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The growing penetration of distributed renewable energy sources (RES) together with the
increasing number of new electric vehicle (EV) model registrations is playing a significant
role in zero-carbon energy communities’ development. However, the ever-larger share of
intermittent renewable power plants, combined with the high and uncontrolled aggregate
EV charging demand, requires an evolution toward new planning and management
paradigms of energy districts. Thus, in this context, this paper proposes novel smart
charging (SC) techniques that aim to integrate asmuch as possible RES generation and EV
charging demand at the local level, synergically acting on power flows and avoiding
detrimental effects on the electrical power system. To make this possible, a centralized
charging management system (CMS) capable of individually modulating each charging
power of plugged EVs is presented in this paper. The CMS aims to maximize the charging
self-consumption from local RES, flattening the peak power required to the external grid.
Moreover, the CMS guarantees an overall good state of charge (SOC) at departure time for
all the vehicles without requiring additional energy from the grid even under low RES power
availability conditions. Two methods that differ as a function of the EV power flow direction
are proposed. The first SC only involves unidirectional power flow, while the second one
also considers bidirectional power flow among vehicles, operating in vehicle-to-vehicle
(V2V) mode. Finally, simulations, which are presented considering an actual case study,
validate the SC effects on a reference scenario consisting of an industrial area having a
photovoltaic (PV) plant, non-modulable electrical loads, and EV charging stations (CS).
Results are collected and performance improvements by operating the different SC
methods are compared and described in detail in this paper.
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INTRODUCTION

Renewable energy sources (RESs), together with electric vehicles
(EVs), constitute one of the main points in the green energy shift
toward a less carbon-dependent society (Directorate-General for
Climate Action (European Commission), 2019). On this matter,
particular attention is dedicated to the growing context of positive
energy districts (PEDs) to reduce carbon emissions coming from
urban areas (Hinterberger et al., 2020; Tuominen, 2020; Rancilio
et al., 2021). The general purpose of PED is to be a flexible part of
the whole energy system organized in districts rather than single
buildings, ensuring an energy exchange between the various
stakeholders (Mirbagheri et al., 2018; Tuominen, 2020). A
similar paradigm can resemble a net-zero-energy community
(ZEC) where renewable energy matches electrical loads, thermal
energy consumption, and EVs charging demand (Dogan et al.,
2015; Lopes et al., 2016; Zatti et al., 2017).

However, it has been highlighted that replacing conventional
vehicles with electric counterparts would sharply increase peak
demand forcing a relevant rethinking of the generation,
transmission, and distribution system with significant
investment already at moderate levels of EV penetration
(Nelder and Fitzgerald, 2016; Bovera et al., 2021). A similar
concern is caused by the intermittent nature of RES, whose
power generation strongly depends on the availability of the
primary source (wind, solar, etc.) and cannot usually provide the
control and regulation services that conventional sources can do
(Luo and Ooi, 2006; Kroposki et al., 2017; Lo Franco et al., 2021a).
Intermittent power injection together with localized load power
peaks (aggregate EV charging) might even bring to the
nonoptimal utilization of conventional plannable power
sources for grid supporting operation (ancillary services).
However, since conventional generation methods are fossil fuel
reliant, this phenomenon is in contrast to the green policy that
characterizes the PED, ZEC, and in general RES and EV
development. It stands clear that, for mitigating efforts,
detrimental effects, and expensive expedients, a synergic
integration of EVs with RES (especially photovoltaic (PV)) is
an imperative requirement for future smart power systems (Aldik
and Khatib, 2019; Hasan et al., 2019; Rakhshani et al., 2019).
Indeed, unmanaged grid-to-vehicle (G2V) charging technique is
recognized for not being a long-term economically sustainable
option, and the development of vehicle-to-anything (V2X)
alternatives has been presented as a possible sustainable
solution to this issue (Ferreira et al., 2014; Thompson and
Perez, 2020). The umbrella term V2X is often used for
indicating any unidirectional (V1X) or bidirectional (the actual
meaning of V2X) charging management system (CMS) aiming to
provide benefits like peak reduction, load shifting, and flattening
together with RES self-consumption optimization (Thompson,
2018; Pearre and Ribberink, 2019). Some of the prevailing
techniques are vehicle-to-grid (V2G), vehicle-to-building
(V2B), vehicle-to-load (V2L), and vehicle-to-community
(V2C) (Monteiro et al., 2016). Among them, V2G constitutes
by far the most focused method because of the tremendous
potential benefits guaranteed by energy and ancillary services
that the interaction between EV batteries and the grid might

unlock (Lopes et al., 2011; Hasan et al., 2019; Noel et al., 2021).
Similar to V2X, V2G presents a unidirectional subset referred to
as V1G or more often as smart charging (SC). However, the
highly sophisticated real-time communication and control
backbone necessary for providing grid services has not reached
an adequate technological maturity, and only a small number of
commercial products are available yet (Thingvad et al., 2016; Zipf
and Most, 2016).

For this reason, multiple authors proposed CMSs capable of
providing the above benefits at a local level without necessarily
involving the active interaction with the grid and all the
associated technological challenges (Bons et al., 2020; Lo
Franco et al., 2020). These SC systems, mainly if employed
over an aggregate EV fleet, blend particularly well with the
definitions of V2B and V2C (Thompson, 2018; Noel et al.,
2019). Indeed, taking advance of the capacity made available
by aggregated EV fleets, it is possible to optimize the energy
consumption of the buildings, mainly in the commercial and
industrial context, and energy communities by acting solely at the
local value (Yamagata et al., 2014; Tanguy et al., 2016). Although
a centralized controller capable of communicating with all the
vehicles and charging equipment is still required, its complexity
results to be noticeably lower if compared to the V2G mode.
Finally, V2L can be simplistically defined as any EV (or
aggregates) supplying generic loads, including EVs themselves
(Thompson and Perez, 2020). For this reason, it is generally
accepted vehicle-to-vehicle (V2V) technique to be a particular
case of V2L (Mao et al., 2018). In this case, EVs can act as an
energy source for supplying other EVs, pursuing a determined
charging policy at a local level. Since there is no sharp edge
between all these technologies, it would not be surprising if CMS
strategies might achieve specific V2B/V2C and V2V
optimizations, especially if considered in contexts, like PEDs,
presenting internal generation from RES.

Multiple SC methods have been presented in the literature
(Wang et al., 2016; Fachrizal and Munkhammar, 2020; Fouladi
et al., 2020; Lo Franco et al., 2020). The list below compares the
achieved results of somemain reference papers and points out the
literature gap that this work tries to fill:

• Authors in (Wang et al., 2016) discussed a strategy for
achieving flat power demand employing peak-shaving and
valley-filling techniques considering cost minimization
constraints. This reference provides a survey from the
algorithmic perspective. However, a qualitative and
quantitative analysis of the SC benefit based on actual
case studies has not been provided. The integration of
EV charging with RES considering a variegated
population of EV model and the capability of
bidirectional power flow among vehicles has not been
investigated in this reference.

• In (Fachrizal and Munkhammar, 2020; Ramadhani et al.,
2021), the authors investigate the probabilistic impact of EV
SC, including the temporal and spatial variability of EV
charging demand, household load, and PV system
generation. The conclusions show that SC results in
improved distribution system performance. Although this
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reference paper provides an estimation of EV power load
considering quantitative data analyses, the PV-EV system
integration under low irradiance availability and SC
strategies involving the bidirectionality of EV power flow
have not been evaluated.

• Three different SC strategies to increase PV solar
exploitation are proposed in (Heinisch et al., 2021). The
results show that SC strategies can increase up to 62% of the
share of PV energy in the charging energy mix, compared to
24% obtained using standard G2V charging. However, this
work does not consider a variegate population of EVs, to
which different models with different specifications and
characteristics belong (such as vehicle battery sizes,
onboard charger ratings, and battery state of charge
(SOC) at the beginning of the charging process).
Moreover, considerations of the SC performance under
low PV power conditions are not provided.

• SC methods for self-consumption optimization have been
performed in (Lo Franco et al., 2020) employing CMSs
capable of modulating each EV charging power individually
to industrial districts. This work quantitatively analyzes EV
power demand based on a statistical approach and using
actual data. However, although self-consumption
improvement and peak load reduction are achieved, the
proposed CMS does not provide enough energy to the
vehicle when low PV availability occurs, leading to a
lower EVs’ SOC at the end of the charging process
(nonoptimal exploitation of PV sources). Also,
bidirectional EV power flows capability has not been
considered.

• A preliminary solution was provided in (Lo Franco et al.,
2021b), where the proposed CMS differently allocates the
available PV energy among charging vehicles as a function
of the irradiance availability. Although the results show
improved performance in terms of EVs’ SOC at the end of
charging, even this paper does not consider the possibility of
power-sharing among vehicles given by the bidirectional
V2V mode.

Finally, to the best of the authors’ knowledge, no work provides
a CMS capable ofmodulating each EV charging power to optimally
exploit the intermittent PV source under low irradiance condition
guaranteeing an appreciable trade-off between self-consumption
improvement, peak load reduction, and overall good SOC level at
the departure time, and in addition, it is also capable of involving
power-sharing among vehicle at the local level (bidirectional V2V
charging mode). To overcome the aforementioned limitations, two
novel charging strategies are proposed in this paper to improve the
EV charging process by differently and smartly allocating the
available RES power to each EV without involving external grid
absorptions. Both new proposed SC strategies ensure an overall
good state of charge at departure time for all the vehicles by
distributing the generated PV power as a function of the EV SOC.
It means that SC prioritizes charging EVs which present a lower
SOC value. On the other hand, in the case of abundant RES
availability, the two novels SC strategies ensure optimal
exploitation of PV power by allocating the latter as a function

of the vehicle’s maximum absorbable power. The main difference
between the two optimized charging management systems
(OCMSs) lies in the EV power flows direction. The first SC
only involves unidirectional power flow; on the other hand, the
second one also considers bidirectional power flow among vehicles.
Operating in V2Vmode, the latter might reduce the charge level of
a portion of plugged vehicles in favor of other plugged EVs. The
two OCMSs are implemented and tested on an actual case study.
Simulations are carried out considering an industrial area having a
PV plant, non-modulable electrical loads, and EV charging stations
(CS). Results are collected and compared based on uninterrupted
power data measurement. Finally, power flows’ analysis shows,
with an appreciable statistical relevance, the improved
performance experienced by operating the novel OCMSs.

The paper is arranged as follows. In EV Aggregate Charging
Demand Evaluation for a Working Place Parking Lot Scenario
Section, the EV aggregate charging demand in the scenario is
evaluated. In SC Method for Self-Consumption Optimization
Section, SC methods are introduced and detailed. Assessment
of the results is performed in Results Discussion Section. Finally,
the conclusion ends the article.

EV AGGREGATE CHARGING DEMAND
EVALUATION FOR A WORKING PLACE
PARKING LOT SCENARIO
The CMS proposed in this paper aims to control the charging
power flows of an aggregated EV population inside the energy
district. For the sake of clarity, Figure 1 shows the structure of a
generic PED in which the CMS operates. From the electrical point
of view, the reference system consists of the following:

• Electrical loads such as buildings, household consumers,
offices, and industrial areas which adsorb a non-modulable
power (PL).

• Internal power sources, usually renewable (RES), such as PV
plants that generate an intermittent power (PPV) suppliable
to internal loads and the external grid.

• A point of common coupling (PCC) electrically connecting
the internal loads and distributed RESs to the external grid.
Through the PCC, the grid shares the power PPCC with
the PED.

• A population of aggregate EVs connected to the electrical
system through the CS. The aggregate EV fleet absorbs the
power PEVs. In the case of unidirectional CS (G2V), the EV
power is considered positive. In the case of bidirectional
power flow, PEVs could assume negative values when V2X
operations are carried out.

Following the above convention, the power flow involving the
PED can be described through the power balance in Eq. 1.

PPCC(t) � PL(t) − PPV(t) + PEVs(t). (1)

From the above equation, it can be noted that even if the
internal load and generated power (PL and PPV, respectively) are
not controllable, it is still possible to control external grid
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absorptions bymanaging the aggregate EV power. In this way, the
EV population can be considered a controllable and active
element of the PED capable of providing power flexibility,
optimizing the whole PED consumption, and operating in SC
mode. The main task of the proposed SC technique is to increase
self-consumption by maximizing EV charging from the PED’s
internal power source, reducing grid power peaks.

For the implementation of the SC system, both production and
load power measurements are necessary. In this paper, the daily
load and generation profiles are extracted from yearly
acquisitions. The same procedure is done for the PED power-
sharing with the grid (PCC measurements). On the other hand,
EVs’ daily power flow is more challenging to be extrapolated due
to its gathering complexity, data lacking, and the statistically weak
number of EVs. Current measurement data are not sufficient to
extrapolate meaningful EV charging profiles. For these reasons, a
predictive method capable of estimating the daily aggregate
charging power flows is used and described in EV Charging
Power Flow Calculation Method Section. Then, in Reference
Scenario and Standard G2V EV Charging Effects on Power
Demand section, the standard G2V charging effects on the
power flow of an actual reference scenario are quantitatively
evaluated.

EV Charging Power Flow Calculation
Method
The aggregate EV power is obtained by collecting the
contribution of each i-th vehicle EVi of the energy district.
Defining Nch as the number of vehicles in charging at the

instant t and PEVi(t) as the corresponding charging power of
EVi, the aggregate charging power is given by Eq. 2.

PEVs(t) � ∑Nch

i�1
PEVi(t). (2)

The charging power PEVi depends on several distinct factors,
such as users’ behavior, CS power rating, and EV model’s
specifications. The main factors considered by the predictive
method for computing the daily charging power flow are as
follows:

• The maximum power made available by the CS, named PCSi

(kW), where EVi is plugged.
• The maximum power PEVmaxi (kW) handleable by EVi

battery.
• The maximum storable energy, which depends on the EVi

maximum battery capacity Cmax i (kWh).
• The EVi SOC at the initial charging instant (SOC0i).
• The parking duration (Tpki) defined as the difference
between the EVi departure tdep i and arrival tarr i times.

To implement the power flows forecasting, the method
described in (Lo Franco et al., 2020) has been utilized for
carrying out the statistical analysis of vehicles’ data and
drivers’ behavior. Considerations about the CS power rating
are obtained from data analysis reported in (European
Alternative Fuel Observatory - EAFO, 2021). With reference
to the Italian scenario, most of the public charging points
(about 90%) have a power rating below 22 kW (standard

FIGURE 1 | Positive energy district (PED) electrical reference system. PED’s power flow convention and sharing among grid (PPCC ), electrical loads (PL), internal
generation (PPV ), and EV charging (PEVs ).
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charge), and the latter turns out to be the most widespread value.
Thus, in this paper, a homogeneous population of CS, with PCS �
22 kW, is considered. The EV population parameters, such as
battery capacity, maximum charging power, specific energy
consumption CSP (kWh/100 km), and the vehicle models
share, are obtained from (UNRAE, 2020; EV Database, 2021).
Table 1 shows the characteristics of the EV population case study
employed in this paper. The population coincides with the newly
registered EV fleet in Italy during 2020. The data refers to the top
10 best sellers’ models. The specific consumption is estimated
considering the world harmonized light-duty vehicles test
procedure (WLTP). The maximum AC charging power refers
to the onboard converter rating, while the maximum DC
charging considers the maximum power that the vehicle
battery can receive from off-board CS.

As shown in Table 1, the charging power strongly differs as a
function of the vehicle charging rating in the considered CS and
EV population. Regardless of whether AC or DC charging is
considered, the power that EVi absorbs (PEVi) is given by Eq. 3.

PEVi(t) � min[PCSi, PEVmaxi(t)]. (3)

While PCSi is assumed constant during the entire process,
PEVmaxi(t) (that depends on vehicle specification) can decrease
during charging. The power flow forecasting algorithm considers
the standardized charging protocol (CC-CV) for lithium
batteries. A constant current (CC) is provided to the batteries
until the voltage reaches the upper-limit value (cut-off voltage).
During this phase, the charging power slightly rises following the
battery voltage profile. Then a constant voltage (CV) phase
begins, and the battery charging current (and power)
decreases. The higher the charging rate (C-rate), the more
pronounced the CV phase and the lower the SOC value
corresponding to the cut-off voltage. Thus, different C-rates
may provide different charging profiles. The proposed method
considers this phenomenon and emulates the power reduction
during the CV phase based on the SOC and the C-rate value.
More details about the employed CC-CV charging emulator are
presented in (Lo Franco et al., 2020).

The aggregate EV charging demand profile depends on the
charging duration of each EVi. Let be Tchi the charging period of
the i-th vehicle; it depends on both the parking duration and the

battery SOC evolution during charging (SOCi(t)). The period
between charging start (tch0) and charging end (tchf) is defined as
Tch. As shown in Eq. 4, it is assumed that tch0 coincides with the
arrival time tarr. On the other hand, tchf can whether coincide or
not with the instant of departure tdep as reported in Eq. 5,
depending on the SOC evolution during the charging process.
If the vehicle SOC reaches its maximum value (SOCmax) before
the departure time, the charging period is shorter than the
parking duration. On the contrary, Tch coincides with the
parking duration if the user leaves the parking lot before full
charging. To predict the aggregate daily power flow of an EV
population, the parameters in Eqs 4, 5 of each EVi should be
calculated.

tch0 � tarr ↔ SOC(tch0) � SOC0, (4)

⎧⎨⎩ tchf < tdep ↔ SOC(tchf) � SOCmax

tchf � tdep ↔ SOC(tchf)< SOCmax

. (5)

Parking times of each EVi are obtained utilizing statistical
analysis of arrival and departure events referring to a working
place parking dataset (collected before the COVID-19 global
pandemic). Figure 2 shows the results of the data analysis.
Figure 2A, left-hand axis, shows the probability distribution
function (pdf) of users’ arrival (black) and departure (blue)
times during the 24 h. On the right-hand axis, the red line
shows the parking lot users distribution obtained by the
statistical analysis. The values of tarri, tdepi, and then the
parking duration (Tpki) are randomly obtained as a function
of the distribution shown in Figure 2A. Two sets of tarr and tdep
referring to two consecutive days are depicted in the scatter plots
of Figure 2B and Figure 2C that consider a 100-vehicle
population. Time Tpk of each EVi is displayed as the band
connecting arrival and departure instants. Although arrival
and departure times of each i-th vehicle may differ on
consecutive days, the overall population’s behavior does not
change because it is generated from the same distributions
(Figure 2A).

For all the vehicles, the same value of SOCmax � 90% is
assumed. On the other hand, the arrival state of charge
(SOC0i) may be different for each vehicle. It depends on the
users’ behavior (such as the daily traveled distance, D(km)) and

TABLE 1 | Data and parameters of the EVs reference population (top 10 best sellers registered in Italy in 2020).

EV model EV share
(%)

Battery capacity
(kWh)

Specific consumption
(kWh/100 km)

Max AC charging
(kW)

Max DC charging
(kW)

Renault Zoe 22.3 44.1 17.5 22 46
Smart 42 15.4 17.6 16.1 4.6 —

Tesla M3 13.7 50 14.9 11 170
VW up! 11.6 36.8 14.5 7.4 40
Fiat 500 8.9 42 17 11 85
Peugeot 208 7.1 50 16.4 7.4 99
Hyundai Kona 6.0 39 15 11 50
Opel Corsa 5.3 50 17 7.4 99
Nissan Leaf 5.1 40 17.1 6.6 50
Renault Twingo 4.8 23 16.3 22 —
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the vehicle model characteristics (CSPi; Cmaxi). The energy
ECi (dk) (kWh) consumed during a generic day dk by EVi is
computed from Eq. 6.

ECi(dk) � Di(dk)CSPi

100
(6)

Based on the statistical analysis carried out in (Lo Franco
et al., 2020), a Weibull function having K � 1.7 and λ � 37.5 is
used for modeling the daily traveled distance. A similar
statistical approach has been discussed in (Ul-Haq et al.,
2018; Bernards et al., 2020; Branco and Affonso, 2020).
Figure 3A shows the distribution of the distance D(dk)
considering a population of 100-vehicles, estimated on seven
different days. Introducing the specific consumption and the
daily distance traveled by each vehicle in Eq. 6, it is possible to
calculate the energy consumed by the i-th vehicle on the k-th
day. The average daily consumption of the EV population,
which is calculated considering the distance Di(dk) of
Figure 3A, is about 5.5 kWh per day.

SOC0i(dk) � SOCi(d0) − 100∑k−1
j�0

ECi(dj)
Cmaxi

. (7)

To calculate the SOC0i(dk) (initial SOC of the i-th EV at the
k-th day), Eq. 7 is used. The first term of Eq. 7 represents the
maximum initial SOC (SOCi(d0) � SOCmax) occurring at day d0
after the last complete total charge, while ∑k−1

j�0 ECi(dj) is the
cumulative energy consumption experienced during the k days
before the dk day. For example, SOC0i(d3) considers the
consumption of the previous 3 days (starting from the last full
charging), namely, ECi(d0), ECi(d1), and ECi(d2). Equation 7
dependence from i- and k-indexes can be generalized over a matrix
SOC0[i, k] having i-row and k-column referring to the i-th EV and
dk, respectively. The scatter plot of Figure 3B shows the SOC0[i, k]
elements. For each EVi, seven dk are considered (colored clusters).
Colored dashed lines represent the average initial SOC at the k-th
day. Having assumed k � 7 as the maximum value, it is equivalent
stating that the extreme case corresponds to a charge once a week
(in other words, the seventh column of SOC0[i, k] contains the

arrival SOC values considering a charging which takes place once a
week for each EVi).

The energy consumption during the days after the last full
charging (d0) must consider EVi battery capacity. Moreover,
together with the SOCmax upper constraint, it is assumed
SOCmin � 10%, reducing the suitable capacity to 80% of Cmax.
Making reference to four capacity diapasons of Figure 3C, the
maximum suitable capacities are 16 kWh, 24 kWh, 32 kWh,
and 40 kWh (in ascending order). Therefore, inequality∑k−1

j�0 ECi(dj)≤ 0.8Cmaxi holds for each EVi. This hypothesis
affects the maximum number of days that might possibly pass
since the last full charge as a function of Cmaxi. Considering an
average daily consumption of 5.5 kWh, the maximum values of
k that can be considered for the SOC0(dk) evaluation are 3, 4, 6,
and 7 for Cmax ranges (1–20 kWh), (21–30 kWh).
(31–40 kWh), and (41–50 kWh), respectively (Figure 3C).
Finally, the SOC0 population is obtained by randomly
collecting SOC0[i, k] values, where each k-index is selected
employing the Weibull functions of Figure 3C. As visible, four
capacity diapasons are considered up to Cmax � 50 kWh, which
is the higher capacity value of the examined EV population
(Table 1). Employing the previous hypotheses and the above-
described method, the arrival SOC of the EV population is
obtained considering in detail the users’ behavior and vehicle
characteristics. Figure 3D shows the estimated distribution of
SOC0 population (red curve, right-hand axis) considering the
31-day set (1-month estimation). On the other hand, the
histogram shows the vehicle count using a 5% bin width of
SOC. Although the 31-day set of SOC0 distribution shown in
Figure 3D varies every day, the overall trend fairly
approximates the logic used for the random generation.

Finally, information about each EV’s parking time and arrival
SOC and data in Table 1 are used as input in a dynamic model
developed in MATLAB/Simulink (MathWorks) environments.
The model calculates the charging power profile of each EVi with
a 1 min resolution (Eq. 3) and for each time step resolves Eq. 2
providing as output the aggregate charging demand profile of the
examined EV fleet. More details on the predictive EV power flow
model have been already presented in (Lo Franco et al., 2020).

FIGURE 2 | (A) Probability distribution function (pdf) of arrival (black line) and departure (blue line) times together with parking lot user’s distribution (red line) during
the 24 h. (B,C) Two consecutive days’ set of arrival and departure times.
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The following section will show the predictive EV charging model
results and the EV charging demand effects on an actual
case study.

Reference Scenario and Standard G2V EV
Charging Effects on Power Demand
Figure 4A shows the reference scenario employed in the
simulation. It represents an industrial building (metalworking
company) with 50% EV penetration represented by a parking lot
of 100 stands having 22 kW charging ports each. The internal
generation is provided by a 500 kWp PV plant. Aggregated EV
load is calculated, and its impact on the daily plant power profile
is evaluated. The metalworking company load PL(t) and the PV
power flows PPV(t) as a function of time are obtained by
uninterrupted measurements over a period of 1 year (24/7/365
power data measurement). More details about data are reported

in (Lo Franco et al., 2020). In Figure 4B, some PL load profiles
(light blue traces) together with the annual average (dark blue
trace) are depicted. Furthermore, 31-day aggregated EV charging
power PEVs scenarios (gray profiles) along with their average
(black profile) are reported. The scenarios are obtained starting
from the set of 31 SOC0 of Figure 3B and the tarr/tdep visible in
Figure 2. Finally, three PV generation PPV profiles (for
highlighting the RES discontinuity) are reported as well (red
lines). The latter represents low irradiance (where the daily
PV-generated energy is 588 kWh/d), medium irradiance
(2090 kWh/d, average of 1-year data), and high irradiance
(3,527 kWh/d) scenarios. Orange-filled areas represent the
self-consumption energy share provided to EVs from the
internal PV source in the three irradiance conditions.
Introducing these power profiles in Eq. 1, it is possible to
calculate the power PPCC exchanged with the grid shown in
Figure 4C. The black traces consider average PL and PEVs

FIGURE 3 | (A) distance D(dk) distribution (red trace) of a 100-EV population, estimated on 7 days (colored tiles). (B) SOC0[i, k] elements distinguished on seven
dk (colored clusters) along with their average initial SOC (colored dashed trace). (C) Distribution of the k-index for different capacity diapasons. (D) 31-day SOC0

distributions (red traces) together with the corresponding histograms (blue bars).

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7163897

Lo Franco et al. Aggregated EV Charging Management Systems

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


together with the three PPV cases. The orange lines depict the
net power drawn from the grid without considering EV
charging. Finally, gray areas represent the additional
charging energy required to the grid by the EV fleet.

To quantitatively characterize the effects of aggregate EV
charging on power flow and evaluate EV profile overlapping
with the PV generation, some figures of merit are defined. The
ratio between the orange area of Figure 4B and the total EV

charging energy (gray area in Figure 4C)) is the charging self-
consumption coefficient ηSC. ηSC is 1 if the internal generation
manages to fully provide the energy required by the EV charging.
On the other hand, ηSC is 0 if the charging energy is entirely
drawn from the grid (external power source).

To evaluate the effect of EVs charging on PCC power flow, the
normalized peak power P̂PCC, defined in Eq. 8, is considered,
which quantifies the maximum daily peak load with respect to the

FIGURE 4 | (A) Industrial building reference scenario. (B) PL load profiles (light blue traces) together with the annual average (dark blue trace); 31-day aggregated
EV charging power PEVs scenarios (gray profiles) along with their average (black profile); PV generation PPV profiles (red lines) in case of low, medium, and high irradiance.
(C) Power PPCC exchanged with the grid (black profiles); aggregate EV energy request (gray areas); PCC power without considering EV charging (orange lines).
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average daily load without considering the EV charging. This
indicator can be calculated also considering the maximum PCC
power in the case of EV charging (P̂

EV
PCC).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P̂PCC � max(PPCC) − <PPCC >
<PPCC >

P̂
EV

PCC � max(PEV
PCC) − <PPCC >
<PPCC >

→ ΔP̂PCC � P̂
EV

PCC − P̂PCC

(8)

The annual analysis carried out for evaluating ηSC and ΔP̂PCC

considering the seasonal and daily variability of both PV
generation and PCC load is depicted in Figure 5. The
cumulative distribution of ηSC (blue trace) shows that the
maximum value of charging self-consumption is about 0.85
(100% of simulated days presents ηSC < 0.85) while the average
value is 0.55.Moreover, Figure 5 shows the cumulative distribution
of ΔP̂PCC. Considering the reference scenario, it is shown that
aggregate EV charging increases the peak power up to 60% in
comparison with the no-EVs scenario (under worst conditions),
while practically all the simulated days show an increase of more
than 20%. The ΔP̂PCC average increment is of about 40%.

To improve the EV aggregate charging impact on power flows
(mitigate P̂

EV
PCC increment) and maximize charging from internal

PV (increase ηSC), a novel CMS capable of operating in SC is
developed and applied to the reference scenario’s power flows.

SC METHOD FOR SELF-CONSUMPTION
OPTIMIZATION

To improve performances, increase charging self-
consumption, and mitigate the detrimental effects due to
grid power peaks, a CMS has been proposed in (Lo Franco

et al., 2020). This CMS permits the management of the
charging power of each EV leading to SC mode operations.
It aims to optimize ηSC meantime reducing PCC peak power
increment ΔP̂PCC. This optimization is achieved by actively
changing the maximum CS power (for instance, acting on the
control pilot pin of Type-2 plugs (IEC 62196-1 TC 23/SC 23H,
2014)).

Considering a 1-day simulation, the charging self-
consumption is defined by

ηSC � ∫24

0
min(PPV, PEVs) dt
∫24

0
PEVs dt

. (9)

The proposed management system operates with a 1 min
sampling. In each time step, it is possible to assume constant PPV

and PEVs. Then, the charging self-consumption in each 1 min
time step (ηSCm) is obtained by

ηSCm � min(PPV, PEVs)
PEVs

. (10)

Considering the PV power availability and the EV power
demand at a generic instant t, the main target of the proposed
SC methods is to manage the aggregate EV charging to maximize
ηSCm(t) providing the maximum value of PEVs. The optimization
objective can be summarized by Eq. 11.

objective: {max ηSCm
maxPEVs

, (11)

constraints: 0≤PEVS ≤ ∑Nch

i�1
PEVimax, (12)

where the problem’s constraints are reported in Eq. 12. The
constraint equation is given by Eq. 3 and depends on the
vehicle’s model, the number of plugged vehicles, and the SOC
level evolution during the charging process (please refer to EV
Aggregate Charging Demand Evaluation for a Working Place
Parking Lot Scenario Section of the paper for more details).
Moreover, the constraint ensures the unidirectionality of
power flows.

The solution can be obtained considering Figure 6A that
shows the contour plot of ηSCm as a function of PEVs and PPV. The
color bar shows the value of ηSCm. The white color in the figure
depicts points with ηSCm � 1; on the other hand, the colored area
depicts points (PEVs; PPV) having ηSCm < 1. Figure 6B shows, as
an example, the PV and EVs charging power profile (left axis)
during a typical day and the corresponding value of ηSCm (right
blue axis). Three possible operating conditions are pointed out in
the figure: PEVs >PPV, PEVs � PPV, and PEVs <PPV, depicted by
the markers a, b, and c, respectively. The three examined
operating conditions are also marked in Figure 6A, where the
dotted line represents the boundaries, δ(a), δ(b), and δ(c), of the
admissible solutions obtained by the constraints of Eq. 12. The
point b and c fulfill both the optimization objectives and
constraints of Eqs 11, 12, respectively. On the other hand,
point a is not an optimal working point. In this case, the CMS
reduces the aggregate PEVs to overlap the PV availability by

FIGURE 5 |Cumulative distribution assessment of the self-consumption
ηSC (blue trace) and the normalized peak power increment ΔP̂PCC (red trace)
over a 1-year period.
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shifting the point a toward a’, which is the optimal point at the
examined irradiance conditions.

Finally, it is possible to note that the points that fulfill Eq. 11
are represented by the diagonal black line (PEVs � PPV) in
Figure 6A. Since PEVs is the sum of each PEVi as shown in
Eq. 2 of EV Aggregate Charging Demand Evaluation for a
Working Place Parking Lot Scenario Section, the CMS
computes the reference charging power Pp

EVi for the CS having
plugged the i-th EV as in Eq. 13 to ensure the optimal operating
condition. The internal generation power PPV is therefore evenly
shared among the Nch plugged EVs.

Pp
EVi(t) �

PPV(t)
Nch(t). (13)

Through Eq. 13, the CMS modulates each vehicle charging to
ensure that the aggregate charging power overlaps the PV
available power (∑Pp

EVi � PEVs � PPV) complying with Eq. 11
and constraints of Eq. 12. In other words, based on the PV
availability and the plugged EVs’ power demand, the CMS moves
the working point from the colored zone of Figure 6A, toward the
diagonal line (optimal operation) by acting on each EV charging
power. As a result, the charging self-consumption increases, and
the SC minimizes the absorption of energy from the grid favoring
the charging from the internal PV source. Figure 6C shows the
effects of SC on power flows. EV-related power shifts from gray
shaded distribution labeled “EV-G2V” (already depicted in
Figure 4) toward the red shaded labeled as “EV-SC.”
Figure 6D compares the charging performance in terms of
peak power and ηSC between SC and standard (G2V) charging

FIGURE 6 | (A) The 1 min charging self-consumption (ηSCm ) as a function of PPV and PEVs. The white zone depicts points (PPV ; PEVs) that maximize ηSCm. (B)
Example of PPV and PEVs daily profile and the corresponding value of ηSCm (right axis) considering three possible operating conditions, PEVs >PPV , PEVs � PPV , and
PEVs <PPV , depicted by the markers a, b, and c, respectively. The CMS moves the point a toward a’ to fulfill the optimization objective. (C) 24 h comparison between
standard G2V and SC and their effects on the PPCC and PEVs power traces. (D)Cumulative distribution ofΔP̂PCC in case of standard G2V (red dashed trace) and SC
(red line) over a 1-year period, together with the gain in charging self-consumption ΔηSC (blue line).
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(as in Figure 5) over a 1-year period. The cumulative distribution

ΔP̂EV−SC
PCC when SC is considered (red line) settles around a 20%

average value (20% more than the no-EV scenario). On average,
ΔP̂PCC experienced under SC is about half of the one under
uncontrolled G2V, labeled ΔP̂EV−G2V

PCC (red dotted line) in
Figure 6D. The proposed SC ensures to always experience
self-consumption coefficient ηSC equal to 1. The blue line in
Figure 6B depicts the cumulative distribution over 1-year results
of the charging self-consumption increment (ΔηSC) experienced
operating in SC with respect to standard G2V charging. Results
show ΔηSC average value of about +45%. Moreover, Table 2
collects a quantitative comparison between standard G2V
charging and SC performance under low (588 kWh/d),
medium (2,090 kWh/d), and high (3,527 kWh/d) irradiance
PV scenarios.

Although the results show an improvement in charging
self-consumption and a reduction in PCC peak power, the
above-described SC method presents two relevant
weaknesses:

• Weakness 1. The CMS based on Eq. 13 provides less total
energy to the vehicles compared to standard G2V charging.
Indeed, ESC

EVs is generally lower than EG2V.
EVs . The higher the

available PV power, the lower the energy mismatch. For
instance, referring to Table 2, under mean values of
irradiance (2,090 kWh/day), the charging self-consumption
increases up to +32%, the difference in peak power is about
−28%, and the charging energy deficit is about 13%.
Moreover, in the case of high irradiance (3,527 kWh/day),
the energy deficit decreases up to only 5%. Although ηSC and
ΔPPCC improve, the trade-off between self-consumption and
EV charging energy is not satisfactory in case of low
irradiance. Consequently, EVs’ SOC at the instant of
departure is particularly low compared to the standard
charging counterpart because the CMS is charging the EV
population using only the internal generation (which is lower
than the EV request).

• Weakness 2.Under the condition where the power required
by the whole EV fleet is totally covered by PV generation,
the charging may still underutilize the available PV energy.
Since the CMS based on Eq. 13 equally allocates PPV to the
plugged EVs, if the assigned reference power, Pp

EVi, is higher
than Pmaxi, a curtailment power phenomenon caused by the
maximum charging power bottleneck takes place. Thus,

even if ∑Pp
EVi � PPV, the actual PEVs may be lower

leading to ∑PEVi <PPV.

A suboptimal solution could be to charge the vehicles from
the grid during low irradiance availability, nevertheless leading
to a self-consumption reduction of the whole district. Two
novel charging strategies are investigated to verify which
improvements could be achieved by handling differently the
EVs charging without involving the external grid (no
detrimental effect on ηSC and load flattening capability).
Although both CMS algorithms aim to overcome previously
described drawbacks, they differ by the ability to have either
unidirectional (SC) or bidirectional (V2V) operations. The
proposed solutions are as follows:

• Solution 1. Instead of evenly share PPV among the
connected vehicles, a smart allocation of the energy to
support the charging of vehicles with a lower SOC level
rather than those with a higher SOC (or that recharge faster)
can be used. The target of the novel OCMS is to improve EV
SOC level allocation by decreasing its standard deviation
among the fleet. In other words, prioritize EVs having low
SOCi guaranteeing an overall good SOC level at departure
time for all the vehicles. In addition to Eq. 11, the OCMS
aims to fulfill the objective of Eq. 14, where SOC is the
average SOC of the plugged EV population.

min∑Nch

i�1

∣∣∣∣∣∣SOCi − SOC
∣∣∣∣∣∣. (14)

• Solution 2. To overcome weakness 2, which occurs when
the PV power is more or equal to the aggregate EV power
request, the OCMS allocates each Pp

EVi as a function of
the maximum power that the EVi’s battery can adsorb. In
this way, the whole available PV power is used for
charging, avoiding the bottleneck phenomenon of the
maximum charger rating. In addition to Eqs 11, 14, the
OCMS aims to also fulfill the objective of Eq. 15.

min∑Nch

i�1

∣∣∣∣∣∣PEVi − PEVmaxi

∣∣∣∣∣∣. (15)

Although they both overcome the above weaknesses, the
two proposed OCMS differ for the power flow direction. The
first only consider the PV to EV flow and is indicated as
unidirectional OCMSs (OCMS) (1d-OCMS). On the other
hand, the second one is defined as bidirectional OCMS (2d-
OCMS) because it also considers the power flow among EVs
(V2V). The main difference is that the 2d-OCMS might reduce
the charge level of a portion of plugged vehicles (discharging
operation) in favor of other plugged EVs. Finally, Table 3
summarizes the optimization objective and constraints
between the CMS and the proposed novel 1d-OCMS and
2d-OCMS.

Unidirectional OCMS, 1d-OCMS
The unidirectional OCMS, 1d-OCMS, allocates the reference
charging power of each EVi based on Eq. 16, as a function of

TABLE 2 | Quantitative comparison between standard G2V charging and SC
performance under low (588 kWh/d), medium (2090 kWh/d), and high
(3,527 kWh/d) irradiance PV scenarios.

Standard (G2V) Smart charging (CMS)

PV energy
(kWh]

ηSC P̂PCC EVs energy
(kWh)

ηSC P̂PCC EVs energy
(kWh)

588 0.27 0.51
1856

1 0.16 587
2090 0.68 0.45 1 0.17 1609
3527 0.85 0.42 1 0.21 1745
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both the vehicle depth of discharge DODi (defined as
SOCmax − SOCi) and the maximum value of the charging
power (Pmaxi).

Pp
EVi �

DODα
i P

β
maxi∑Nch

j�1 DODα
j P

β
maxj

PPV � Ai PPV. (16)

The exponents α and β are weighting factors that vary as a
function of the instantaneous ratio between the PV power
availability and the total EV power demand, named h in
Eq. 17.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h � PPV

∑Nch
j�1Pmaxj

� PPV

PmaxEVs

α � α(h)
β � β(h)

. (17)

Note that h varies because of the daily irradiation PPV, number
of connected vehicles Nch, and Pmaxi. Moreover, Pmaxi can
decrease during the charging process due to the CV phase of
the Li-ion battery charging protocol. Then, replacing Eq. 16 into
Eqs 17 and 18 can be found.

Pp
EVi � Ai(h) PmaxEVs h. (18)

Since ∑Nch
i�1 Ai � 1, it is ensured that ∑Nch

i�1 Pp
EVi � PPV. By

means of coefficient Ai, the available PV power is differently
allocated among EVs as a function of h.

Weighting factors α and β generic trajectory as a function of
the h ratio are shown in Figure 7. Under low irradiance
conditions (weaknesses 1), when the EVs’ demand is higher
than the PPV (h< 1), the target is to prioritize EVs having low
SOCi guaranteeing an overall good SOC level at departure time
for all the vehicles. For this reason, the proposed strategy
increases coefficient α, promoting the SOC-based allocation of
A, as h decreases. When h is below the lower threshold hα1 (close
to 0), α assumes its very maximum value αmax. On the other hand,
when h increases and overcome the upper threshold hα2 (close to
1), the SOC-based weighting is no longer necessary as the PV is
sufficient to satisfy the EV charging request. Thus, α deepens to its
minimum value α(hα2) � αmin; therefore, [hα2 , αmin] � [1, 0].
On the other hand, the β coefficient, which influences the
Pmax-based allocation of A, assumes a complementary trend as
h varies. Under medium-high irradiance conditions (weaknesses
2), when h overcomes the upper threshold (hβ2 � 1),
β(hβ2) � βmax. To avoid the EV charging rating bottleneck
problem, [hβ2, βmax] � [1, 1 .] In this way, when h≥ 1,
Ai(h≥ 1) makes sure that Pp

EVi � Pmaxi for each vehicle
undercharging. The tuning of the α and β weighting functions
in the point [hα1, αmax] and [hβ1, βmin] is described in Results and
Discussion section.

Bidirectional OCMS, 2d-OCMS (V2V
Operation)
The bidirectional OCMS, 2d-OCMS, allocates the reference
charging power of each EVi based on Eq. 19, as a function of
both the vehicle SOCi and the maximum value of the charging
power Pmaxi.

Pp
EVi � Pmaxi − SOCi Pmaxi∑Nch

j�1 SOCj Pmaxj

(PmaxEVs − PPV). (19)

Replacing in Eq. 17 the weighting factor Bi defined in Eq. 20,
the dependence of Pp

EVi from h can be explicated as in Eq. 21.
Since ∑Nch

i�1 Bi � 1, it is ensured that ∑Nch
i�1 Pp

EVi � PPV.

Bi � SOCi Pmaxi∑Nch
j�1 SOCj Pmaxj

, (20)

Pp
EVi � Pmaxi − Bi PmaxEVs(1 − h). (21)

TABLE 3 | Problem’s objectives and constraints of the proposed charging management systems.

Problem CMS 1d-OCMS 2d-OCMS

Objectives max ηSCm max ηSCm max ηSCm
maxPEVs maxPEVs maxPEVs

— min∑Nch
i�1 |SOCi − SOC| min∑Nch

i�1 |SOCi − SOC|
— min∑Nch

i�1 |PEVi − PEVmaxi | min∑Nch
i�1 |PEVi − PEVmaxi |

Constraints PEVs ≥0 PEVs ≥0 PEVs ≥ 0

PEVs ≤ ∑Nch
i�1 PEVimax PEVs ≤ ∑Nch

i�1 PEVimax PEVs ≤ ∑Nch
i�1 PEVimax

PEVi ≥ 0 PEVi ≥0 —

FIGURE 7 |Weighting factors α and β generic trajectory as a function of
the h ratio.
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If the PV availability is sufficient to guarantee the maximum
charging power for all plugged vehicles (h≥ 1), the reference
power Pp

EVi coincides with Pmaxi solving weakness 2. Since Pmax is
the EV’s maximum absorbable power, if h> 1, the surplus of PV
power is provided to other loads or injected into the grid. On the
other hand, when h< 1, Pp

EVi decreases with respect to its
maximum value by a factor proportional to h and to the value
of SOCi and Pmaxi. In this way the 2d-OCMSs differently allocate
power among vehicles, supporting the charging of vehicles with a
lower SOC level rather than those with a higher SOC, solving
weakness 1. Moreover, in case some vehicles have a similar SOC
value, the Bi coefficient prioritizes EVs with a faster charging
capability.

The difference with respect to the 1d-OCMS is that the Pp
EVi

assigned by the 2d-OCMS may assume a negative value. This
phenomenon happens when the variance among vehicles’ SOC is
high, and the PV power availability is low. Equation 22 shows the
value of h which provides negative charging powers (discharging
phase).

Pp
EVi < 0↔ h< 1 − Pmaxi

Bi PmaxEVs
. (22)

During the discharging phase, EVs which have higher SOC
share a fraction of their energy with vehicles having lower
SOC levels. The discharging power remains proportional to
Bi and within the maximum limits allowed by the charging
infrastructure. This smart charging-discharging operating
among EVs can be classified as vehicle-to-vehicle
(V2V) mode.

Unlike the unidirectional power flow, which only considers
the direction from an energy source X to the EV (X2V), the
bidirectional power flow, which contemplates EV’s battery
discharging toward a generic load (V2X), is feasible only if the
charging infrastructure allows it. At the current stage, it is not
possible to invert the power flows with AC-CS since the charging
parameters (voltages and currents) are mainly managed by the
vehicle onboard converter. Furthermore, the communication
protocols between the AC-CS and the EV (PWM/impedance
modulation in control pilot pin of the Type 2 connector (IEC
62196-1 TC 23/SC 23H, 2014)), despite allowing charging power
modulation, does not permit power flow inversion. For these
reasons, the V2V (in general V2X) mode may currently be
feasible only via DC-CSs (off-board charging), which, as
Table 1 shows, bypasses the onboard converter size limitation
providing higher-rated powers. However, in order to compare the
performance of the different proposed CMSs, this paper assumes
the same charging rating for each EV, both considering AC or DC
charging.

RESULTS AND DISCUSSION

This section shows and discusses the obtained results
considering applying the two novel OCMSs on the
reference scenario described in Reference Scenario and
Standard G2V EV Charging Effects on Power Demand
section. Simulations are carried out using MATLAB/

Simulink. A comparison between 1d-OCMS, 2d-OCMS,
and the standard CMS is carried out in terms of EV fleet-
level charging performance improvement. Since both OCMSs
aim to mitigate the above weaknesses which happen under
specific conditions, both techniques are simulated considering
low irradiance conditions (low h ratio value) and high
irradiance scenario (h ratio around 1 or more) referring to
weaknesses 1 and 2, respectively. Together with them,
standard CMS described in Eq. 13 is reported as well.

To better understand how the standard and the proposed
standard CMS and the two proposed OCMS operate, simulations
were run considering a winter-day (medium-low irradiance
scenario). The effects on power flows of the different SC
algorithms are displayed in Figure 8 and Figure 9. From
multivariate analysis on 1d-OCMS performance, the best
results were achieved calling off the β coefficient weight when
h � 0. On the other hand, the α-coefficient weight is kept higher
than one around h � 0 to enhance the SOC-based allocation of A
under low irradiance conditions. However, αmax > 2 provides a
detrimental effect on the total EV charging energy. In fact,
although Eq. 16 tries to allocate the whole PV power, high
values of αmax might cause on certain EVi (especially those
with lower SOC) an allocation of the reference power Pp

EVi
higher than what they can accept. In this way, the curtailment
power phenomenon caused by the maximum charging power
bottleneck (weakness 2) may also appear with a low value of h.
For these reasons, the last points which define the weighting
parameters as a function of h are [hα1, αmax] � [0, 2] and
[hβ1, βmin] � [0, 0]. Figure 8A shows the final setting of the
weighting factors α and β as a function of h that are used in the
simulation. Future works will deeply investigate other possible
types of tuning and settings of α(h) and β(h).

Figure 8B shows the PV power (black line) used as an example
in the simulation. Since the daily PV generation amount is
1,050 kWh (half of the annual-based daily average), this case
study can be classified as a medium-low irradiance scenario. The
colored area plots depict the PEVs (aggregate EV power) referring
to the standard CMS (light blue), the 1d-OCMS (yellow), and the
2d-OCMS (red)-based SC. In this case, all of the PV energy was
exploited for charging; there are no differences among PEVs of the
three examined CMSs (intersection area is displayed in green
color). On the right-hand axis, the red line depicts the
h-coefficient, which remains around low values (about
h � 0.25), providing a dynamic comparison between the
primary source availability versus the EV charging demand.

Figure 9A shows each EVi charging power referring to the
standard CMS (left, blue tint), the 1d-OCMS (center, gray tint),
and the 2d-OCMS (right, orange tint). As Eq. 13 describes, the
standard CMS equally allocates each PEVi among plugged
vehicles as a function of the PV availability. In other words, as
the figure shows, in the case of CMS operation, the reference
charging power is the same for each i-th vehicle. On the other
hand, Figure 9A center and right frames show that the PEVi

allocation can be different among vehicles, and it can dynamically
change as h varies following Ai (1d-OCMS) and Bi (2d-CMS)
evolution. The lower SOCi, the higher the power provided to
EVi. Furthermore, Figure 9A right plot shows the V2V mode
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FIGURE 8 | (A) 1d-OCMS setting of the weighting factors α(h) and β(h) used in the simulations. (B) The daily evolution of h-factor (red line), PV (black line) power,
and EVs charging power in case of standard CMS (light blue area), 1d-OCMS (yellow area), and 2d-OCMS (red area). The intersection area (displayed in green color)
shows that there are no differences among the three CMSs in this case.

FIGURE 9 | EV population (100 users) charging power profile (A) and SOC evolution (B) as a function of the time, in case of standard CMS (left frames, blue tint),
1d-OCMS (center frames, gray tint), and 2d-OCMS (right frames, orange tint) on a 24 h period. Each line in (A) depicts the power value PEVi(t) of a vehicle
belonging to the examine 100-user population. Then, each line of (B) depicts the SOCi(t) evolution of the i-th EV.
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operation of 2d-OCMS, when power flows can reverse direction
allowing other vehicles to charge at a higher rate. The different
allocated charging powers among vehicles influences the EV fleet
SOC evolution during the charging process as visible in
Figure 9B. The same color tones of Figure 9A are used to
compare the SOC results. The thickest line in each frame
depicts the instantaneous average SOC value of the whole EV
population. As the figure shows, the same initial SOC (SOC0)
population is assumed for all the CMSs. As expected, different
charging power allocations (Figure 9A) produce differences in
the departure SOC (SOCf) distributions. In case of charging
operated by the standard CMS (Figure 9B left frame), SOCi

increases freely. Vehicles that arrive having higher SOC0i, or
exhibiting longer parking time, manage to reach a high SOCfi, at
the expense of vehicles presenting lower SOC0i, or shorter
parking times. On the other hand, the 1d-OCMS and 2d-
OCMS shape the SOCi evolution during the charging process
allowing to reach an overall good SOCfi for all the vehicles. The
percentage of EVs that present a low-SOC level at departure time
is strongly reduced. Differently from 1d-OCMS (Figure 9B center
frame), through the 2d-OCMS allocation (Figure 9B right
frame), high-SOC vehicles share power (V2V) with low-SOC
vehicles. This phenomenon is witnessed by the nonmonotonous
evolution of SOCi top traces. In this way, in addition to the power
share given by PV generation, the latter receive additional power
from high-SOC vehicles. In other words, as Figure 9B right frame
shows, EV with higher SOC starts discharging (SOC decreasing)
stimulating faster charging of EV with lower SOC (higher SOC
growth rate). It is worth noticing that although the trend of the
mean SOC remains approximately the same, the values of the
SOCfi population are more concentrated around the average. As
a result, the 1d- and 2d-OCMS provide a more homogeneous
departure SOC population, decreasing the standard deviation
among SOCfi.

To provide an appreciable statistical significance of the results,
the simulation runs considering 31 different days of January (1
month) are carried out. In this condition, the solar irradiation is

generally low providing a scenario where the standard CMS’s
weakness 1 occurs more frequently. The distribution of SOC0i

and the parking arrival and departure times are set according to
EV Aggregate Charging Demand Evaluation for a Working Place
Parking Lot Scenario section (Figure 2 and Figure 3,
respectively). Based on the same conditions (SOC0i, parking
time, and PV power profile), simulations are run by operating
the standard CMS, the 1d-OCMS, and the 2d-OCMS SC strategy.
Finally, for each day the departure SOC’s values, SOCfi (at the
end of charging) is collected and analyzed.

Figure 10 shows the SOCf distribution of the 31 days of
January applying the standard CMS, the 1d-OCMS, and the
2d-OCMS, respectively, in Figures 10A–C. The right axis
shows the 31-day average estimated distribution (solid
lines), while the left axis shows the SOCf scatter plot of
each EVi (100 users/day) collected during the 31-day
simulations (3,100 charging events).

The results demonstrate that the two OCMS (1d-OCMS and
2d-OCMS) provide better performance decreasing the number
of EVs having a low SOCf value at the end of charging
compared with the standard CMS. In these terms, the best
performing method seems to be the 2d-OCMS, which
statistically presents the lowest probability in
correspondence with low SOCf values.

Finally, Figure 11 provides an overview of the 31-day
simulation results. Figure 11A shows the monthly-based
average SOCf and the corresponding standard deviation
among EVs. Although the two OCMSs operate at the expense
of EVs with higher SOC, the average SOCf (the value at the
departure time) of the whole EV population does not suffer
detrimental effects. On the contrary, as Figure 11A shows, the
mean value of SOCf (blue bars, right axis) slightly increases
compared to the standard CMS. On the other hand, the results in
Figure 11A (red bar, right axis) show a muchmore homogeneous
SOCf population, presenting a lower standard deviation.
Compared to the standard CMS, the 1d-OCMS provides a
standard deviation diminishing of about 20%, while 2d-OCMS

FIGURE 10 | 31-day SOCf distribution applying the standard CMS (A), the 1d-OCMS (B), and the 2d-OCMS (B). The right axis shows the average estimated
distribution (solid lines). The left axis refers to the scatter plot of the SOCfi (100 users) collected during the 31-day simulation.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 71638915

Lo Franco et al. Aggregated EV Charging Management Systems

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


(enabling V2V mode) presents a decrease of at least 40%. This
trend is reflected in the number of vehicles that leave the parking
lot having a medium-low-SOC value. To enumerate the latter, a
37.5% lower threshold (SOCfts) is assumed. This precautionary
value represents the minimum SOC level that manages to provide
the energy required to cover a 1-day trip (about 30 km), with
reference to the EV having the lowest capacity (20 kWh). This
evaluation has been done considering the average daily
consumption of 5.5 kWh and assuming
SOC0 � SOCmin � 10%. In fact, under this hypothesis, an
acceptable value of SOCf (at the departure instant) is

SOCfts � 10% + 100
5.5 kWh
20 kWh

� 37.5%.

In other words, if SOCfi < SOCfts occurs, EVi has not
received enough energy to make the 1-day journey. However,
it should be considered that only 20% of the examined EV
population has less than 20 kWh of battery capacity and
SOCfth is considered as a precautionary threshold. Finally,
Figure 11B shows the number of users leaving the parking lot
having SOCfi < SOCfts. The figure shows the count (left-hand
axis) considering each day of January (1-month simulation). The
blue, black, and red lines refer to the standard CMS, the 1d-
OCMS, and the 2d-OCMS, respectively. To quantify the daily PV
availability with respect to the EVs’ maximum energy demand,
the barplot (right-hand axis) reports the ratio between the PV-
generated energy and the energy that EVs would require if
charged at their maximum power (standard unmanaged G2V
charging). The latter corresponds to EEVmax � 1856 kWh/d.
Figure 11B shows that, especially under low PV availability
when EEVmax is much higher than EPV (low ratio values), the
two OCMS allows more EVs to leave the parking lot with a higher
SOC value. Compared to the standard CMS, the 2d-OCMS
provides the best results (up to 32 EVs less), followed by the
1d-OCMS (up to 12 EVs less). Based on the monthly average,
the 1d-OCMSoutpaces standardCMS allowing +36.5%more users

to overpass the SOCfts threshold. This increment rises to +68.9%
considering the 2d-OCMS. Finally, under low irradiation
conditions (weakness 1) and without requiring power from the
external grid, results report that SC operating through the
proposed 2d-OCMS, which involves V2V mode, shows the best
performance in terms of PV availability exploitation optimization.

In order to compare the 1d-OCMS and 2d-OCMS
performance with respect to the standard CMS under
medium-high PV irradiance conditions, simulations are
run considering the 31 days of May where weakness 2
might occur more frequently. Figure 12A shows the daily
power flows referring to a scenario in which the PV plant’s
daily energy generation is about 1900 kWh (EPV/EEVmax � 1).
On the other side, in Figure 12B, the PV-generated power
during the 24 h is about 50% more than the EV energy
demand (EPV/EEVmax � 1.5). The left-hand axis of both
Figures 12A,B plots the h-ratio (red line) providing a
dynamic comparison between the PV source availability
versus the EV charging demand as a function of time. The
colored areas depict the aggregate power (and energy)
delivered to the whole EV fleet by the three different
CMSs. Figure 12A shows that especially when the h values
are around one, 1d-OCMS and 2d-OCMS manage to better
exploit the PV power availability, delivering more energy to
the vehicles. Of course, when the h-ratio is much higher than
one, the PV power is high enough to provide the maximum
power to each EVi. Therefore, as Figure 12B shows, the
energy gap between the standard CMS and the two OCMS
reduces.

To quantitatively calculate the daily energy gap, defined as
ΔEEV � EOCMS

EV − ECMS
EV , the 31-day simulation results are

collected and reported in Figure 12C. The right-hand axis
shows the ratio EPV/EEVmax referring to the month of May,
while on the left axis, the figure shows the 1d-OCMS and 2d-
OCMS energy gain (ΔEEV) with respect to the standard CMS.
The results show that it is possible to gain up to 80 kWh over

FIGURE 11 | (A) Monthly-based average SOCf (left side blue bars) and the corresponding standard deviation (right side red bars) among EVs in case of
standard CMS (left group), 1d-OCMS (center group), and 2d-OCMS (right group). (B)User count fulfilling SOCfi <SOCfts condition (left-hand axis) and EPV /EEVmax

ratio (right-hand axis bar chart) over a 31-day evaluation.
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the standard CMS. However, although 2d-OCMS performed
better than 1d-OCMS in improving weakness 1, the monthly
average ΔEEV is about 30 kWh for both OCMSs. This is due to
the similar behavior that Eqs 18, 21 based on OCMSs present
when h≥ 1.

CONCLUSION

In the context of energy districts presenting a growing
penetration of RES and EVs, this paper proposed two novel
EV charging management systems able to operate in SC mode,
suitable for working place parking lots or similar scenarios.
Proposed SC positively integrates EV charging with
intermittent energy sources by dynamically managing the
aggregate EV power demand acting on each vehicle charging
power. The CMS pursues local level EV charging maximization

from renewable internal power sources, minimizing consumption
from the external grid.

Simulations considering an actual case study validated the
effects of the proposal on a reference scenario consisting of an
industrial area having a PV plant, non-modulable electrical loads,
and EVCS. Based on 24/7/365 data analysis, results demonstrated
that SC increases charging self-consumption by 45% on average
compared to the standard (G2V) charging. While a 20%
reduction in peak power load (measured on PCC, grid side) is
experienced as well. However, two main weaknesses emerged.
Firstly, EVs’ SOC at the instant of departure is particularly low
compared to standard G2V counterpart under low availabilities
of the primary internal power source. Secondly, PV energy
appears to be underutilized due to the equal allocation of PV
power among vehicles.

Two novel charging strategies aiming to overcome these two
weaknesses are proposed. Both OCMSs ensure an overall good

FIGURE 12 | Daily evolution of h-factor (red line), PV (black line) power, and EVs charging power in case of standard CMS (light blue area), 1d-OCMS (yellow area),
and 2d-OCMS (red area) in case of EPV /EEVmax � 1 (A) and EPV /EEVmax � 1.5 (B). The intersection area is displayed in green color. (C) Daily energy gap ΔEEV (left-hand
axis) and EPV /EEVmax ratio (right-hand axis bar chart) over a 31-day evaluation.
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SOC level at departure time for all the vehicles and maximize the
PV power utilization, avoiding the bottleneck phenomenon of
the maximum charger rating. The two OCMS differs as a
function of the power flow direction. The 1d-OCMS only
considers the PV to EV flows direction (standard SC). On
the other hand, the 2d-OCMS enables bidirectional power
flow among EVs (V2V). Simulations carried out in
conditions where these weaknesses are more highlighted
showed improvements of 36.5% (1d-OCMS) and 68.9% (2d-
OCMS) in the number of users presenting a departure SOC
suitable for covering a 1-day trip under medium-low
irradiance scenarios, considering that medium-high
irradiance scenarios 1d- and 2d-OCMS present similar
performances. Both techniques managed to provide up to
80 kW h/d more than the standard CMS (+30 kWh on
average). Most performing results in terms of SOC
distribution are achieved by operating the 2d-OCMS.
Thanks to the bidirectional V2V mode, an average decrease
of 40% in SOC standard deviation at the departure instant has
been achieved. If suitable, 2d-OCMS should be preferred
because of its ability to obtain a homogeneous charging
process and overall better performance in all investigated
scenarios. However, in case conventional unidirectional

charging operations are required, 1d-OCMS should be
preferred because of the shown improvements in
comparison to the standard CMS.
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