carotene,
from 118 to 100 mg/L, and lutein, from 3.5 to 3 mg/L. Storage at 4 ◦C did not further
impact the level of β-carotene while it reduced lutein to 1.8 mg/L after six days. Storage at
10 ◦C for seven days instead reduced β-carotene and lutein to 85 and 1.3 mg/L, respectively.
Interestingly, a combination of HPH with LBG2 fermentation showed a positive effect on
both β-carotene and lutein concentration. In fact, their initial concentration was similar
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to that reported for fresh juice. Moreover, their decay profiles were significantly lower
than those observed for HPH alone. After the storage period, both at 4 and 10 ◦C, the final
levels of the two compounds were not significantly different from untreated samples. For
this carotenoid quantification, a thermal-treated carrot juice was also considered. While
the thermal treatment did not impact the initial concentration of β-carotene, it affected the
levels of lutein. Their evolution over time at 4 and 10 ◦C followed the same trend observed
for HPH-treated samples, reaching similar values at the end of the storage.

Foods 2021, 10, x FOR PEER REVIEW 10 of 19 
 

 

levels of lutein. Their evolution over time at 4 and 10 °C followed the same trend observed 
for HPH-treated samples, reaching similar values at the end of the storage. 

  

  

Figure 3. β-carotene (A,B) and lutein content (C,D) in carrot beverages over time during storage at 
4 (A,C) or 10 °C (B,D). Fresh carrot juice (blue) was treated with high-pressure homogenization 
(HPH) (orange), HPH and subsequent fermentation with LBG2 (gray), thermal treatment (yellow). 
Control is reported in blue. Results are the mean of 3 biological replicates (n = 3). 

3.2.5. Volatile Molecule Profiles 
The analysis of the volatile compounds of carrot juices immediately after their 

productions allowed us to identify around 85 molecules belonging to different classes of 
compounds (Table S1), which can provide interesting information about relative changes 
in aroma composition. Data are expressed as percentage of the peak area of each 
compound with respect to the total area (which are reported in the tables). 

As reported by Siroli et al. [9], the most abundant compounds belonged to terpenes 
and terpenoids (mainly Caryophyllene, γ-Terpinene, and Terpinolene), esters, and 
ketones (Table 7). Compared to untreated samples, HPH samples showed a higher 
abundance of terpenes, terpenoids, and acids (acetic acid) immediately after the 
treatment. On the other hand, samples that went through the double action of HPH and 
LBG2 fermentation had a higher relative abundance of alcohols (i.e., Terpinen-4-ol) and 
ketones (diacetyl, 2,6-dimethyl-4-heptanone). Interesting, the relative abundance of 
myristicin was lower in samples when HPH and LBG2 were combined (Table S1.). 

The volatile molecule profiles of the samples stored at 4 and 10 °C were determined 
only on samples collected within their shelf-life period, as described in the previous 
paragraph. 

Compared with the original product, the storage of the control samples at 4 °C within 
six days (shelf-life period) showed an increase of the relative abundance of aldehydes, 
alcohols, and terpenes, with a decrease in ketones. HPH-treated juices were characterized 
by a higher abundance of alcohols, and the same modification was observed for HPH + 
LBG2-treated samples where they were accompanied by an increase in terpenes and 
aldehydes with a reduction in ketones. This trend was also observed during the following 
days of storage for the treated samples. Even the storage of the control samples at 10 °C 
for two days (shelf-life period) showed an increase of the relative abundance of alcohols 

Figure 3. β-carotene (A,B) and lutein content (C,D) in carrot beverages over time during storage at 4
(A,C) or 10 ◦C (B,D). Fresh carrot juice (blue) was treated with high-pressure homogenization (HPH)
(orange), HPH and subsequent fermentation with LBG2 (gray), thermal treatment (yellow). Control
is reported in blue. Results are the mean of 3 biological replicates (n = 3).

3.2.5. Volatile Molecule Profiles

The analysis of the volatile compounds of carrot juices immediately after their pro-
ductions allowed us to identify around 85 molecules belonging to different classes of
compounds (Table S1), which can provide interesting information about relative changes in
aroma composition. Data are expressed as percentage of the peak area of each compound
with respect to the total area (which are reported in the tables).

As reported by Siroli et al. [9], the most abundant compounds belonged to terpenes
and terpenoids (mainly Caryophyllene, γ-Terpinene, and Terpinolene), esters, and ketones
(Table 6). Compared to untreated samples, HPH samples showed a higher abundance
of terpenes, terpenoids, and acids (acetic acid) immediately after the treatment. On the
other hand, samples that went through the double action of HPH and LBG2 fermentation
had a higher relative abundance of alcohols (i.e., Terpinen-4-ol) and ketones (diacetyl,
2,6-dimethyl-4-heptanone). Interesting, the relative abundance of myristicin was lower in
samples when HPH and LBG2 were combined (Table S1).
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Table 6. GC/MS/SPME profiles (expressed as relative abundance) of carrot juices immediately after production and during
their storage at 4 and 10 ◦C. Samples were treated with high pressure homogenization (HPH, 150 MPa × 3 passes) or HPH
combined with L. lactis LBG2 (L) fermentation. For a control (CTRL), a sample that passed through 0.1 MPa was used.
Analyses were performed only on samples collected within their shelf-life period (NT, 6 days; HPH, 9 days; HPH + LBG2,
12 days for samples stored at 4 ◦C or NT, 2 days; HPH, 5 days; HPH + LBG2, 7 days, for samples stored at 10 ◦C). Results
are the mean of 3 biological repetitions (n = 3).

Storage at 4 ◦C Storage at 10 ◦C

Time (Days) 0 6 9 12 2 5 7

Molecules CTRL 1 HPH HPH +
LBG2 CTRL 1 HPH HPH +

LBG2 HPH HPH +
LBG2

HPH +
LBG2 CTRL HPH HPH +

LBG2 HPH HPH +
LBG2

HPH +
LBG2

Aldehydes 0.4 1.0 0.9 0.9 0.9 1.7 1.0 1.5 1.3 0.8 0.7 1.3 0.8 1.4 1.7
Ketones 11.0 5.5 14.8 5.4 2.0 6.1 2.4 3.8 4.8 11.0 6.8 6.6 0.8 4.9 2.9
Alcohols 0.7 0.7 2.1 2.3 2.6 4.1 1.9 4.9 5.0 1.7 0.6 4.3 0.9 4.1 5.5

Acids 0.0 0.3 0.4 0.0 0.2 0.4 0.2 0.3 0.3 0.1 0.1 0.3 0.0 0.2 0.4
Esters 9.8 5.3 5.5 7.3 4.3 4.2 4.4 4.5 4.9 7.6 4.1 5.1 5.0 4.9 4.7

Terpenes and
Terpenoids 73.3 84.5 71.7 79.4 84.7 80.6 85.0 81.4 79.5 75.0 84.9 74.4 89.6 80.6 80.9

Others 2.4 1.3 1.0 1.8 1.6 1.1 1.7 1.1 1.2 1.9 1.0 1.1 1.1 1.1 1.3
Total area 3 17,500 32,800 17,600 21,400 22,500 28,000 21,700 26,300 23,000 18,600 26,800 22,400 18,900 22,600 24,400

Data are the mean of three different samples. The variability coefficient ranged between 5% and 7%. (1) Sample treated at 0.1 MPa.
(2) Values equal to 0 are under detection limit. 3. Arbitrary units (×100,000).

The volatile molecule profiles of the samples stored at 4 and 10 ◦C were determined only
on samples collected within their shelf-life period, as described in the previous paragraph.

Compared with the original product, the storage of the control samples at 4 ◦C within
six days (shelf-life period) showed an increase of the relative abundance of aldehydes,
alcohols, and terpenes, with a decrease in ketones. HPH-treated juices were characterized
by a higher abundance of alcohols, and the same modification was observed for HPH
+ LBG2-treated samples where they were accompanied by an increase in terpenes and
aldehydes with a reduction in ketones. This trend was also observed during the following
days of storage for the treated samples. Even the storage of the control samples at 10 ◦C for
two days (shelf-life period) showed an increase of the relative abundance of alcohols and
terpenes, while HPH samples were characterized by a higher abundance of ketones. On
the other hand, HPH + LBG2 samples had a higher abundance of terpenes and alcohols
with a reduction in ketones. The main group of compounds remained similar during the
storage except ketones decreased over time in both treated samples.

To better highlight the effects of the different treatments, GC/MS/SPME data, imme-
diately after production and after storage at 4 ◦C, were analyzed by principal component
analysis (PCA). The projection of the samples is reported in Figure 4a where PC1 and
PC2 can explain around the 65% of the total variance among the samples. The first clus-
ter included all the samples immediately after production (T0). The second cluster was
represented by HPH-treated samples at six and nine days of storage. In group 3, all
the HPH + LBG2 samples clustered together, showing no major differences within the
12 days of shelf life. Figure 4b shows the molecules responsible for the cluster of the
samples. Among the molecules characterizing HPH + LBG2 there are diacetyl, β-Terpineol,
β-farnesene, and Terpinen-4-ol, while HPH-treated samples were mainly characterized by
ρ-cymene, 1-octen-3-ol, β-pinene. Moreover, it was confirmed that the sequential action
of HPH and LBG2 determined a constant lower abundance of myristicin. Eventually,
control samples were characterized by a higher relative abundance of ethanol after six
days of storage. This increase was also observed in HPH-treated samples but only after
nine days, in line with the growth of possible spoilage yeasts, as reported above. On the
contrary, during the 12 days of storage no increase in ethanol abundance was observed in
HPH + LBG2 samples.
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Figure 4. Projection on the factor plane (1 × 2) of carrot juice samples (a) and the variables (b) when
stored at 12 ◦C up to the sample shelf life (NT, 6 days; HPH, 9 days; HPH + LBG2, 12 days). NT is the
control not treated; HPH: carrot juice subjected to HPH treatment; HPH + LBG2: carrot juice subjected
to HPH and then fermented with the biocontrol agent L. lactis LBG2. For better understanding, only
the variables discussed in the text were kept in (b).

The same analysis was also performed with samples stored at 10 ◦C (Figure 5a). PC1
and PC2 can explain around the 65% of the total variance among the samples. The first
cluster included all the samples immediately after production (T0) and the samples at
T2 except HPH + LBG2. The second cluster was represented by HPH + LBG2 samples
at day two, five, and seven. Figure 5b shows the molecules responsible for the cluster
of the samples stored at 10 ◦C. Diacetyl, β-Terpineol, β-farnesene, and Terpinen-4-ol
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were again some of the molecules characterizing HPH + LBG2 samples over time, while
ethanol and aldehydes (octanal and heptanal) characterized untreated and HPH-treated
samples, respectively.
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Figure 5. Projection on the factor plane (1 × 2) of carrot juice samples (a) and their variables (b)
when stored at 10 ◦C up to the sample shelf life (NT, 2 days; HPH, 5 days; HPH + LBG2, 7 days).
NT is the control: not treated; HPH: carrot juice subjected to HPH treatment; HPH + LBG2: carrot
juice subjected to HPH and then fermented with the biocontrol agent L. lactis LBG2. For better
understanding, only the variables discussed in the text were kept in (b).
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4. Discussion

Over the past years, application of the non-thermal treatment HPH has been studied
to improve shelf life and organoleptic and functional properties of vegetable and fruit
juices [8,19,22,34,35]. Another approach that has drawn the attention of researchers is the
use of natural antimicrobials (such as essential oils or bacteriocins) [22,23] or biocontrol
cultures [9,24]. Nevertheless, no data on their possible combined effect on fruit juice shelf
life and functionality have been published yet. In this work, the microbial stability of
extremely perishable carrot juice and its functionality were monitored for 12 and 7 days
(stored at 4 and 10 ◦C, respectively) upon HPH treatment alone or in combination with a
fermentation step with the biocontrol agent L. lactis LBG2.

As already demonstrated in many publications [17,34–36], HPH treatment at 150 MPa
reduces the naturally occurring microflora present in vegetable juice. In this study, a
reduction ranging between 1.0 and 2.4 log cycles was observed for TMC depending on the
number of HPH passes and inlet temperature of the treated juice. For instance, Patrignani
et al. [16] showed a decrease of yeast of about 2.0 log CFU/mL in kiwi juice following
an HPH treatment at 200 MPa for two passes. Moreover, Patrignani et al. [22] showed a
reduction of three log cycles following an HPH treatment at 200 MPa × two passes on apple
juice deliberately inoculated with Saccharomyces cerevisiae at a level of 4.8 log CFU/mL.
The HPH potential to inactivate microorganisms depends on both internal (chemical-
physical characteristics of the matrix and microbial sensitivity) and external factors (HPH
operational procedure) [17,37,38]. Among the external factors, pressure degree and number
of passes play an important role as much as the temperature generated during the dynamic
pressure applied. In fact, it is estimated that the sample is subjected to an increase of around
2 ◦C/10 MPa during homogenization. Although for short treatment periods temperature
increases were not observed [39,40], in the present work a thermal exchanger was applied
to maintain temperature at 25 ◦C. For what concerns the number of passes through HPH at
150 MPa, the data obtained showed an additive antimicrobial effect when increasing the
number of HPH passes applied but without linearity in terms of reduction of microbial load.
Literature data concerning the additive effect of the number of HPH passes on microbial
deactivation are contradictory. Some authors report a limited microbial deactivation
following multiple HPH passes and have attributed this trend to the physiological diversity
of microbial populations and the presence of resistant cells from the original microbiota of
the matrix able to survive at high pressures [41].

The HPH treatment with the selected parameters (150 MPa × three passes) determined
an average reduction of about 1.6, 1.3, and 2.0 log CFU/mL for TMC, yeasts, and total
coliforms, respectively. This initial reduction extended the shelf life of carrot juice. In fact,
the spoilage threshold limit of TMC and yeasts in vegetable juices is usually considered
to be 6.0 log CFU/mL [42,43]. These limits were exceeded in HPH-treated samples only
for TMC after nine and five days when stored at 4 and 10 ◦C, respectively, while controls
exceeded the limit after six and two days at 4 and 10 ◦C, respectively.

For what concerns color parameters, HPH increased a* and b* values while it decreased
the L* value. The overall ∆E was 6.8 CIELAB units, in line with what was reported by
Szczepańska et al. [34], considering the high variability observed in our study. The effect of
HPH on juice color seems strongly dependent on food matrices and treatments. In fact,
Calligarsi et al. [44] reported an increase in L* and b* values as well as a decrease in a*
values upon HPH treatment on banana juice. Zhou et al. [19] observed a luminosity loss
and an increase of red color intensity in mango juice after HPH, while Tribst et al. [45]
reported a decrease of L* and a* values of mango nectar after HPH. Despite the initial
variation due to HPH treatment which may be determined by oxidative process, color
variations were less significant than those observed for the control over time. In fact, at
the end of the storage period, HPH samples had higher L*, a*, and b* values than controls.
According to literature data, HPH treatment does not impact the level of total carotenoids,
especially at pressures ranging from 20 to 150 MPa [46]. Even Szczepańska et al. [36]
reported that the level of total carotenoids can only be increased by applying 150 MPa,
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or higher pressures, for longer time (four passes or more). However, they also observed
a different behavior depending on the type of carotenoid. For instance, 150 MPa with
four passes increased β-carotene concentration but reduced lutein. In our work, 150 MPa
for three passes reduced the concentration of β-carotene and lutein with respect to the
untreated samples. Although starting from a lower concentration, storage at 4 ◦C did not
further reduce the total carotenoids measured during the 12 days considered. On the other
hand, storage at 10 ◦C promoted a degradation process from day two until day seven,
following a first-order reaction [46]. However, the sum of β-carotene and lutein, at the
beginning and at the end of the storage, was still within the range of 30 to 300 mg/L given
by the AlJN Code of Practice as a reference value for carrot juice and purees [47].

To boost HPH effects and extend carrot juice shelf life, a fermentation step was
performed upon HPH treatment using the biocontrol agent L. lactis LBG2. The selection
of the biocontrol agent applied in this work was based on the results reported by Siroli
et al. [9] that showed the good acidifying and nisin-producing capacity of L. lactis LBG2
on the same substrate. However, in this work the fermentation process by LBG2 strain
was optimized by reducing fermentation times from 24 to 7 h. In fact, samples treated
with HPH and fermented by LBG2 showed a drop in pH to 4.6 and an increase of the
biocontrol agent up to 9.0 log CFU/mL after 7 h of fermentation. The rapid fermentation
kinetic represents an important feature applicable at an industrial level to reduce energy
and working costs [48]. Moreover, lowering the pH, production of organic acids, and
bacteriocins can prevent possible contamination by undesirable microorganisms, such as
spoilage and pathogens [49]. In this regard, the implementation of the fermentation step
with LBG2 did not change the microbial profile already observed immediately after HPH
treatment but it exerted an important effect on the microbial stability of the juices during
their storage. In fact, using the combined treatments, microbiological shelf life of carrot
juice was extended to more than 12 and 7 days when stored at 4 and 10 ◦C, respectively.
In fact, the acceptance threshold for TMC and yeasts, reported as 6.0 log CFU/mL for
vegetable juices [42,43], have never been overcome during storage, either at 4 or 10 ◦C.
The observed antimicrobial effect is also correlated to nisin production by LBG2. In fact,
at the end of the fermentation process, the presence of 13 mg/L of nisin in fermented
carrot juice was determined. The presence of nisin was also detected during the storage at
4 and 10 ◦C, however a decrease of its concentration was observed over time. According to
literature data, nisin production occurs mainly in the late exponential growth phase and the
beginning of the stationary phase [9]. Then the physical and compositional characteristics
of the substrate may induce modifications of the activity and stability of nisin that can also
be degraded by proteases [50].

Initial color modifications were more dependent on the HPH treatment; in fact,
even the total color difference (5.3 CIELAB units) was in line with what was reported
by Szczepańska et al. [36] for carrot juices treated with 150 MPa for three passes. However,
the fermentation step and subsequent acidification of the product did not significantly
impact the L* parameter while it maintained the three values (L*, a* and b*) during the
storage time, particularly at 4 ◦C. In fact, samples that underwent the combined treatment
had the highest L*, a*, and b* values among the samples considered. The fermentation step
had a positive effect also on β-carotene and lutein. In fact, the initial concentration of β-
carotene was higher in fermented samples than in those treated with only HPH. Although
a reduction (6–7 mg/L) was observed at the end of the shelf life, its concentration remained
the highest. A similar profile was also observed for lutein. Demir et al. [51,52] reported
that acidified carrot juice, especially with lactic acid, significantly increased the β-carotene
content and preserved its stability over time. In fact, acidification can help to release bound
carotenoids by making them easily extractable during juice preparation. Moreover, low pH
may inhibit the oxidative process by protecting compounds such as β-carotene.

Analyses of the volatile compounds detected in all the samples showed that treatments
with HPH or HPH and LBG2 had an impact on the final profiles. HPH itself determined a
profile where the relative abundance of terpenes and terpenoids was higher than in control
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and fermented samples. Modifications in the relative abundance of compounds upon
HPH treatment were also described by Patrignani et al. [23], who reported a reduction of
the percentage of aliphatic aldehydes and an increase in benzaldehyde and terpineol in
apricot juice. As already reported by Siroli et al. [9], samples fermented by the biocontrol
agent LBG2 are characterized by volatile molecules deriving from L. lactis fermentation. In
fact, the latter samples were characterized by a higher abundance of ketones (diacetyl, 3,4-
dimethyl-2-pentanone, 2,6-dimethyl-4-heptanone), alcohols (1-octanol, 3-methyl-1-butanol,
Terpinen-4-ol), and acids (acetic acid) that last during all the storage periods. These volatile
molecules have been previously associated with a positive sensory impact in different
fermented juices [53–55]. Moreover, as observed by Fukuda et al. [56] and Siroli et al. [9],
the microbial detoxification of initially present terpene molecules determined a reduction
of their abundance. Similarly, myristicin represents an anti-nutritional compound naturally
present in carrots [57]. A significant reduction of its abundance in samples fermented
with LBG2 represents an interesting tool that can be used to enhance the nutritional
properties of the fermented carrot juice. In fact, it has been already reported that lactic acid
fermentation can act as a food detoxification process against anti-nutritional factors such
as phytates, saponins, tannins, cyanogens, or trypsin inhibitors [58]. PCA analyses of the
volatile compounds showed that samples treated with HPH and the biocontrol agent were
different with respect to control and HPH-treated samples, however, they did not change
significantly over time, showing the stability of the volatilome during the storage period.

5. Conclusions

The results obtained in this study showed that HPH treatment followed by fermenta-
tion with the biocontrol agent L. lactis LBG2 extended the shelf life of carrot juice by at least
three and seven days when stored at 10 ◦C and 4 ◦C, respectively, compared to untreated
juice. Shelf-life tests under thermal abuse at 10 ◦C highlighted that samples treated with
HPH combined with fermentation were the only ones that did not exceed the spoilage lim-
its for the TMC and yeast during all the times of storage considered. In addition, fermented
samples showed higher stability in pH and color values throughout the shelf life compared
to unfermented samples. Moreover, the combined treatment improved the functionality of
the juice to better retain β-carotene and lutein during storage. LBG2 fermentation produced
compounds that had a positive sensory impact on the final products.

Although further sensorial trials for consumer acceptability and scaling up steps are
required to transfer this technology into an industrial environment, the data obtained
in this work demonstrated that the combination of HPH treatment at 150 MPa × three
passes followed by fermentation with the biocontrol agent L. lactis LBG2 represents a
promising tool to extend the shelf life of carrot juice without any detrimental impact on the
characteristics of the product.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10122998/s1, Table S1: GC/MS/SPME complete profiles of treated and untreated Carrot
juices during their storage at 4 and 10 ◦C.

Author Contributions: Conceptualization, D.G., L.S. and R.L.; methodology, D.G., L.S., and F.P.;
software, G.B.; validation, D.G., L.S. and L.V.; formal analysis, D.G., S.R. and F.F.; investigation, L.S.;
resources, G.B.; data curation, L.S. and D.G.; writing—original draft preparation, D.G.; writing—
review and editing, D.G., L.S., S.R., F.F., F.P. and R.L.; visualization, L.V.; supervision, F.P. and R.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/foods10122998/s1
https://www.mdpi.com/article/10.3390/foods10122998/s1


Foods 2021, 10, 2998 17 of 19

References
1. Shahbaz, H.M.; Kim, J.U.; Kim, S.-H.; Park, J. Advances in nonthermal processing technologies for enhanced microbiological

safety and quality of fresh fruit and juice products. In Food Processing for Increased Quality and Consumption; Elsevier: Amsterdam,
The Netherlands, 2018; pp. 179–217.

2. World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation;
World Health Organization: Geneva, Switzerland, 2003; Volume 916.

3. Wootton-Beard, P.C.; Ryan, L. Improving public health?: The role of antioxidant-rich fruit and vegetable beverages. Food Res. Int.
2011, 44, 3135–3148. [CrossRef]

4. Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J.
Food Sci. Technol. 2012, 49, 22–32. [CrossRef] [PubMed]

5. Pferschy-Wenzig, E.-M.; Getzinger, V.; Kunert, O.; Woelkart, K.; Zahrl, J.; Bauer, R. Determination of falcarinol in carrot (Daucus
carota L.) genotypes using liquid chromatography/mass spectrometry. Food Chem. 2009, 114, 1083–1090. [CrossRef]

6. Zhang, Y.; Liu, X.; Wang, Y.; Zhao, F.; Sun, Z.; Liao, X. Quality comparison of carrot juices processed by high-pressure processing
and high-temperature short-time processing. Innov. Food Sci. Emerg. Technol. 2016, 33, 135–144. [CrossRef]

7. Nadeem, M.; Ubaid, N.; Qureshi, T.M.; Munir, M.; Mehmood, A. Effect of ultrasound and chemical treatment on total phenol,
flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrason. Sonochemistry 2018, 45, 1–6. [CrossRef]

8. Patrignani, F.; Vannini, L.; Kamdem, S.L.S.; Lanciotti, R.; Guerzoni, M.E. Effect of high pressure homogenization on Saccharomyces
cerevisiae inactivation and physico-chemical features in apricot and carrot juices. Int. J. Food Microbiol. 2009, 136, 26–31. [CrossRef]

9. Siroli, L.; Camprini, L.; Pisano, M.B.; Patrignani, F.; Lanciotti, R. Volatile molecule profiles and anti-Listeria monocytogenes
activity of nisin producers Lactococcus lactis strains in vegetable drinks. Front. Microbiol. 2019, 10, 563. [CrossRef]

10. Kaddumukasa, P.P.; Imathiu, S.M.; Mathara, J.M.; Nakavuma, J.L. Influence of physicochemical parameters on storage stability:
Microbiological quality of fresh unpasteurized fruit juices. Food Sci. Nutr. 2017, 5, 1098–1105. [CrossRef]

11. Barzee, T.J.; El-Mashad, H.M.; Zhang, R.; Pan, Z. Carrots. In Integrated Processing Technologies for Food and Agricultural By-Products;
Elsevier: Amsterdam, The Netherlands, 2019; pp. 297–330.

12. Bearth, A.; Cousin, M.-E.; Siegrist, M. The consumer’s perception of artificial food additives: Influences on acceptance, risk and
benefit perceptions. Food Qual. Prefer. 2014, 38, 14–23. [CrossRef]

13. Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Alternatives to conventional thermal
treatments in fruit-juice processing. Part 1: Techniques and applications. Crit. Rev. Food Sci. Nutr. 2017, 57, 501–523. [CrossRef]

14. Roobab, U.; Aadil, R.M.; Madni, G.M.; Bekhit, A.E.D. The impact of nonthermal technologies on the microbiological quality of
juices: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 437–457. [CrossRef]

15. Bello, E.F.T.; Martínez, G.G.; Ceberio, B.F.K.; Rodrigo, D.; López, A.M. High pressure treatment in foods. Foods 2014, 3, 476–490.
[CrossRef]

16. Patrignani, F.; Mannozzi, C.; Tappi, S.; Tylewicz, U.; Pasini, F.; Castellone, V.; Riciputi, Y.; Rocculi, P.; Romani, S.; Caboni, M.F.
(Ultra) High pressure homogenization potential on the shelf-life and functionality of kiwifruit juice. Front. Microbiol. 2019, 10, 246.
[CrossRef]

17. Patrignani, F.; Lanciotti, R. Applications of High and Ultra High Pressure Homogenization for Food Safety. Front. Microbiol. 2016,
7, 1132. [CrossRef] [PubMed]

18. Salehi, F. Physico-chemical and rheological properties of fruit and vegetable juices as affected by high pressure homogenization:
A review. Int. J. Food Prop. 2020, 23, 1136–1149. [CrossRef]

19. Zhou, L.; Guan, Y.; Bi, J.; Liu, X.; Yi, J.; Chen, Q.; Wu, X.; Zhou, M. Change of the rheological properties of mango juice by high
pressure homogenization. LWT-Food Sci. Technol. 2017, 82, 121–130. [CrossRef]

20. Sentandreu, E.; Stinco, C.M.; Vicario, I.M.; Mapelli-Brahm, P.; Navarro, J.L.; Meléndez-Martínez, A.J. High-pressure homoge-
nization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of
carotenoids and flavonoids. J. Clean. Prod. 2020, 262, 121325. [CrossRef]

21. Wellala, C.K.D.; Bi, J.; Liu, X.; Liu, J.; Lyu, J.; Zhou, M.; Marszałek, K.; Trych, U. Effect of high pressure homogenization combined
with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innov.
Food Sci. Emerg. Technol. 2020, 60, 102279. [CrossRef]

22. Patrignani, F.; Siroli, L.; Braschi, G.; Lanciotti, R. Combined use of natural antimicrobial based nanoemulsions and ultra high
pressure homogenization to increase safety and shelf-life of apple juice. Food Control 2020, 111, 107051. [CrossRef]

23. Patrignani, F.; Tabanelli, G.; Siroli, L.; Gardini, F.; Lanciotti, R. Combined effects of high pressure homogenization treatment and
citral on microbiological quality of apricot juice. Int. J. Food Microbiol. 2013, 160, 273–281. [CrossRef]

24. Bevilacqua, A.; Petruzzi, L.; Perricone, M.; Speranza, B.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Nonthermal technologies
for fruit and vegetable juices and beverages: Overview and advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [CrossRef]

25. Garcia, C.; Guerin, M.; Souidi, K.; Remize, F. Lactic fermented fruit or vegetable juices: Past, present and future. Beverages 2020,
6, 8. [CrossRef]

26. Dimitrellou, D.; Kandylis, P.; Kokkinomagoulos, E.; Hatzikamari, M.; Bekatorou, A. Emmer-Based Beverage Fortified with Fruit
Juices. Appl. Sci. 2021, 11, 3116. [CrossRef]

27. Serrazanetti, D.I.; Ndagijimana, M.; Miserocchi, C.; Perillo, L.; Guerzoni, M.E. Fermented tofu: Enhancement of keeping quality
and sensorial properties. Food Control 2013, 34, 336–346. [CrossRef]

http://doi.org/10.1016/j.foodres.2011.09.015
http://doi.org/10.1007/s13197-011-0310-7
http://www.ncbi.nlm.nih.gov/pubmed/23572822
http://doi.org/10.1016/j.foodchem.2008.10.042
http://doi.org/10.1016/j.ifset.2015.10.012
http://doi.org/10.1016/j.ultsonch.2018.02.034
http://doi.org/10.1016/j.ijfoodmicro.2009.09.021
http://doi.org/10.3389/fmicb.2019.00563
http://doi.org/10.1002/fsn3.500
http://doi.org/10.1016/j.foodqual.2014.05.008
http://doi.org/10.1080/10408398.2013.867828
http://doi.org/10.1111/1541-4337.12336
http://doi.org/10.3390/foods3030476
http://doi.org/10.3389/fmicb.2019.00246
http://doi.org/10.3389/fmicb.2016.01132
http://www.ncbi.nlm.nih.gov/pubmed/27536270
http://doi.org/10.1080/10942912.2020.1781167
http://doi.org/10.1016/j.lwt.2017.04.038
http://doi.org/10.1016/j.jclepro.2020.121325
http://doi.org/10.1016/j.ifset.2019.102279
http://doi.org/10.1016/j.foodcont.2019.107051
http://doi.org/10.1016/j.ijfoodmicro.2012.10.021
http://doi.org/10.1111/1541-4337.12299
http://doi.org/10.3390/beverages6010008
http://doi.org/10.3390/app11073116
http://doi.org/10.1016/j.foodcont.2013.04.047


Foods 2021, 10, 2998 18 of 19

28. Mauro, C.S.I.; Guergoletto, K.B.; Garcia, S. Development of blueberry and carrot juice blend fermented by Lactobacillus reuteri
LR92. Beverages 2016, 2, 37. [CrossRef]

29. Riciputi, Y.; Serrazanetti, D.I.; Verardo, V.; Vannini, L.; Caboni, M.F.; Lanciotti, R. Effect of fermentation on the content of bioactive
compounds in tofu-type products. J. Funct. Foods 2016, 27, 131–139. [CrossRef]

30. Lo, R.; Bansal, N.; Turner, M.S. Characterisation of Lactococcus lactis isolates from herbs, fruits and vegetables for use as
biopreservatives against Listeria monocytogenes in cheese. Food Control 2018, 85, 472–483.

31. Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Vannini, L.; Salvetti, E.; Torriani, S.; Gardini, F.; Lanciotti, R. Use of a nisin-producing
Lactococcus lactis strain, combined with natural antimicrobials, to improve the safety and shelf-life of minimally processed sliced
apples. Food Microbiol. 2016, 54, 11–19. [CrossRef]

32. Goodburn, C.; Wallace, C.A. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food
Control 2013, 32, 418–427. [CrossRef]
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