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FIGURE 9 | (A) Period July–October 2018: average salinity along the axis of the Po di Goro branch and superimposed average current. (B) Percentage of salinity

values higher than 2 PSU along the axis of the Po di Goro branch during the 2018 year. Distances in m are from upstream to the river mouth.

changes also the mixing in the Lagoon as recently explained for
estuaries in Burchard (2020).

THE GOLFEM MODEL FOR THE “WHAT
IF” SCENARIOS

The calibration and validation of the Goro Lagoon numerical
model will facilitate “What if ” scenarios to be carried out for the
sustainable management of the site. The lagoon is a key area for
clam farming in Italy. The economic activities are coordinated by
a consortium of around 1400 local producers who, together with
the local government authorities, helped to co-design the “What
if ” numerical experiments.

The ecosystem health and productivity levels of the lagoon
are connected to the area’s morphology and dynamics, the
hydrodynamic regime, the freshwater inputs, water salinity, and
the specific ecosystem of the area. All these aspects interact to
produce suitable conditions for the biological productivity of the
lagoon. The question to be addressed by the “What if ” scenarios is
how tomodify some of these key factors for the future sustainable
exploitation of resources. To do this, a numerical model is
needed that encompasses most of the interacting processes in the
Lagoon, so that all the feedback can be considered. With a purely
hydrodynamic model, like the one presented in this paper, we can
address factors related to the morphology, the hydrodynamics,
freshwater inputs, and the water salinity. In the future, if the
complexity of the model is increased with sediment transport and
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FIGURE 10 | Average temperature of the water column in February (A), August (B) and average daily range (daily maximum – daily minimum) in February (C), August

(D) 2018.

FIGURE 11 | Average volume fluxes in the inlet channels, distinguished by inflow positive (in the deeper layers) and negative outflow in the surface layer. The average

freshwater inputs in the lagoon are considered positive. The western freshwater is the sum of the Po of Volano and the pumping stations Giralda (G), Romanina (R),

and Bonello (B) (Figure 1), The eastern freshwater is the sum of the volume fluxes at the Manufatto gate and Gorino lock.
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FIGURE 12 | Fitness indices of optimal growing conditions of the present state for salinity (FT2) and current speed (FT1). (A) FT2 present day; (A.1) difference

between FT2 in the present day and Sc1 conditions; (A.2) difference between FT2 in the present day and Sc2 conditions. (B) FT1 present day; (B.1) difference

between FT1 in the present day and Sc1 conditions; (B.2) difference between FT1 in the present day and Sc2 conditions.

ecosystem modeling, “What if ” scenarios could be designed to
answer additional management questions.

Local stakeholders wanted to know whether morphological
interventions would have a positive impact on clam farming,
and thus two morphology scenarios were investigated. The first
scenario (Sc1) consisted in deepening and widening the eastern
inlet channel (Figure 1a, red contour), which, as shown in the
previous section, shows an important estuarine exchange with
the open sea, with salt water entering at depth. Currently the
eastern mouth has a width of about 50 m and a depth varying
between a maximum of −5 m and a minimum of −1.5 m near
the sea outlet, due to the littoral sand transport that is deposited
in front of the inlet. The community of stakeholders asked what
the hydrodynamics changes would be if the eastern mouth was
enlarged to about 100 m, deepened up to 4 m everywhere and
extended toward the sea (Figure 1a).

The second scenario (Sc2) consisted in dredging a channel that
would extend from the eastern inlet channel to the easternmost
side of the lagoon, crossing the area between the two spits of
the Scanno of Goro, as shown by the orange line in Figure 1a.
The stakeholders were interested to see whether the current and
salinity conditions could be changed so that a clam nursery could
be re-established between the spits. The stakeholders requested
that the canal should have a width of 30 m and a depth of 3 m.

Numerical experiments were then carried out using these
modifications in the model bottom bathymetry. The simulations
were run for 2018 using the same atmospheric and river forcing
as the present-day bathymetry conditions.

Differences between the present-day conditions and the
scenarios were larger in Sc1 than Sc2 and in general were
significant with respect to the mean current amplitudes in
Figure 4 (current changes are of the order of 1–5 cm s−1).
Differences were larger close to the specific bathymetry changes
but some effects are evident, in the case of Sc1, in an area
intercepted by a radius of about 2 km around the secondary

mouth. Despite this, the increase in the tidal currents in the
western channel is significant (8–10%) only in the peak values
during the spring tide. The same analysis of the vertical structure
of the flow carried out in Table 3 shows that there were no
significant changes: the inflow increased slightly in the third level
at the expense of the flow in the middle layers. The net flux of the
eastern channel did not change appreciably (−9 m3 s−1).

These differences however, were not sufficiently insightful
to understand whether the morphological changes would be
worth the effort. It was then decided to use two “fitness (FT)
indices” developed in a previous study (Istituto Delta Ecologia
Applicata, 2004). The FTs considered here are threshold values
for the current intensity and water salinity, which vary between 0
and 1 for sub-optimal to optimal clam farming conditions. We
considered only FTs ranging from 0.5 to 1, for the barotropic
current speed and the bottom salinity. The corresponding
optimal values for current amplitudes (FT1) are between 20 and
150 cm s−1, and between 20 and 35 PSU for salinity (FT2). We
then calculated the percentage of days in 2018 when FT1 and FT2
were above these optimal threshold values. The values of the FTs
are shown in the Supplementary Figure 4.

Figure 12 shows the results for FT1 and FT2 in present
day conditions and the difference between Sc1 and Sc2. The
results confirm that today most of the farming areas are located
where FT2 is higher than 60%. In contrast, FT1 seems to be
a strong limiting factor for clam farming. This is partially true
because normally the current speed is reduced to zero at each
tidal inversion, and this lowers the percentage of days where
the optimal FT1 values are achieved. In fact, the ex-nursery
area is not favorable because of the very weak hydrodynamics,
in agreement with the largest WRT values described before.
Moreover, the areas of high riverine footprint are not suitable
for clam farming, and the gates should be maneuvered carefully
to ensure an acceptable value of FT2 during the early growing
season of the clams.
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In Sc1, changes in FT1 and FT2 optimal conditions are of
the order of 10–12% and in a quite extended area of the eastern
lagoon. However, on the western side of the eastern mouth, there
is a negative impact which needs to be considered. In Sc2, changes
are more significant for FT2 (up to +15% changes) but only in an
area close to the bathymetry changes and not as wide area as in
Sc1. In Sc2 FT1 changes are negligible.

Using only FT1 and FT2 indices for the Goro Lagoon,
the preliminary conclusion is that multiple interventions
would be required, and that local dredging would simply
not induce large enough changes to impact on the optimal
functioning of the lagoon.

SUMMARY AND CONCLUSION

In this paper we studied the circulation of the Goro lagoon and
its connectivity with the open sea and we carried out “what
if ” scenarios for the optimal functioning of the lagoon as a
clam farming site.

The Goro lagoon was modeled for the first time with the
appropriate connections to the open ocean waters. This has
been realized by a cascading model strategy from the large-scale
ocean circulation, at the Mediterranean scale (CMEMS analyses),
to the Adriatic intermediate model (AdriaROMS) and to the
Goro lagoon marine areas with unstructured grid modeling. This
model cascading is necessary to add processes at different space
and time scales where and when it is needed. GOLFEM has 10 m
resolution inside the lagoon, required to resolve the channels, and
high frequency winds, as well as resolved interfaces with both the
riverine inputs and the open sea.

The Goro lagoon is found to be an estuarine dominated area
where exchanges with the open sea occur along two relatively
deep lateral channels (5–6 m deep) and one shallow central tidal
flat plateau. Across the latter there is only outflow of lagoon
waters while at the two side channels along the inlet section, the
flow is on average baroclinic. Open sea, relatively salty waters are
exchanged from the bottom of the channels to about 2–3 m from
the surface and this is the only source of open sea water entering
the lagoon on a yearly average.

The tidal flow in the lagoon is dominated by semidiurnal tidal
components and it is an important high frequency component of
the circulation. The exchanges at the inlet section channels can
be barotropic and baroclinic at different phases of the tidal flow
and there are also hours of the day where the net flow through the
inlet section is minimum and some days it remains baroclinic for
several hours. The lagoon WRTs are from few days to more than
a week, signaling the importance of the deep water inflow from
the channels for the exchange of oxygen with the open sea waters.

The lagoon-river channels exchanges were analyzed and the
mean values of the discharges and their salinities were calculated:
the average river-channel volume flux enters the lagoon trough
the Gorino lock and the Manufatto and the water is brackish
because of the seawater intrusions in the Po of Goro branch.
The salinity intrusion exceeded 20 km in August 2018 with
the lowest discharge from the Po. Considering that the climate
change scenarios project decreasing Po river discharges due to

atmospheric drought conditions, the amplitude of the salt wedge
is clearly a severe threat to the lagoon.

The results of this work are reliable and derive not only from
the high resolution of the model, but also from the detailed
knowledge of the lateral boundary conditions. Nevertheless,
there is still uncertainties. Since the fast-evolving morphology is
an important constraint on the lagoon dynamics, continuously
updated, synoptic bathymetric surveys are fundamental,
rather than multiple patch-like surveys. In addition to the
natural variability of the hydrological forcing, the untracked
opening/closing of the Gorino lock and Manufatto operated
by the local authorities, are another source of uncertainty in
simulating the circulation of the lagoon.

The changes in the circulation due to man-induced changes
in bathymetry happen very rapidly due to the shallowness of
the Lagoon and its fast WRTs. The assessment of the long
period effects of bathymetric changes on the circulation implies
morphological modeling and sediment transport, with all the
assumptions regarding the sediment load boundary conditions
from the river branches. This will be part of future investigations
that are prepared by the present work in terms of a solid
hydrodynamic modeling, coherent with the present data.

Goro Lagoon Finite Element Model was also conceived
as a scientific tool to support decision makers in evaluating
interventions for improving clam farming and the sustainable
exploitation of the Goro lagoon. The high-resolution triangular
grid can be easily adapted to represent the features of new
channels that need dredging or deepening.

The “What if ” scenarios described in this paper show
that realistic and complex validated/calibrated hydrodynamic
numerical models can help to reduce uncertainties regarding the
impacts of different interventions. The difference with previous
studies is that now the uncertainty related to the reproduction
of the present day environmental marine conditions has been
lowered to an acceptable value. The “What if ” scenarios
examined in this paper highlight that dredging might not
always imply a change in hydrodynamic conditions leading to a
significant change in fitness indices. The local dredging of canals
inside the Scanno of Goro is clearly not sufficient to increase
the current intensity and the salinity values to more suitable
conditions for the clam farming of the lagoon.

Finally, this study demonstrates the importance of designing a
seamless chain of models that integrate local effects into the initial
fields derived from coarser operational models. Furthermore it
poses already questions on the essential monitoring aspects of
the lagoon which should consider bathymetric frequent surveys
and a strict management of the man-made channel inflows.
We believe that our findings demonstrate that the proper
cascading approach can be a valid modeling methodology to
face the challenges of predicting the Global Coastal Ocean in
the next decade.
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APPENDIX A

Governing Equations
System of HYdrodynamics Finite Element Modules (SHYFEM) is a finite element 3D hydrodynamic model developed at ISMAR-
CNR (Umgiesser et al., 2004). It is based on the solution of the primitive equations considering the hydrostatic and Boussinesq
approximations. It runs on an unstructured grid with a staggered Arakawa B-grid type horizontal spacing. Scalar quantities are
computed at nodes, while vectors are solved at the center of the element. The horizontal momentum equations integrated over a
vertical layer are:

∂Ul

∂t
+ ul

∂Ul

∂x
+ vl

∂Ul

∂y
+

∫ zl−1

zl

w
∂u

∂z
dz − fVl = − ghl

∂ζ

∂x
− ghl

ρ0

∫ 0

zlmid

∂ρ
′

∂x
dz − hl

ρ0

∂Pa

∂x
+ ∇h · (AH∇hUl) + +

∫ zl−1

zl

∂τxz

∂z
dz

(A.1)

∂Vl

∂t
+ ul

∂Vl

∂x
+ vl

∂Vl

∂y
+

∫ zl−1

zl

w
∂v

∂z
dz + fUl = − ghl

∂ζ

∂y
− ghl

ρ0

∫ 0

zlmid

∂ρ
′

∂y
dz − hl

ρ0

∂Pa

∂y
+ ∇h · (AH∇hVl) +

∫ zl−1

zl

∂τyz

∂z
dz

(A.2)

where ζ = ζ
(

x, y, t
)

is the free surface, l = 1. . .N is the vertical layer index, starting with l = 1 for the surface layer and increasing
with depth with l = N being the bottom layer, zl = 0. . .N are the depths of the layer interfaces at the bottom with z0 being the free
surface ζ and zN the bottom interface of the deepest layer, and zlmid

is the depth at the middle of layer l. ul and vl are horizontal velocity
components, Ul and Vl are the horizontal velocities integrated over the layer l (layer transports) defined by Ul = ulhl and Vl = vlhl.
hl is the layer thickness, Pa is the atmospheric pressure at the sea surface, g is the gravitational acceleration, ρ0 is the reference density

of sea water, ρ = ρ0+ρ′ is the water density with ρ
′
representing the perturbation of the density from the reference value ρ0, AH is

the horizontal eddy viscosity (m2 s−1) computed following the Smagorinsky formulation (Smagorinsky, 1963; Blumberg and Mellor,
1987), and wl is the vertical velocity for layer l defined at the bottom interface. τxz , τyz are the turbulent shear stresses defined at the
bottom interface of each layer and written according to the flux-gradient theory. Thus, the layer integral of the stress terms of Eqs A.1
and A.2 reads as follows:

∫ zl−1

zl

∂τxz

∂z
dz = τ

zl−1
xz − τ

zl
xz = Av

∂ul−1

∂z
− Av

∂ul

∂z
∫ zl−1

zl

∂τyz

∂z
dz = τ

zl−1
yz − τ

zl
yz = Av

∂vl−1

∂z
− Av

∂vl

∂z
(A.3)

The turbulent shear stresses at the free surface, τz0xz and τ
z0
yz are defined by the momentum surface boundary condition (Eq. A.16)

while for the last layer, l = N, τ
zN
xz and τ

zN
yz are defined by the bottom boundary condition (Eq. A.17).

The continuity equation integrated over a vertical layer l is written as:

∂Ul

∂x
+ ∂Vl

∂y
= wzl − wzl−1 (A.4)

To note that at the top layer l = 1, the continuity equation has an additional term representing the time variability of the top layer
thickness and thus it reads as reported below:

∂h1

∂t
+ ∂U1

∂x
+ ∂V1

∂y
= wz1 − wz0 (A.5)

Integrating the continuity equation over the entire water column, the free surface equation can now be written as follows:

∂ζ

∂t
+ ∂Û

∂x
+ ∂V̂

∂y
= P − E (A.6)
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where Û =
∑

Ui and V̂ =
∑

Vi are the components of the barotropic transport, E is the evaporation, and P is the precipitation.
The boundary conditions of the Eqs (A.6) are (A.15).

The layer integrated salinity and temperature equations reads, respectively:

∂
(

hlSl
)

∂t
+ Ul

∂Sl

∂x
+ Vl

∂Sl

∂y
+
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w
∂S

∂z
dz = ∇h ·
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)

+
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zl
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(

KV
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dz (A.7)
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(

KV
∂θ

∂z

)

dz + 1

ρ0Cp

(

I(zl−1) − I(zl)
)

(A.8)

where KH and KV are the horizontal and vertical turbulent diffusion coefficient respectively (m2 s−1). Sl and θl are respectively the
salinity and temperature in layer l. For both Eqs (A.7) and (A.8) the turbulent diffusive fluxes are written according to the flux-gradient
theory, τSz = KV

∂S
∂z and τθz = KV

∂θ
∂z , and their surface and bottom boundary conditions are defined in Eqs (A.19–A.21).

The last term in Eq. (A.8), containing I(z), is the solar irradiance at depth z, parametrized with a double exponential according to
Paulson and Simpson (1977), defined as:

I(z)

QS
= Re−z/ξ1 + (1 − R) e−z/ξ2 (A.9)

QS is the irradiance at the sea surface (Wm−2), ξ 1 and ξ 2 are the two length scales of penetration of the solar radiation in the
visible spectrum, R is the percentage of entering radiation depending on the water type. In this work, QS is parametrized with the
Reed’s formula (Reed, 1977). Water is considered to be a type 9 Jerlov water (turbid water, Jerlov, 1976) with ξ 1 = 0.325m, ξ 2 = 1.505
m and R = 0.72.

The vertical momentum equation, layer integrated under the hydrostatic hypothesis, provides the hydrostatic pressure:

pl
(

x, y, zlmid
, t

)

= ρ0g
(

ξ − zlmid

)

+
∫ 0

zlmid

ρ
′gdz (A.10)

To complete the set of equations the density ρ is computed from salinity, temperature and pressure according to the UNESCO
equation of state (Fofonoff and Millard, 1983):

ρl
(

x, y, zlmid
, t

)

= ρl
(

Sl, θl, pl
)

(A.11)

Turbulence Model
The vertical eddy viscosity, AV , and diffusivity, KV are computed trough the definition of a two-equation model using a k – ε scheme
for the closure of the turbulence that is implemented in the GOTM model (Burchard et al., 1999) and is part of the SHYFEM code.
The eddy viscosity and diffusivity are found applying the relation of Kolmogorov (1941) and Prandtl and Wieghardt (1945) which
relates the turbulent coefficients to a velocity and a turbulent length scale:

AV = cµ
√
kl + νv, KV = c

′
µ

√
kl + γv (A.12)

where k is the turbulent kinetic energy, l is a turbulent length scale, νV and γV are respectively the molecular viscosity and diffusivity

while cµ and c
′
µ are dimensionless stability functions. In order to find the value for the vertical turbulent coefficients, the GOTMmodel

solves an equation for the turbulent kinetic energy, k and an equation for the turbulence dissipation, ε defined as:

∂k

∂t
+ −→

U · ∇k = ∂

∂z

(

Av

σk

∂k

∂z

)

+ Ps + B − ε (A.13)

∂ǫ

∂t
+ −→

U · ∇ǫ = ∂

∂z

(

Av

σǫ

∂ǫ

∂z

)

+ ǫ

k
(cǫ1Ps + cǫ3B − cǫ2ǫ) (A.14)

where σk and σε are the turbulent Schmidt number respectively for k and ε, PS is the turbulent production by shear, B is the buoyancy
production/destruction term while cε1, cε2, and cε3 are empirical constants. The classical energy cascade model lead to a relation
between k, ε, and l expressed by the following:
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l =
(

c0µ
)3 k3/2

ǫ
(A.15)

where c0µ is an empirical constant. Once Eqs (A.13) and (A.14) are numerically solved, we can retrieve the turbulence length scale
from Eq. (A.15) and compute the vertical eddy viscosity and diffusivity from Eq. (A.12).

Boundary Conditions
The Surface and Bottom Boundary Conditions

The vertical velocity at the bottom and at the surface, wB and w0, respectively, are given by the kinematic conditions, which are:

w0 = Dζ

Dt
|ζ + E − P; wB = 0 (A.16)

where E is the evaporation and P is the precipitation rate.
The river runoff is not included in the surface boundary condition because it enters the lateral open boundary condition at the

coastline where are the river mouths (see sub-section “The Lateral Boundary Conditions”).
The wind stress, applied at the air-sea interface, is treated following the MFS bulk formulae approach (Pettenuzzo et al., 2010):

τz0xz = Av
∂u

∂z
|ζ = ρa

ρ0
CD

∣

∣

−→u w

∣

∣ uw τz0yz = Av
∂v

∂z
|ζ = ρa

ρ0
CD

∣

∣

−→u w

∣

∣ vw (A.17)

where ρa is the air density, uw and vw the wind velocity components at 10 m and CD is the wind drag coefficient computed with the
Hellerman and Rosenstein’s (1983) formulation.

At the bottom (layer N), the turbulent momentum stresses are computed following a quadratic formulation as follows:

τzNxz = Av
∂u

∂z
|zN = CB

H2
N

∣

∣

∣

−→
UN

∣

∣

∣
UN τzNyz = Av

∂v

∂z
|zN = CB

H2
N

∣

∣

∣

−→
UN

∣

∣

∣
VN (A.18)

where HN is bottom layer thickness, UN and VN the zonal and meridional transports of the bottom layer. CB is a bottom drag
coefficient defined as:

CB =





0.4

ln
(

λB+0.5HN
λB

)





2

(A.19)

where λB is a bottom roughness length expressed in m, which varies spatially ranging from 0.005 in lagoon shallows to 0.08 in
floodplains. These values were found during the calibration phase.

The air-sea interface temperature diffusive flux is:

τ
z0
θz = K

V

∂θ

∂z
|ζ = θl = 1 (E − P) − Qnet

ρ0Cp
(A.20)

where Qnet = QS − QL − QH − QE is the net downward heat flux with QS the shortwave radiation flux, QL the longwave radiation
flux,QE the latent heat flux andQH the sensible heat flux (Pettenuzzo et al., 2010). TheCP coefficient is the specific heat of the sea water.

The salt diffusive flux at the surface is:

τ
z0
Sz = KV

∂S

∂z
|ζ = Sl = 1 (E − P) (A.21)

The adiabatic bottom boundary conditions are applied for the tracers:

τ
zN
θz = KV

∂θ

∂z
|zN = 0 τ

zN
Sz = KV

∂S

∂z
|zN = 0 (A.22)
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The Lateral Boundary Conditions

The rivers enter the lateral open boundary conditions along the coastline where the river mouths are located. The riverine release
is provided in terms of prescribed runoff, temperature and salinity. The other lateral boundary along the coast is the closed land
boundary where the velocity component normal to the boundary is set to zero and the tangential velocity follows the full-slip
boundary condition.

At the offshore lateral open boundaries, the Dirichlet boundary condition is set for the sea surface height. The tracers follow the
Dirichlet condition if the flux is entering the domain, otherwise a zero-gradient condition (Neumann boundary condition) is adopted.
A nudging procedure is used for the horizontal velocities, with a nudging time of 30 min.

Spatial and Temporal Discretization
A semi-implicit time stepping of the divergence term of the free surface equation is used together with a semi-implicit formulation of
the barotropic pressure gradient term and the Coriolis term of the momentum equation. The vertical mixing terms and the vertical
advection of tracers are fully implicitly solved while the horizontal mixing terms, the horizontal advection of tracers and the horizontal
and vertical advection of momentum are explicitly time stepped.

The domain is divided into triangular elements. The vertices of these elements are called nodes. The horizontal discretization uses
staggered finite elements and is realized by expanding all the variables into form functions. The staggered finite elements approach
ensures correct propagation of gravity waves and geostrophic adjustment, as shown inWilliams (1981) andWilliams and Zienkiewicz
(1981). The staggered grid guarantees mass conservation and a feasible implementation of the semi-implicit time scheme.

The vertical discretization usesN layers where density, velocity components and tracers are supposed to be constant. The first layer
has a variable thickness due to the variations in sea level, all the others have constant thickness in time. The last layer changes thickness
according to the bathymetry (so-called partial step). The turbulent and molecular stresses and the vertical velocity are computed at
the bottom interface of each layer, whereas all the other variables are defined at the layer center.

APPENDIX B

Statistical Indexes
Four statistical indexes are used to evaluate the model results during the phase of calibration and validation of the model. Correlation
R, BIAS, root mean square error (RMSE) and the mean absolute error (MAE) are computed. In the following definitions we indicate
the model output as φi

m while the observations are indicated as φi
o, where i = 1, 2, 3. . .N is the number of observations.

The correlation index R indicates the linear relationship between two statistical variables and is defined as:

R =
1
N

∑N
i = 1

(

φi
m − φl

m

) (

φi
o − φl

o

)

φσmφσo

φσm and φσo are model output and observations standard deviation. The correlation index R ranges between −1 and 1. A value of 1
indicates a full linear relationship between the variables. Values around 0 indicates no correlation between the variables and a value of
−1 indicates that the variables are inversely correlated.

The BIAS, RMSE and MAE are defined as follow:

BIAS = 1

N

N
∑

i = 1

(

φi
m − φi

o

)

RMSE =

√

√

√

√

1

N

N
∑
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(

φi
m − φi

o

)2

MAE = 1

N

N
∑

i = 1

∣

∣φi
m − φi

o

∣

∣

For each station where observations were collected, we choose the closest model node for φi
m.
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