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Abstract
The human gut microbiome has gained increasing attention over the past two 
decades. Several findings have shown that this complex and dynamic microbial 
ecosystem can contribute to the maintenance of host health or, when subject to 
imbalances, to the pathogenesis of various enteric and non-enteric diseases. This 
scoping review summarizes the current knowledge on how the gut microbiota 
and microbially-derived compounds affect host metabolism, especially in the 
context of obesity and related disorders. Examples of microbiome-based targeted 
intervention strategies that aim to restore and maintain an eubiotic layout are then 
discussed. Adjuvant therapeutic interventions to alleviate obesity and associated 
comorbidities are traditionally based on diet modulation and the supplementation 
of prebiotics, probiotics and synbiotics. However, these approaches have shown 
only moderate ability to induce sustained changes in the gut microbial ecosystem, 
making the development of innovative and tailored microbiome-based 
intervention strategies of utmost importance in clinical practice. In this regard, the 
administration of next-generation probiotics and engineered microbiomes has 
shown promising results, together with more radical intervention strategies based 
on the replacement of the dysbiotic ecosystem by means of fecal microbiota 
transplantation from healthy donors or with the introduction of synthetic 
communities specifically designed to achieve the desired therapeutic outcome. 
Finally, we provide a perspective for future translational investigations through 
the implementation of bioinformatics approaches, including machine and deep 
learning, to predict health risks and therapeutic outcomes.
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Core Tip: The gut microbiome (GM) has gained increasing attention in recent years due 
to its key role in contributing to host health, potentially serving as a target for person-
alized precision medicine. This review summarizes the current evidence for the 
involvement of the GM in the regulation of various pathophysiological aspects, partic-
ularly in obesity and related comorbidities. The influence of diet and the molecules 
produced by commensal microorganisms is discussed, together with traditional and 
innovative microbiome-based strategies in the prevention and treatment of obesity, up 
to the development of machine and deep learning bioinformatics tools for the 
prediction of health risks and therapeutic outcomes.

Citation: Barone M, D'Amico F, Fabbrini M, Rampelli S, Brigidi P, Turroni S. Over-feeding the 
gut microbiome: A scoping review on health implications and therapeutic perspectives. World J 
Gastroenterol 2021; 27(41): 7041-7064
URL: https://www.wjgnet.com/1007-9327/full/v27/i41/7041.htm
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INTRODUCTION
Over the past two decades, the trillion-member community that resides in the human 
gastrointestinal tract (i.e., the gut microbiome-GM) has emerged as a key regulator of 
host physiology, supporting overall host health or, vice versa, contributing to 
triggering and sustaining pathological conditions when altered. The wide range of 
metabolic activities and the multiple levels of bidirectional interaction with the host 
strongly support GM as a strategic therapeutic target, laying the foundations for the 
development of innovative microbiome-tailored intervention strategies aimed at 
restoring an eubiotic layout. In parallel, advances in sequencing techniques and 
bioinformatics tools are proving crucial to deepen our understanding of the complex 
interactions established by the GM with the host, as well as to rationally fine-tune and 
successfully translate personalized microbiome-based interventions into clinical 
practice.

Our scoping review aims to discuss the state of the art on research and application 
aspects related to the role of GM in obesity, a complex and multifactorial disease that 
represents a major health risk factor. In particular, we first discuss the influence of GM 
on human physiology and its contribution to the pathogenesis of numerous enteric 
and non-enteric diseases when imbalances occur. Next, we focus on evidence for a link 
between GM and obesity and discuss the growing literature on the impact of diet on 
GM structure, and the key role played by GM-produced or derived bioactive 
compounds [e.g., fatty acids, amines, bile acids (BAs) and neuroactive metabolites] in 
affecting host physiology and metabolism, at both local and systemic level. We then 
review the adjuvant interventions currently available to manipulate GM and alleviate 
the obesity phenotype, which are based on diet modulation and the supplementation 
of prebiotics, probiotics and synbiotics. Since these traditional approaches have shown 
only moderate ability to induce sustained change in the complex and dynamic GM 
ecosystem, we stress the need to develop innovative and tailored microbiome-based 
intervention strategies, such as the administration of next-generation probiotics 
(NGPs) and engineered microbiomes, to be organically integrated into clinical practice. 
More radical approaches involving replacement of the dysbiotic microbial ecosystem 
through fecal microbiota transplantation (FMT) or the infusion of synthetic microbial 
communities, rationally designed to meet the desired therapeutic outcome and patient 
needs, are also discussed as promising alternatives for personalized clinical applic-
ations. Finally, we provide a perspective for future translational investigations through 
the implementation of bioinformatics approaches, including machine and deep 
learning, to predict health risks and therapeutic outcomes. Current clinical practice is 
increasingly leveraging new artificial intelligence technologies and refined 
bioinformatics approaches, but still little has been done in relation to GM. Therefore, 
we conclude by discussing the possibilities offered by machine and deep learning for 
the development of microbiome-based strategies, especially in the context of obesity 
and related morbidities. All articles included in this review were identified through 
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the PubMed platform, the full-text archive of biomedical and life sciences journal 
literature at the United States National Institutes of Health’s National Library of 
Medicine. The most pertinent and relevant articles for each aforementioned topic were 
selected and commented on.

HUMAN GM: WHERE DO WE STAND?
From the development of next-generation sequencing approaches and their 
application to the microbiome field, the analysis of the intestinal microbial community 
has had a strong burst, as evidenced by > 3 million hits returned by typing “gut 
microbiota” on the NCBI database (as accessed on April 26, 2021). Of course, this is not 
surprising when one considers the plethora of actors and functions involved in the 
whole GM field[1,2]. Indeed, GM is composed of a multitude (over trillions) of 
microbial entities from all domains of life (i.e., bacteria, archaeabacteria and micro-
eukaryotes), which encode a number of genes probably more than 500 times greater 
than the human genome. This genetic heritage, still largely underestimated, allows 
them to perform various functions recognized as instrumental to maintaining host 
homeostasis[3,4]. With specific regard to the bacterial counterpart, indisputably the 
most explored to date, despite the thousands of different species identified so far, most 
of them belong to 2 phyla, Firmicutes and Bacteroidetes, which together account for 
approximately 90% of an adult-like community, with Actinobacteria, Proteobacteria, 
Fusobacteria and Verrucomicrobia representing the most commonly found 
subdominant taxa[3]. This ecosystem is characterized by essential ecological features, 
such as stability, resistance and resilience, associated with high diversity and 
functional redundancy, the loss of which can lead to unhealthy microbe-microbe and 
microbe-host interactions[5]. Established at birth, GM develops structurally and 
functionally over time, in relation to the personal exposome (i.e., the totality of 
exposures that individuals experience in their lives), while always providing the host 
with a series of fundamental immunological and metabolic ecosystem services for a 
mutualistic GM-host relationship[6,7]. In particular, GM is known to act as a protective 
barrier against infectious threats (the so-called “colonization resistance” by occupying 
niches, taking up resources and producing antimicrobials) and play an active role in 
the development and modulation of immune responses[8,9]. On the other hand, GM is 
also called “metabolic organ” as it provides numerous bioactive molecules from the 
degradation of dietary compounds, which are the main actors of the well-known local 
and systemic functions attributed to GM, just to name a few: (1) Nutritional support 
for the intestinal epithelium; (2) Synthesis of vitamins and balance of energy intake; (3) 
Lipid and carbohydrate metabolism-related effects; (4) Immune system modulation; 
and (5) Enteric and central nervous system regulation through the gut-brain axis[10]. 
Moreover, recent findings on GM-drug interactions have indicated its role in 
influencing the response to treatments, including the occurrence of side effects, with 
potentially groundbreaking implications in precision medicine[11].

That said, it is not hard to imagine how strategic it is for our health to maintain this 
intricate and complex balance with our microbial inhabitants. Indeed, when this 
balance fails, the so-called dysbiosis is established, i.e., a disease-promoting or 
associated GM alteration[12]. Several endogenous (e.g., immune dysregulation and 
inflammation) and exogenous (unbalanced diet, antibiotic intake, pathogen infection, 
etc.) factors are capable of promoting GM dysbiosis, and several studies have tried to 
explain the mechanisms underlying these events[13-15]. Generally speaking, dysbiosis 
may present with one or more of the following characteristics: (1) Loss of biodiversity 
(a recognized hallmark of healthy gut); (2) Depletion of beneficial, health-associated 
taxa, typically short-chain fatty acid (SCFA) producers from the Lachnospiraceae and 
Ruminococcaceae families; and (3) Enrichment in pathogens or pathobionts[16]. To date, 
dysbiotic profiles have been associated with a plethora of enteric and non-enteric 
disorders, including metabolic, hepatic, respiratory, cardiovascular, immunological 
and oncological disorders, and are supposed to cause some of these[12]. However, it is 
of the utmost importance to corroborate claims on GM-related causality in human 
diseases, as only a few of them have been validated[17]. Regardless, a very hot topic in 
the field now is the development of GM modulatory strategies, to increase the 
resilience of healthy states (prevention) or overcome that of unhealthy states 
(treatment) to alleviate the disease phenotype and restore eubiosis.
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EVIDENCE FOR A LINK BETWEEN GUT MICROBIOTA AND OBESITY
The prevalence of overweight and obesity has dramatically risen over the past four 
decades[18]. Combined with polygenic host susceptibility, increased food 
consumption and sedentary lifestyles lay the foundation for a widespread obesity 
epidemic[19]. Recognized as a multifactorial disease, obesity represents a major risk 
factor for health, with dramatic consequences on quality of life and healthcare costs
[20-22]. Comorbidities linked to obesity (e.g., diabetes, cardiovascular disease, cancer) 
are indeed among the leading causes of premature death, and researchers are striving 
to find more effective treatments for these conditions[23]. Over the past 15 years, 
pioneering studies have proposed GM as a key factor involved in energy storage and 
fat mass gain. Among the first, Bäckhed et al[24,25] demonstrated that germ-free mice 
gained less body weight and fat mass than conventional mice harboring a GM[24], as 
well as providing proof of concept by showing that the lack of a microbial ecosystem 
confers resistance to obesity induced by a high-fat diet[25]. In addition, a pivotal study 
by Turnbaugh et al[26] showed that the obese phenotype can be induced in lean mice 
by transferring the GM of obese animals[26], thus suggesting a causality between 
unbalanced GM and the development of obesity. Subsequently, the GM of obese 
individuals was shown to have reduced microbial richness and biodiversity, combined 
with an altered representation of the two main phyla, namely Bacteroidetes and 
Firmicutes, compared to lean subjects[27]. These findings have paved the way for 
several epidemiological studies focused on showing differences in the GM of obese 
and lean individuals, which have led to accumulating evidence of the GM role in 
mediating the impact of environmental factors on obesity pathogenesis[28-31]. As 
expected, given the high taxonomic level, not all studies have been successful in 
validating the association between the Firmicutes/Bacteroidetes ratio and obesity, and 
the biological relevance of this ratio is now highly controversial. On the other hand, 
greater resolution was gradually provided in the description of the bacterial 
composition, as well as in the understanding of the underlying mechanisms through 
which a dysbiotic layout might contribute to triggering host metabolic imbalances. For 
instance, species-level characterization of GM in twins highlighted a positive 
association of SCFA producers Eubacterium ventriosum and Roseburia intestinalis with 
obesity[32]. Similar correlations were observed for Collinsella spp.[33], which were also 
found to be overrepresented in type 2 diabetes (T2D) and atherosclerosis[34,35]. The 
hypothesized mechanisms include reduced expression of tight junction proteins, 
possibly leading to gut leakage and metabolic endotoxemia, as well as impaired 
cholesterol absorption, decreased hepatic glycogenesis and increased triglyceride 
synthesis[36,37]. It is therefore not surprising that Collinsella has been proposed as a 
target in future GM intervention studies for the improvement of metabolic parameters
[38]. On the other hand, the most common methanogenic archaeon found in GM, 
Methanobrevibacter smithii, as well as butyrate producers, such as potentially heritable 
Oscillospira spp., were found to be more represented in lean individuals[39]. Bacteroides 
thetaiotaomicron was depleted as well in obesity-related GM configurations and 
inversely correlated with serum concentration of glutamate, a common food additive 
able to induce obesity and insulin resistance[40]. In vivo studies have highlighted the 
ability of this glutamate-fermenting commensal to protect against adiposity[40], 
suggesting its potential application in probiotic-based intervention strategies in obese 
individuals. Similarly, Parabacteroides goldsteinii, whose levels are reduced in high-fat 
diet-fed mice, has been proposed as an anti-obesogenic probiotic, capable of 
promoting adipose tissue thermogenesis and intestinal integrity, and reducing inflam-
mation and insulin resistance[41]. Finally yet importantly, the mucin-degrading 
bacterium Akkermansia muciniphila has been repeatedly and consistently found to be 
inversely correlated with body fat mass, fasting blood glucose levels and subcutaneous 
adiposity in mice and humans[42,43], potentially representing a NGP or live biothera-
peutic candidate for obesity treatment. In human studies, A. muciniphila has shown 
protective effects against gut permeability and endotoxemia, as well as improving 
glucose homeostasis and promoting better overall health[43]. Very recently, in a proof-
of-concept exploratory study, Depommier et al[44] demonstrated that its daily oral 
administration, as live or pasteurized bacteria, for three months to overweight/obese 
insulin-resistant volunteers, was safe and well tolerated, and led to the improvement 
of multiple metabolic parameters[44]. However, it should also be remembered that 
microorganisms interact with each other in complex syntrophic networks, the 
understanding of which could help guide more rational preventive and therapeutic 
strategies. In an attempt to take a step forward in this direction, Tavella et al[45] 
recently identified a distinct GM compositional structure (with elevated proportions of 
Christensenellaceae, Porphyromonadaceae and Rikenellaceae) associated with reduced 
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visceral adipose tissue and healthier metabolic profile in elderly Italians[45]. It has also 
been hypothesized that peculiar “steady states” of GM, combined with long-term 
dietary habits, may predict the development of childhood obesity[31].

INFLUENCE OF DIET ON THE GUT MICROBIOTA
Diet is a major driver of GM variation and undoubtedly plays a central role in 
promoting and maintaining GM diversity, a strategic element to ensure eubiosis and 
resilience. Indeed, GM can rapidly shift its composition and functionality in response 
to dietary changes, contributing to the generation of health-relevant metabolic outputs
[46]. In recent years, interest in understanding the relationship between dietary habits, 
GM and host physiology has grown remarkably. Different dietary patterns, such as 
Western-type diets, vegetarian or vegan diets and Mediterranean-style diets have been 
explored and each has been found to be associated with quite distinct GM profiles, 
which obviously affect host metabolism in a distinct way[47]. In particular, the advent 
of a Westernized lifestyle, with the fast-paced globalization of food, excessive 
sanitation and modern medicines, has led to the introduction of a dietary pattern 
mostly based on saturated fat, sugar and salt, and dramatically low in fiber, otherwise 
known as “microbiota-accessible carbohydrates”[13]. Several studies have shown that 
this type of diet is associated with alterations in the GM structure and functionality, in 
particular enrichment in mucus degraders, bile-tolerant and antibiotic-resistant species 
(“BloSSUM”, i.e., bloom or selected in societies of urbanization/modernization) and 
the loss of diversity, ancestral fiber-degrading taxa and related functions (“VANISH”, 
i.e., volatile and/or associated negatively with industrialized societies of humans)[48]. 
This has collectively been referred to as the “microbiota insufficiency syndrome” and 
is supposed to result in broad dysfunctions, including obesity and chronic inflam-
mation, thus contributing to the emergence of non-communicable chronic diseases. In 
contrast, high-fiber dietary patterns are typically associated with highly diverse GMs, 
enriched in fibrolytic SCFA-producing bacteria, e.g., Ruminococcus, Faecalibacterium, 
Eubacterium and Roseburia, along with high fecal levels of SCFAs[49,50], to which 
multiple beneficial effects are attributed, as detailed below. Moreover, a microbial 
footprint of this dietary habit is the greater abundance of Prevotella, as also found in 
hunting-gathering and rural populations who consume a plant-based diet with 
unprocessed foods[51-53]. It is also worth noting that these dietary habits involve 
increased intake of polyphenols, which are known to have important GM-mediated 
health benefits[54], In a recent study in Italian individuals habitually following 
omnivore, vegetarian or vegan diets[55], we found that high-level adherence to a 
Mediterranean diet (rich in fruit, legumes and vegetables) was associated with 
beneficial GM and metabolome profiles, i.e., increased proportions of fiber-degrading 
bacteria, higher levels of fecal SCFAs and lower urinary levels of trimethylamine N-
oxide (TMAO), a risk factor for cardiovascular disease, potentially helping to explain 
the effectiveness of this diet against obesity, T2D and other inflammatory disorders. 
Consistently, a 1-year Mediterranean diet intervention was found to positively 
modulate GM and metabolome (including lower production of secondary BAs and p-
cresols) and reduce frailty in elderly subjects, thus paving the way for novel 
intervention strategies possibly based on Mediterranean diet-responsive taxa and/or 
metabolites[56]. All this considered, it is not surprising that in recent years, the 
Paleolithic diet, with a high intake of plant foods while totally excluding industrially 
processed products and refined sugars, has received a lot attention. Despite some 
concerns about its long-term adherence, especially due to the consumption of fat and 
meat[57], it appears to lead to improved metabolic parameters in obese and T2D 
patients[58] and high levels of GM diversity, similar to those found in traditional rural 
populations[59].

MICROBIOME-DERIVED COMPOUNDS
SCFAs, protein metabolites, TMAO and BAs

SCFAs, mainly acetate, propionate and butyrate, are the best-known examples of diet-
derived microbial metabolites with several local and systemic functions. Indeed, the 
human genome encodes only a limited number of carbohydrate-active enzymes 
(CAZymes), thus requiring complementation by the GM for the degradation of 
otherwise indigestible dietary fibers (e.g., glycans, xylans, etc.)[60]. SCFAs are the end-
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products of fermentation of these complex polysaccharides. These metabolites can be 
variously beneficial to health, as local (butyrate) and peripheral (acetate and pro-
pionate) energy sources, inflammation modulators, regulators of gut motility, va-
sodilators and even wound healing promoters[4]. SCFAs also affect the proliferation 
and differentiation of colonic epithelial cells, modulate their gene expression, reinforce 
the epithelial barrier (through increased mucus production and strengthening tight 
junctions), and influence the expansion and function of other cell lineages, including 
hematopoietic lineages[61]. With specific regard to metabolic health, they control the 
expression and secretion of appetite and glucose regulatory peptides, such as peptide 
YY (PYY) and glucagon-like peptide-1 (GLP-1), by enteroendocrine L-cells, and 
activate intestinal gluconeogenesis mainly by the regulation of gene expression[10,61]. 
They have also been attributed functions involved in lipid metabolism, with acetate 
exerting an anti-lipolytic effect, which could be beneficial in the long term by reducing 
systemic lipid spillover[62]. Their immunomodulatory and anti-inflammatory activity 
is also extremely important, for maintaining the delicate balance between tolerogenic 
and immunogenic signals[61].

On the other hand, branched-chain fatty acids, such as isobutyrate, 2-methylbu-
tyrate and isovalerate, resulting from protein fermentation, have been associated with 
insulin resistance[63], probably through activation of mammalian target of rapamycin 
complex 1 (mTORC1)[64]. Protein metabolism by GM may also lead to other po-
tentially harmful compounds, including: (1) P-cresyl and indoxyl sulfate, both of 
which are associated with cardiovascular morbidity and mortality; (2) 4-ethylphenyl-
sulfate, implicated in promoting autism-like behavior in animal models; and (3) 
Phenylacetate, which has been shown to contribute to the development of fibrosis and 
non-alcoholic fatty liver disease (NAFLD)[65].

An admirable but unfortunate example of GM-host co-metabolism of dietary 
compounds is TMAO. Several gut microbes, e.g., Campylobacter, Shigella and Rumino-
coccus gnavus, can in fact convert choline and L-carnitine present in seafood, cheese, 
eggs and red meat, into trimethylamine (TMA) that, once absorbed, circulates to the 
liver where it is oxidized by host enzymes of the flavin monooxygenase family to 
TMAO[66-68]. TMAO has recently emerged as a candidate risk factor for cardiovas-
cular disease, as it is proatherogenic, increases platelet hyperreactivity and therefore 
the risk of thrombosis[69]. In particular, TMAO can reduce reverse cholesterol 
transport and BA synthesis, interfering with the normal pathway of cholesterol 
metabolism and elimination[70]. However, it is worth noting that some condiments, 
such as cold-pressed extra virgin olive oil, grape seed oil and balsamic vinegar, along 
with some red wines contain a structural analogue of choline, 3,3-dimethyl-1-butanol, 
which inhibits TMA lyase (i.e., the microbial enzyme involved in TMA formation), 
thus paving the way for the use of selective enzyme inhibitors for the prevention and 
treatment of cardiometabolic diseases.

The metabolism of BAs is another example of GM-host co-metabolism, through 
which the GM can modify the composition of the pool of primary and secondary BAs 
available to the host and therefore modulate their signaling, meaning not only the 
traditional role in fat absorption but various effects related to glucose, lipid and energy 
homeostasis, thermogenesis, insulin signaling, immune responses and inflammation
[71].

Finally, it is worth mentioning that GM is increasingly recognized as a major, still 
largely underestimated, player in determining the toxicity of environmental pollutants
[72]. With specific regard to diet, for example it can mediate the adverse metabolic 
effects of non-calorie artificial sweeteners, whose chronic consumption increases the 
risk of glucose intolerance[73]. In contrast, some GM components have been shown to 
be involved in the bioremediation of common food processing products, including 
Maillard reaction products and advanced glycation end-products, which have been 
implicated in a wide variety of civilization disorders, e.g., atherosclerosis and diabetes
[74].

Neuroactive metabolites

GM is well known to interact with the enteric and central nervous systems via the 
bidirectional gut-brain axis[75]. On the one hand, GM can be directly influenced by 
mental health, through the luminal secretion of endocrine mediators capable of 
interacting with microbial receptors, thus having direct effects on microbial gene 
expression and signaling mechanisms. At the same time, the microbial community can 
be indirectly modulated as a result of induced changes in the gut environment. On the 
other hand, as anticipated above, the GM is capable of producing neuroactive 
metabolites in a diet-dependent manner, e.g., SCFAs and conjugated fatty acids, which 
besides exerting peripheral effects can modulate the central nervous system through 
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direct or indirect mechanisms, involving a complex network of neuroendocrine factors 
and their receptors. Interestingly, these interactions have been shown to affect central 
appetite, food reward signaling and energy balance[76-79]. GM has also been found to 
influence eating behaviors through vagal nerve stimulation and immune activation
[80]. Perturbations of the gut-microbiome-brain axis could therefore compromise the 
inhibitory mechanisms normally involved in the regulation of food intake, resulting in 
unbalanced eating patterns towards cravings, overeating and hedonic-driven eating 
behavior[79,81]. Regarding neuroactive GM metabolites, it is worth noting that 
propionate modulates reward pathways by reducing anticipatory reward responses to 
high-energy foods via striatal pathways[82]. Moreover, tryptophan metabolites have 
been closely implicated in the modulation of gut-microbiome-brain interactions, and 
indole propionate has recently been associated with increased food addiction 
behaviors in obese individuals[83,84]. GM metabolites may also interact with the 
endocannabinoid system, affecting the homeostatic and hedonic control of appetite 
and food intake[85], while the dopaminergic mesolimbic system, involved in reward 
mechanisms and hypothesized to play an important role in the development of 
obesity, is influenced by GM through the modulation of gut hormone secretion[86]. 
Not least, it should be remembered that microbes can even produce neurotransmitters, 
e.g., serotonin and GABA, potentially affecting our mood and feeding[87,88].

In conclusion, particular GM layouts with distinct metabolic activities might have 
pleiotropic effects on host physiology, including eating behaviors, thus strongly 
contributing to the development of obesity and eating disorders. In this context, GM 
modulation or its replacement could be valuable tools to implement and increase the 
success of current preventive or therapeutic interventions against obesity and related 
comorbidities, as detailed below.

MICROBIOME-BASED STRATEGIES FOR PREVENTION AND TREATMENT 
OF OBESITY
The main microbiome-based strategies that are or could be effective for the prevention 
and treatment of obesity are discussed below and summarized in Figure 1. In short, 
traditional (prebiotics, probiotics and synbiotics) and innovative (NGPs and 
engineered microbes) interventions were considered, along with microbiome 
replacement strategies, based on FMT and synthetic ecology approaches. Finally, in 
the next paragraph, the potential of bioinformatics tools, such as machine learning and 
deep learning, for health risk or outcome prediction is discussed.

Prebiotics, probiotics and synbiotics

Prebiotics are typically referred to as “a substrate that is selectively utilized by host 
microorganisms conferring a health benefit”[89]. Prebiotic supplementation has been 
proposed as a means of driving changes in GM while benefitting the host in the 
context of various disorders, including obesity, for improved glucose homeostasis and 
enteroendocrine L-cell activity. For instance, dietary supplementation with whole-
grain barley and brown rice improved GM diversity, increasing the Firmi-
cutes/Bacteroidetes ratio and the relative abundance of Blautia (an acetate producer 
from the Lachnospiraceae family), as well as attenuating postprandial blood glucose 
levels and decreasing plasma interleukin (IL)-6 levels in healthy individuals[90]. 
Oligosaccharide supplementation has shown promising anti-obesity effects via the 
SCFA and BA pathways. In particular, several animal studies have confirmed that 
SCFAs produced following oligosaccharide fermentation stimulate the secretion of 
PYY and GLP-1 via the G-protein-coupled receptors (GPRs) GPR-41 and GPR-43 
expressed on enteroendocrine L cells[91-93]. These appetite-decreasing intestinal 
hormones help reduce food intake[94], increase satiety and energy expenditure[95] 
and improve glucose metabolism and insulin secretion[96]. Microbial fiber metabolism 
has additional, SCFA-independent effects, mediated by ferulic acid, a plant cell wall 
component with antioxidant, anti-inflammatory and anti-diabetic effects, and by 
alteration of the intestinal BA pool, with downstream implications in terms of energy 
and glucose homeostasis[97]. Not least, adding fermentable fiber to a high-fat diet in 
mice has been shown to result in IL-22 induction, increased enterocyte proliferation, 
reduced microbiota encroachment into the mucosa and pro-inflammatory gene 
expression, and increased antimicrobial gene expression, thereby protecting against 
high-fat diet-induced metabolic syndrome[97]. Although current prebiotics are mainly 
carbohydrate-based, other substances, such as polyphenols and polyunsaturated fatty 
acids (PUFAs), could exert prebiotic effects as well, as tested in both mice and humans
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Figure 1 Overview of the main microbiome-based strategies currently in use or potentially effective in the prevention and treatment of 
obesity. Traditional intervention strategies include dietary supplementation with prebiotics, probiotics and synbiotics, which have generally been shown to be 
moderately effective for the prevention and amelioration of obesity. Innovative strategies have therefore been implemented for improved treatment efficacy, using 
next-generation probiotics and non-pathogenic engineered microorganisms designed for the in-situ delivery of specific modulators. More recently, more direct 
modulation strategies based on gut microbiome replacement by means of fecal microbiota transplantation or synthetic communities, are being considered. In this 
scenario, bioinformatic tools, including machine and deep learning, could be crucial not only for the rational design of synthetic communities, but also for stratifying 
patients based on disease-associated phenotypes and thus predicting their health risks and outcomes. In the near future, all the accumulating knowledge about the 
gut microbiome and technological advances should lead to a rational implementation of innovative microbiome-based interventions geared towards personalized 
precision medicine. Food items were obtained from the Mind the Graph platform (https://mindthegraph.com/). NGPs: Next-generation probiotics; FMT: Fecal 
microbiota transplantation.

[89]. Polyphenols, i.e., secondary metabolites derived from plant sources, are 
extensively metabolized in the intestine and converted into phytoestrogens with 
multiple beneficial effects[50,98]. Following regular consumption of polyphenols, a 
reduced risk of cardiometabolic diseases has been observed, together with antioxidant, 
anti-inflammatory and anti-obesogenic effects[99,100]. However, the prebiotic effects 
of polyphenols can be affected by the food source and although these compounds are 
generally recognized as GM compositional modulators, further research is needed to 
validate their prebiotic potential[101]. Multiple health benefits have also been reported 
for nutritional supplementation with PUFAs, such as eicosapentaenoic acid and 
docosahexaenoic acid, including anticancer activity[102,103], secondary prevention of 
ischemic heart disease[104] and prevention of cardiovascular diseases[105], as well as a 
reduction of mucosal inflammation and modulation of the GM composition in patients 
with ulcerative colitis[106]. Dietary supplementation with PUFAs may therefore be 
useful not only for obesity mitigation but also for the treatment of obesity-associated 
comorbidities[107,108]. In addition, PUFA-derived mediators, such as resolvins and 
protectins, have shown the potential to counteract inflammation in the context of 
obesity[109]. In this regard, a recent study in obese diabetic db/db mice demonstrated a 
marked improvement in insulin sensitivity following the administration of protectin 
D1[110]. In light of these findings, prebiotic supplementation should be considered a 
potential integrative therapy for the prevention and treatment of obesity.

Probiotics, i.e., “live microorganisms that, when administered in adequate amounts, 
confer a health benefit to the host”[111], represent one of the most widely used GM 
manipulation tools, for which an increasing number of clinical studies have been 
carried out in subjects with various pathological conditions, including obesity[112,
113]. However, it should be noted that conflicting results have emerged in relation to 
the ability of probiotics to counterbalance weight loss and obesity-related features. In 
particular, two meta-analyses of randomized controlled clinical trials[114,115] found 

https://mindthegraph.com/
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almost no efficiency in terms of weight and body mass index (BMI) reduction in obese 
individuals, especially in short-term interventions. On the other hand, the meta-
analysis carried out by Zhang et al[116] on a large number of clinical trials reported 
substantially different results and a significant reduction in body weight and BMI, 
with consistent maximum outcomes with multi-strain product supplementation for at 
least 8 wk. Similar conclusions were drawn by John et al[117] in a similar meta-
analysis, showing that probiotic administration was associated with a reduction in all 
considered parameters (i.e., body weight, BMI and fat mass). As expected, several 
studies have found strain-specific probiotic effects on body weight and metabolism, 
with only a few species belonging to Lactobacillus (e.g., L. acidophilus, L. casei, L. 
rhamnosus, L. reuteri) and Bifidobacterium (e.g., B. bifidum, B. lactis, B. longum) proven 
effective in overweight/obese individuals[104,118,119]. The greatest decreasing effect 
on BMI and body weight was reported with high doses of single-strain probiotics[117,
120], although John et al[117] observed a considerable reduction in both parameters 
even at lower doses when interventions continued for more than 12 wk[117]. More 
recently, a study by our group showed that administering a multi-strain probiotic 
mixture along with a hypocaloric Mediterranean diet led to weight loss, improvement 
in oxidative stress markers and an increase in Akkermansia in elderly obese women, 
even in 15 d[33]. Regardless of the strain, the beneficial effects of probiotics in the 
treatment of obesity are also attributable to the following general mechanisms of 
action: (1) Antimicrobial activity, by inhibiting the growth of pathogenic microor-
ganisms and exerting antagonistic effects against colonization of the intestinal mucosa 
and epithelium adherence; (2) Improvement of the barrier function, reducing intestinal 
permeability and increasing mucus production; and (3) Immunomodulation, through 
interaction with innate and adaptive components of the immune system[120]. Taken 
together, these mechanisms contribute to positively modulate the GM composition 
towards restoring a health-associated layout, which in turn can help alleviate host 
metabolic imbalances.

Synbiotics refer to “a mixture comprising live microorganisms and substrates 
selectively used by host microorganisms that confers a health benefit on the host”
[121]. Accumulating evidence has reported the stronger effect of synbiotics in terms of 
GM modulation than either probiotics or prebiotics alone[122,123], with an overall 
improvement in lipid metabolism, glycemic status and inflammatory mediators[124,
125]. Although the appropriate dose, duration of administration and the composition 
of a synbiotic product necessary to confer a health benefit are influenced by several 
factors (e.g., baseline GM layout, medications, habitual diet and lifestyle), the 
randomized clinical trial conducted by Dao et al[42] on 225 overweight and obese 
adults resulted in a 4.5% reduction in body fat mass when administering a 
combination of B. animalis subsp. Lactis 420 and polydextrose[42]. The control of body 
fat mass in overweight or obese individuals by the aforementioned synbiotic was also 
confirmed in a second clinical trial, along with a peculiar rearrangement in the GM 
composition that included an increased abundance of Akkermansia, Christensenellaceae 
and Methanobrevibacter, all taxa related to improved metabolic health and leanness
[126]. GM modulation with increased proportions of potentially beneficial microbial 
groups (e.g., Lactobacillus) was also observed in a clinical trial in obese individuals 
following administration of a synbiotic consisting of a multi-strain probiotic 
formulation (i.e., B. lactis, B. longum, B. bifidum and L. acidophilus) and galactooligosac-
charides as a prebiotic component[127].

In conclusion, prebiotics, probiotics and synbiotics are promising dietary agents for 
the modulation of human GM also in the context of obesity and metabolic disorders. 
However, given the still conflicting data in the scientific literature on probiotics, 
further studies are needed to rationally include their prescription as a preventive or 
therapeutic supplement for obesity.

NGPs and engineered microbes

Moving from the “one-size-fits-all” concept related to traditional probiotics, 
researchers are striving to thoroughly elucidate the role of each commensal member 
within the complex ecosystem of the human gastrointestinal tract in influencing host 
health. Compared to the modest ameliorative effects generally shown by traditional 
probiotics in obese individuals, emerging NGPs are beginning to reveal their great 
potential as novel preventive and therapeutic tools[128]. In this perspective, several 
studies have shown differences in the GM composition between obese and lean 
individuals, pointing out that an increased abundance of A. muciniphila could lead to 
an improvement in obesity and metabolic disorders[129,130]. Subsequently, the 
mechanism underlying the beneficial effect of A. muciniphila was investigated and the 
involvement of an immunomodulatory membrane protein “Amuc_1100” was 
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proposed, which showed the same beneficial effects as live bacteria[131]. Cani et al
[132] demonstrated the ability of this promising NGP to modulate the endocan-
nabinoid system[132], a crucial regulatory system involved in controlling glucose 
metabolism in obesity, T2D and inflammatory conditions[132]. More recently, as 
anticipated above, the daily oral administration of live or pasteurized A. muciniphila, 
for three months to overweight/obese insulin-resistant volunteers, has been shown to 
be safe and well tolerated, while leading to improved metabolic parameters[44]. 
However, since some animal studies have reported an increase in A. muciniphila in 
multiple sclerosis[133] and Parkinson’s disease[134], further studies are needed to 
fully unravel its effects on host health.

Christensenella minuta also showed potential probiotic effects by ameliorating obesity 
and associated metabolic disorders through modulation of dysbiotic GM layouts[135], 
and its abundance was greater in lean individuals with low BMI[136]. However, Yang 
et al[137] recently highlighted potential pathogenic features (e.g., LPS-mediated 
triggering of a mild inflammatory response via NF-kB pathway) of C. minuta, 
suggesting that its application should be limited to therapeutic interventions focused 
on obesity control[137]. As mentioned above, P. goldsteinii is also a promising anti-
obesity and anti-inflammatory NGP candidate. Being selectively enriched in the GM of 
mice fed a high-fat diet supplemented with oriental medicinal fungi, this commensal 
bacterium has been associated with increased adipose tissue thermogenesis, reduced 
levels of inflammation, enhanced intestinal integrity and amelioration of insulin 
resistance[41]. While promising, these in vivo results have not yet been translated into 
clinical trials. On the other hand, Faecalibacterium prausnitzii, one of the most promising 
NGPs due to its well characterized anti-inflammatory activity[138,139], showed a 
lower clade diversity in intestinal diseases and obese individuals[140]. In light of this 
finding, caution must be taken in selecting the most suitable strain for the 
development of therapeutic interventions. Despite the growing amount of NGP 
candidates so far isolated and characterized, further strain-level functional analyses 
are required to fully assess the underlying mechanisms by which they could confer 
health benefits to the host, before pushing them for clinical application.

Synthetic biology approaches have recently been exploited to address disease-
specific mechanisms and meet medical needs by designing non-pathogenic and 
commensal bacteria to deliver therapeutic effectors[141,142]. Regarding the feasibility 
of using engineered probiotics to alleviate obesity-related characteristics, Long et al
[143] demonstrated a decrease in body weight gain in overweight mice given an 
engineered Bifidobacterium strain secreting oxyntomodulin, an anorexigenic hormone 
that reduces appetite and food intake[143]. In a similar study, Chen et al[144] 
developed an engineered probiotic strain of Escherichia coli with increased secretion of 
N-acyl-phosphatidylethanolamine, the immediate precursor of the anorexigenic 
metabolite N-acylethanolamide, resulting in reduced weight gain and less accumu-
lation of fat mass in mice fed a high-fat diet[144]. Another potential strategy to 
alleviate obesity and metabolic disorders has recently been proposed by Bai et al[145]. 
Administration of Bacillus subtilis SCK6 strain BsS-RS066550 engineered to increase 
butyric acid production resulted in decreased body weight and food intake in high-fat 
diet-fed mice, along with beneficial effects on insulin resistance, blood glucose and 
hepatic biochemistry[145]. In addition, Wang et al[146] showed that administration of 
genetically engineered Lactococcus lactis expressing GLP-1 significantly reduced body 
weight and blood glucose of obese mice fed a high-fat diet[146]. Anti-obesity 
mechanisms included the promotion of fatty acid oxidation and the restoration of GM 
biodiversity[146]. To date, numerous therapeutic interventions based on engineered 
live bacteria have entered the early or mid-stage of clinical development[141]. If 
successfully completed, such studies will be crucial in providing the missing proof of 
concept required to pave the way for a new class of precision therapeutics. Once their 
efficacy and risk ratio have been verified and approved for use in humans, engineered 
bacterial therapeutics will enable specific disease mechanisms and unmet medical 
needs to be addressed, even in obese patients.

FMT

Consisting of the transfer of microbes from healthy individuals to recipients hosting a 
dysbiotic GM layout with the aim of restoring eubiosis[147,148], FMT has attracted 
considerable attention in clinical practice, particularly for the treatment of recurrent 
infections by antibiotic-refractory Clostridioides difficile[149,150]. Recently, the potential 
of FMT in treating a large number of conditions, including obesity, has been explored. 
In a pivotal study, Ridaura et al[63] showed that mice receiving GM from obese 
individuals developed obesity, while those receiving GM from healthy individuals 
remained lean[63]. Sequencing analysis of post-treatment stools confirmed the 
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successful engraftment of the donor microbiota, along with the transfer of functions 
associated with either “lean” or “obese” microbial communities. Shortly before, a 
clinical study on diabetic and obese adult males by Vrieze et al[151] demonstrated 
improved microbial diversity and insulin sensitivity, along with the expansion of 
Bacteroidetes and butyrate-producing taxa, following GM transplantation from lean 
donors[151].

As of April 2021, there were 15 registered clinical trials (ClinicalTrials.gov search 
terms: “gut microbiota”, “obesity” and “fecal microbiota transplantation”) on obese 
individuals undergoing FMT for the replacement of the obesogenic microbial 
community (Table 1). Of these, four have been completed and only two have made the 
results publicly available. Yu et al[152] performed FMT on 24 obese individuals with 
the aim of improving metabolic outcomes[152]. Administration of FMT capsules 
ensured engraftment, persisting for at least 12 wk after treatment, although no 
clinically significantly metabolic effects were observed. Allegretti et al[153] performed 
FMT on 22 obese, metabolically uncompromised patients, and although no significant 
changes in BMI occurred, a sustained shift of obesity-associated microbiomes towards 
the donor microbiome layout was observed, along with improved BA profiles and 
decreased fecal levels of taurocholic acid[153]. In a secondary analysis focused on the 
prevention of metabolic syndrome within the same patient group, the authors found a 
significant change in glucose and insulin levels after FMT[154]. Similar to other 
microbiome-based therapeutics, while promising, FMT is still at an early stage for the 
treatment of obesity and associated comorbidities. Therefore, it should be recognized 
as a separate pharmacological category, consisting of an entirely novel class of agents 
and requiring systematic research to fill knowledge gaps, thereby facilitating the 
development of standardized next-generation microbiota therapeutic interventions 
with improved safety and efficacy.

Microbial replacement therapy through synthetic ecology approaches

It is generally believed that the administration of multi-species microbial consortia is 
more useful than a single probiotic organism[155], as it probably retains some 
properties of the community structure, with community members continuously 
interacting and communicating with each other. Furthermore, a consortium of bacteria 
possesses a larger gene pool than monocultures, resulting in greater diversity in 
metabolic pathways. This richness is reflected in a greater ability of the consortium to 
perform more complex tasks than single organisms, thus exploiting the resources 
available in the surroundings more efficiently and better adapting to the environment, 
also through self-organization to form spatial patterns in response to substrates and 
metabolite gradients[156-160].

Synthetic ecology indicates the rational design of ecosystems, where two or more 
defined microbial populations are assembled in a well-characterized and controlled 
environment[161]. This approach requires in vitro controlled environments, biolo-
gically relevant bacterial strains and mathematical models of ecological interactions
[162] to simulate community behavior in response to several factors. The idea is to 
shape a complex microbial community in order to obtain a desired compositional and 
functional profile that meets the needs of specific industrial production processes or 
pharmacological interventions.

Synthetic microbial communities are systems of known and trimmed-down 
complexity that can undergo experimental treatments and mathematical modelling, 
enabling a system-level understanding of the consortium[163,164]. These communities 
are not only a way to study how the microbial consortium structure emerges and the 
conditions necessary to generate specific interaction networks among its components, 
but they can also elucidate the overall function, resistance and resilience of microbial 
systems[10]. By the so-called microbial resource management[165,166], i.e., the 
management of consortium parameters such as richness, evenness, predation, abiotic 
factors, quorum sensing and spatial disposition, the community can be steered to the 
desired functionality, in order to obtain novel products and processes or potentially 
improve human health by transplanting the desired synthetic community into a 
recipient patient.

To date, many studies[167-169] have reported the in vitro assembly of synthetic GM 
communities with at least two bacterial strains, but clinical applications are still 
limited. Petrof et al[170] obtained a synthetic consortium consisting of 33 individual 
microbial species derived from a stool sample from a healthy donor and demonstrated 
the potential of such synthetic microbiota in the treatment of C. difficile infection. 
Furthermore, they reported that some of the administered bacteria that were forming 
the synthetic community stably colonized the recipient’s colon, as opposed to most 
commercially available probiotics, which only transiently colonize the intestine.
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Table 1 Registered clinical trials on ClinicalTrials.gov (as accessed on April 2021) focused on fecal microbiota transplantation for the 
replacement of obesogenic microbial communities. Search terms included “gut microbiota”, “obesity” and “fecal microbiota 
transplantation”

Rank Title Status Results Condition Intervention Location URL
1 Fecal Microbiota 

Transplantation for 
the Treatment of 
Obesity

Completed Available Obesity FMT vs placebo United 
States

https://ClinicalTrials.gov/show/NCT02741518

2 Faecal Microbiota 
Transplantation in 
Obesity

Recruiting Not 
available

Obesity FMT vs placebo Finland https://ClinicalTrials.gov/show/NCT03391817

3 Randomized 
Controlled Trial of 
Fecal Microbiota 
Transplantation in 
Severe Obesity

Enrolling 
by 
invitation

Not 
available

Obesity FMT vs placebo Norway https://ClinicalTrials.gov/show/NCT03273855

4 Fecal Microbiota 
Transplant (FMT) to 
Induce Weight Loss in 
Obese Subjects

Active, not 
recruiting

Not 
available

Obesity FMT and 
mucosal 
microbiota 
assessment

China https://ClinicalTrials.gov/show/NCT03789461

5 FMT and Fiber in 
Patients With 
Metabolic Syndrome

Completed Not 
available

Obesity, 
Metabolic 
Syndrome

FMT and dietary 
supplement with 
fiber (cellulose) 
vs placebo

Canada https://ClinicalTrials.gov/show/NCT03727321

6 Assessment of the 
Health Improvement 
of Obese Patients 
After Fecal Microbiota 
Transplantation (FMT)

Completed Not 
available

Obesity, 
Type 1 and 2 
Diabetes

FMT Russian 
Federation

https://ClinicalTrials.gov/show/NCT04579263

7 Fecal Microbiota 
Transplantation for 
Diabetes Mellitus 
Type II in Obese 
Patients

Unknown 
status

Not 
available

T2DM, 
Obesity

FMT and dietary 
intervention 
(high-fat low-
fiber diet, sham 
diet or low-fat 
high-fiber diet)

Israel https://ClinicalTrials.gov/show/NCT02346669

8 Fecal Microbial 
Transplantation and 
Fiber Supplementation 
in Participants With 
Obesity and Metabolic 
Syndrome

Active, not 
recruiting

Not 
available

Obesity, 
Metabolic 
Syndrome

FMT and dietary 
supplement with 
fiber (cellulose) 
or FMT only vs 
placebo

Canada https://ClinicalTrials.gov/show/NCT03477916

9 Randomised Placebo-
controlled Study of 
FMT to Impact Body 
Weight and Glycemic 
Control in Obese 
Subjects With T2DM

Active, not 
recruiting

Not 
available

T2DM, 
Obesity

FMT and lifestyle 
modification 
program or FMT 
only vs placebo

China https://ClinicalTrials.gov/show/NCT03127696

10 Fecal Microbiota 
Transplant for 
Improvement of 
Metabolism

Completed Available Obesity FMT vs placebo United 
States

https://ClinicalTrials.gov/show/NCT02530385

11 The Role of 
Microbiome in 
Recurrent Obesity

Not yet 
recruiting

Not 
available

Obesity FMT vs placebo Israel https://ClinicalTrials.gov/show/NCT04697550

12 Effects of Fecal 
Microbiota 
Transplantation on 
Weight in Obese 
Patients With Non-
alcoholic Fatty Liver 
Disease

Recruiting Not 
available

NAFLD FMT, dietary 
intervention and 
physical activity 
vs placebo

India https://ClinicalTrials.gov/show/NCT04594954

13 Proposal to Examine 
the Effect of Fecal 
Transplantation on 
Obesity

Unknown 
status

Not 
available

Obesity FMT vs placebo Israel https://ClinicalTrials.gov/show/NCT02336789

Safety and Efficacy of 
Fecal Microbiota 

IBD, IBS, 
Obesity, 

14 Recruiting Not 
available

FMT China https://ClinicalTrials.gov/show/NCT04014413

https://ClinicalTrials.gov/show/NCT02741518
https://ClinicalTrials.gov/show/NCT03391817
https://ClinicalTrials.gov/show/NCT03273855
https://ClinicalTrials.gov/show/NCT03789461
https://ClinicalTrials.gov/show/NCT03727321
https://ClinicalTrials.gov/show/NCT04579263
https://ClinicalTrials.gov/show/NCT02346669
https://ClinicalTrials.gov/show/NCT03477916
https://ClinicalTrials.gov/show/NCT03127696
https://ClinicalTrials.gov/show/NCT02530385
https://ClinicalTrials.gov/show/NCT04697550
https://ClinicalTrials.gov/show/NCT04594954
https://ClinicalTrials.gov/show/NCT02336789
https://ClinicalTrials.gov/show/NCT04014413
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Transplantation Metabolic 
Syndrome, 
Infections, 
Others

15 Transplantation of 
Microbes for 
Treatment of 
Metabolic Syndrome 
& NAFLD

Completed Not 
available

Type 1 and 2 
Diabetes, 
NAFLD, 
Obesity

FMT Canada https://ClinicalTrials.gov/show/NCT02496390

FMT: Fecal Microbiota transplantation; IBD: Inflammatory bowel disease; IBS: Inflammatory bowel syndrome; NAFLD: Non-alcoholic fatty liver disease; 
T2DM: Type 2 diabetes mellitus.

Despite its proven efficacy for the treatment of C. difficile infection, FMT hides some 
uncertainties that may be resolved by a synthetic stool replacement strategy. Indeed, 
the synthetic ecology approach has multiple advances over the canonical use of fecal 
matter from a donor: (1) The exact composition of the administered bacteria is known 
and can be reproduced; (2) The bacterial composition can be virtually tailored to the 
specific patient’s needs; (3) The absence of pathogens and viruses can be more reliably 
guaranteed, improving safety; and (4) The administered microorganisms forming the 
consortia can be selected based on their sensitivity to antimicrobials, resulting in 
further improvement of the safety profile.

Applications of synthetic communities have been reported in other fields, such as 
bioremediation[157] and chemical production[171,172]. Notwithstanding the potential 
of the synthetic ecology approach in GM replacement therapy, there is still some way 
to go before synthetic ecology can be translated into the clinic. One major limitation is 
the lack of a truly representative in vitro system to mimic the in vivo microbiota, but 
steps in this direction have been achieved by the gut-on-a-chip model[173] and the 
HuMiX system[173]. In addition, a large and well-documented collection of cultures of 
human microbiota members will be extremely useful for improving ecology 
experiments and building mathematical models. In this regard, since 2015, culturomics 
has led to the discovery of 232 novel human gut species[174] and it is expected that 
this number will increase in the coming years. The technique is based on the 
multiplexing of bacterial isolation conditions through serial addition of specific growth 
promoters and/or inhibitors, coupled with high-throughput identification with 
MALDI-TOF mass spectrometry, and is capable of overcoming the limitations of 
conventional single-medium strategies[175-177]. The resulting knowledge could then 
be used to improve our understanding of the complex gut ecosystem and rationally 
design efficient and sophisticated synthetic communities, tailored for the treatment of 
the disease of interest.

THE FUTURE OF MICROBIOME-BASED PRECISION MEDICINE: HEALTH 
RISK OR OUTCOME PREDICTION THROUGH DEEP LEARNING
Machine learning and deep learning application to microbiome data

Machine learning and, in particular, deep learning have been the subject of intense 
media hype in recent years. Thanks to the explosion of available data and the rapid 
growth in the number and size of databases, they have accomplished nothing short of 
a revolution in the field of modern artificial intelligence, with notable progress in 
perceptual problems, such as facial and speech recognition[178,179], and have the 
potential to do the same in medical disciplines[180,181]. However, we are still 
exploring the full extent of what machine learning and deep learning can do and have 
just begun to apply them to a wide variety of problems outside of classical algorithms.

In light of the rapid increase in data from microbiome studies induced by the 
concomitant decrease in sequencing costs (< 10000 times in the past 10 years)[182], 
there are requirements to apply machine learning and deep learning algorithms to 
host-microbiome data, exploiting their associations in various diseases. Improved data 
analytical tools are needed to explore all the information contained in those datasets 
and identify key features that represent different aspects of the microbiome and that 
can be linked to host phenotypes. In particular, the possibility of predicting the 
patient’s phenotype from one’s GM is an integral part of personalized medicine, as it 
represents not only a way to overcome individual variability, but also a potential 
therapeutic target for pharmacological interventions. In this field, machine learning 
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might provide new insights, by developing models capable of stratifying individual 
patients into therapeutic classes, thus paving the way for the fine-tuning of 
interventions based on the GM structure. An example of machine learning algorithms 
are Support Vector Machines (SVMs), which were implemented by Cui and Zhang
[183] to classify metagenomic samples into inflammatory bowel disease (IBD) and 
non-IBD classes. More recently, Pasolli et al[184] used SVMs to predict diseases such as 
liver cirrhosis, colorectal cancer and IBD from fecal metagenomes. To date, deep 
learning is the most advanced machine learning technique for a variety of applications
[185] and has already achieved several results in the microbiome field[186-189], 
including predicting the microbiome structure in terms of bacterial relative abundance 
and metabolic layout. Other machine learning methods include Ensemble Methods, 
which combine multiple classifiers for better performance. The best known ensemble 
method is Random Forest[190], which has been widely used in microbiome studies for 
patient stratification[191,192] and biomarker search[193,194].

Machine learning, GM and obesity

In a prospective study on obesity in European children, Rampelli et al[31] underscored 
the importance of the microbiome–host–diet configuration as a possible predictor of 
obesity. In particular, GM was found to mediate dietary impact on individual 
metabolic and immunological homeostasis, which, in the context of other individual 
lifestyle and genetic variables, may be involved in the development of the 
multifactorial obese phenotype. Such results were based on experimental observations 
and no machine learning/deep learning algorithms were applied or developed. 
However, the study suggested that applying a machine learning algorithm to 
microbiome data could be a feasible method of predicting obesity, when other 
variables concerning host physiology, diet and lifestyle (e.g., physical activity) are 
included.

Some attempts have been made in recent years, with poor results, mainly due to a 
lack of data (often lifestyle and dietary information is not collected or collected in a 
non-systematic and non-standardized way). Specifically, Pasolli et al[184] developed a 
Random Forest-based approach that exclusively utilized metagenome data without 
success in predicting obesity and T2D. A few years later, Fernández-Navarro et al[195] 
have implemented several machine learning methods, such as decision tree-based 
methods, ensemble methods and SVMs, to identify predictors of obesity. Starting from 
serum free fatty acid levels, microbial quantitative polymerase chain reaction 
information and dietary intake interviews, their model revealed a non-obese profile 
related to serum eicosapentaenoic acid levels and Bacteroides amount in feces.

Nevertheless, this represents just the tip of the iceberg, as the full deployment of 
machine learning methods in the human GM sphere for full integration into the field 
of personalized precision medicine requires additional efforts. Indeed, machine 
learning often runs like black boxes, which makes it difficult to conduct feature 
selection. In addition, a large amount of data and computational power are required to 
train powerful and reliable machine learning-based algorithms. In general, novel 
technologies have dramatically increased our ability to characterize the human GM, 
but the way to effectively harness that information is uncertain and presents several 
key challenges. For example, there is a high need for dimensionality reduction to 
handle the information of hundreds of thousands of gene markers for just a few 
hundred samples. In this regard, neural encoder-decoder networks[196] based on a 
deep learning architecture have proved effective[187], but further efforts are still 
needed to fully exploit microbiome data. What is certain is that machine learning has 
already shown its great potential when applied to the microbiome field. In the next 
years, cutting-edge machine learning-based models might enable a further step 
towards the microbiome implementation in personalized precision medicine.

LIMITATIONS OF CURRENT EVIDENCE AND NEXT STEPS
As discussed in the respective paragraphs, there are several limitations to the design 
and application of microbiome-based strategies in clinical routine, with particular 
reference to the prevention/treatment of obesity and related comorbidities. Although 
promising data come from the field of NGPs/engineered microbes, synthetic ecology 
and even FMT, it should be remembered that the evidence is still too little to support 
the clinical benefit of these novel microbiome modulation tools. Added to this are the 
sometimes inconsistent results on GM compositional and functional changes in the 
pathological context, and the lack of a full understanding of the underlying mecha-
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nisms. Of course, several steps forward have been made, especially methodological 
ones, but there is still no standardization of study designs and the way of reporting the 
results, which makes it difficult to compare different studies. In parallel with the 
implementation of internationally recognized standard operating procedures for GM 
analysis, it is expected that in the future: (1) -Omics approaches, including metage-
nomics, metatranscriptomics, metaproteomics and metabolomics are combined to 
provide mechanistic insights; (2) The mechanisms are possibly validated in animal 
models; (3) Culturomics approaches are increasingly exploited to unravel the dy-
namics and ecological rules that govern the establishment of microbial networks; (4) 
The accumulating microbiome knowledge allows to fine-tune the design of precision 
strategies to achieve specific objectives, whether based on traditional or next-
generation tools; and (5) Progressively generated datasets, including host and mi-
crobiome data, enable machine and deep learning technologies to maximize transla-
tional impact, through accurate prediction of health outcomes and thus provision of 
high-quality personalized care. As expected, the same limitations and implications 
also apply in other pathological contexts, where the modulation of GM can be 
impactful as well.

CONCLUSION
The emerging role of GM as a contributor to various pathological conditions is 
fascinating even if not yet easy to untangle. Diseases resulting from multiple factors, 
such as obesity and metabolic diseases in general, may be difficult to prevent or treat 
effectively solely relying on currently available therapies. In this scenario, gut 
microbes and their influence on the host constitute a piece of an intricate puzzle, to be 
exploited for novel integrated intervention strategies. In a systems biology approach, 
the advent of –omics technologies and the development of bioinformatics tools are 
pushing microbiome research to the next level, allowing to extrapolate general 
principles on community structure and translate the results into rationally designed, 
personalized microbiome-based interventions aimed at restructuring dysbiotic 
layouts, thereby contributing to the restoration and maintenance of host health.
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