Self-assembly of functionalized lipophilic guanosines into cation-free stacked G-quartets

Marilena Campitiello,^a Alessio Cremonini,^a Marco A. Squillaci,^b Silvia Pieraccini,^a Artur Ciesielski,^b Paolo Samorì,*^b Stefano Masiero *^a

^a Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via S. Giacomo 11, 40126 Bologna, Italy. E-mail: stefano.masiero@unibo.it

^b Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.

Synthetic schemes 1-4	S2
Selected CD spectra (Figure S1)	S4
VT ¹ H-NMR of compounds 1-8 (Figure S2-S9)	S5
Table S1	S13
Selected 1D-NOESY spectra of compounds 1-8 (Figure S10-S16)	S14
Figure S17	S21
Figure S18	S22
Spectra of compounds 1-14	S 23

Scheme S1. Synthesis of guanosines 1-3 from commercial guanosine.

Scheme S2. Synthesis of guanosine 4 (8Ph5C10).

Scheme S3. Synthesis of guanosine 5 (8Fc5C10).

Scheme S4. Synthesis of guanosines 6-8

CD spectra recorded on 10 mM CH_2Cl_2 solutions of **8Ph5Fc** before (black trace) and after addition of [2.2.2] cryptand (red dotted trace) or excess of KI (red continuous trace). Path length 0.01 cm.

CD spectra recorded on 10 mM CH₂Cl₂ solutions of **8Ph5Si** before (blue trace) and after addition of KI (pink trace). Path length 0.01 cm.

Figure S1._Selected CD spectra showing the behaviour of guanosines 1 and 3 upon addition of [2.2.2] cryptand or excess KI.

Figure S2._Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Ph5Fc** (4.3 mM) at different temperatures in CD₂Cl₂. Amino protons are marked with asterisks.

Figure S3. Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Ph5OH** (5 mM) at different temperatures in CD₂Cl₂.

Figure S4. Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Ph5Si** (6 mM) at different temperatures in CD₂Cl₂.

Figure S5. Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Ph5C10** (7 mM) at different temperatures in CD₂Cl₂.

Figure S6. Downfield portion of the 600 MHz ¹H-NMR spectrum of 8Fc5C10 (4.5 mM) at different temperatures in CD_2Cl_2 .

Figure S7. Downfield portion of the 600 MHz ¹H-NMR spectrum of 8Fc5Si (6 mM) at different temperatures in CD₂Cl₂.

Figure S8. Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Fc5OH** (7 mM) at different temperatures in CD₂Cl₂.

Figure S9. Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Fc5Ph** (4 mM) at different temperatures in CD₂Cl₂.

	Compound	solvent	δ(1')	δ(2')	δ(3')	δ sequence
a	8Ph5Fc	dmso	5.808	6.31	5.83	2'>3'>1'
		dcm	5.86	6.43	6.48	3'>2'>1'
b	8Ph5OH	dmso	5.78	5.496	5.186	1'>2'>3'
		dcm	6.2	6.04	5.588	1'>2'>3'
c	8Ph5Si	dmso	5.75	6.36	6.17	2'>3'>1'
		dcm	5.75	6.26	5.63	2'>1'>3'
d	8Ph5C10	dmso	-	-	-	-
		dcm	5.86	6.29	6.16	2'>3'>1'
i	8Fc5C10	dmso	6.75	6.58	5.74	1'>2'>3'
		dcm	6.95	6.59	6.12	1'>2'>3'
e	8Fc5Si	dmso	6.747	6.69	5.71	1'>2'>3'
		dcm	6.82	6.74	6.18	1'>2'>3'
f	8Fc5OH	dmso	6.86	5.61	5.3	1'>2'>3'
		dcm	7.22	6.12	5.71	1'>2'>3'
g	8Fc5Ph	dmso	6.77	6.63	5.99	1'>2'>3'
		dcm	6.9	6.63	6.51	1'>2'>3'
h	8-Bromo-2,3,5-tri-O-decanoylguanosine	dmso	5.84	6.02	5.68	2'>1'>3'
	1					
i	2,3,5-tri-O-decanoylguanosine ²	dmso	5.96	5.81	5.52	1'>2'>3'
1	2,3,5-tri-O-acetylguanosine	dmso ³	6.007	5.809	5.515	1'>2'>3'
m	8-Bromoguanosine 9	dmso ⁴		4.89		
		dmso	5.68	5.01	4.14	1'>2'>3'
n	Guanosine	dmso ⁴		4.36		
		dmso ³	5.723	4.429	4.113	1'>2'>3'

Table S1. Room temp. chemical shifts* for sugar protons.

* signals are referenced to residual solvent peak.

- 1. Prepared as described in Giorgi, T.; Lena, S.; Mariani, P.; Cremonini, M. A.; Masiero, S.; Pieraccini, S.; Rabe, J. P.; Samori, P.; Spada, G. P.; Gottarelli, G. J. Am. Chem. Soc. 2003, 125, 14741
- 2. Prepared as described in Devetak, M.; Masiero, S.; Pieraccini, S.; Spada, G. P.; Copic, M.; Olenik, I. D. Appl. Surf. Sci. 2010, 256, 2038

3. Spectral Database for Organic Compounds (https://sdbs.db.aist.go.jp/sdbs/cgibin/cre_disclaimer.cgi?REQURL=/sdbs/cgibin/cre_index.cgi&REFURL=http://www.bing.com/search%3fq=sp ectra+database+japan&form=PRASU1&src=IE11TR&pc=ASTE)

4. L. E. Buerkle, H. A. von Recumab, S. J. Rowan, Chem. Sci., 2012, 3, 564 and references cited therein.

Figure S10. a) Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Ph5OH** in CD₂Cl₂ (5 mM) and signals assignment (diastereotopic protons were not assigned); b), c), d): selected NOESY-1D spectra of the same sample. Irradiated signals are indicated by an arrow. In each NOE spectrum were used at least 1024 coadded transients, a recycle delay of 1 sec, a mixing time of 0.25 sec and a 20-50Hz shaped pulse. All spectra were recorded at -40°C.

Figure S11. a) Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Ph5Si** in CD₂Cl₂ (6 mM) and signals assignment (diastereotopic protons were not assigned); b), c): selected NOESY-1D spectra of the same sample. Irradiated frequencies are indicated by an arrow. In each NOE spectrum were used at least 512 coadded transients, a recycle delay of 1 sec, a mixing time of 0.2 sec and a 20-50Hz shaped pulse. All spectra were recorded at -40°C.

Figure S13. a) Downfield portion of the 600 MHz ¹H-NMR spectrum of 8Fc5C10 in CD₂Cl₂ (4.5mM) and signals assignment (diastereotopic protons were not assigned); b), c): selected NOESY-1D spectra of the same sample. Irradiated frequencies are indicated by an arrow. In each NOE spectrum were used 512 coadded transients, a recycle delay of 0.6 sec, a mixing time of 0.6 sec and a 50Hz shaped pulse. All spectra were recorded at -40°C.

Figure S14. a) 600 MHz ¹H-NMR spectrum of **8Fc5Si** in CD_2Cl_2 (6 mM) and signals assignment (sugar diastereotopic protons were not assigned); b), c), d): selected NOESY-1D spectra of the same sample. Irradiated signals are indicated by an arrow. See inset for proton labeling. In each NOE spectrum were used at least 256 coadded transients, a recycle delay of 1 sec, a mixing time of 0.35 sec and a 20-80Hz shaped pulse. All spectra were recorded at -50°C.

Figure S15. a) Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Fc5OH** in CD_2Cl_2 (7 mM) and signals assignment (ribose diastereotopic protons were not assigned); b), c), d): selected NOESY-1D spectra of the same sample. Irradiated frequencies are indicated by an arrow. See inset for proton labeling. In each NOE spectrum were used at least 128 coadded transients, a recycle delay of 1 sec, a mixing time of 0.4 sec and a 20-50Hz shaped pulse. All spectra were recorded at -50°C.

Figure S16. a) Downfield portion of the 600 MHz ¹H-NMR spectrum of **8Fc5Ph** in CD₂Cl₂ (4 mM) and signals assignment (diastereotopic protons were not assigned); b), c), d): selected NOESY-1D spectra of the same sample. Irradiated protons are indicated by an arrow. In each NOE spectrum were used at least 256 coadded transients, a recycle delay of 1 sec, a mixing time of 0.4 sec and a 20-50Hz shaped pulse. All spectra were recorded at -50°C.

Figure S17. Sketches of ribbon-like structures A and B hypothetically formed by 8-substituted guanosine in syn conformation. Sterically overcrowded areas are circled. Furthermore, both structures are incompatible with observed NOEs.

Figure S18. AFM image of the amorphous film obtained from **8Ph5C10** by drop-casting from CH₂Cl₂.

¹H-NMR (CD₂Cl₂, 600 MHz) of 8Ph5Fc

¹³C{1H}NMR (CD₂Cl₂, 600 <u>MHz</u>) of **8Ph5Fc**

gCOSY spectrum (CD₂Cl₂, 600 MHz) of 8Ph5Fc

gHSQC spectrum (CD₂Cl₂, 600 MHz) of 8Ph5Fc

gHMBC spectrum (CD₂Cl₂, 600 MHz) of 8Ph5Fc

¹H-NMR (dmso-d₆, 600 MHz) of **8Ph5OH**

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (dmso-d6, 600 MHz) of $\mathbf{8Ph5OH}$

gCOSY spectrum (CD₂Cl₂, 600 MHz) of 8Ph5OH

gHSQC spectrum (dmso-d₆, 600 MHz) of 8Ph5OH

gHMBC spectrum (dmso-d₆, 600 MHz) of 8Ph5OH

¹H-NMR (CD₂Cl₂, 600 MHz) of 8Ph5Si

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (CD₂Cl₂, 600 MHz) of $\mathbf{8Ph5Si}$

gCOSY spectrum (CD₂Cl₂, 600 MHz) of 8Ph5Si

gHSQC spectrum (CD₂Cl₂, 600 MHz) of 8Ph5Si

gHMBC spectrum (CD₂Cl₂, 600 MHz) of 8Ph5Si

¹H-NMR (CD₂Cl₂, 600 MHz) of 8Ph5C10

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (CD₂Cl₂, 600 MHz) of $\mathbf{8Ph5C10}$

gCOSY spectrum (CD₂Cl₂, 600 MHz) of 8Ph5C10

gHSQC spectrum (CD₂Cl₂, 600 MHz) of 8Ph5C10

gHMBC spectrum (CD₂Cl₂, 600 MHz) of 8Ph5C10

¹H-NMR (dmso-d₆, 600 MHz) of 8Fc5C10

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (dmso-d_6, 600 MHz) of 8Fc5C10

gCOSY spectrum (dmso-d₆, 600 MHz) of 8Fc5C10

gHSQC spectrum (dmso-d₆, 600 MHz) of 8Fc5C10

gHMBC spectrum (dmso-d₆, 600 MHz) of 8Fc5C10

¹H-NMR (CD₂Cl₂, 600 MHz) of 8Fc5Si

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (CD₂Cl₂, 600 MHz) of $\mathbf{8Fc5Si}$

gCOSY spectrum (CD₂Cl₂, 600 MHz) of 8Fc5Si

gHSQC spectrum (CD2Cl2, 600 MHz) of 8Fc5Si

gHMBC spectrum (CD₂Cl₂, 600 MHz) of 8Fc5Si

¹H-NMR (CD₂Cl₂, 600 MHz) of 8Fc5OH

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (CD₂Cl₂, 600 MHz) of $\mathbf{8Fc5OH}.$

gCOSY spectrum (CD₂Cl₂, 600 MHz) of 8Fc5OH

gHSQC spectrum (CD₂Cl₂, 600 MHz) of 8Fc5OH

gHMBC spectrum (CD₂Cl₂, 600 MHz) of 8Fc5OH

¹H-NMR (CD₂Cl₂, 600 MHz) of 8Fc5Ph

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (CD₂Cl₂, 600 MHz) of 8Fc5Ph.

gCOSY spectrum (CD₂Cl₂, 600 MHz) of 8Fc5Ph

gHSQC spectrum (CD₂Cl₂, 600 MHz) of 8Fc5Ph

gHMBC spectrum (CD₂Cl₂, 600 MHz) of 8Fc5P

¹H-NMR (dmso-d₆, 600 MHz) of **9**

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (dmso-d₆, 75 MHz) of $\mathbf{9}$

¹H-NMR (CD₃OD, 600 MHz) of **10**

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (CD₃OD, 151 MHz) of 10

¹H-NMR (dmso-d₆, 600 MHz) of **11**

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (dmso-d6, 75 MHz) of 11

¹H-NMR (dmso-d₆, 400 MHz) of **12**

 $^{13}C\{1H\}NMR$ (dmso-d₆, 101 MHz) of 12

¹H-NMR (dmso-d₆, 600 MHz) of **13**

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (dmso-d₆, 151 MHz) of 13

 $^{13}\mathrm{C}\{1\mathrm{H}\}\mathrm{NMR}$ (dmso-d6, 101 MHz) of 14