
 

Appendix S1 

Protocol for necropsy and genetic analysis  

Fig. S1: Overview of the data collection process. 

 

Necropsy examinations on wolf carcasses were conducted by the IZSLER, the Italian 

acronym of Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna, 

situated in Parma, Piacenza, Reggio Emilia, Modena, Bologna, Forlì-Cesena, and by the 

Wildlife and Exotic Service of the University of Bologna. 

At the arrival of each carcass, a first form containing the following information was filled 

(Figure S1): subject’s identification data with the attribution of a unique ID code, the 

discovery location (reported as GPS coordinates), the sex, the weight (in kg) and the 

nutritional status (obtained through the direct observation and palpation of the locations 

where the fat accumulates, thus: flank fossa, ribs, lumbar vertebrae and pelvic bones; see 

below). The age of the animal was estimated on the basis of dental development, body size 

and weight (Morner et al., 2005). Here, all individuals were aged using 3 categories as 

follows: class 1: 12 months; class 2: 1–2 years; class 3: > 2 years. The aging (based on 



 

months of life) was executed in relation to the reproductive cycle of the Italian wolf, which 

defines May as pups’ birth month (Boitani, 1981). 

The biometric information and phenotypic characteristics were also recorded: in particular, 

were noted: total length (from the nose to the junction of the tail), length of the tarsus, 

length of the tail, height of the ear, chest circumference, neck circumference and finally the 

presence of spurs, stripes, white nails and the coloring of the coat (Figure S1). Then, an 

external examination of the carcass was made by disposing the carcass in lateral decubitus: 

such position allows for straight evaluation of the nutritional and health status of the subject 

(Figure S1). During this first inspection, we established whether radiographic investigations 

were needed to identify foreign bodies (such as bullets, blunt objects) or fractures in the 

skeletal system (i.e. due to traumatic-contusive lesions) (Figure S1). At this stage, it was 

also possible to assess the nutrition, skin and mucosal status as well as the explorable 

lymph nodes and proceed with tongue sampling to be preserved in 95% ethyl alcohol for 

the genetic determination of the species (Figure S1). After finalizing the first physical 

inspection, the carcass was placed in dorsal decubitus to proceed with its flaying. The 

complete necropsy examination started with the opening of the abdominal cavity and was 

followed by the opening of the thoracic one. At each of these two steps, all organs were 

inspected and evaluated individually before being sampled for additional laboratory 

analysis (Figure S1). 

All individuals were also examined for the presence of zoonotic parasitic infections such as 

Trichinella spp. and Leishmania infantum. Specifically, diaphragm and the tibialis muscles 

were analyzed to detect Trichinella spp. (Kapel et al., 2005), whereas spleen and popliteal 

lymph nodes were examined to detect Leishmania infantum (Gomes et al., 2007). In all 

individuals, stomach and liver were also analyzed to detect the presence of toxic substances 

(such as zinc phosphide, strychnine, organophosphate pesticides, metaldehyde and 

anticoagulants) (Berny, 2007), Figure S1. Moreover, further investigations on the possible 

presence of Sarcoptes scabiei were only performed in case of suspicious skin lesions, 

which could have been caused by sarcoptic mange. In the case of mangy subjects, staging 



 

was established according to the methodology described in Pence and Ueckermann (2002). 

Each step of the necropsy process was photographed. 

We collected and stored in 95% ethanol a fragment of lingual tissue in 141 carcasses to 

carry out genetic analyses to confirm the belonging of samples to the Italian subspecies and 

detect possible traces of dog ancestry. 

DNA extraction was performed using the genomic DNeasy Blood Tissue Kit (Qiagen Inc., 

Hilden, Germany), following the manufacturer’s instructions, in a QIAcube (Qiagen Inc., 

Hilden, Germany) extractor. Subsequently, each DNA sample was amplified by 

Polymerase Chain Reaction (PCR), sequenced at 500 bp of the mtDNA control-region 

(diagnostic for the Italian wolf population) (Montana et al., 2017), and genotyped through a 

multiple-tube approach at 39 unlinked autosomal microsatellites (STR, which differentiate 

between wolves, dogs and their first two generation hybrids) as listed in Randi et al. (2014). 

A marker on the Amelogenin gene was used to identify the sex of the samples. 

Additionally, four Y-chromosome microsatellites were used to identify paternal haplotypes 

(Randi et al., 2014), whereas a dominant 3-bp deletion (named KB or CBD103DG23) at the 

b-defensin CBD103 gene, correlated to black coat and likely of dog origin (the K-locus) 

(Anderson et al., 2009; Galaverni et al., 2017) was also genotyped. Any sign of past 

hybridization with domestic dog (Canis lupus familiaris) was investigated using a Bayesian 

genetic clustering procedures implemented in STRUCTURE 2.3.4 (Falush et al., 2003) and 

described in Caniglia et al. (2020). In particular, we categorized an individual as wolf, 

hybrid or introgressed based on their membership proportions to the wolf cluster (qwolf). 

We further considered as introgressed individuals presenting a mtDNA or Y-haplotype of 

canine origin, or the deletion at the K-locus (Randi et al., 2014) regardless of their qwolf 

values (Caniglia et al., 2020). Extraction, amplification and post-amplification procedures 

were carried out in three separate rooms at the Unit for Conservation Genetics (BIO-CGE 

Ozzano dell’Emilia, Bologna, Italy), which is part of the Italian Institute for Environmental 

Protection and Research (ISPRA). 

Not all wolves covered by this study were genetically tested, in fact 33.5% were not sent 

for species attribution. This information gap is given by the lack of national coordination 



 

and a solid network that guarantees the genetic determination of species for each canid 

examined. So, a total of 137 out of the 141 analysed samples was successfully genotyped at 

39 STR, Amelogenin and K loci, four STR Y-Linked and mtDNA control-region. Among 

them, 105 (74.5%) resulted pure wolves, showing a qwolf >= 0.995 and no other genetic 

signals of dog origin; 13 (9.2%) resulted wolf x dog hybrids, showing a qwolf <= 0.954, 

and 23 (16.3%) were classified as introgressed individuals, showing a lower genetic dog 

derivate component represented by qwolf < 0.995 but > 0.954 or by the presence of a dog 

Y-haplotype (N=4) and/or the Kb allele (N=3). No dog mtDNA haplotype was identified, 

since all the analysed animals shared the private Italian wolf mtDNA haplotype (named 

W14 by Randi et al. 2000 and by Montana et al. 2017). 

The molecular gender, genetically identified by analysing the Amelogenine marker, always 

con- firmed the autopsy visual examination. 

The causes of mortality were grouped into three main categories: anthropic, natural and 

unknown. A schematic representation of each category (numbers included and contributing 

causes) is shown in Figure 2, details on each group are shortly defined as: i) Natural: it 

included health-related (i.e., presence of disease and/or starvation to death) and natural 

competition (interspecific and intraspecific) as causes of mortality; ii) Anthropic: it 

included vehicle collisions caused by cars and trains, hereafter called ACC, and illegal 

killing (linked to poisoning, fire weapons and other minor) – hereafter called IK. In case no 

precise information relative to the cause of death was identified during the necropsies, the 

subjects examined were assigned to the category “unknown” (Brownlie and Munro, 2016). 

Moreover, additional processes that were not directly causes of death, but could still trigger 

the physiological imbalance, were noted as “contributing causes of death”. 

 

 

 

 

 

 



 

Fig. S2: Causes of death of recovered wolves, in three periods between 2005 and 2021. 

Data collection in 2005 started in October and 2021 data refer to January and February 

only. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S3: Distribution of recovered wolves between the two sexed and three age classes (1 

year, 2 years, 3 or more years). 
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Appendix 2 - Model selection and diagnostics

Introduction
The following documents aim to provide a quick overview about model selection and diagnostics. A more
comprehensive overview about statistical analyses can be found in the reproducible script.

Emilia-Romagna region
To start with, let’s start with the Emilia-Romagna data, whose datasets contains the following variables of
interest:

• “illegal.ever” - a dichotomous variable indicating if any illegally killed wolf was found at a certain
municipality, between 2005 and 2021. Municipalities with more illegally killed wolves are nevertheless
coded in this binary way, because those with 2 or 3 wolves were few.

• “predations” - the total number of domestic animals (cattle, sheep, goats) that had been killed by
wolves in each municipality.

• “log.pred.events” - a natural logarithm of the total number of predations by wolves on domestic animals
(number of events). The variable was log-converted to smooth out its extremes.

• “farm.density” - the total number of farms in each municipality, divided per its total surface in hectares.
• “human density” - the total number of residents in each municipality, divided per its total surface in

hectares.
• “wolf.presence” - a dummy variable indicating whether wolves had been recorded on a certain municipality

on some consecutive monitoring initiatives, between 2006 and 2016 (see Apollonio et al., 2016, reference
n. 45).

• “marginal.area” - a dummy variable indicating if a certain municipality was considered to be marginal
for agriculture. Based on the National Agricultural Network (https://www.reterurale.it/flex/cm/pages
/ServeBLOB.php/L/IT/IDPagina/1)

• “wolf.found offset” - a variable indicating the number of wolves that were found, between 2005 and
2021 on a certain municipality. Used as an offset.

All continuous variables were standardized an centered, before their inclusion as predictors.

We compared the following models, with a backwise selection approach based on leave-one-out cross validation,
and supplemented by some other measures of fitness. Such as the WAIC, area under the curve and classification
accuracy:

Let’s calculate the VIF on an analogous frequentist logistic regression, before fitting the full model (without
BYM structure)
vif(glm(illegal.ever ~ log.pred.events + farm.density.std + human.density.std + wolf.presence +

marginal.area + wolf.found.std,
family=binomial(link="logit"), data=d.er))

## log.pred.events farm.density.std human.density.std wolf.presence
## 1.449720 1.123598 1.424633 1.714927
## marginal.area wolf.found.std
## 1.916923 1.508884

VIF looks good and there is no sign of strong collinearity between predictors:
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#mod.a.er <- brm(illegal.ever ~ predations.std + farm.density.std + human.density.std +
# wolf.presence + marginal.area,
# family=bernoulli(link = "logit"), data=d.er,
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = predations.std),
# prior(normal(0, 1), class=b, coef = farm.density.std),
# prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1),
# prior(normal(0, 1), class=b, coef = marginal.area1)))
#
#mod.b.er <- brm(illegal.ever ~ predations.std + farm.density.std + human.density.std +
# wolf.presence + marginal.area +
# offset(log(wolf.found.offset)), family=bernoulli(link = "logit"),
# data=d.er,
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = predations.std),
# prior(normal(0, 1), class=b, coef = farm.density.std),
# prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1),
# prior(normal(0, 1), class=b, coef = marginal.area1)))
#
#mod.c.er <- brm(illegal.ever ~ log.pred.events.std + farm.density.std +
# human.density.std + wolf.presence + marginal.area +
# offset(log(wolf.found.offset)), family=bernoulli(link = "logit"),
# data=d.er,
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = log.pred.events.std),
# prior(normal(0, 1), class=b, coef = farm.density.std),
# prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1),
# prior(normal(0, 1), class=b, coef = marginal.area1)))
#
#mod.d.er <- brm(illegal.ever ~ log.pred.events.std + farm.density.std +
# human.density.std + wolf.presence + marginal.area +
# offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d.er, data2 = list(W = m.er),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = log.pred.events.std),
# prior(normal(0, 1), class=b, coef = farm.density.std),
# prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1),
# prior(normal(0, 1), class=b, coef = marginal.area1)))
#
#mod.e.er <- brm(illegal.ever ~ log.pred.events.std + human.density.std + wolf.presence +
# offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d.er, data2 = list(W = m.er),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
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# control = list(adapt_delta = 0.99, max_treedepth = 12),
# prior=c(prior(normal(0, 1), class=b, coef = log.pred.events.std),
# prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1)))
#
#mod.f.er <- brm(illegal.ever ~ log.pred.events.std + wolf.presence +
# offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d.er, data2 = list(W = m.er),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 12),
# prior=c(prior(normal(0, 1), class=b, coef = log.pred.events.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1)))

#mod.g.er <- brm(illegal.ever ~ log.pred.events.std +
# offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d.er, data2 = list(W = m.er),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 12),
# prior=c(prior(normal(0, 1), class=b, coef = log.pred.events.std)))

#mod.h.er <- brm(illegal.ever ~ offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d.er, data2 = list(W = m.er),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 12))

#mod.i.er <- brm(illegal.ever ~ 1 + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d.er, data2 = list(W = m.er),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 12))

From Table 1 you can see that a model with the logarithm of predations as a predictor, the total number
of wolves found as an offset and a Besag-York-Mollié structure seems to be the best choice. In the BYM
structure, we used “Queen neighbours”: two municipalities were deemed to be neigbours if they shared at
least one point in common, on their perimeter. Although differences are not so pronounces between models.
Let’s see if this model converged:
mod <- mod.g.er
summary(mod)

## Family: bernoulli
## Links: mu = logit
## Formula: illegal.ever ~ log.pred.events.std + offset(log(wolf.found.offset)) + car(W, type = "bym2")
## Data: d.er (Number of observations: 328)
## Samples: 4 chains, each with iter = 5000; warmup = 1000; thin = 10;
## total post-warmup samples = 1600
##
## Correlation Structures:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sdcar 0.92 0.59 0.05 2.28 1.00 699 1143
##
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## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -2.88 0.41 -3.86 -2.28 1.00 991 1273
## log.pred.events.std 0.59 0.19 0.24 0.99 1.00 1411 1414
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(mod)
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Yest, MCMC have mixed well and model parameters seem to have a nice posterior distribution. But will the
model fit the data? Let’s compare the observed response variable with simulated datasets from the posterior
predictive distribution:
brms::pp_check(mod)

## Using 10 posterior samples for ppc type 'dens_overlay' by default.

## Warning: Using CAR terms without a grouping factor is deprecated. Please use
## argument 'gr' even if each observation represents its own location.
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Now, let try to make model binned residuals plot. In this plot, data are partitioned into categories based on
their fitted values and then average residuals are plotted against the average fitted value. In case of a good
fit, one would expect 95% of residuals to fall within the error bounds:
binned_residuals(mod)

## Warning: Using CAR terms without a grouping factor is deprecated. Please use
## argument 'gr' even if each observation represents its own location.

## Warning: Following potential variables could not be found in the data: W

## Warning: Probably bad model fit. Only about 64% of the residuals are inside the error bounds.

5



−0.1

0.0

0.1

0% 20% 40% 60% 80%
Estimated Probability of illegal.ever

A
ve

ra
ge

 r
es

id
ua

l

Within error bounds

no

yes

About 45% of model residuals are outside of error bounds: the model does not fit really well the data, as
confirmed by our progressive elimination of the various covariates. Let’ check also the role of the logarithm of
predations:
binned_residuals(mod, term=c("log.pred.events.std"))

## Warning: Using CAR terms without a grouping factor is deprecated. Please use
## argument 'gr' even if each observation represents its own location.

## Warning: Following potential variables could not be found in the data: W

## Ok: About 100% of the residuals are inside the error bounds.

## `geom_smooth()` using formula 'y ~ x'
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Indeed, all residuals fall into error bounds. This indicate that the association with the covariate was modelled
relatively well. Now let’s plot the marginal effect of the covariate:
conditional_effects(mod)
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From what we can see, the marginal effect is positive but relatively low. The probability of having recorded
at least a dead wolf in a certain municipality, between 2015 and 2021 increased by about 10% for a 1-unit
increase in the standardized and centered logarithm of the number of predation events in that municipality.

Entire study area
Now consider the whole dataset about the Tuscany and Emilia-Romagna regions, which contains the following
variables of interest:

• “illegal.ever” - a dichotomous variable indicating if any illegally killed wolf was found at a certain
municipality, between 2005 and 2021. Municipalities with more illegally killed wolves are nevertheless
coded in this binary way, because those with 2 or 3 wolves were few.

• “farm.density” - the total number of farms in each municipality, divided per its total surface in hectares.
• “human density” - the total number of residents in each municipality, divided per its total surface in

hectares.
• “wolf.presence” - a dummy variable indicating whether wolves had been recorded on a certain municipality

on some consecutive monitoring initiatives, between 2006 and 2016 (see Apollonio et al., 2016, reference
n. 45).

• “marginal.area” - a dummy variable indicating if a certain municipality was considered to be marginal
for agriculture. Based on the National Agricultural Network (https://www.reterurale.it/flex/cm/pages
/ServeBLOB.php/L/IT/IDPagina/1)

• “wolf.found offset” - a variable indicating the number of wolves that were found, between 2005 and
2021 on a certain municipality. Used as an offset.

Let’s calculate the VIF on an analogous frequentist logistic regression, before fitting the full model (without
BYM structure):
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vif(glm(illegal.ever ~ farm.density + human.density + wolf.presence +
marginal.area + wolf.found,
family=binomial(link="logit"), data=d))

## farm.density human.density wolf.presence marginal.area wolf.found
## 1.100959 1.187683 1.336548 1.342534 1.299716

VIF looks good and there is no sign of strong collinearity between predictors:
#mod.a.tot <- brm(illegal.ever ~ farm.density.std + human.density.std + wolf.presence +
# marginal.area,
# family=bernoulli(link = "logit"), data=d,
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = farm.density.std),
# prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1),
# prior(normal(0, 1), class=b, coef = marginal.area1)))
#
#mod.b.tot <- brm(illegal.ever ~ farm.density.std + human.density.std + wolf.presence +
# marginal.area +
# offset(log(wolf.found.offset)), family=bernoulli(link = "logit"),
# data=d,
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = farm.density.std),
# prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1),
# prior(normal(0, 1), class=b, coef = marginal.area1)))
#
#mod.c.tot <- brm(illegal.ever ~ farm.density.std + human.density.std + wolf.presence +
# marginal.area +
# offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d, data2 = list(W = m),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = farm.density.std),
# prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1),
# prior(normal(0, 1), class=b, coef = marginal.area1)))
#
#mod.d.tot <- brm(illegal.ever ~ human.density.std + wolf.presence +
# offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d, data2 = list(W = m),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = human.density.std),
# prior(normal(0, 1), class=b, coef = wolf.presence1)))
#
#mod.e.tot <- brm(illegal.ever ~ human.density.std +
# offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d, data2 = list(W = m),
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# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10),
# prior=c(prior(normal(0, 1), class=b, coef = human.density.std)))
#
#mod.f.tot <- brm(illegal.ever ~ 1 +
# offset(log(wolf.found.offset)) + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d, data2 = list(W = m),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10))
#
#mod.g.tot <- brm(illegal.ever ~ 1 + car(W, type = "bym2"),
# family=bernoulli(link = "logit"),
# data=d, data2 = list(W = m),
# chains=4, cores=4, iter=5000, warmup=1000, thin = 10,
# control = list(adapt_delta = 0.99, max_treedepth = 10))

From Table 1 we can see that a model with only the offset variable and the BYM correlations structure is
probably the best one. Let‘s keep it as the best candidate model. But did it converge?
mod.tot <- mod.g.tot
summary(mod.tot)

## Family: bernoulli
## Links: mu = logit
## Formula: illegal.ever ~ 1 + car(W, type = "bym2")
## Data: d (Number of observations: 494)
## Samples: 4 chains, each with iter = 5000; warmup = 1000; thin = 10;
## total post-warmup samples = 1600
##
## Correlation Structures:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sdcar 4.05 1.64 1.88 8.27 1.00 1197 1461
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -5.06 1.65 -9.17 -2.98 1.00 1246 1411
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(mod.tot)
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Yest, MCMC have mixed well and model parameters seem to have a nice posterior distribution. But will the
model fit the data? Let’s compare the observed response variable with simulated datasets from the posterior
predictive distribution:
brms::pp_check(mod.tot)

## Using 10 posterior samples for ppc type 'dens_overlay' by default.

## Warning: Using CAR terms without a grouping factor is deprecated. Please use
## argument 'gr' even if each observation represents its own location.
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Now, let try to make model binned residuals plot. In this plot, data are partitioned into categories based on
their fitted values and then average residuals are plotted against the average fitted value. In case of a good
fit, one would expect 95% of residuals to fall within the error bounds:
binned_residuals(mod.tot)

## Warning: Using CAR terms without a grouping factor is deprecated. Please use
## argument 'gr' even if each observation represents its own location.

## Warning: Following potential variables could not be found in the data: W

## Warning: Probably bad model fit. Only about 34% of the residuals are inside the error bounds.
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This result confirm the low predictive validity of the model, which not surprisingly did not identify any
particular covariate for predicting the presence of one or more killed wolves in a municipality.
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