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Abstract: Background: Non-canonical mutations of the isocitrate dehydrogenase (IDH) genes have
been described in about 20–25% and 5–12% of patients with WHO grade II and III gliomas, respec-
tively. To date, the prognostic value of these rare mutations is still a topic of debate. Methods:
We selected patients with WHO grade II and III gliomas and IDH1 mutations with available tissue
samples for next-generation sequencing. The clinical outcomes and baseline behaviors of patients
with canonical IDH1 R132H and non-canonical IDH1 mutations were compared. Results: We eval-
uated 433 patients harboring IDH1 mutations. Three hundred and ninety patients (90.1%) had
a canonical IDH1 R132H mutation while 43 patients (9.9%) had a non-canonical IDH1 mutation.
Compared to those with the IDH1 canonical mutation, patients with non-canonical mutations were
younger (p < 0.001) and less frequently presented the 1p19q codeletion (p = 0.017). Multivariate
analysis confirmed that the extension of surgery (p = 0.003), the presence of the 1p19q codeletion
(p = 0.001), and the presence of a non-canonical mutation (p = 0.041) were variables correlated with
improved overall survival. Conclusion: the presence of non-canonical IDH1 mutations could be
associated with improved survival among patients with IDH1 mutated grade II–III glioma.

Keywords: glioma; WHO grade II glioma; WHO grade III glioma; IDH1; prognostic factor

1. Introduction

Molecular assessment represents a milestone for the diagnosis of gliomas. In-depth
genomic evaluations provide crucial details about the clinical aggressiveness of tumors
and can be used to inform the prognosis of the disease [1–10].

The 2016 World Health Organization (WHO) classification of primary central nervous
system (CNS) tumors establishes that glioma pathological diagnosis must not leave out
molecular examination [1].

The integration of objective parameters for diagnosis, such as the assessment of
molecular markers, is essential in order to homogenize pathological diagnoses and reduce
inter-observer variability.

Evaluation of isocitrate dehydrogenase (IDH) gene alterations represents one of the
most critical variables to consider, since survival is drastically prolonged for patients
harbouring an IDH mutation [1–5].

The incidence of an IDH mutation is very high in patients with WHO grade II–III
glioma (more than 80%) and secondary glioblastoma (GBM) (73%), while it is uncommon
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among patients with primary GBM (3.7%) [2–5]. Gain-of-function of the IDH gene results
in increased intracellular levels of 2-hydroxyglutarate, which leads to alterations of DNA
methylation [11]. The final biological effect is cellular dedifferentiation and growth promo-
tion, mainly mediated by gene transcription deregulation. Clinically, IDH-mutated tumors
present prolonged survival and an improved response to chemotherapy as compared
to IDH-wild type gliomas [11]. Indeed, IDH-wild type gliomas often amplify epidermal
growth factor receptor (EGFR), gain of chromosome 7 and loss of chromosome 10 and telom-
erase reverse transcriptase (TERT) promoter mutations [11,12]. These biological features
make IDH-wild type tumors biologically and clinically more similar to glioblastoma [11,12].

The 1p19q codeletion represents the hallmark alteration for IDH-mutated oligoden-
droglioma and is associated with prolonged survival and better response to chemother-
apy [11]. The exact biological mechanism by which this alteration affects cell proliferation
and tumor development is still unclear. We know that 1p19q co-deletion is mutually
exclusive with loss of the nuclear expression of the alpha thalassemia mental retardation
syndrome x-linked (ATRX) gene [11].

The R132H (c.395 G > A, exon 4 codon 132) mutation of the IDH1 gene is the most
common alteration [3].

The availability of techniques capable of performing fast and deep genome sequenc-
ing, has allowed us to identify novel and uncommon IDH gene mutations. The term
“non-canonical mutations” involves all mutations other than R132H IDH1 alterations.
These unusual mutations have been reported in about 20–25% and 5–12% of patients
with grade II and III gliomas, respectively, but are extremely uncommon in patients
with GBM [13–18].

In the present study, we aimed to assess the clinical outcomes achieved by patients
with grade II–III gliomas harbouring non-canonical IDH1 mutations.

2. Materials and Methods
2.1. Patient Selection

Patients were identified by a review of the active electronic chart system in our
institution. Only patients with updated follow up data, adequate tumor tissue samples
available for sequencing analysis, and proven IDH mutations were selected.

By adopting these inclusion criteria, we selected a population of 493 patients. After fur-
ther revision, 60 patients were removed (41 had primary GBM, 19 patients had an IDH2
mutant glioma). Finally, we selected 433 patients with WHO grade II–III IDH1 mutant
glioma from February 2008 to February 2020 (Figure 1).
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The median follow up was 94.9 (95% CI, 85.9–104.0) months.
According to the 2016 WHO Classification, each tumor sample was reviewed as

WHO grade II or III gliomas [1] and assessed by specific extended IDH gene sequencing.
The study was approved by the Ethical Committee of Azienda Sanitaria Locale di Bologna
(protocol number CE09113, Bologna, Italy). All information regarding the human mate-
rial was managed using anonymous numerical codes, and all samples were handled in
compliance with the Declaration of Helsinki.

2.2. IDH1 Analysis

DNA was extracted from FFPE (formalin fixed paraffin embedded) material (two to
four 10 µm-thick sections deposited on glass slides, according to the amount of lesional
tissue present in the paraffin block). The areas of interest were scraped under microscopic
guidance using a sterile blade. DNA was extracted using the Quick Extract Kit (Epicentre,
Madison, WI, USA).

IDH1 (exon 4, codons 96–138) analysis was performed using the following primers:
IDH1-Exon4-Fw 5′-gAAACAATgTggAAATCACCA-3′ and IDH1-Exon4-Rc 5′-gAAACAAA
TgTggAAATCACCA-3′.

Amplicons were sequenced using the 454 GS-Junior NGS (Roche, Mannheim, Germany)
according to previously described protocols [19,20].

Each IDH1 mutation that was different from the ‘’canonical” R132H (c.395 G > A,
exon 4 codon 132) was defined as an IDH1 ‘’non-canonical mutation”.

2.3. Statistical Analysis

Data were reported as median, range, and frequencies. Overall survival (OS) analyses
were estimated through the Kaplan–Meier method and were analyzed by the means of
a log-rank test and the forward stepwise multivariate Cox proportional hazards model.
The hazard ratios (HRs) were computed together with their 95% confidence intervals
(95% CIs).

Two tailed p-values < 0.05 were considered statistically significant. Statistical analysis
was performed using SPSS version 13.0 (SPSS Inc., Chicago, IL, USA). The primary endpoint
of the present study was the OS comparison between patients with IDH1 canonical and
IDH1 non-canonical mutated grade II or III glioma.

3. Results

The studied population was composed of 433 patients with WHO grade II–III IDH1
mutant gliomas (Figure 1). Of these, 390 patients had a R132H IDH1 mutation (90.1%),
while 43 patients had non-canonical IDH1 mutations (9.9%). The R132C and R132G
mutations were the most frequent non-canonical IDH1 mutations detected, followed by
the R132S and the R132L (Table 1).

Table 1. IDH1 mutations detected in the overall population.

IDH1 Mutation Patients (Percentage)

R132H 390 (90.1%)
R132C 19 (4.4%)
R132G 12 (2.8%)
R132S 9 (2.1%)
R132L 3 (0.7%)

The median age was 38 years (range 18–76 years). WHO grade II and grade III IDH1
mutant gliomas were diagnosed in 269 (62.1%) and 164 (37.9%) patients, respectively.

Compared to those with R132H IDH1 mutations, patients with non-canonical muta-
tions were younger (p < 0.001), presented the 1p19q codeletion less frequently (p = 0.017),
and more often received complete surgical resection (p = 0.039). All patients’ baseline
characteristics are summarized in Table 2.
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Table 2. Patients characteristics and comparison (Fisher test) between IDH1 canonical and IDH1 non-canonical mutation.
* Statistically significant variables.

Variables
Overall Population IDH1 Canonical IDH1 Non-Canonical

p-Value
(n = 433) (n = 390) (n = 43)

Median age years (range) 38 (18–76) 39 (18–76) 29 (19–47) <0.001 *

Gender
0.675Male 253 (58.4%) 229 (58.7%) 24 (55.8%)

Female 180 (41.6%) 161 (41.3%) 19 (44.2%)

Grade
0.6752 269 (62.1%) 239 (61.3%) 30 (69.8%)

3 164 (37.9%) 151 (38.7%) 13 (30.2%)

1p19q Codeletion

0.017 *
Present 167 (38.6%) 157 (40.2%) 10 (25.6%)
Absent 216 (49.9%) 187 (48.0%) 29 (67.4%)

Miss 50 (11.5%) 46 (11.8%) 4 (7.0%)

Surgical Approach

0.039 *
Biopsy 36 (8.2%) 35 (9.0%) 1 (2.2%)

Partial Resection 254 (58.7%) 233 (59.7%) 21 (48.7%)
Total resection 127 (29.3%) 108 (27.7%) 19 (44.7%)

Miss 16 (3.8%) 14 (3.6%) 2 (4.4%)

Post surgical treatment

0.332

Follow up 165 (38.1%) 145 (37.2%) 20 (46.6%)
Radiotherapy 67 (15.5%) 61 (15.6%) 6 (14.1%)

Chemotherapy 40 (9.2%) 39 (10.0%) 1 (2.2%)
Radiotherapy and Chemotherapy 149 (34.4%) 134 (34.3%) 15 (34.9%)

Miss 12 (2.8%) 11 (2.9%) 1 (2.2)

After a median follow-up of 94.9 months, 291 (67.2%) patients were still alive.
The median survival in the overall population was 149.7 months.
No OS difference emerged when comparing patients with R132H IDH1 (mOS 148.1,

95%CI 131.9–164.4 months) and non-canonical IDH1 mutations (187.2, 95% 114.0–260.3 months;
p = 0.185. Figure 2).
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Age, presence/absence of the 1p19q codeletion, and the extension of surgery were all
variables affecting the prognosis of patients (Table 3).
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Table 3. Patient characteristics and comparison (Fisher test) between IDH1 canonical and IDH1 non-canonical mutation.
* Statistically significant variables.

Variables
Overall Population IDH1 Canonical IDH1 Non-Canonical

p-Value
(n = 433) (n = 390) (n = 43)

Median age years (range) 38 (18–76) 39 (18–76) 29 (19–47) <0.001 *

Gender
0.675Male 253 (58.4%) 229 (58.7%) 24 (55.8%)

Female 180 (41.6%) 161 (41.3%) 19 (44.2%)

Grade
0.6752 269 (62.1%) 239 (61.3%) 30 (69.8%)

3 164 (37.9%) 151 (38.7%) 13 (30.2%)

1p19q Codeletion

0.017 *
Present 167 (38.6%) 157 (40.2%) 10 (25.6%)
Absent 216 (49.9%) 187 (48.0%) 29 (67.4%)

Miss 50 (11.5%) 46 (11.8%) 4 (7.0%)

Surgical Approach

0.039 *
Biopsy 36 (8.2%) 35 (9.0%) 1 (2.2%)

Partial Resection 254 (58.7%) 233 (59.7%) 21 (48.7%)
Total resection 127 (29.3%) 108 (27.7%) 19 (44.7%)

Miss 16 (3.8%) 14 (3.6%) 2 (4.4%)

Post surgical treatment

0.332

Follow up 165 (38.1%) 145 (37.2%) 20 (46.6%)
Radiotherapy 67 (15.5%) 61 (15.6%) 6 (14.1%)

Chemotherapy 40 (9.2%) 39 (10.0%) 1 (2.2%)
Radiotherapy and Chemotherapy 149 (34.4%) 134 (34.3%) 15 (34.9%)

Miss 12 (2.8%) 11 (2.9%) 1 (2.2)

A multivariate analysis was performed. Variables included were age, type of IDH1
mutation, extension of primary surgery, and type of treatment received after surgery. In this
model, only the extension of surgery (total vs. partial; p = 0.001 or resection vs. biopsy;
p = 0.003), the presence of 1p19q codeletion (p = 0.001), and the presence of a non-canonical
mutation (p = 0.041) were confirmed as variables that were related to improved survival
(Table 4).

Table 4. Patient characteristics and comparison (Fisher test) between IDH1 canonical and IDH1 non-canonical mutations.
* Statistically significant variables.

Variables
Overall Population IDH1 Canonical IDH1 Non-Canonical

p-Value
(n = 433) (n = 390) (n = 43)

Median age years (range) 38 (18–76) 39 (18–76) 29 (19–47) <0.001 *

Gender
0.675Male 253 (58.4%) 229 (58.7%) 24 (55.8%)

Female 180 (41.6%) 161 (41.3%) 19 (44.2%)

Grade
0.6752 269 (62.1%) 239 (61.3%) 30 (69.8%)

3 164 (37.9%) 151 (38.7%) 13 (30.2%)

1p19q Codeletion

0.017 *
Present 167 (38.6%) 157 (40.2%) 10 (25.6%)
Absent 216 (49.9%) 187 (48.0%) 29 (67.4%)

Miss 50 (11.5%) 46 (11.8%) 4 (7.0%)

Surgical Approach

0.039 *
Biopsy 36 (8.2%) 35 (9.0%) 1 (2.2%)

Partial Resection 254 (58.7%) 233 (59.7%) 21 (48.7%)
Total resection 127 (29.3%) 108 (27.7%) 19 (44.7%)

Miss 16 (3.8%) 14 (3.6%) 2 (4.4%)
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Table 4. Cont.

Variables
Overall Population IDH1 Canonical IDH1 Non-Canonical

p-Value
(n = 433) (n = 390) (n = 43)

Post surgical treatment

0.332

Follow up 165 (38.1%) 145 (37.2%) 20 (46.6%)
Radiotherapy 67 (15.5%) 61 (15.6%) 6 (14.1%)

Chemotherapy 40 (9.2%) 39 (10.0%) 1 (2.2%)
Radiotherapy and Chemotherapy 149 (34.4%) 134 (34.3%) 15 (34.9%)

Miss 12 (2.8%) 11 (2.9%) 1 (2.2)

We supposed that the different percentages of patients harboring the 1p19q codeletion
(25.6 vs. 40.2%, in patients with and without a non-canonical mutation, respectively,
p = 0.017) influenced the overall survival analysis.

Thus, we performed an exploratory survival comparison, only assessing patients
without the 1p19q codeletion.

In this population, we found a significantly longer survival time for patients with
non-canonical IDH1 mutations (198.6, 95% CI 129.7–267.6) compared to those with the
R132H IDH1 mutation (138.5, 95%CI 109.7–167.3; p = 0.037, see Figure 3).
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4. Discussion

In the present study, we assessed the clinical impact of non-canonical IDH1 muta-
tion on a population of patients with WHO grade II–III IDH1 mutant gliomas. Notably,
we failed to show an OS difference between patients with IDH1 R132H and non-canonical
IDH1 mutations. Possible limitations to our findings include the retrospective nature
of the study and the small number of patients included who harbored non-canonical
mutations, which consequently limited the statistical power of our analysis to 30% in a
post-hoc analysis.

Nonetheless, there are some other possible explanations related to our results.
First of all, an imbalance in the number of patients harboring the 1p19q codeletion.
The 1p19q codeletion is a condition associated with a significantly improved survival

rate [1,5]. The higher rate of the codeletion reported in patients with the canonical IDH1
mutation could have hidden the prognostic impact of non-canonical alterations in the
univariate analysis. When patients with the codeletion were excluded from the analysis,
the subgroup of patients with non-canonical mutations showed a longer OS compared to
those with the IDH1 R132H mutation. This aspect could also somewhat explain the discrep-
ancy observed in the log-rank (univariate) and multivariate analysis. Indeed, the positive
prognostic role observed for non-canonical IDH1 alterations, emerged only in the multivari-
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ate assessment when the 1p19q codeletion was also included as an independent variable
associated with prognosis.

Previous series strongly suggest that patients with IDH2 mutated glioma more fre-
quently host a 1p19q codeletion than those with IDH1 alterations [17,18]. In our series,
we observed that patients with non-canonical mutations—compared to those with the IDH1
R132H mutation—less frequently presented a 1p19q codeletion (25.6 vs. 45.6%, p = 0.017).

We decided to exclude patients with IDH2 mutations from the present analysis since
tumors with this mutation are related with peculiar biological and clinical features [17,18].
Indeed, the IDH2 mutation appears to be mutually exclusive with PTEN (Phosphatase
and tensin homolog), p53, and ATRX mutations [17]. Additionally, the IDH2 mutation
is mutually exclusive to IDH1 and could show a different enzymatic and biochemical
profile [17,18].

The incidence of non-canonical mutations has been assessed in several
studies [2,3,13–16,21–25]. Hartmann et al. evaluated 1010 patients with WHO grade II–III
gliomas, discovering an overall incidence of IDH1 non-canonical mutations of 7.3% [23].
A similar incidence level was detected by Visani et al. [13]. Notably, they reported a possible
correlation between non-canonical mutation expression and the grade of the tumor [13].

Poetsch et al. performed a clinical comparison between patients with R132H IDH1 and
non-canonical IDH mutant gliomas [25]. This study involved a large series of patients with
non-canonical mutations (n = 166). These patients more frequently presented multicentric
gliomas and tumors localized in the infratentorial region. In addition, patients with non-
canonical mutations also frequently had a family history of cancer [25]. In their series,
patients harboring a non-canonical IDH1 mutation were more frequently astrocytomas
(65.6 vs. 43%), while patients with IDH1 mutations were often oligodendrogliomas (85 vs.
48.3%). There were no significant differences in survival between patients with non-
canonical and IDH1 R132H mutant gliomas.

In our study, we did not assess the localization of primary brain tumors and we did
not collect data about family cancer history. Similarly to Poetsch et al., we failed to discover
an OS advantage for patients with non-canonical mutations in the univariate analysis.
However, the presence of non-canonical mutations resulted as a variable associated with
prolonged survival in the multivariate comparison. Again, this discrepancy can be partially
explained by including the 1p19q codeletion as an independent variable in multivariate
comparison. Furthermore, differently from Poetsch et al., we did not include patients with
IDH2 mutations, which have been more frequently associated with oligodendroglioma
histology. Finally, it should be noted that our analysis, as well as the study by Poetsch,
reported a small number of events (32.8 and 15%, respectively) reflecting an immature
follow up.

We decided to include the surgical approach as an independent variable associated
with survival. To the best of our knowledge, we ignore which could be the best surgical
approach. Nonetheless, the available data strongly suggest that maximal safe surgical
extension should always be considered, as it could be associated with prolonged sur-
vival [26,27]. Thus, assuming that surgical extension and approach could impact survival,
we decided to include this variable in the multivariate analysis.

The younger age detected in patients with non-canonical IDH1 mutations is in line
with previous studies [13,25].

Each IDH mutation is associated with different enzymatic activity. IDH mutations
generally occur in the arginine residue, which is involved in substrate recognition [28,29].
In IDH mutated cells, the production of α-ketoglutarate (which is the usual product of the
enzymatic reaction) from isocitrate is shifted to the production of D-2-hydroxyglutarate
(D-2-HG) thanks to the neomorphic activity of IDH mutant dimers [28,29]. Both the
reduction in α-ketoglutarate (α-KG) and D-2-HG levels mediate carcinogenesis through
epigenetic alterations and metabolic/redox intracellular reprogramming [29].

It is possible that the different enzymatic activity of IDH1 could mediate a dif-
ferent outcome in terms of survival. In 2014, Push S et al. demonstrated that D-2-
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hydroxyglutarate levels increased in the order of R132H-R132C-R132S/R132G/R132L [30].
Similarly, Matteo DA et al. confirmed that common IDH1 mutations have moderate cat-
alytic efficiencies for D-2-hydroxyglutarate production, whereas non-canonical mutations
have either very low or very high efficiencies [31].

Finally, we did not assume tumor grade as a distinct variable associated with prognosis
in our series. We made this decision due to the conflicting currently contested role of tumor
grade on prognosis estimation. Indeed, in our previous report, the tumor grade seemed
to affect the prognosis of patients with glioma, while other studies did not confirm this
finding [32–35].

5. Conclusions

Our study failed to show a strong correlation between the presence of IDH1 non-
canonical mutations and survival in patients with IDH1 mutated grade II/III gliomas.
Notably, patients harboring these rare mutations less often presented the 1p19q codeletion
and tend to be younger than those with IDH1 canonical alterations. When the survival
analysis was restricted to patients without the 1p19q codeletion, non-canonical mutations
were associated with improved survival. The results observed in our cohort should be
validated in larger series.
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