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A B S T R A C T

We define a technique for analyzing updates of smart contracts balances due to transfers of digital assets. The
analysis addresses a lightweight smart contract language and consists of a two-step translation. First, we define
the input-output behaviours of smart contract functions by means of a simple functional language with static
dispatch. Then we associate the terms of this intermediate language with cost equations that compute the loss or
gain of digital assets. The resulting equations can be fed to an off-the-shelf cost analyzer to provide upper bounds
to the loss or gain. Our analysis has been prototyped and we report its assessments and discuss extensions with
additional features.

1. Introduction

Smart contracts are programs that run on distributed networks with
nodes storing a common state in the form of a blockchain. These programs
are gaining more and more interest because they implement applications
that can manage and transfer assets of considerable value (usually, in the
form of cryptocurrencies, like Bitcoin), called decentralized applications.
Examples of such applications are food supply chainmanagement, energy
market management and identity notarization.

Several smart contracts languages have been recently proposed for
specifying decentralized applications, such as the Bitcoin Scripting [10],
Solidity for Ethereum [13], Move for Libra [9]. Security guarantees in
these languages are of paramount importance because it is possible to
program the transfer of large capitals. Actually, already in the past few
years, several millions of USD have been lost because of subtle flaws in
the smart contracts [11,25].

To alleviate the burden of smart contract analysis, a number of
automated techniques have been designed for verifying relevant prop-
erties, such as liquidity [6], gas consumption [2], and compliance and
violation of programming patterns [27]. This contribution follows these
lines of research by focussing on another critical feature that is at the core

of famous attacks: the transfer of cryptocurrency assets from one smart
contract to another. Indeed, our technique automatically computes upper
bounds of the amount of cryptocurrency gained and lost by a smart
contract during a transaction.

We carry this study on a language for smart contracts whose con-
structs have been inspired by Solidity. The language is lightweight
because it does not have complex features such as new contracts
instantiation, inheritance, try-catch exception handling, arrays and
mappings. In our setting, programs are a (finite) set of smart contracts
whose functions may either update the state or transfer cryptocurrencies
or abort or invoke other functions. Overall, our model is simple and
rigorous, which are, in our opinion, fundamental criteria for reasoning
about properties of smart contracts and for understanding their basic
principles. Once the properties on the core model have been analyzed,
one can address other, more complex features that are drawn from the
mainstream smart contract languages.

1.1. Our contribution

In Section 2, we define mSCL, an acronym for mini Smart Contract
Language, which is dubbed minuscule. mSCL has function invocations,
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field updates, conditional behaviour, cryptocurrency transfer, fallback
functions, recursion and failures. More importantly, mSCL has a formal
operational semantics that is defined in Section 3 and is expressive enough
to define standard attacks cf. the Bank-Thief contracts in Example 1.

The transfer of digital assets between mSCL smart contracts is
analyzed by means of cost analyzers [1,14]. These cost analyzers use
(declarative) languages that have a rigid structure and a poor expres-
sivity. For example, predicates must be written in disjunctive normal
form, data types are only numbers (integers and reals) and cost functions
are stateless. Encoding in these rigid languages the intricacies of the se-
mantics of transfers of assets and of failures, the states of smart contracts,
environments, and boolean expressions turns out to be painful and
ad-hoc. For this reason we decided to separate semantics concerns of
mSCL from concerns due to the rigidity of cost analyzers and to the
Definition of the appropriate cost model. Therefore, in Section 4, we
introduce an intermediate functional language that has static dispatch
and admits environments as primitive data types, tail function in-
vocations, and every predicate and operator of Presburger arithmetics.
Functions in the intermediate language are intended to define the
input-output behaviour of mSCL functions. Indeed, they take in input
environments (that model the state of programs) and return environ-
ments. (Other intermediate languages have been defined for smart con-
tracts; a thorough discussion is reported in Section 8.)

While the intermediate language has a very simple operational se-
mantics (two rules only), which allows us to establish the correctness of
the translation in a standard way, it is inadequate to express mSCL

functionalities in a direct way. In particular, a number of mSCL features
has required an explicit encoding that entangle the translation: failures
and the corresponding Definition of backtracking, implicit and explicit
management of assets (such as the complexities due to the fallback),
function invocations with explicit continuations (which should have
required an higher-order language for expressing the Continuation
Passing Style, while the intermediate language is first order).

In Section 5 we derive cost equations from terms in the intermediate
language. These equations are associated to two cost models: one for
computing the loss of a smart contract at the end of a transaction and the
other for the gain. To this aim, we flatten the environments (in order to
feed cost functions with tuples of values), normalize the predicates, and
select adequate cost models. It is worth to notice that the normalization
process gives an exponential number of equations with respect to the
equations without normalized predicates: our analysis would benefit by a
cost analyzer that accepts generic predicates. The normalized cost
equations can be fed to a cost analyzer to compute upper bounds to the
loss and gain.

We have prototyped our technique and run the prototype on several
smart contracts that have been downloaded from Ethereum (and adapted
to mSCL). Section 6 reports the assessments obtained by running the
prototype on few archetypal examples (a Bank-Thief code, an English
Auction Scheme, and two Ponzi Schemas). These examples have been
chosen to highlight the issues of our technique and the current prototype.
We notice that, because of scalability problems, our analysis can be

profitably used only in presence of aggressive optimizations. As discussed
in the conclusions, this is matter of current research.

In Section 7 we also study an extension of mSCL with additional
features (that are also inspired by Solidity). In particular, the extension of
mSCL function invocations with explicit continuations allows us to ex-
press famous attacks, such as the DAO [25]. We discuss the related works
in Section 8 and we deliver our conclusions in Section 9.

1.2. Captatio benevolentiae

This work is not intended to address Solidity and to provide a full-
fledged analyzer for that language (which is an industrial project that
would require a different effort). It is rather a Proof-of-concept about how
to compute the cryptocurrency movements in generic smart contract
languages. Solidity has been used as an inspiration source to design our
mSCL language that models, we hope, the innovative features of smart
contracts (transfer of cryptocurrencies, and ACID properties of trans-
actions obtained by reverting to the initial state in case of errors).

A key contribution of the paper is the Definition of the intermediate
language and the development of the analysis technique for it. Once the
back-end of the analyzer for the intermediate language is in place, it will be
sufficient to define the translation of any source code into the intermediate
code for verifying the corresponding updates of balances. In our mind, the
intermediate language is a decoupling point between front-ends that deal
with different smart contract languages and back-ends that apply different
techniques to analyze the code. Actually, our intermediate language, being
much simpler than the source language, may be equipped with several
analyses, in suchaway that verifying a source language amounts to compile
it to the intermediate one (thus forgetting about all the technicalities of the
analysis). For example, it is possible to reuse analyses suchas computational
cost and gas consumption since the corresponding techniques have been
already developed for the target cost equation language [1,2].

2. The mSCL calculus

The mini Smart Contract Language, noted mSCL and dubbed minus-
cule, is a calculus featuring aminimal set of smart contract primitives, such
as function invocations, field updates, conditional behaviour, crypto-
currency transfer, recursion and failures that are inspired to Solidity.

Weuseacountable setof smart contractnames Id, rangedoverbyC,D,H, a
countable set of function names, ranged over bym,m0, a countable set offield
names FId, ranged over by f, f0, and a countable set Var of variables, ranged
over by x, y, z. Variables include field names and smart contract names.

The syntax of mSCL is

where terms written within “[” and “]” are optional. A mSCL programP is
a sequence of smart contract definitions ðC1;⋯ ;CnÞ, which, in turn, are
sequences of fields and function definitions. If C ¼ contract C f⋯ g,
we say that C is the smart contract name of C and we address the set of
contract names of P with cnamesðPÞ.

In a contract contractCf Tf; F ½fallbackðÞ payablefg� g, the
fields areTf; and the corresponding set is fields(C), the functions are either

C ::¼ contract C f T f; F ½fallbackð Þ payable f g� g
F ::¼ ϵ j function mðT xÞ ½payable� fT z; Sg F

T ::¼ uint

S ::¼ ϵ j x ¼ E; S j if ðEÞ f S g else f S g j E:m½:valueðEÞ�ðEÞ; j revert;

j E:transferðEÞ;
SE ::¼ n j x j this j E ♯ E j !E j msg:sender j msg:value j E:balance

♯ ::¼ þ j � j > j ¼ j � j && j * j =

C. Laneve, C.S. Coen Blockchain: Research and Applications 2 (2021) 100020

2



those in F or the fallback. We write mðTxÞ½payable�fTz;Sg2C if the
function belongs to the contract named C and similarly for fallback 2 C.
Additionally, infunctionm functionmðTxÞ½payable�fTz;Sg,Tx are
the formal parameters and Tz;S is the body of m, where Tz are the local
variables. We assume that fields, formal parameters and local variables do
not contain duplicate names.

Smart contracts have an implicit field – the balance – that records the
cryptocurrency stored in the contract. This field is updated either (i)
when a payable function is invoked (in this case the balance is increased
by the cryptocurrencies carried by the invocation – keyword value), or
(ii) when the cryptocurrency is explicitly transferred (the operation
transfer).

The fallback function, when present, allows a contract to accept
cryptocurrency transfers. In particular, the transfer of cryptocurrencies
also includes the invocation of the callee's fallback function (The se-
mantics of transfer in Fig. 2 does not model this invocation of fallback
because the corresponding body is always empty.). If the callee has no
fallback then cryptocurrency transfers to it are refused and always
backtrack. Similarly, since in mSCL the invocations of the undeclared
functions default to the fallback function, when it misses, a backtrack
occur. In these cases, the fallback function ignores all actual parameters
of an undeclared function, except the transferred cryptocurrencies.

Statements S include the empty statement ϵ; the assignment x ¼ E fol-
lowedbyacontinuation,wherexmaybeeitherafieldora formalparameter
or a local variable; conditionals; the invocation of a function in the two

formats E:mðE0 Þ and E:m:valueðE0 0ÞðE0 Þ, where E is the callee contract, m is

the function and E
0
are the actual parameters; the term valueðE0 0Þ high-

lights when a cryptocurrency transfer occurs from the caller to the callee
during the invocation (mSCL function invocations are external in Solidity

terminology). Statements may also be revert that backtracks the
computation to the initial store, and E:transferðE0 Þ that transfers E

0

cryptocurrencies from the caller to E, provided caller's balance is sufficient
and the callee has a fallback function (otherwise a backtrack occurs).3

Expressions are standard ones, except for three terms: msg.sender
that returns the caller, msg.value that returns the transmitted crypto-
currencies during the invocation (to be used only inside a payable
function), E:balance that returns the contract's balance. In the following
we use u, v to range over constant expressions or elements in Id.

The initial state of a mSCL program is determined by (i) defining the
balances of the smart contracts therein, (ii) invoking a function, and (iii)
specifying the caller of the invocation in (ii). See the following Example 1
for a possible initial state and Section 3 for a formal Definition. It is worth
to notice that the caller in (iii) may also be external (for example, it may
be a smart contract that is not in the program or a user). In this case the
semantics is completely determined as long as the program does not
access to its functions – with msg.sender (otherwise we need to make
assumptions on the external caller, e.g. it must have a fallback function).
Our technique will admit external callers.

Assumption 1. (Programs are typed) In the rest of the paper we as-
sume all mSCL programs to be well-typed with respect to a completely
standard type system where all functions are first order and the only two
types are uint and address . Local variables and function parameters
are typed by uint and the only expressions typed by address are
msg.sender, this and the names of the smart contracts defined in the
program. In particular the type systems ensures that all variables are
declared before their use, that functions are only used totally applied and
that the receiver of transfer and function calls are only expressions of
type address .

The features of mSCL are illustrated by discussing an example.

Example 1. Fig. 1 reports the codes of the contracts Bank and Thief,
implementing respectively a shared bank account and a greedy client.

Bank is used for paying clients: it has a balance and, as soon as a client
invokes pay with a non negative integer n and the balance is large
enough – line 4 –, it withdraws n cryptocurrencies and transfers them to
the client – line 5. In order to allow several clients to withdraw at the
same time, the Bank only allows to draw out at most 5 cryptocurrencies
for every transaction. That is, to achieve fairness between the owners of
the shared account, the programmer constrains clients that want to
withdraw more consistent amounts to issue multiple invocations of the
pay function.

However, thanks to re-entrancy, Thief finds a way to bypass the
check and grab all the money at once using just one transaction. In
particular, the function pay also acknowledges the writhdraw by
invoking client's function ack (because the client has payed 1 crypto-
currency for it) – line 6. This apparently harmless operation is at the core
of the attack because the ack function of Thief calls back pay and the
process continues till the account is emptied (e.g. the boolean expression
at line 4 becomes false). The invocation Bank.pay.value(1) (2)

performed by Thief expresses the attack.
We notice that our forthcoming technique allows one to replace the

constant values 1 and 2 in Example 1 with two variables x and y, and to
analyze which instances of x and y cause the attack.

2.1. Remark

There are two features that are not modelled in mSCL. First, nonempty
fallback bodies. The analysis of this extension requires the management
of explicit continuations of transfer, which is difficult andmakes more
complex the technical development of the analysis. We have preferred to
deal with nonempty fallback bodies in the later Section 7 where, we
hope, the analysis has been digested for the simpler setting.

Second, we do not address dynamic contract creation and deploy-
ment. In particular, we use symbolic names for smart contracts that
represent smart contract addresses. When we need to model several in-
stances of a smart contract, we simply duplicate the code, using different
names. Initially, a contract knows the names of other contracts it wants to
interact with, but he can also become aware of additional names later
(e.g. reading msg.sender). This restriction allow us to avoid de-
pendencies from the context and augment precision of the cost analysis.
In Section 7 we discuss to what extent this limitation may be relaxed.

3. The semantics of mSCL

We use memories, ranged over ℓ, ℓ0, ⋯, which are maps
FId [ Var → N. The following auxiliary functions are used in the se-
mantic rules:

Fig. 1. The contracts Bank and Thief in mSCL.

3 In smart contract languages, such as Solidity, actions consume gas and this
gas is never returned during the backtracking. In this paper we are overlooking
gas consumption since bounding gas consumption is already a well understood
problem in the literature (see Ref. [2], for instance).
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� ℓ½f 7! v� is the memory update, namely ðℓ½f 7! v� ÞðfÞ ¼ v and
ðℓ½f 7! v� ÞðgÞ ¼ ℓðgÞ, when g 6¼ f.

� [ [e] ]C0 ,v,C,ℓ is a function that returns the value of e assuming C be the
current contract, v be the value that has been transmitted during the
invocation, C0 be the caller and ℓ be the memory of C where values of
fields and variables occurred in e are stored. We omit the Definition of
[ [e] ]C0 ,v,C,ℓ, which is completely standard, but we notice that the
function is total thanks to the mSCL constraint that, in a division, the
second argument is always a non null constant. ½½e��C0

;v;C;ℓ returns the
tuple of values of e.

A state of a mSCL program P, ranged over by S, S0
, ⋯, is defined by

the following syntax

S ::¼ Q
i2I
Ci

�
ℓi �ℓ0

i

�
∣ C

0
▸
v
C : S j

Y
i2I

Ci

�
ℓi �ℓ0

i

�
∣ 0

where
Q

i2ICi
�
ℓi �ℓ0

i

�
is a parallel composition of (runtime) contracts and

either C
0
▸
v
C : S or 0 is the runtime statement. As usual, parallel compo-

sition in states is associative and commutative.
Runtime contracts have pairs of memories ℓ ⋅ ℓ0 where ℓ is the current

memory and ℓ0 is the backtrack memory. The memory ℓ0 is the one at the
beginning of the current transaction; ℓ is a working copy of ℓ0, which is
updated during the transaction and it is committed if the transaction ends
successfully, becoming the new backtrack memory. When we write C(ℓ ⋅
ℓ0), we always assume that dom(ℓ0) ¼ fields(C) ⊆ dom(ℓ) (because ℓ also
defines formal parameters and local variables). We say that a state is final
when the runtime statement is of the form

Q
i 2 ICi(ℓi ⋅ ℓi)∣0. Note that in a

final state the two memories of every contract are equal. Contracts C(ℓ ⋅
ℓ0) have a unique name C that is in one to one correspondence with
contract names in P.

Runtime statements may be either 0, the terminated statement, or

C0
▸
v
C : S, where S must be evaluated into the contract C, with a caller C0

and with a value v.
The semantics of mSCL programs is defined by means of the transition

Fig. 2. State transitions ⟶
μ

of mSCL (⟶
μ ¼ ⟶ [⟶

✓ [⟶
f ail

), [ [e] ]C0 ,v,C,ℓ never fails.
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relation S⟶μ S0
, where⟶

μ ¼ ⟶ [⟶
✓ [⟶

fail
(the program is kept implicit in

the notation). In a ⟶
μ
-derivation to a final state, all transitions are ⟶,

except the last one that is responsible for committing the memory. In

particular, if the last transition is a ⟶
✓

, then the computation terminates
normally and the current memory becomes the new initial memory; if the

last transition is ⟶
fail

then the computation backtracks and the memory is

reverted to the initial memory. The formal Definition of ⟶
μ

is given in
Fig. 2.

Let us comment some semantic rules (comments are omitted when
rules are standard). Rule [UPD] defines the semantics of an update of a
field or a variable: the expression e is evaluated in the current memory of
C and the resulting memory binds the value to x. Rules [TRANSFER] and
[TRANSFER-FAIL] define the semantics of e.transfer(e0). The former one ver-
ifies that the recipient e is payable (e.g. has a fallback function) and
caller's balance is larger than e0; in this case the balances of the caller and
of e are updated. The second rule deals with errors: either the recipient is
not payable or caller's is not sufficient. In this case a failure occurs and it
is propagated to the whole solution (with rule [BKT]). When fallback
bodies are nonempty, [TRANSFER] is more complex: see [TRANSFER-CONT] in
Fig. 6).

Rules [METH*] of Fig. 2 deal with function invocations, which are
particularly complex in mSCL. Rule [METH] defines successful non-payable
function invocations e:mðe0 Þ. In this case, the function dispatch is per-
formed by using the value C00 of e and the statement to evaluate becomes
the body of m (without any continuation). Rules [METH-FB] and [METH-ERR]
define unsuccessful non-payable function invocations. The two rules deal
with the two subcases whether the callee has a fallback function or not; in
the first one, the invocation is dispatched to the fallback that has an
empty body and the computation terminates successfully; in the second
one, the invocation fails and the overall computation backtracks. The
other three rules for function invocations, namely [METH-PAY], [METH-PAY-
FB] and [METH-PAY-ERR] account for invocations of payable functions. In
these cases the invocation carries a value and, when it is successful, the
balances of the caller and of the callee must be updated correspondingly.
Rule [METH-PAY-ERR] does not update balances because it models a failure.
This happens either when caller's balance is smaller than the value to be
sent or when the dispatch cannot be performed because there is no
function and there is no fallback.

3.1. Initial states

The initial state of a mSCL program P ¼ ðC1;⋯ ;CnÞ is a term

Y
i21::n

Ciðℓi �ℓiÞj?▸
0
C

0
: C:mðvÞ

where? is a dummy smart contract name, C;C0 2 cnamesðPÞ and Ci is the
contract name of Ci. That is we assume that runtime contracts are in a
one-to-one correspondence with smart contract definitions; we duplicate
the code in case we need several runtime contracts of a same C. We also
assume that Id contains a dummy name User that may be used instead of
C0 in the initial state. We use this expedient in order to cover invocations
of a function of the program by an external smart contract or by an
external user. To reduce the number of cases in the translations and
analyses, we are ruling out initial statements such as C:m:valueðv0 ÞðvÞ
from the formal parts of the paper, but we will use them nevertheless in
the examples.

For example, the initial state of Example 1 is

BankðℓB �ℓBÞjThief ðℓT �ℓT Þj?▸
0
Thief : Bank:pay:valueð1Þð2Þ

where ℓB ¼ [balance7!v] and ℓT ¼ [balance7!1].
We conclude by observing that mSCL programs are executed

sequentially, in a deterministic way, and that the execution never gets
stuck.

Theorem 2. (Determinism and progress) Let P be a mSCL program and S
be an initial state such that S⟶*S0

. Then

1. Determinism: there is at most one S00 such that S0
⟶
μ S00.

2. Progress: either S0
⟶S00 for some S00, or S0

is final.

We note that progress is a consequence of the assumption that mSCL
programs are well-typed (Assumption 1), which ensures that all in-
vocations of [ [e] ]C0 ,v,C,ℓ return a value and that when e is of type address
then [ [e] ]C0 ,v,C,ℓ¼ C00 where C00 is the name of one of the contracts in the
state.

4. The translation of mSCL into an intermediate language

Programs in our intermediate language are sets of functions that
take in input two environments–the backtrack one and the current
one–and variables (which represent non negative integers and smart
contract names) and return an environment. Environments, which are
native values in the intermediate language, encode the state of a mSCL

program, namely they map fields and local variables to values. More
precisely, the codomain of environments are abstract values that are
expressions of mSCL4. As we will see, the evaluation of a program
amounts to compute a final environment from the initial ones, which
are identical, by passing updated current environments from one
function invocation to another.

4.1. Environments

Γ, called environment, is a map ðId→ FId→ EÞ [ ðVar→ EÞ; we always
shorten Γ(C) (f) into Γ(C.f) and use Γ[C.f7!e] to denote the update to e of
the field C.f. Notice that environments return abstract terms (which are
expressions in mSCL) rather than (integer) values. We also use two update

operations on environments: Γ½C:f 7!þe�¼defΓ½C:f 7! ΓðC:fÞþe� and

Γ½C:f 7!�e�¼defΓ½C:f 7! ΓðC:fÞ � e�.
The syntax of the intermediate language uses particular environ-

ments, called pure: an environment is pure whenever it is injective and
returns only variables. The semantics of the intermediate language also
uses ground environments: an environment is ground when the expres-
sions in the codomain are ground values.

4.2. Syntax of the intermediate language

A program in the intermediate language is a tuple I of function def-
initions

C:mðΓ0;Γ1; v; x;HÞ ¼
X
D2Id

ðH¼DÞΘD

(we keep the notation of mSCLfor the name of functions). We require
that

1. the formal parameters of a function Definition include two environ-
ments Γ0 and Γ1 that are pure and with disjoint codomains. Γ0 is the
environment that has to be returned in case of backtrack; Γ1 is the
environment that must be updated by the function body in case of
successful termination;

4 To improve readability, we denote with e the expressions that occur in mSCL

programs and with e the same expressions when used as abstract values in the
intermediate language. Equivalently, e and e range over the productions of two
grammars E and E that are defined identically.
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2. the remaining parameters, namely v; x andH respectively describe the
amount of the transferred cryptocurrency, the parameters of the
function and the caller name.

We observe that functions0 bodies are summands on the set Id of smart
contract names that, for every program, we assume to be finite. This
expedient allows us to consider only ground smart contract names during
the translation. This is the technique we use to map mSCL, which has
dynamic address resolution, to a language with static dispatch only.

The syntax of function bodies Θ is

Θ ::¼ Γ j e:mðΓ;Γ0
; e

0
; e

0 0;HÞ j
X
i21::n

ðϕiÞ Θi

where ϕi are boolean expressions that also contain predicates such asm 2
C or m.payable 2 C. According to the syntax, a function may either return
an environment, or invoke another function, or have a nondeterministic
behaviour

P
i 2 1..n(ϕi) Θi that is regulated by a finite set of predicates ϕ1,

⋯, ϕn. The term
P

i 2 1..n(ϕi) Θi is an abbreviation for (ϕ1) Θ1 þ⋯ þ (ϕn)
Θn (we use the latter notation when we write programs).

4.3. Semantics of the intermediate language

In order to formalize the semantics of function call, we need to match
an actual parameter Γ0 that is a ground environment with the formal one
Γ that is a pure environment. We denote with σΓ;Γ0 the unique substitu-
tion such that σΓ;Γ0 ∘ Γ ¼ Γ0

.

The semantics of a program is defined by the two rules:

½Apply��
C:mðΓ0;Γ1; x; z;HÞ ¼

X
i21::n

ðH ¼ DiÞΘDi

�
2 I

1 � k � n ½½e�� ¼ u ½½e0 �� ¼ v

C:mðΓ;Γ0
; e; e

0
;DkÞ⇒IΘDkfu; v=x; zgσΓ0 ;ΓσΓ1 ;Γ

0

½Choice�
½½ϕi�� ¼ trueX

i2I
ðϕiÞΘi⇒IΘi

where [ [e] ] is the value of e. (The Definition of [ [e] ] is omitted because
straightforward.) We notice that the semantics of intermediate programs
is nondeterministic: if Θ is (1> 0)Θ1 þ (2> 1)Θ2 then it may evolve into
either Θ1 or Θ2. We also notice that the intermediate language is actually
a standard functional language with mappings (the environments),
tuples, conditionals, and nondeterminism. Rule [APPLY] is beta-reduction
plus pattern matching over mappings, while rule [CHOICE] allows one to
select a branch when the corresponding guard is true. The syntax and the
semantics of the intermediate language are illustrated in the following
example.

Example 3. The function Bank.pay and Thief.ack of Example 1 can
be written in the intermediate language as follows. Let

Γ0 ¼
�
Bank 7! ½balance 7! xBank;b�; Thief 7!

�
balance 7! xThief ;b

� �
Γ1 ¼

�
Bank 7! �

balance 7! yBank;b
�
;Thief 7! �

balance 7! yThief ;b
� �

Notice that Γ0 and Γ1 are pure environments with disjoint codomains.
Let also Id ¼ {Bank, Thief}. For Bank.pay we obtain:

Bank:payðΓ0;Γ1;v;n;HÞ¼
X
D2Id

ðH¼DÞ �
v�1 ^ yBank;b>n ^ n<5

�
Θ

þ !
�
v�1 ^ yBank;b>n ^ n<5

�
Γ1

where Θ¼ �
yBank;b>n ^ fallback2D

�
Θ

0 þ �
yBank;b�n

�
Γ0 þ ðfallback 62DÞΓ0

Θ0 ¼ðack2DÞD:ack�Γ0;Γ
0
1;0;Bank

�
þ ðack:payable2DÞD:ack�Γ0;Γ

0
1;0;Bank

�
þ ðack 62D ^ ack:payable 62D ^ fallback2DÞΓ0

1

þ ðack 62D ^ ack:payable 62D ^ fallback 62DÞΓ0

Γ
0
1¼ Γ1½Bank:balance 7!�n;D:balance 7!þn�

For Thief.ack we get:

Thief :ackðΓ0;Γ1;v;HÞ ¼
X
D2Id

ðH ¼DÞΘ00

where Θ00 ¼ ðpay2DÞ Γ0

þ �
pay:payable2D ^ yThief ;b � 1

�
Θ000

þ �
pay:payable2D ^ yThief ;b < 1

�
Γ0

þ �
pay 62D ^ pay:payable 62D ^ fallback 2D ^ yThief ;b � 1

�
Γ0
1

þ �
pay 62D ^ pay:payable 62D ^ fallback 2D ^ yThief ;b < 1

�
Γ0

þ ðpay 62D ^ pay:payable 62D ^ fallback 62DÞ Γ0

and Θ
000 ¼D:pay

�
Γ0;Γ

0
1;1;2;Thief

�
and Γ

0
1 ¼Γ1½Thief :balance 7!�1;D:balance 7!þ1�

As regards the semantics of the intermediate language, let us discuss
the transitions of Bank.pay(Γ, Γ, 1, 2, Thief), where Γ ¼ [Bank7![bal-
ance7!4], Thief7![balance7!1] ].

Bank:payðΓ;Γ;1;2;Thief Þ⇒I ð1�1^4>1^2<5ÞΘfThief =Dg�2;4;1	n;yBank;b;yThief ;b

þ!ð1�1^4>n^2<5ÞΓ

⇒I ðack2Thief ÞThief :ackðΓ;Γ0
;0;BankÞ

þ ðack:payable2Thief ÞThief :ackðΓ;Γ 0
;0;BankÞ

þ ðack 62Thief ^ack:payable 62Thief ^ fallback2Thief ÞΓ0

þ ðack 62Thief ^ack:payable 62Thief ^ fallback 62Thief ÞΓ
⇒I Thief :ackðΓ;Γ0

;0;BankÞ
⇒I Θ

0 0fBank=Dg�0;2;3	v;yBank;b;yThief ;b

⇒I Bank:payðΓ;Γ00;1;2;Thief Þ

where

Γ
0 ¼ ½Bank 7! ½balance 7! 2�;Thief 7! ½balance 7! 3� �

Γ
0 0 ¼ ½Bank 7! ½balance 7! 3�; Thief 7! ½balance 7! 2� � :

4.4. The translation of mSCL

The translation of mSCL in the intermediate language is defined by
using judgments and inference rules. The judgments have the following
form:

� judgments for expressions: Γ‘e
C;DE : e

0
, where e and e0 are expressions

that contain constants or variables; e is the amount of cryptocurrency
transmitted during the invocation, while e0 is the value of the
expression E; C and D are respectively the caller and the callee
contracts;

C. Laneve, C.S. Coen Blockchain: Research and Applications 2 (2021) 100020

6



� judgments for statements: Γ; Γ0 ‘e
C;DS : Θ, where Γ is the backtrack

environment, Γ0 is the current environment and Θ is the resulting
intermediate code (e, C and D are similar to the corresponding one for
judgments of expressions). Backtrack and current environments
correspond to the (instances of) environments Γ0 and Γ1 in the
function definitions and are used to model backtrack (in case of
failures) and success, respectively.

The translation of expressions is reported in Fig. 3. It partially eval-
uates expressions by replacing accesses to fields with the corresponding
values in the environment. Rules [FIELD] and [VAR] manage variables;
there are three cases: a variable is a callee's field, or it is a formal
parameter or a smart contract name. In any case we return the corre-
sponding value in Γ (which may also be an expression). In [BAL] the
translation of e0.balance is the balance of a contract; in this case it is
necessary that e0 is a smart contract name H: in our setting we write H 2
Id. Rule [PROD-DIV] addresses multiplication and division. Since the cost
analysis of Section 5 only covers Presburger arithmetics expressions
where the second argument of products and divisions are constants, the
inference rules do not translate expressions that cannot be fed to the
analyzer. The translation of statements is defined in Fig. 4.

The judgments return intermediate codes that use the predicates (the
notation is the same that has been used in mSCL):

� fallback 2 e, with e 2 Id, to mean that the contract e has the fallback
function;

� m 2 e, with e 2 Id, to mean thatm is a function in e that is not payable;
m.payable 2 e additionally requires that m is also payable.

The translation of statements is defined in Fig. 4. Rules [INVK-NV]
and [INVK] define function invocations for non-payable functions and
payable ones, respectively. The former one returns a choice between
several alternatives: (i) when m is in e0 then it reduces to the invo-
cation; (ii) when m is in e0 and it is payable then it is translated to the
invocation with 0 cryptocurrency transferred; (iii) when m is not in e0
but the contract has the fallback function then the translation is the
call to fallback that, in our case, returns the current environment
(because fallback has empty body); (iv) when both m and fallback are
not in e0 then a backtrack occurs and the translation is the backtrack
environment. Rule [INVK] manages invocations with cryptocurrency
transfer from the caller to the callee; in this case we must check that
the caller has enough cryptocurrency in his balance, otherwise a
backtrack occurs.

The translation of mSCL is completed with the rules for function
definition and programs, given in Fig. 5, where we use the judgments Γ0;

Γ1‘‘
C:mðΓ0 ;Γ1 ;v;x;HÞ ¼ Θ and ‘ P : I with the obvious meaning. In [FUNC-

TION], the Definition of a function is given in two pure environments that
act as formal parameters. We recall that Γ0 is the backtrack environment,
e.g. the environment to which transiting in case of errors, while Γ1 is the
environment where the function invocation must be evaluated. The
critical point is that, in our system, the set Id is finite, therefore the hy-
potheses of rule [FUNCTION] and the choice in the conclusion are finite.
(Said otherwise, we analyze the cost of smart contract programs with a

finite number of known contract instances.) Rule [PROGRAM] gives the
translation of a smart contract program. The premise of the rule contains
a set of hypotheses that depend on a finite set of smart contract names
and function names. This does not mean that our analysis requires that
the code of all the interacting contracts must be known. In particular, the
analysis (and our prototype) covers invocations of a function of the
program by an external caller (either a smart contract or a user). As
discussed in Section 3, we assume the presence of a dummy name User
that belongs to Id.

As an example, one can compute the translation defined in this sec-
tion when applied to the corresponding functions of the mSCL program in
Fig. 1. The reader may verify that these codes are exactly those of
Bank.pay and Thief.ack in Example 3.

We conclude this section by asserting the correctness of the trans-
lation. To assess this property we need to formalize the correspondence
between a state of a mSCL program and its intermediate code. The
following Definition intends to specify this relationship.

Definition 4. (Correspondence of states and intermediate codes)

Given a state S ¼ Q
i21::nCiðℓ0

i �ℓiÞjCk▸
v
Ch : S, we define

envsðSÞ ¼def �ðCi 7! ℓiÞi21::n
�
;
h�
Ci 7! ℓ

0
i

�i2ð1::nÞnh
;Ch 7! ℓ

0
hjfieldsðChÞ;ℓ

0
hjVar

i

and we write S ‘ Θ whenever S ¼ Q
i21::nCiðℓ0

i �ℓiÞjC▸
v
D : S and

envsðSÞ‘v
C;DS : Θ or S ¼ Q

i21::nCiðℓ0
i �ℓiÞj0 and Θ ¼ Γ and envsðSÞ ¼ Γ;Γ.

The correctness of the translation follows; the Proof can be found in
the Appendix.

Theorem 5. Let P be a mSCL program such that ‘ P : I and let S be an
initial state such that S ‘ Θ. Then

1. (determinism) If Θ⇒*
IΘ

0
then there is at most one Θ0 0 such that Θ

0
⇒IΘ

0 0;

2. (correctness) If S⟶*S0
then there is a Θ0 such that S0 ‘ Θ

0
and Θ⇒*

IΘ
0
.

5. The analysis of smart contract balances

5.1. The cost model of mSCL

The programs in the intermediate language that are generated by the
translation in Section 4 return environments when they terminate. This
output is too informative since we are interested in computing crypto-
currencymovements of exactly one smart contract, which are recorded in
the corresponding balance field. Moreover, instead of computing the
final value of the balance, it is more relevant to compute an upper bound
of the amount of cryptocurrencies that a smart contract can either lose or
gain during a terminating computation. It is also worth to notice that the
upper bounds we are looking for are not just numbers, i.e. a maximal
value that can be reached considering all possible outputs. Instead, we
are interested into symbolic upper bounds expressed as functions on the
value of the fields of the initial environments and the actual parameters
of the initial call.

Fig. 3. Translation of mSCL expressions.
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We start by defining the final gain and loss associated to a smart
contract C0, a system of equations I and an initial invocation C:mðΓ;Γ;e;x;
HÞ.
6. LetP be a mSCL program and ‘ P : I . Let GAINC

0

I ;C;m and LOSSC
0

I ;C;m be
the functions

where, for every D 2 cnamesðPÞ, domðΓðDÞÞ ¼ fieldsðDÞ. By Theorem
5(1) the above functions are well defined on ground inputs because the
reduction of compiled mSCL programs is deterministic.

We notice that GAINC
0

I ;C;m and LOSSC
0

I ;C;m compute the amount of
cryptocurrency gained/lost at the end of the computation of C:mðΓ;Γ;z;x;
HÞ. In this respect, the two functions return 0 if the computation does not

terminate. Indeed, in actual smart contract languages, a divergent pro-
gram will be considered to gain/lose no cryptocurrency, since the
transaction will be rolled-back because either it fails or it runs out of
gas—gas exhaustion turns diverging computations into failing ones. (A
similar remark might concern computations that become stuck, but this

never happens in our case.) We also notice that the function LOSSC
0

I ;C;m is

not the opposite of GAINC
0

I ;C;m. For example, if C begins with a balance 10
and terminates with a balance 5, then its gain is 0 and its loss is 5.

Assuming a pointwise ordering between functions, we are interested

in possible precise upper bounds of GAINC
0

I ;C;m and LOSSC
0

I ;C;m. However,

Fig. 4. The translation of mSCL statements.

Fig. 5. The translation for mSCL functions and programs.

GAINC
0

I ;C;mðΓ; z; x;HÞ ¼
(
maxð0;Γ0 ðC0

:balanceÞ � ΓðC0
:balanceÞÞ if C:mðΓ;Γ; z; x;HÞ⇒*

IΓ
0

0 otherwise

LOSSC
0

I ;C;mðΓ; z; x;HÞ ¼
(
maxð0;ΓðC0

:balanceÞ � Γ
0 ðC0

:balanceÞÞ if C:mðΓ;Γ; z; x;HÞ⇒*
IΓ

0

0 otherwise
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sometimes our technique returns asymptotic upper bounds that are less
informative, like in Example.

Definition 7. � A function ugainC
0

I ;C;m is an upper bound of GAINC
0

I ;C;m
if and only if, for every Γ; v0

; v;D in the domain of

Definition of GAINC
0

I ;C;m, GAINC
0

I ;C;mðΓ; v0
; v; DÞ �

ugainC
0

I ;C;mðΓ;v
0
;v;DÞ.

� A function ugainC
0

I ;C;m is an asymptotic upper bound of GAINC
0

I ;C;m if

and only if GAINC
0

I ;C;m 2 OðugainC0

I ;C;mÞ.
� Similarly for lossC

0

I ;C;m.

Definitions 6 and 7 are given on the intermediate language. Similar
definitions may be given for mSCL where, this time, the input of the
function is an initial state. Once they are in place, it is possible to
demonstrate their relationship as a corollary of Theorem 5.

Definition 8. Let C be a mSCL program. Let mGAINC
P and mLOSSCP be the

functions defined on initial states S:

where C:balanceðSÞ is the value of the balance field of the smart con-
tract C in the state S.
Corollary 1. (of Theorem 5) Let S ¼ Q

i21::nCiðℓi �ℓiÞj?▸
0
D : C:mðvÞ be

an initial state of a mSCL program P and ‘ P : I and S ‘ C:mðΓ;Γ;0;x;DÞ,
where ðΓ;ΓÞ ¼ envsðSÞ.

Then mGAINC'

P ðSÞ ¼ GAINC'

I ;C;mðΓ;0; x;DÞ and mLOSSC
'

P ðSÞ ¼
LOSSC

'

I ;C;mðΓ;0; x;DÞ.
As a consequence of Corollary 1, instead of computing upper bounds

of mGAINC
PðSÞ and mLOSSC

0

P ðSÞ, it is sufficient to do the same for programs
written in our intermediate language. In turn, the intermediate code may
be used as input of an additional translation that returns cost equations to
be fed to a cost analyzer such as CoFloCo [14] and PUBS [1]. This will

allow us to compute mGAINC
PS and mLOSSC

0

P S automatically, without any
effort.

In the following we introduce the syntax of CoFloCo and we define
the set of CoFloCo cost equations associated to a program in our in-
termediate language such that the cost model considered by CoFloCo is

either that of GAINC'

I ;C;m or that of LOSSC
'

I ;C;m.

5.2. The syntax and semantics of CoFloCo

Cost equation solvers take a list of equations in input that are terms
[14].

Fig. 6. Translation of mSCL statements with continuations, Part I.

mGAINC
PðSÞ ¼

�
maxð0;C:balanceðS0 Þ � C:balanceðSÞÞ if S⟶*S0

for some S0
final

0 otherwise

mLOSSC
PðSÞ ¼

�
maxð0;C:balanceðSÞ � C:balanceðS0 ÞÞ if S⟶*S0

for some S0
final

0 otherwise
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mðxÞ ¼ eþ
X
i20::n

miðeiÞ ½ ϕ �

where variables occurring in the right-hand side and in ϕ are a subset of x
and5

� m is a (cost) function symbol,
� e (i.e. the cost of the step) and ei are Presburger arithmetic expres-
sions, namely (q is a positive rational number)

e ::¼ x j q j eþ e j e� e j q*e j maxðe1;⋯ ; ekÞ

� ϕ is a conjunction of linear constraints, e.g. constraints of the form ℓ1
< ℓ2 or ℓ1 � ℓ2 or ℓ1 ¼ ℓ2, where both ℓ1 and ℓ2 are Presburger
arithmetic expressions.

The solution of a cost program is the computation of bounds of a
particular function symbol (typically the one of the first equation in the
list). The bounds are parametric in the formal parameters of the function
symbol. The operational semantics of the (subset of) CoFloCo we are
considering is defined below.

Definition 9. (Semantics of cost equations seen as a functional
language) Let

→CoFloCo be the reduction relation over ground Presburger expres-
sions augmented with function calls (in the obvious way) defined by the
following two rewriting rules, that can be applied in any context:

1. mðeÞ→CoFloCoejfe =xg þ
P

i¼0;…;njm
j
iðejife =xgÞ for every cost equation

mðxÞ ¼ ej þ
X
i20::nj

mj
i

�
eji
� �

ϕj
�

such that ϕjfe =xg holds;

2. e→CoFloCov if e is a Presburger expression whose value is v.

The relation →CoFloCo, seen as a reduction relation, is obviously non
deterministic, as the following example shows. However, all cost equa-
tions generated from mSCL programs exhibit a deterministic behaviour.

Example 10. Consider the following set of cost equations:

nðxÞ ¼ xþ 1 ½�
mðxÞ ¼ 1þ nð2*xÞ ½0 � x�
mðxÞ ¼ 2� nð2*xÞ ½x � 2�

It turns out that mð1Þ→CoFloCo
*4 and mð1Þ→CoFloCo

* � 1.

5.3. The translation

In this paragraph we associate two sets of cost equations to every
intermediate program; the first set is used to compute the upper bound
for the gain of cryptocurrency of a chosen contract, while the second set
is for the upper bound for the loss of cryptocurrency. The two sets of
equations will only differ by the choice of a cost function that will be
defined below.

Translating the codes obtained from Figs. 3–5 into cost equations does
not seem difficult:

� a function in the intermediate program is mapped into a cost equation
function that either returns a final environment, or it is a finite sum of
function calls;

� sums are mapped to sets of guarded equations; a function call to cost
equations call where the steps have 0 cost

� returning a final environment Γ0 amounts to compute the empty set of
calls where the step has cost max(0, Γ0(C0.balance) �Γ(C0.balance)) —

to compute GAINC
0

I ;C;m — or max(0, Γ(C0.balance) �Γ0(C0.balance)) —

to compute LOSSC
0

I ;C;m.

In practice, the association is technically more involved due the
following differences between our intermediate language and CoFloCo

cost equations:

� functions in our intermediate language pass around environments,
while cost equations take in input tuples of variables. We will intro-
duce a flattening operation to map the formers into the latters;

� CoFloCo guards are very basic: only conjunctions of comparisons
between integer numbers are admitted, while guards of our inter-
mediate language uses all logical operators and tests like m 2 D that
look for an element in a finite set. We will encode our expressions into
CoFloCo guards, which will also include the writing of guards into
disjunctive normal forms to fit the restricted syntax of CoFloCo;

� our intermediate language uses non negative integers while CoFloCo
uses signed integers; therefore we must be careful when encoding
subtraction (2–4¼0 on signed integers) and we must add initial pre-
conditions to cost equations stating non negativity of every input.

Therefore we introduce a preliminary code simplification ⌜⋅⌝ that
takes care of ironing out the differences between the two languages. The
translation ⌜⋅⌝ acts on expressions, guards and codes, and it uses the
companion ⌊⋅⌋ translation of environments into flat lists of variables. The
simplifications ⌜⋅⌝ and ⌊⋅⌋ are defined as follows6:

� the simplification of a formula ϕ, written ⌜ϕ⌝, is an homomorphic
operator with respect to all arithmetic operators but subtraction and
such that

⌜e� e
0
⌝ ¼ maxð⌜e⌝�⌜e

0
⌝;0Þ

⌜x⌝ ¼ x if x 62 Id
⌜k⌝ ¼ k

⌜m2D⌝ ¼ ⋁χ2funðDÞð⌜D:m⌝¼ ⌜D:χ⌝Þ
⌜m:payable2D⌝ ¼ ⋁χ2funðDÞð⌜D:m:p⌝¼ ⌜D:χ⌝Þ

⌜m 62D⌝ ¼ ⋀χ2funðDÞð⌜D:m⌝ 6¼ ⌜D:χ⌝Þ
⌜m:payable 62D⌝ ¼ ⋀χ2funðDÞð⌜D:m:p⌝ 6¼ ⌜D:χ⌝Þ
⌜fallback2D⌝ ¼ true if D declares the fallback function;falseotherwise

where χ 2 fun(D) is true if, for some function name m, χ ¼ m and m is
a non payable function declared in D or if χ ¼ m.p and m is a payable
function declared in D. The simplification on D, D.m, D.m.p can be
picked to be any injective function whose codomain are integer
values.

Moreover, ⌜⋅⌝ also puts formulae ϕ in disjunctive normal form plus
the additional constraint that atomic formulae are inequalities. For
example, e 6¼ e0 is normalized to e < e0 _ e0 < e.

� the flattening operation on environments Γ, noted ⌊Γ⌋, encodes Γ into
a list of integer expressions:

5 Actually, CoFloCo does not require the condition we just imposed on the
variables that occur in the right-hand side. The remaining variables are handled
in logic programming style, via unification. Thanks to our additional constraint,
it becomes possible to think of CoFloCo equations like functional programs
instead. We will take advantage of this later, when we will equip the syntax with
an operational semantics in functional style.

6 In the rest of the section we use the green color both for cost equations and
for simplified intermediate programs, whose syntax is looser since it does not
require formulae to be only conjunctions.
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let Γ ¼
h

C1 7!
�
f1;1 7! e1;1;⋯ ;f1;n1 7! e1;n1 ; balance 7! e1;b

�
;

⋯ ;Ck 7!
�
fk;1 7! ek;1;⋯ ;fk;nk 7! ek;nk ; balance 7! ek;b

� i

according to total orders Ci � Ciþ1 and fi,j � fi,jþ1, then

⌊Γ⌋ ¼def ð⌜e1;1⌝;⋯ ; ⌜e1;n1⌝; ⌜e1;b⌝;⋯ ; ⌜ek;1⌝;⋯ ; ⌜ek;nk⌝; ⌜ek;b⌝Þ
Note that the flattening of a pure environment is a list of disjoint

variables that can be used as formal parameters of a function.

� the simplification ⌜⋅⌝ is lifted to the intermediate code as follows:

⌜Γ⌝ ¼ ⌊Γ⌋

⌜e:mðΓ1;Γ2; e; e
0
;DÞ⌝ ¼ e:mðbΓ1c; bΓ2c; ⌜e⌝; ⌜e0⌝; ⌜D⌝Þ

⌜
X
i2I

ðϕÞ Θi⌝ ¼
X
i2I

ð⌜ϕ⌝Þ ⌜Θi⌝

� the simplification ⌜⋅⌝ of a program, i.e. a list of function definitions, is
obtained simplifying each function in the list as follows

⌜C:mðΓ0;Γ1; v; x;HÞ ¼
X
D2Id

ðH ¼ DÞΘD⌝¼def

C:mðbΓ0c; bΓ1c; v; x;HÞ ¼ ⌜
X
D2Id

ðH ¼ DÞΘD⌝

A simplified intermediate program Ł is turned into the sets of cost
equation 〈Ł〉 as follows: every simplified function declaration

C:mðbΓ0c; bΓ1c; v; x;HÞ ¼
X
i21::h

�
⋁

j21::ki
ϕj
i



Θi

(where each ϕj
i is a disjuction of comparisons between Presburger ex-

pressions) is turned into the following cost equations:

C:mðbΓ0c; bΓ1c; v; x;HÞ ¼ costðbΓ0c;Θ1Þ
�
ϕ1
1

�
⋯

C:mðbΓ0c; bΓ1c; v; x;HÞ ¼ costðbΓ0c;Θ1Þ
�
ϕk1
1

�
⋯

C:mðbΓ0c; bΓ1c; v; x;HÞ ¼ costðbΓ0c;ΘhÞ
�
ϕk1
h

�
⋯

C:mðbΓ0c; bΓ1c; v; x;HÞ ¼ costðbΓ0c;ΘhÞ
�
ϕkh
h

�
where.

� cost is either costC
0

gain — to obtain the set of equations to compute the

upper bound for the gain of C0
— or costC

0

loss — to obtain the set of
equations to compute the lower bound;

� costC
0

gainð⌊Γ⌋; bΓ
0 cÞ ¼ maxð0;Γ0 ðC0

:balanceÞ�ΓðC0
:balanceÞÞ and

costC
0

lossð⌊Γ⌋; bΓ
0 cÞ ¼ maxð0;ΓðC0

:balanceÞ � Γ0 ðC0
:balanceÞÞ;

� costð⌊Γ⌋; e:mð⌊Γ⌋; bΓ0 c; e0 ÞÞ ¼ e:mð⌊Γ⌋; bΓ0 c; e0 Þ in both cases

Finally, if we are interested in the analysis of an invocation of the
function C.m, we add a first equation

mainð⌊Γ⌋; yÞ ¼ C:mð⌊Γ⌋; ⌊Γ⌋; yÞ ½b1 � 0 ^… ^ bn � 0� (1)

where b1, …, bn are the variables in ⌊Γ⌋; y of type uint. We assume that
these variables are non negative (this is required because variables in
CoFloCo are signed).

To conclude, if I is a program in the intermediate language and C:
mðΓ;Γ; z; x;HÞ its initial state, then the Eq. (1) plus 〈⌜I⌝〉 gives the bunch
of CoFloCo cost equations.

Example 11. To illustrate the output of our technique we compute the
cost equations of the functions Bank.pay and Thief.ack in Example
3, according to the cost model that computes the loss of the Bank. We
shorten Bank and Thief into B and T, respectively; for readability sake,
we always write predicates such as fallback 2 T and ack 2 T, even if the
translator omits them because they evaluate to true (the functions belong
to T). Similarly for the other predicates of the same shape. Equations
whose guards is always false (e.g. pay 2 T) are not shown nor generated
by our translator.

mainðxB;b; xT ;b; v;n;HÞ ¼ B:payðxB;b; xT ;b; xB;b; xT ;b; v;n;HÞ
½xB;b � 0^ xT ;b � 0^ v � 0^ n � 0�

B:pay
�
xB;b; xT ;b; yB;b; yT ;b; v;n;H

� ¼ T :ack
�
xB;b; xT ;b; yB;b � n; yT ;b þ n;0;B

��
H ¼ T ^ v � 1 ^ yB;b > n ^ n < 5 ^

fallback 2 T ^ ack 2 T �
B:pay

�
xB;b; xT ;b; yB;b; yT ;b; v;n;H

� ¼ max
�
0; xB;b � yB;b

� ½H ¼ T ^ v < 1�
B:pay

�
xB;b; xT ;b; yB;b; yT ;b; v;n;H

� ¼ max
�
0; xB;b � yB;b

� �
H ¼ T ^ yB;b � n

�
B:pay

�
xB;b; xT ;b; yB;b; yT ;b; v;n;H

� ¼ max
�
0; xB;b � yB;b

� ½H ¼ T ^ n � 5�
B:pay

�
xB;b; xT ;b; yB;b; yT ;b; v;n;H

� ¼ max
�
0; xB;b �

�
yB;b � nþ n

���
H ¼ B ^ v � 1 ^ yB;b > n ^ n < 5 ^

fallback 2 B ^ ack 62 B ^ ack:payable 62 B�
B:pay

�
xB;b; xT ;b; yB;b; yT ;b; v;n;H

� ¼ max
�
0; xB;b � yB;b

� ½H ¼ B ^ v < 1�

B:pay
�
xB;b;xT ;b;yB;b;yT ;b;v;n;H

�¼ max
�
0;xB;b� yB;b

� �
H¼B ^ yB;b � n

�
B:pay

�
xB;b;xT ;b;yB;b;yT ;b;v;n;H

�¼ max
�
0;xB;b� yB;b

� ½H¼B ^ n� 5�
T :ack

�
xB;b;xT ;b;yB;b;yT;b;v;H

�¼ B:pay
�
xB;b;xT ;b;yB;bþ1;yT ;b�1;1;2;T

��
H¼B ^ pay:payable2B ^ yT ;b � 1

�
T :ack

�
xB;b;xT ;b;yB;b;yT;b;v;H

�¼ max
�
0;xB;b� yB;b

��
H¼B ^ pay:payable2B ^ yT ;b < 1

�
T :ack

�
xB;b;xT ;b;yB;b;yT;b;v;H

�¼ max
�
0;xB;b� yB;b

��
H¼ T ^ pay 62T ^ pay:payable 62T ^ fallback2T ^ yT ;b � 1

�
T :ack

�
xB;b;xT ;b;yB;b;yT;b;v;H

�¼ max
�
0;xB;b� yB;b

��
H¼ T ^ pay 62T ^ pay:payable 62T ^ fallback2T ^ yT ;b < 1

�
In Section 6 we analyze CoFloCo [14] outputs when these equations

are fed to the tool.
The next theorem grants the correctness of our encoding according to

the operational semantics for the (subset of) the syntax of CoFloCo we
are considering. The Proof is reported in the Appendix.

Theorem 12. (Correctness of cost equation generation) Let P be a
mSCL program such that ‘ P : I and let S be an initial state and S ‘ C:mðΓ;
Γ; v0

; v;HÞ and C:mðΓ;Γ; v0
; v;HÞ ⇒*

IΓ
0
. Let us extend 〈⌜I⌝〉 (where we use

either costC
0

gain or cost
C
0

loss during the translation) with a main function that calls
C.m. Then

1. Determinism: mainð⌊Γ⌋; v0
; v;HÞ has a unique →CoFloCo-normal-form

2. Correctness:

� mainð⌊Γ⌋; v0
; v;HÞ→CoFloCo

*GAINC
0

I ;C;mðΓ; v
0
; v;HÞ if we selected

costC'

Gain during the translation,

� mainð⌊Γ⌋; v0
; v;HÞ→CoFloCo

*lossC
0

I ;C;mðΓ; v
0
; v;HÞ if we selected costC

'

Loss

during the translation.

The overall correctness of our technique is stated in Theorem 13. A pre-
liminary statement about the correctness of our off-the-shelf tool CoFloCo is
required.We have not found any such statement in the literature, therefore we
conjecture it [14].

Conjecture 1. (Correctness of CoFloCo) Given a set of guarded cost
equations whose first equation is
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mainðxÞ ¼ mðeÞ ½ϕ�

if CoFloCo claims that f is an upper bound to main on the domain where
ϕ is true, then for every x belonging to such domain, mainðxÞ � f ðxÞ.
When f is claimed to be an asymptotic bound, then main 2 Oðf Þ (on
every x such that ϕ is true).

Theorem 13. (Final theorem) Let S be an initial state of a mSCL program
P, ‘ P : I and S ‘ C:mðΓ;Γ; v0

; v;HÞ. If CoFloCo claims f to be an upper
bound/an asymptotic upper bound to main of the equations obtained by 〈⌜I⌝〉
with a main function that calls C.m, then f is an upper bound/an asymptotic
upper bound to mGAINCðSÞ, if costCGain was selected during the translation,
or to mlossCðSÞ if costCLoss was.

Proof. Either S converges or it diverges. If it diverges, then both
mGAINCðSÞ and mlossCðSÞ are defined to be 0, and the statement trivially
holds because all bounds computed by CoFloCo for our cost equations
are non negative.

If S converges then, by Theorem 2, the last reduction step leads to a
final state S0

. Thus, by Definition 4 and Theorem 5, C:mðΓ;Γ; v0
; v;HÞ

⇒*
IΓ

0
where envsðS0 Þ ¼ Γ0

;Γ0
.

The thesis follows trivially from Corollary 1, Theorem 12 and
Conjecture 1.

Note that CoFloCo may also compute a finite upper bound also for
diverging mSCL programs. This may sound strange because, usually, the cost
equations fed to CoFloCo represent the computational cost in time of
executing a program. Therefore, if the time is bounded, the program can not
diverge. However, in our case, the cost equations compute transfer of cryp-
tocurrency. Hence, it is plausible to have a program that first transfers some

asset and then enters into an infinite loop that does not change any balance. In
this context, CoFloCo may compute a finite bound even if the program di-
verges. We recall that diverging computations of smart contracts are always
aborted due to gas shortage and thus any non negative bound is correct.

6. Assessments

We prototyped the cost analyzer of mSCL in about 2500 lines of OCaml
code. The code is then compiled to JavaScript to be run in the browser and
can be found at the address: https://sacerdot.github.io/SmartAnalysis/beh
avioral_types. Our tool takes in input a list of smart contract declarations,
produces a list of cost equations, and computes the cost equations of thefirst
function of the first contract, say C. The user can choose between two cost

models: the gain of C's balance and the loss of C's cryptocurrency. The cost
equations can then be manually fed to CoFloCo to obtain an upper bound
both in asymptotic form and in explicit form. Remarkably, the analyzer
computes theworst scenariowith respect togainingand loosingbecause the
computed cost depends on functions' input parameters, the initial value of
all contracts' fields, including balances, and every possible caller.

The number of cost equations returned by our prototype is bi-linear in
the number of functions and the number of contracts when the only
variable of type address is msg.sender. (It is worth to notice that, in
the following examples, we have used the extension of the prototype that
also deals with address data types, see Section 7, which makes the
number of cost equations exponential with respect to address variables,
where the base is the number of contracts, see Section 9).

To test the tool and gain preliminary experience, we have analyzed
several smart contracts from etherscan.io. This required little program-
ming overhead for most of the contracts in order to rewrite Solidity code in
mSCL. In Table 1, we report our analysis of four archetypal contracts we
identified among the other ones. In particular, for every program, we give
the lines of original code (♯ LOC), those produced by our translation (♯
LMC), the number of equations produced (♯ Equations) and the sum of
CoFloCo times for computing the upper bound to the gain and to the loss.

Few remarks about the output of the analyzer are in order. In the
Bank-Thief code of Fig. 1, the costs are a function of the initial values of
Bank's balance (Bank__balance_), Thief's balance (Thief__ba-
lance_), the invoker of the analyzed function (_msg_sender_), the
amount of coins passed to the function (_msg_value_) and the function
parameter (N). CoFloCo's output is:

where nat(x) returns the maximum between x and 0. The output
shows that the attack can be successful: the bank can lose all of its
balance, but for 2 coins. It can also happen that the bank earns money
instead, but only up to 2. This happens when the initial bank account
has fewer than two coins. A careful analysis by hand of the code tells
us that the upper bound to the loss computed by CoFloCo is tight,
while the one for the gain is not: the bank can actually only win one
coin. In the English Auction Scheme, the smart contract Auctioneer
records the address of the bidder that is currently winning the auction,
together with his bid. When a new bid arrives, if it is greater than the
currently winning one, the previous winner is refunded. Otherwise the
bid is refunded to the sender. The result of the analysis is interesting:
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The bidder cannot gain any money by bidding: either he can lose all
its bid nat(Bid1) (because he is winning the auction) or he can lose the
lesser amount nat(-Auctioneer_max þ Bid1) because he was
already winning and decided to lift his offer (the previous offer is
returned back).

In the “Handover Ponzi scheme” of [5], every user invests more
money than the current price and he receives back more money than the
amount invested when the next user joins the scheme. The current price
is augmented (by 50%) every time a new user joins in order to provide an
income to all users. The 10% of the money invested by every user is
reclaimed by the owner of the contract and thus only the 90% is used to
pay the previous user.

We analyze two scenarios. The first scenario is when Player joins the
scheme, followed by Player 2. The analysis yields:

In this scenario Player does not lose money and it can gain 7
20 of

the invested money. An analysis by hand shows that the bound is
tight7 and it is both an upper and a lower bound. Note that it is not
trivial to figure out the fraction 7

20 just looking at the code where the
only constants that occur are 9

10 and 3
2.In the second scenario, Player

is the unique player.

The analysis yields:
In this scenario Player loses all the money he invested.
The remarks about the outputs of the Chain-shaped Ponzi scheme are
omitted because similar to the Handover Ponzi scheme.

7. Extensions of the analysis

Three features, which are relevant for the expressivity of mSCL, have
not yet been discussed: (i) address and bool data types, (ii) functions
invocations with explicit continuations, and (iii) dynamic creation of
smart contracts and their deployment. The first two have already been
integrated in our analyzer. We discuss these extensions in this section.

7.1. Addresses

The extension of the encoding in Section 5 to cope with addresses is
not difficult. Indeed, it is sufficient to follow the same scheme we used to
deal with msg.sender that was the only parameter of type address. In
particular, the translation rule for functions whose formal parameters are
also addresses becomes.

Table 1
Statistics on a few archetypal examples.

♯ LOC ♯ LMC ♯ Equations CoFloCo's Time for gain þ loss

Bank-Thief code 20 20 20 734 ms þ 240 ms
English Auction Scheme 32 32 38 509 ms þ 468 ms
Handover Ponzi Scheme 42 50 336 6,964 ms þ 4,784 ms
Chain-shaped Ponzi scheme 45 63 1030 27,978 ms þ 27,962 ms

7 The first user pays x; the second one must pay 3
2 x, and 90% of it, i.e. 3

2
9
10 x

goes back to the first user whose final gain is 3
2

9
10 x� x ¼ 27

20 x� x ¼ 7
20 x.
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(for readability sake we have separated addresses from other
types). That is, address variables add (finite) alternatives in the
body of functions in order to cope with every possible instance of the
variable.

Once we make the address type a first class citizen, we also have
to deal with local variables and field names that store addresses. The
solution remains the same: the translation of each function body must
start with a nested sum for each field, parameter and local variable of
type address, where each summand differs from the previous one by
the value taken by the variable in the finite set of known contract
addresses.

7.2. Booleans

Booleans are encoded in the intermediate language using 0 (for false)
and 1 (for true). The occurrence of a boolean variable/parameter/field b
in an expression is encoded as b ¼ 1.

Assignment to boolean variables and invocation of a function that takes
a boolean argument is slightly annoying because a boolean expression
(such as b1 && b2) can not be directly encoded as an arithmetic expression
in the usual way (b1 * b2) because of the restrictions due to Presburger
arithmetics. This issue is solved by introducing a conditional statement for
every assignment/actual parameter. E.g. x ¼ b1 && b2; is equivalent to if

(b1&& b2) { x¼ 1; } else { x¼ 0; }. Therefore the intermediate code will
have one additional binary sum for each assignment to a boolean value and
for each boolean expression in a function call.

7.3. Continuations

Dealing with explicit continuations of function invocations is not
straightforward because our intermediate language in Section 4 only
admits tail recursive (or tail mutual recursive) invocations. Neverthe-
less, the extension of the analyzer with explicit continuations is sig-
nificant because it allows one to verify fallback functions with non-
empty bodies.

To illustrate our solution, consider the following extension of the
mSCL syntax:

In this extended syntax fallback functions may now have non-empty
bodies; function bodies may also return values; function invocations, as
well as conditionals, may have continuations.

The translation of the above language expands the one in Section 4 by
using the standard CPS translation for removing continuations. Actually,
there is one difference: instead of using a higher order language (which is
required by CPS), we keep the same intermediate language by extending
functions' arguments with another one representing the stack of activa-
tion records for continuations. However, since the arity of CoFloCo

functions is fixed, we won't be able to manage stacks of arbitrary size. We
solve the issue by parameterising our translation with a constant κ that
limits the length of the stack. The value κ can be chosen as follow:

1. compute the graph of invocations where nodes correspond to function
definitions and arcs to function calls;

2. Assign weight 0 to the arcs that correspond to tail invocations and 1 to
the other arcs; (Tail invocations have weight 0 because, to preserve
expressivity, our translation implements the tail (mutual) recursion
optimization, so that tail calls do not require more stack space. In
particular programs whose functions are all tail recursive require only
one frame for the initial call.)

3. (a) If the graph of invocation contains no cycles of unbound weight,
choose κ as the maximal weight of a path;

(b) otherwise the value for κ is requested to the user by the
analyzer. In this case we are technically verifying the κ-th approx-
imant of the program, that reverts if it tries to nest more than κ non
tail-recursive calls, exhausting the stack space.

Let ι be the maximum number of parameters and local variables of
functions. The maximal size of the stack is bounded by (ι þ 4) � (κ þ 1)
where ιþ 4 is the maximal size of a frame (the 4 is due to the extra slots in
the stack frame to record the function caller, the callee, the function
identifier and the amount of cryptocurrency transferred). The extra unit
added to κ is required for the additional stack frame used for the initial
call to the program.

More formally, let σ be a sequence of frames of the form

α1⋯αh??⋯??|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
κþ1 frames

C ::¼contract C f T f; F ½fallbackð Þ payable fT x; Sg� g

F ::¼ ⋯ j function mðTxÞ½payable� returns ðTÞ fT y; Sg F

S ::¼⋯ j if ðEÞ f S g else f S g; S j returnðEÞ j returnðE:m½:valueðEÞ�ðEÞÞ
j E:m½:valueðEÞ�ðEÞ; S j x ¼ E:m½:valueðEÞ�ðEÞ; S
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where

� the initial frames αi are equal to 〈C;m;e;D;e
0
〉, where C is the callee, m is

callee's function to be executed with arguments e, assuming it has
been called by D that has transferred e0 cryptocurrencies;

� the frames ⫫, called empty frames, are equal to 〈?;m?;?;?;0〉, where
?, m? are special names and we assume ? to be a new valid
expressions;

� there is no empty frame to the left of a non-empty frame, and the last
(i.e. rightmost) frame in σ is always empty;

� a frame 〈C;m; e;D; e
0
〉 is equal to ⫫ if and only if C ¼ ?.

A sequence σ represents the stack of continuations: every non-empty
frame stands for a continuation to be executed; the first empty frame
denotes the end of the stack. We use the following operations on tuples of
expressions and on sequences of frames:

� jej returns the length of the tuple;
� e↓D:m returns the prefix of e whose length is equal to the number of
arguments of D.m;

� σ↱ drops the last frame in σ, i.e. ðσ 0
αÞ↱ ¼ σ

0
;

� [σ]↬ returns the first element of the last-but-one frame in σ, if it exists,
or any value different from ?, if k ¼ 0. That is ½σ0

〈C;m; e;D; e
0
〉??�↬ ¼

C. The key property is that if [σ]↬ ¼ ? then the last-but-one frame is
unused (it is ⫫), therefore the sequence σ is not full and it can hold one
more element. It is sufficient to throw away the last empty frame
(using ⋅↱) and push the new element at the beginning, effectively
shifting to the right all the already present frames.

Finally, we write m 2 fun(C) to mean that C 2 cnamesðPÞ and the smart
contract named C has a function m. The notation keeps P implicit.

Figs. 6 and 7 report the rules for translating mSCL programs in in-
termediate codes. Rule [EMPTY-CONT] deals with empty statements. It has

Fig. 7. Translation of mSCL statements with continuations, Part II.
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two subcases, according to the sequence σ is of the form ⫫⋯⫫ – the stack
is empty – or not. According to our modelling, the former case is when H
¼ ?, where H is the first element of the initial frame. In this case we
return the current environment. In the second case, we evaluate the
continuation, say D.m (in the judgment in the premise we drop out useless
expressions in the initial frame). That is, in our translation, continuations
of invocations and conditionals are managed by ad-hoc functions that
extends those of the mSCL program. Each one of these new functions
implements a continuation. Since the continuation can access
msg.sender and msg.value, it is important that when the continuation
is called the right values are restored: this is achieved by making these
functions payable and by translating in the premise
D0.m.value(e0).(…) that sets msg.sender to D0 and msg.value to e0.
However, this also transfers again e0 units of cryptocurrency from
msg.sender to the receiver (see rule [INVK-TAIL]), which would not be
correct. To contrast this, we perform the translation in Γ0

1 where we first
transfer back e0 units from the receiver to msg.sender.

We notice that in the premise of [EMPTY-CONT] we pass two expressions
of the intermediate language (e0 and e0 0) where expressions of mSCL are
expected. This is correct since, according to the rules in Fig. 3, e0 and e0 0

are expressions in the source language mSCL as well.
Rule [RETURN-CONT] defines the code for return statements; it has

similar premises to [EMPTY-CONT], except for the return value. We notice
that, in this case, the continuation stored on the sequence of frames lacks
the first argument that is provided by the return and is therefore taken by
mS. Rules [ASGN-CONT-INVK] and [INVK-CONT] define invocations with con-
tinuations when invocations return a value or when the function is void.
In both cases, we assume the functions of the corresponding smart con-
tract are extendedwith new ad-hoc functions managing the continuation.
The formal parameters of these ad-hoc functions are the variables in the
current environments (e.g. dom(Γ1|Var), see also rule [FUNCTION-CONT]) plus
an additional variable for function returning a value. In this case, the
sequence of frames stores the values of the variables in the environment,
which will be restored when the continuation is triggered (see rules
[EMPTY-CONT] and [RETURN-CONT]).

Rules [INVK-TAIL-NV] and [INVK-TAIL] extend rules [INVK-NV] and [INVK] of
Fig. 4 by taking into account stacks. We notice that our translation im-
plements the tail (mutual) recursion optimization, so that tail calls do not
require more stack space.

Example 14. The extension of mSCL with continuations allows us to
write the code of a DAO-like attack [25]:

The contract Bank admits withdraws of at most to_pay

cryptocurrencies, provided that the account balance is large enough.
However, the Thief client circumvent this constraint by exploiting a
feature of mSCL (and of Solidity) according to which Thief's fallback
function is invoked when it is the recipient of a transfer. In fact, in the
above code, Thief's fallback contains an invocation to Bank's pay

function that is performed without having updated the to_pay field. It
turns out that the overall effect of an invocation Bank.pay(1) by
Thief is to drain the account.

Note that the graph of invocations is cyclic; therefore our technique
analyzes the κ-th approximant and compute the corresponding maximal
gains and losses. In these cases, we actually compute two consecutive
approximants and deduce properties of the code according to the dif-
ferences of the results. The following intermediate code defines the
approximant 1 of the DAO-like attack.

Let Γ0 and Γ1 two pure environments (with disjoint codomains)
defined as follows

To improve readability, we use the following abbreviations and
conventions:

� σ ¼ s1, …, s12,
� we hide dead code, i.e. code that will never be executed. The detec-
tion of dead code has been performed by hand, but this can be
automatized using standard techniques (e.g. abstract interpretation);

� H is always the value of msg.sender and v the value of msg.value;
� in Bank.pay:

Γ
0
1 ¼ Γ1½Bank:balance7!�n;Thief :balance7!þn�
σ

0 ¼ pay_cont; v;Bank; n; 0; s1; s2; s3; s4; s5; s6

The intermediate code for Bank.pay is (comments are added for
readability sake):

Bank:payðΓ0;Γ1;H;v;n;σÞ¼
ðH¼BankÞ…��deadcode:theBanknevercallsBank:pay

þðH¼Thief Þ�
yBank;b>n^yBank;to_pay�n

���ifðthis:balance>n&&n<¼to_payÞ
ðs1¼?Þ��stacknotfull�
n�0^yBank;b�n

���enoughmoneytotransfer

��σ
0 ¼<C¼Bank;m¼pay_cont;e¼msg:value;D¼Bank;e

0 ¼n;0>σ

��wherepay_contimplementscontinuationto_pay¼to_pay�n;

��msg:sender:transferðÞcallsThief:fallback
Thief :fallback

�
Γ0;Γ

0
1;Bank;n;Bank;σ

0 �
þ�

n<0^yBank;b�n
�
Γ1��revert:notenoughmoneytotransfer

þðs1 6¼?ÞΓ1��revert:pushonfullstack

þ�
!
�
yBank;b>n^yBank;to_pay�n

����elsecase:popandcallnextcontinuation

runtime_dispatchðΓ0;Γ1;0;0;0;σÞ

The function pay_cont implementing the continuation to_pay¼ to_

pay - n; is:

pay_contðΓ0;Γ1;H; v; r; n; σÞ ¼ runtime_dispatch

ðΓ0;Γ1½Bank:to_pay7!�n�; 0; 0; 0; σÞ

where runtime_dispatch defines the code that pops a continuation from
the stack and calls it, or it commits the computation when the stack is
empty. We let

Γ0 ¼ �
Bank 7! �

balance 7! xBank;b; to_pay 7! xBank;to_pay
�
;Thief 7! �

balance 7! xThief ;b
� �

Γ1 ¼ �
Bank 7! �

balance 7! yBank;b; to_pay 7! yBank;to_pay
�
;Thief 7! �

balance 7! yThief ;b
� �
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σ
0 0 ¼ s7; s8; s9; s10; s11; s12;?6 :

Finally, the intermediate code for Thief.fallback is:

Thief :fallbackðΓ0;Γ1;H;v;σÞ¼
ðH¼BankÞBank:payðΓ0;Γ1;Thief ;0;1;σÞ �� tail call to Bank:pay

þðH¼Thief Þ… �� the Thief never calls its fallback

The code for the second approximant is the same, with the following
minor changes:

� σ ¼ s1, …, s18
� σ0 ¼ pay_cont, v, Bank, n, 0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12
� σ0 0 ¼ s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18, ?6.
� the stack not full check in the Bank.pay equation becomes (s7 ¼ ?)

7.4. The analysis

We use the same arguments of Section 5 to make the intermediate
code of the above translation adequate to a cost analyzer. In particular,
we conform to the same cost models and below we only detail the dif-
ferences due to the need of passing around the encoding of the stack.

Let ðC1;⋯ ;CnÞ be a program in the mSCL extended syntax, where κ is
the maximal weight of a path in the graph of invocations and ι is the
maximal number of arguments and local variables of a function. For
every sequence of κ þ 1 frames σ ¼ α1⋯αh⫫⋯⫫, let be the tuple
whose length is (ι þ 4) � (κ þ 1) that is defined as follows:

Sequences of (ι þ 4)� (κ þ 1) elements will be ranged over by σ. Cost

equations of a mSCL program are derived from the corresponding in-
termediate code as follows:

1. for every function C:mðΓ0;Γ1;v;x;H;σÞ ¼ ΘC:m, let ⋁i 2 1..h(ϕi) Θi be
the canonical form of ⌜ΘC.m⌝ (therefore every ϕi is a conjunction).
Then we have the following cost equations:

2. If we are interested in the analysis of an invocation of the function
C.m, we add the next equation where we initialize the stack to an
empty one:

where b1, …, bn are the variables in ⌊Γ⌋; y of type uint. We assume that
these variables are non negative (this is required because variables in
CoFloCo are signed).

Example 15. The cost equations of the first approximant that are
generated by our analyzer for the functions in Example 14 are the
following ones. We use the abbreviations

runtime_dispatchðΓ0;Γ1;H; v; r; σÞ ¼
ðs1 ¼ BankÞ

ðs2 ¼ pay_contÞ pay_contðΓ0;Γ1; s4; s3; r; s5; σ
0 0Þ

þ ðs2 ¼ payÞ… �� Bank:pay is never used as a continuation

þðs1 ¼ Thief Þðs2 ¼ fallbackÞ… �� Thief:fallback is never used as a continuation

þðs1 ¼ ?Þ Γ1 �� empty continuation stack: commit
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?n ¼ ?;⋯ ;?|fflfflfflfflffl{zfflfflfflfflffl}
n times

σ ¼ s1; s2; s3; s4; s5; s6; s7; s8; s9; s10; s11; s12
σ↑6 ¼ s7; s8; s9; s10; s11; s12 :

Output by CoFloCo on the first approximant when computing a
bound to the amount of cryptocurrency lost is:

On the second approximant the output is:

The bound to the second approximant is not tight: it is easy to prove
that the Bank can never lose more than N þ 1 coins when the compu-
tation uses at most two stack frames.

7.5. Alternative approach to CPS translations

As discussed in Ref. [14], it is possible to remove continuations (of
imperative languages) without using any CPS translation. The key to
avoid CPS translations is to resort to a technique used in logic pro-
gramming to encode imperative programming, since logic programming
is the model of CoFloCo. We illustrate the feature with an example.
Consider to analyze the cost of the function f defined in pseudo-C code as
follows

f ðxÞf returnðgðhðxÞÞÞ g :

One can use the cost equation

kf ðX;ZÞ ¼ eþ khðX; YÞ þ kgðY ;ZÞ ½true�

where each kf, kh and kg are the cost of the functions f, g and h, respec-
tively. In this equation, logic variables encode the return values of
functions and, at the same time, the input of the continuation. In
particular, Y, which encodes the return value of h(x), is used as an output
parameter of kh and as an input parameter of kg. The logical variable Z,
which encodes the return value of f and g, is used an output parameter of
both kf and kg. By means of the above expedient, we could have avoided
CPS-like translations and augmented our intermediate language with
continuations to function calls. We decided not to do that for several
reasons:

1. An intermediate language without continuations is much easier to be
statically analyzed; in the future we plan to try other techniques
different from the generation of cost equations and the lack of con-
tinuations grants us more freedom in the choice of techniques;

2. Smart contract languages display failures with automatic back-
tracking and ad-hoc catch operations on errors. That is, these lan-
guages have explicit control operators. It turns out that CPS

translation is the most flexible technique to encode languages with
control operators (in languages without them). Adopting the CPS
translation since the beginning allows easier scaling to more complex
analyzes of future extensions of mSCL.

Finally, it is not clear a priori whether an alternative approach that
avoids the CPS translation could scale better producing fewer equations.

De Santis, in his Bachelor Thesis [23], has implemented the foregoing
direct technique, which is entangled by the resolution of dynamic
dispatch and the management of the initial memory to implement
backtracking. After applying optimizations comparable to the ones in our
prototype the result is that the two methods are incomparable in the
number of equations generated (see Table 2, taken directly from
Ref. [23]).

7.6. Further extensions

The encoding of the frame stack for invocations given in Section 7.3
can be generalized to any array of bounded size8: if n is the maximum size
of the array A, then A can be encoded by a sequence of n variables a1,…,
an plus a further variable top that records the current array length. Op-
erations like array access, push and pop can then be implemented using
large if - then - else decision trees. Actually, this pattern has been
used to encode manually the Chain-Shaped Ponzi scheme in mSCL.

In a similar way, maps of finite domains, e.g. maps used to associate
data to contract addresses, can be encoded as a set of pairs of variables,
holding respectively a key and its associated value. At the moment,
though, our prototype does not implement bounded array and finite maps.

Table 2
Comparison of De Santis's direct translation to cost equations versus ours based
on the CPS transformation.

Example No CPS CPS

number of cost equations number of cost equations

Bank-Thief code 11 20
English auction1 29 20
English auction2 27 38
Handover Ponzi 1438 336

8 We are adopting the Solidity terminology: an array is a stack data structure
that can grow dynamically, e.g. via push operations.
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7.7. Dynamic instantiation of smart contracts

Smart contract languages also feature the dynamic creation of con-
tracts (cf. the operation new in Solidity). Our technique, does not allows
us to verify programs that use this operation in an unconstrained way, e.g.
new inside an unbounded recursion or iteration. In all the other cases, the
dynamic creation of smart contracts may be anticipated at static time by
pre-instantiating the contract a finite number of times, thus paving the
way to our analysis.

More precisely, as discussed in Section 6, we have analyzed smart
contracts taken from etherscan.io and written in Solidity. We have
found very few contracts that always use a statically bounded number of
new (no contract use the operation inside a recursion or an iteration). To
test our analyzer, we rewritten the code by replacing the newwith a set of
pre-instantiated contract name. As expected, the overall result has been a
blow-up of the equations because the set Id is augmented (see the fore-
going Subsection 7.1).

7.8. Deployment

Our prototype is a static analyzer for mSCL that does not run any code:
the successful codes will eventually run on a real blockchain. In De Santis
bachelor thesis [23], he has implemented a compiler from mSCL to So-

lidity. The compiler turns every mSCL contract into a Solidity contract with
additional fields to hold the address of companion contracts. Moreover,
the Solidity contracts have an additional function that, when called for the
first time, receives the address of the companion contracts and store them
in the additional fields. Additionally, the compiler also returns a Python
script that compiles and injects the Solidity code in Ethereum, creates a
new contract instance for every mSCL contract and invokes each addi-
tional function to let each contract know the addresses of its companion
contracts. Finally, the compiler perform type inference for translating
function calls over addresses, since Solidity requires to cast every address
to a contract interface.

While the code in Ref. [23] is quite simple, it is already important
from our perspective. Indeed, thanks to it, we can think of mSCL as a basic
programming language for verifiable smart contracts that we can
evolve in diverging directions from Solidity in order to strike a good
balance between expressivity and the possibility of doing static analyses,
in the spirit of other languages like Vyper [17], which even sacrifices
Turing completeness for that.

8. Related works

In the past few years formal methods have been largely used to
analyze smart contracts to verify security properties. Our technique fol-
lows the same pattern of previous analyzers proposed in Refs. [15,19]. In
those cases, the purpose of the analysis has been the over-approximation
of the computational cost and the resource usage of actor-based pro-
gramming languages.

A contribution that also addresses cryptocurrency movements in a
subset of Solidity similar to mSCL is [7]. They propose an analysis
framework based on a compilation of the subset of Solidity to F*, a
functional language aimed at program verification with a powerful type
and effect system. Using F* types, it is possible to trace Ethers and
discover critical patterns in smart contracts, such as reentrancy attacks.
Unlike our technique, they are not able to derive upper bounds of Ethers
gained and lost by smart contracts.

A technique based on cost equations has been already applied to
smart contract languages for analyzing gas-consumption [2]. In that work
the authors analyze the Ethereum Virtual Machine code obtained from
Solidity using classical control flow analysis where every node records the
gas-consumption of the corresponding operation. The technique yields a
precise analysis of conditional statements by restricting the language to
guards belonging to Presburger arithmetic (similarly to what we do in
this paper). There are similarities and differences between Ref. [2] and

our paper. They use a cost analyzer to compute gas and use an inter-
mediate language, which is called RBR. However they address the
bytecode instructions (for which gas is defined) and RBR is completely
different from our intermediate language: it is imperative, uses memory
locations, and abstracts over the instruction of a particular assembly
language. In this paper, we are interested on a property that is expressed
on the high level code, where the programmer has a better grasp of the
invariants. For this reason our intermediate code abstracts away from the
instructions of a high level language. The important difference between
this paper and [2] is the following one. Computing gas amounts to
over-approximate a function GAS(x) (see our Definition 7) and, in
Ref. [2], the authors define this over-approximation by abstracting out
from the identity of smart contract addresses. This abstraction is not
possible when one has to compute balances because confusing one smart
contract address with another may lead to awful errors. It is exactly this
analysis of smart contract addresses that causes the huge number of cost
equations, even exponential with respect to the input, which is not the
case in Ref. [2]. Finally, up-to our understanding, Albert et al. analyze,
analyzes one smart contract at a time, and, looking at the examples in the
paper and the ones pre-loaded in the on-line prototype, that smart con-
tract never calls methods of other smart contracts. Instead our analyzer
verifies sets of interacting smart contracts and, in particular, the cases of
reentrant codes.

An interesting paper about asset movements targets Bitcoin Script
[6]. In that work, the authors verify the absence of assets that remain
frozen in contracts, i.e. liquidity. In particular they prove decidability of
liquidity in a model of Bitcoin Script, called BitML. We think that our
technique is adequate to reason about liquidity as well, and it would be
interesting to compare the two approaches on mSCL.

As regards intermediate languages, other languages have been
defined for smart contract analysis (apart RBR mentioned above). One
such language is Scilla [24] that is based on communicating automata
that are stateful and use updates. At the moment, the model of Scilla does
not feature exceptions and, therefore, it is not clear how to model roll-
backs. Vandal, defined in Ref. [12], converts Ethereum Virtual Machine
bytecode to semantic logic relations. These relations, paired with the
security analysis expressed as logic rules, produces outputs listing po-
tential vulnerabilities. Also Vandal does not model backtrack: it reduces
to flagging “vulnerable” all those actions that may cause rollback. So, as
far as we can see, we could have used neither Scilla nor Vandal to define
mSCL behaviours.

Other formal techniques have addressed the critical interplay be-
tween smart contracts and users (that are usually untrusted) [8,18,20,
21]. In these cases, the model is nondeterministic (because of users’
behaviour) and one tries to predict the maximum profit for some user.
The proposed techniques range from game theory to symbolic analysis of
computations and to (decidable fragments of) temporal logic. In this
paper, we focus on (deterministic) behaviours and compute the best and
the worst possible scenarios of smart contract compositions. That is, if we
want to analyze the interaction with a possible user, we need to express
the user as a deterministic contract.

9. Conclusions

In this paper we have analyzed cryptocurrency movements of smart
contracts written in a lightweight version of Solidity, called mSCL,
which is procedural and features dynamic dispatch. The analysis yields
cost equations defining upper bounds of loss and gain of smart con-
tracts that are computed by means of an off-the-shelf cost analyzer.
The Definition of the cost equations has been given by means of a
simple functional language with static dispatch that expresses the
input-output behaviour of mSCL functions. Our technique has been
prototyped and we have reported its assessments and discussed ex-
tensions with additional features to partially cover the gap with
mainstream smart contract languages.

Several extensions of the analyzer need to be investigated in the next
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future. They mostly concern the management of other data types and
other operations, such as modifiers, try-catch instructions, etc.

Another important research direction concerns the study of opti-
mizations for our prototype. The encoding of the extended language
with the address data type gives a number of cost equations that is
exponential with respect to the address variables in the source mSCL

code. This explosion is due to having chosen a simple and intelligible
encoding. For example, if one encodes a function f that just passes the
msg.sender to another function g, the resulting equations for f and g
will have two disjoint sums over all possible addresses, while one sum
would have been sufficient (and it might be the case that no sum is
necessary at all, e.g. the msg.sender is never used anyway in g). To
avoid this pitfall, our current prototype (which admits address types)
already refines the encoding by using optimizations that greatly reduce
the size of the output. These optimizations are not very aggressive at
the moment: they only remove conditionals with identical branches
and merge identical alternatives in choices. Table 3 reports the results
of these optimizations for the Chain-shaped Ponzi scheme in Ref. [5]
when the smart contracts involved are 2, 3 and 4: the reader may
notice that the number of equations decreases by 87% in average. A
formal study of (more aggressive) optimizations has not been under-
taken so far and is in our agenda.

Our analysis is symbolic and fully automatic, which are evident pros.
Two cons of the technique are: (i) it is not clear how much approximated
it is, namely how much tight are the maximal loss and maximal gain we
compute, and, up-to optimizations, (ii) the number of equations we
produce are exponential in the code size because cost solvers are too
rigid. However there are other analyses and techniques one can try and
that we intend to investigate. In particular, one may benefit from the

simplicity of our intermediate language that, being functional, first-order
and with static dispatch, is a simple target for formal methods. Therefore
one could trade automation for precision and scalability, manually
proving tight bounds by means of interactive provers, like Refs. [4,22],
using functional languages with expressive types systems, like F* [26], or
even combining themwith amortized analysis in the spirit of Ref. [16] (in
the Chain-shaped Ponzi scheme a potential can easily be attached to the
queue of current participants to compute the maximal gain). These ap-
proaches also allow one to perform the analysis of functional and
non-functional properties at once.

Finally, while gas consumption has been overlooked in this paper, its
analysis is relevant and we are going to address it. Indeed, gas con-
sumption decreases the maximal gain and increases the maximal loss,
thus triggering unwanted backtracking in case of lack of gas. Previous
work on gas focuses on the direct analysis of the bytecode, whereas we
work directly on the source code. However, the two approaches can be
reconciled using the technique defined in the project CerCo [3]: an
instrumented compiler can produce at once the bytecode and it is
possible to define a precise cost model for the source language where the
cost of every basic block is induced by the cost of the bytecode that
corresponds to that block.
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Appendix A Technical details

Lemma 16. (Substitution Lemma) Let Γ0, Γ1 be pure environments and Γ, Γ0 be ground environments. If Γ0;Γ1½x 7! x0; y 7! 0�‘z
C;DS : Θ then Γ;Γ0 ½x 7! v;y 7!

0�‘u
C;DS : Θfu;v =z;x0g½Γ0;Γ1 ⇝ Γ;Γ0 �. Similarly for expressions.

Proof. Standard induction on the depth of the proof tree of Γ0;Γ1½x 7! x0; y 7! 0�‘z
C;DS : Θ and a case analysis on the last rule used.

Theorem 5. Let P be a mSCLprogram such that ‘ P : I and let S be an initial state such that S ‘ Θ. Then

1. (determinism) If Θ⇒*
IΘ

0
then there is at most one Θ0 0 such that Θ

0
⇒IΘ

0 0;

2. (correctness) If S⟶*S0
then there exists Θ0 such that S0 ‘ Θ

0
and Θ⇒*

IΘ
0
.

Proof. Determinism. This follows directly from the translation in Section 4 because, in every
P

i 2 1..n(ϕi) Θi, at most one ϕi may be true every time.
Correctness. The Proof is by induction on the length of S⟶*S0

. We use the property that, if Γ‘v
C;De : e

0
and [ [e] ]C,v,D,ℓ¼ v0 where ℓ is the memory of

D in some state S00 then e0 is a ground expression whose value [ [e0] ] is v0.
The basic case of the induction is immediate; the inductive case

S⟶*S0
⟶S00

is demonstrated by means of a case-analysis on the reduction S0
⟶S00.

We discuss only the sub-case when S0
⟶S00 uses rule [METH]; the other ones are either simpler or similar. Since we are using [METH], the following

are true:

Table 3
Results of current optimizations for the Chain-shaped Ponzi scheme.

♯ Smart
Contracts

♯ Equations without
optimizations

♯ Equations with
optimizations

2 6492 1030
3 98,133 11,825
4 1,452,566 170,308
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ð1Þ S0 ¼
Y
i21::n

Ci

�
ℓ

0
i �ℓi

���Cj▸
v
Ck : e:mðe0 Þ

ð2Þ ½½e��Cj ;v;Ck ;ℓ
0
k
¼ Ch

ð3Þ ½½e0 ��Cj ;v;Ck ;ℓ
0
k
¼ v

0

ð4Þ mðT xÞfT0
y;Smg 2 Ch

ð5Þ Γ;Γ
0 ¼ envsðS0 Þ

Additionally, since S0 ‘ Θ
0
for some Θ0 by induction hypothesis, we have used rule [INVK-NV] with the hypotheses:

ð6Þ Γ
0 ‘v

Cj ;Ck
e : e0

ð7Þ Γ
0 ‘v

Cj ;Ck
e
0
: e

0 0

By Definition of envsðS0 Þwe have Γ0(Ck) ¼ ℓk0; therefore, by (2) and (6) we have e0 ¼ Ch and, by (3) and (7), e0 0 are ground expressions whose values
are v0 .

According to rule [METH], we have

S00 ¼
Y

i2ð1::nÞnh
Ci

�
ℓ

0
i �ℓi

���Ch

�
ℓ

0
h½x 7! v

0
; y 7! 0�;ℓh

���Ck▸
0
Ch : Sm

where mðT xÞfT0
y;Smg 2 Ch. We demonstrate that there is Θ0 0 such that S00 ‘ Θ

0 0 and Θ
0
⇒IΘ

0 0. By rule [FUNCTION],

Γ0;Γ1½x 7! x0; y 7! 0�‘0
Ck ;Ch

Sm : ΘCk

and, by the Substitution Lemma, we obtain

Γ;Γ
0 ½x 7! v; y 7! 0�‘0

Ck ;Ch
Sm : ΘCkfv=x0g½Γ0;Γ1 ⇝ Γ;Γ

0 � : ð8Þ

By definition, (8) is exactly S00 ‘ ΘCkfv =x0g½Γ0;Γ1 ⇝ Γ;Γ0 �.
As regards Θ0, we observe that

Θ
0 ¼ðm 2 ChÞ Ch:mðΓ;Γ0

; 0; v
0
;CkÞ

þ ðm:payable 2 ChÞ Ch:mðΓ;Γ0
; 0; v

0
;CkÞ

þ ðm 62 Ch ^ m:payable 62 Ch ^ fallback 2 ChÞ Γ0

þ ðm 62 Ch ^ m:payable 62 Ch ^ fallback 62 ChÞ Γ

and, by (4), the unique valid alternative in Θ0 is the first one. Therefore the evaluation of Θ0 amounts to unfold the function invocation Ch:mðΓ;Γ0
;0;v0 ;

CkÞ, that is

Θ
0
⇒I⇒IΘCkfv=zg½Γ0;Γ1 ⇝ Γ;Γ

0 �
This concludes the Proof.

Theorem 12. (Correctness of cost equation generation). Let P be a mSCL program, S be an initial state and ‘ P : I and S ‘ C:mðΓ;Γ; v0
; v;HÞ and C:mðΓ;Γ;v0

;

v;HÞ⇒*
IΓ

0
. Let us extend 〈⌜I⌝〉 (where we use either costC0

gain or costC
0

loss during the translation) with a main function that calls C.m. Then

1. Determinism: mainð⌊Γ⌋; v0
; v;HÞ has a unique →CoFloCo-normal-form

2. Correctness:

� mainð⌊Γ⌋; v0
; v;HÞ→CoFloCo

*GAINC
0

I ;C;mðΓ; v
0
; v;HÞ if we selected costC

0

gain during the translation,

� mainð⌊Γ⌋; v0
; v;HÞ→CoFloCo

*lossC
0

I ;C;mðΓ; v
0
; v;HÞ if we selected costC

0

loss during the translation.

Proof. (Sketch) The proof is by accumulation of intermediate facts:

1. for every ground Presburger expression e whose value is v, ⌜e⌝→CoFloCov.

Proof: by inspection of the Definition of ⌜e⌝.

2. for every ground guard ϕ, ϕ holds if and only if ⌜ϕ⌝ holds.

Proof: by inspection of the Definition of ⌜ϕ⌝, remembering that ⌜⋅⌝ is injective over functions and contract names.
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3. for every code Θ1, if Θ1⇒IΘ2 in the intermediate language and ⌜Θ1⌝ ¼ Θ
0
1 and ⌜Θ2⌝ ¼ Θ

0
2, then Θ

0
1⇒IΘ

0
2 in the simplified intermediate language.

Proof: Here we are abusing of the notation because the terms Θ
0
1 and Θ

0
2 are not in the intermediate language but are in the simplified one (which

does not use environments at all). Similarly when we write Θ
0
1⇒IΘ

0
2. However, the simplified language syntax and semantics are almost identical to

those of the intermediate language but for:

(a) functions take in input only lists of variables (in the intermediate language the first two arguments were environments);
(b) the final code is a list of values instead of an environment.

As regards the semantics, the rules of the simplified intermediate language are exactly the same of the intermediate one. Said this, the Proof is by
inspection of the definition of ⌜Θ⌝ over codes, using the previous two points.

4. let mðbΓ0c; xÞ ¼
P

i2I
�
⋁j2Jiϕ

j
i

�
ðΘiÞ in the simplified intermediate language. Then, for every ground Γ0

0;Γ; e and n such that mð�Γ0
0

�
; eÞ⇒n

I⌊Γ⌋ with

exactly one derivation, there is exactly one derivation mð�Γ0
0

�
; eÞ→CoFloCo

*costð�Γ0
0

�
; ⌊Γ⌋Þ (the derivation is deterministic).

Proof: by induction on n. Let⋁j2Jiϕ
j
i be the unique guard such that ð⋁j2Jiϕ

j
iÞf

�
Γ0
0

�
=bΓ0cgfe =xg holds. This can happen only if there is at least one j 2

Ji such that ϕj
if
�
Γ0
0

�
=bΓ0cgfe =xg holds. Then

m
��
Γ

0
0

�
; e
�
⇒IΘi

��
Γ

0
0

�	bΓ0c

fe=xg

and

m
��
Γ

0
0

�
; e
�
→CoFloCocost

��
Γ

0
0

�
;Θi

��
Γ

0
0

�	bΓ0c

fe=xg�

because of the equation

mðbΓ0c; xÞ ¼ costðbΓ0c;ΘiÞ
�
ϕj
i

�
No other →CoFloCo-reduction is possible because:

(a) any other predicate ϕj
i0
f�Γ0

0

�
=bΓ0cgfe =xg for i0 6¼ i and j 2 Ji’ evaluates to false. This follows by the fact that every other

ð⋁j2Ji0ϕi0 Þf
�
Γ0
0

�
=bΓ0cgfe =xg must be false, otherwise the reduction should not have been deterministic on the intermediate terms (obtained

translating mSCL programs);

(b) any other disjunct ϕj
0

i f
�
Γ0
0

�
=bΓ0cgfe =xg of ⋁j2Jiϕ

j
if
�
Γ0
0

�
=bΓ0cgfe =xg that evaluates to true triggers the same reduction

m
��
Γ

0
0

�
; e
�
→CoFloCocost

��
Γ

0
0

�
;Θi

��
Γ

0
0

�	bΓ0c

fe=xg�

because of the equation

mðbΓ0c; xÞ ¼ costðbΓ0c;ΘiÞ
�
ϕj

0

i

�
By cases over n:

� if n ¼ 0 then Θif
�
Γ0
0

�
=bΓ0cgfe =xg ¼ ⌊Γ⌋ and we are done;

� otherwise Θif
�
Γ0
0

�
=bΓ0cgfe =xg ¼ m

0 ðbΓ0c; e0 Þ⇒n�1
I ⌊Γ⌋ and costðbΓ0c;m0 ðbΓ0c; e0 ÞÞ ¼ m

0 ðbΓ0c; e0 Þ and we conclude by inductive hypothesis.
5. Determinism: mainð⌜Γ⌝; ⌜Γ⌝; e; x; ⌜H⌝Þ has a unique →CoFloCo-normal-form as a corollary of all previous points and since the new equation main has

only one branch
6. Correctness:

� mainð⌊Γ⌋; v'; v;HÞ→CoFloCo
*GainC

'

I ;C;mðΓ; v'; v;HÞ if we selected costC
0

gain during the translation,

� mainð⌊Γ⌋; v'; v;HÞ→CoFloCo
*LossC'

I ;C;mðΓ; v'; v;HÞ if we selected costC
0

loss during the translation.

By the previous point, both GAINC
0

I ;C;m and lossC
0

I ;C;m are defined. Combining the first 5 points, we obtain mainð⌜Γ⌝; ⌜Γ⌝; e; x; ⌜H⌝Þ→CoFloCo
*costð⌜Γ⌝;

⌜Γ0
⌝Þ where.

mðΓ; Γ; e; x; HÞ⇒*
IΓ

0
. Therefore GAINC

0

I ;C;mðΓ; v
0
; v; HÞ ¼ maxð0; Γ0 ðC0

:balanceÞ � ΓðC0
:balanceÞÞ, lossC

0

I ;C;mðΓ; v
0
; v; HÞ ¼ maxð0; ΓðC0

:balanceÞ �
Γ0 ðC0

:balanceÞÞ, costC0

gainð⌜Γ⌝; ⌜Γ
0
⌝Þ ¼ maxð0;Γ0 ðC0

:balanceÞ�ΓðC0
:balanceÞÞ and.

costC
0

lossð⌜Γ⌝;⌜Γ
0
⌝Þ ¼ maxð0;ΓðC0

:balanceÞ � Γ0 ðC0
:balanceÞÞ.

The thesis holds.
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