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Abstract
In this editorial, we discuss the remarkable role of physical energies in the control 
of cell signaling networks and in the specification of the architectural plan of both 
somatic and stem cells. In particular, we focus on the biological relevance of 
bioelectricity in the pattern control that orchestrates both developmental and 
regenerative pathways. To this end, the narrative starts from the dawn of the first 
studies on animal electricity, reconsidering the pioneer work of Harold Saxton 
Burr in the light of the current achievements. We finally discuss the most recent 
evidence showing that bioelectric signaling is an essential component of the 
informational processes that control pattern specification during embryogenesis, 
regeneration, or even malignant transformation. We conclude that there is now 
mounting evidence for the existence of a Morphogenetic Code, and that deci-
phering this code may lead to unprecedented opportunities for the development 
of novel paradigms of cure in regenerative and precision medicine.

Key Words: Physical energies; Stem cells; Bioelectricity; Electromagnetic radiation; 
Mechanical forces; Morphogenetic code

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The capability of biological systems to create dynamically evolving shapes, 
up to large-scale anatomy, raises a number of fundamental questions that are only 
partially addressed in terms of molecular signaling. Physical energies, including 
mechanical and electromagnetic waves, afford substantial control of somatic and stem 
cell fate under normal and pathological conditions. This editorial focuses on the 
remarkable role of bioelectricity in shape generation, and maintenance, up to growth 
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regulatory patterning that lead to the specification of tissues/organs and of the whole 
individual. Implications of bioelectrical signaling in tissue regeneration and in the 
control of malignant transformation are also discussed.
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INTRODUCTION
There is increasing, compelling evidence that cellular dynamics and fate are fashioned 
by the capability to generate physical signaling, other than biochemical reactions[1]. 
Both somatic and stem cells produce mechanical and electric waves[2-5] to elaborate 
intra- and inter-cellular communications and orchestrate complex developmental 
pathways[6-9]. Compounding the complexity of this emerging picture, cells are also 
exploiting the ability of a selected number of molecules or molecular complexes to 
behave as chromophores, that is generating electromagnetic radiation in the form of 
light to orchestrate targeted signaling processes[1,10-13]. To this end, the list of 
molecules than can be actually deemed as chromophores includes a number of 
components in major ion channels involved in cytosolic calcium handling[14,15], 
essential players in redox signaling[16], such as multiple NAD(P)H oxidoreductases
[17], as well as molecules involved in biochemical pathways leading to the formation 
of gasotransmitters, like nitric oxide (NO)[18,19].

Concerning the cellular interior, there is now evidence that microtubuli act as a 
major source for the generation of both mechanical waves and electromagnetic 
signaling[20-22]. The mechanical buckling of microtubuli, coupled with their inherent 
electric polarity, is a major determinant in the spreading of mechanoelectrical 
signaling across the cellular boundaries[22]. Microtubuli are themselves displaying 
chromophore characteristics[23], a trait that may further contribute long-range 
intercellular connectedness through electromagnetic radiation (light). Overall, 
microtubuli can be viewed as a sort of bioelectronic circuit, whose oscillatory patterns 
exhibit the features of both synchronization and swarming[24,25]. These mechanisms 
may play a remarkable role in a form of biomolecular recognition that transcends the 
lock-and-the-key scheme of interaction, being rather based upon the participation of 
molecules in the construction of signaling processes through a mechanism of 
resonance. Novel hypotheses are now being formulated, considering the resonant 
vibrational profiles associated with the helix-loop-helix structure shared by signaling 
peptides and transcription factors[26-29], and the possibility that microtubuli act as a 
viscoelastic matrix assembling these molecules into synchronous resonating clusters
[25,30].

Taking into account these considerations, physical energies could be deployed to 
control cell behavior including the biology of stem cells. In this regard, we have 
provided evidence that the fate of stem cells, and their rescuing potential can be 
remarkably affected by electromagnetic fields[31-34], even reversing senescence in 
vitro[35,36], and mechanical forces[37]. Comprehensive review analyses focusing on 
the rescue of damaged tissues by the aid of physical energies, also including the use of 
shock waves and photobiomodulation, can be found elsewhere[1,38,39].

On the whole, a common feature arising from the inherent mechanical vibration of 
electrically polarized elements (i.e., the cytoskeleton and virtually all the electrically 
charged subcellular components), and from the concerted activity of cellular ion 
channels, is the generation of endogenous bioelectric fields with radiation character-
istics[1,40].

In this editorial, we focus on the role of bioelectricity as a constitutive element 
directing the development and assembly of shapes, from the subcellular/cellular level, 
up to large-scale anatomical patterning (Figure 1).

https://www.wjgnet.com/1948-0210/full/v13/i10/1382.htm
https://dx.doi.org/10.4252/wjsc.v13.i10.1382
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Figure 1 Graphical abstract: Symbolic representation of cellular bioelectronic circuitries in morphogenetic patterning. hMSC: human 
mesenchymal stem cell.

THE PIONEERING STUDIES: EVIDENCE FOR AN ELECTRO-DYNAMIC 
FIELD IN LIVING ORGANISMS
Bioelectricity is a term coined to identify the ability of electric fields endogenously 
generated in living cells to afford modulation of biological patterning from the cellular 
up to the tissue and organ level[40]. In all the cells and tissues, a part of electrically 
driven signaling originates from ion channels and related ion fluxes[40,41]. The differ-
ential distribution of resting potential across tissues represents an ancestral and 
conserved modality, highly integrated and connatural with chemical structures, in the 
establishment of cell signaling networks[42]. Bioelectricity plays a major role in the 
scaling up dynamics responsible for embryogenesis, and tissue regeneration, while 
altered non-coherent bioelectrical patterning appears to be involved in the onset of 
degenerative or malignant states[43].

The first studies on bioelectricity sink their roots in the beginnings of the 18th 
century. Seminal discoveries in this field emerged with the studies by Luigi Galvani, 
who showed the feasibility to achieve muscle twitching by touching the muscle with a 
deviating cut sciatic nerve in the absence of metal electricity, definitely providing 
evidence for animal electricity[44-46]. Through his experiments Galvani also 
unknowingly discovered the injury current and the injury potential[47].

Later in 1840’s Emil du Bois-Reymond[48] provided crucial advancement in the 
bioelectricity, when he was able to show the existence of macroscopic levels of 
electrical activities in frog, fish and human bodies, while recording defined electric 
currents in living tissues and organisms by the aid of galvanometers made of insulated 
copper wires. He discovered the action potentials[48,49], and at the same time, he was 
able to demonstrate the existence of less fluctuating electricity at wound level, 
conclusively showing the injury current and potential[50].

Bioelectricity studies received a fundamental boost in the early 20th century, when 
the pioneering work of Harold Saxton Burr provided clear-cut evidence for the crucial 
role bioelectric fields play in the control of biological shapes, and embryonic 
development.

In his studies, Burr and Mauro[51] used a voltmeter, accurately dissecting voltage 
gradients in developing embryos[52], as well as at the level of malignant tissues[53]. 
He also extended his studies to plants, providing remarkable advancement in the 
understanding of the role exerted by bioelectricity in plant physiology and diversity
[54,55].

Dr. Burr has shown that all living forms, of any species, generate and are embedded 
within electrodynamic fields, which can be quantitatively assessed and mapped under 
physiological, as well as diseased states[56-60]. He conceived that such Fields of Life or 
L-Fields constitute the fundamental blueprints of all kind of Life forms. Dr. Burr was 
also firmly convinced that the systematic assessment of L-Fields would have yielded 
unprecedented insights into the biophysical dynamics, even those associated with 
mental conditions, before symptoms of illness develop, paving the way for new 
strategies of Predictive and Precision Medicine.
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In 1940’s Dr. Langman, from the New York University and Bellevue Hospital 
Gynecological Service, performed a voltmeter-based assessment of the L-Field to 
screen more than 1000 women suffering from a variety of symptoms in the generative-
urinary tract. The subjects who exhibited significant voltage gradient difference 
between the cervix and ventral abdominal wall were subjected to deeper analyses and 
laparotomy, as it was reported in 1949 in a paper published by Langman and Burr
[53]. They found a hundred and two cases where there was a significant shift in the 
voltage gradient, suggesting malignancy. Surgical and biopsy confirmation was found 
in ninety-five of the one hundred and two cases[53,60].

These findings led Dr. Burr to perform additional studies, and found that changes in 
the L-Field not only allowed monitoring of tissue/nerve injury, but that precise L-
Field signatures were associated with, or they may have even determined, the wound 
healing process[59].

Dr. Burr’s studies discovered relevant implications and applications in the 
assessment of female menstrual cycle, also showing that the movement of ovulation 
can thoroughly be monitored electrically[58]. Somehow these studies, by providing 
remarkable information about the chronobiology of ovulation anticipated essential 
issues within, and also provided essential knowledge to a number of fields that would 
have been experiencing terrific development over the years, including modern 
gynecology, family planning, birth control and in vitro fertilization.

Revisiting Burr’s work shows that he was a fantastic visionary pioneer of studies 
that only today are creating progressive evidence for the existence of a morphogenetic 
field and for the need to believe in this potential as an unprecedented chance to access 
a real comprehensive view on how biological systems acquire coherence[61]. Burr 
focused on their capability to create dynamically evolving shapes that, while sharing 
enormous similarities with the simplest microorganisms and our eukaryotic cells, 
nevertheless entail the evolutionary unfolding not only to complexity, like in 
multicellular organisms, but to the deeper meaning of biological forms and shapes. 
This includes the inherent susceptibility of biological forms and shapes to create 
further contexts and being then guided by those contexts to orchestrate the coherent 
morphologies and functions of the entire individual[61].

A fundamental merit of Burr was not only his pioneering work, but his ability to 
bring science at a subtle line where science itself should find the courage to accompany 
the scientist to the unrestrainable need of merging with other disciplines, like Arts, 
Philosophy and Religion, in the effort of accepting other view points to explore the 
mystery of Life and Universe.

Following Burr, applied electric fields were shown to interfere with the regeneration 
pattern in the planaria by Marsh and Beams[62], leading to head or tail formation at 
cut locations, and resulting in body polarity reversion.

Other remarkable contributions to the field of bioelectricity were brought about by 
Lionel Jaffe and Richard Nuccitelli, who afforded quantitative and non-invasive 
measurement of extracellular minute ion currents by their vibrating probe[63], further 
elucidating the role of bioelectric signaling in the control of developmental pattern[64-
68]. Then, Borgens et al[69,70], Cone  and Tongier[71], Cone and Cone[72], Stillwell et 
al[73], and McCaig et al[74] confirmed and extended Burr’s findings in wound healing, 
limb regeneration, embryogenesis, and organ polarity.

These pioneering studies on bioelectricity led to seminal discoveries and set the 
basis for unprecedented ways of approaching fundamental issues in the unfolding of 
living organisms. Nevertheless, the narrative and implications set forward by bioelec-
tricity studies have until very recently been left in the shadow, despite the inability of 
chemical and molecular approaches to answer fundamental questions of biology itself. 
As a result, the field of bioelectricity has been severely penalized in terms of biology 
education, popularity among scientists and funding opportunity.

Only recently, the need for more transdisciplinary and non-traditional approaches 
has emerged as an unavoidable path in Science, also favored by the novel develo-
pments and biological applications of Computer Science and AI. Additionally, these 
new synergies could benefit from the development of novel probes, allowing detection 
and 3D imaging of electric microcurrents in the form of fluorescent signals even at the 
single cell level.

MODERN TOOLS FOR STUDYING THE BIOELECTRIC SIGNALING IN LIV-
ING CELLS AND TISSUES
Until quite recently, the assessment of intracellular electric fields was relying upon the 
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use of patch clamp, voltage clamp, or voltage dyes, allowing the measurement of 
electric pattern at the cellular membrane level. This site of investigation, although of 
remarkable relevance, only represents about 0.1% of the overall cellular volume. 
Moreover, with most of these membrane-associated tools cumbersome calibration 
approaches are needed. The recent development of nano-sized photonic voltmeter, 
initially referred to as E-PEBBLE (photonic explorer for biomedical use with 
biologically localized embedding), is now making affordable a 3D, and timely invest-
igation of the electric patterning within the whole cellular volume[75-78]. These 
nanodevices can be calibrated extracellularly and can be subsequently targeted to the 
inside of any living cell or subcellular compartment, without further calibration. E-
PEBBLEs embed Di-4-ANEPPS, a ratiometric, fast responding voltage-sensitive dye, 
whose fluorescence spectrum shifts in response to electric field changes[75,76]. The 
dye is encapsulated within a silane-capped mixed micelle, and it is therefore easily 
taken up by living cells. The possibility to address such shift ratiometrically, 
remarkably minimizes signal-to-noise ratio problems. These nanodevices exhibited an 
enhanced targeting efficiency when they are linked to multiple surface-conjugated 
targeting moieties. Interestingly, the use of these nanodevices provided evidence for 
the existence of intracellular electric fields that were not merely confined to the cellular 
membranes, but they were also ensuing within, and spreading throughout the cytosol
[75-78]. These findings are consistent with the observations discussed above in the 
present article, showing that microtubules and microfilaments are electrically 
charged/polarized, and highly vibrating entities, behaving as electric power 
transmission lines for intra- and inter-cellular communication.

The chance for monitoring also non-membrane electric patterning inside living cells, 
has been challenging consolidated dogmas, holding promise for further dissecting 
cellular dynamics through the eyes of Physics. Worthy to note, the chance for 
combining E-PEBBLEs with confocal microscopy analysis is now opening the 
perspective to integrate subcellular chemical with physical signaling.

BIOELECTRICITY IN STEM CELL DYNAMICS: TUNING STEMNESS, 
SENESCENCE, PARACRINE AND DIFFERENTIATING PATHWAYS
The use of specific ratiometric fluorescent dyes, including DiBAC4 and CC2-DMPE, 
has allowed a thorough analysis of ion channel-orchestrated bioelectric patterning in 
stem cell dynamics. In particular, membrane potential has been found to be essential in 
conducting the commitment of human mesenchymal stem cells (hMSCs) towards the 
osteogenic and adipogenic fates[79,80]. Data yielded with the voltage-sensitive dye 
DiBAC4, revealed a characteristic trait of hyperpolarization in differentiating hMSCs, 
as compared with undifferentiated cells[79]. A causal role of hyperpolarization could 
be inferred by the observation that the differentiating process could be abrogated by 
disrupting the hyperpolarization progression by depolarizing hMSCs with two 
different strategies, including cell culturing in the presence of high [K+], or ouabain, a 
specific inhibitor of Na+/K+ ATPase pump in the plasma membrane. Conversely, an 
upregulation in the expression of osteogenic markers was obtained when hMSCs were 
exposed to the KATP channel openers pinacidil and diazoxide, two compounds 
known for inducing hyperpolarization in different cell types. These findings strongly 
indicate that bioelectric fields play a major role in stem cell differentiation[79]. 
Bioelectric signaling not only is essential as a functional regulator of stem cell differen-
tiation, but it also plays a relevant role in the maintenance of the differentiated state
[81]. Depolarization of hMSC-derived osteoblasts and adipocytes resulted in the 
downregulation of bone and fat tissue markers, and therefore in phenotypic loss, even 
in the presence of specific differentiating factors for each commitment[81]. This 
observation suggests that bioelectric signaling might have overridden the molecular 
signaling in the maintenance of a differentiated state. The observed phenotypic 
suppression was not associated with an upregulation of stemness genes. Rather, the 
depolarized osteoblasts could be committed to competent adipocytes[81]. Thus, 
depolarization could be exploited to improve the transdifferentiation potential in 
hMSC-derived cells, without restoring stem-like signatures.

From a more general perspective, these results indicate that tuning of the bioelectric 
properties of stem cells may emerge as a novel approach to finely direct their thera-
peutic potential. Accordingly, the development of protocols to obtain electrically 
enriched hMSCs has provided the chance to isolate stem cells in which distinct electric 
states and ionic properties were associated with defined stemness and regenerative 
potential[82]. In these studies, hMSCs were sorted on the basis of their fluorescence 
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intensity for the trans-membrane potential indicator tetramethylrhodamine ethyl ester 
(TMRE). Subpopulations of electrically enriched hMSCs were found to differentially 
express genes involved in stemness, senescence, immunomodulation, and autophagy
[82]. In particular, hMSCs with low levels of TMRE, accounting for a depolarized 
membrane potential, exhibited a reduced expression of senescence-associated markers, 
while overexpressing genes encoding autophagy and immunomodulatory players
[82]. These findings indicate that hMSC sorting based upon cellular bioelectric 
properties would both allow stem cell enrichment for distinct features, and provide 
unprecedented strategies for selected cell therapy outcomes.

The relevance of bioelectricity in stem cell biology is further highlighted by the 
functional role of transmembrane potential (Vmem) in the regulation of stem cell prolif-
eration and migration. In neurosphere-derived neural precursor cells (NPCs), IKIR 
and IKDR channels are involved in establishing a hyperpolarized resting Vmem of about 
-80 mV[83]. Depolarization through modulated IKIR enhanced NPC mitosis and 
neurosphere size[83]. Similarly, in both human and mouse embryonic stem (ES) cells, 
IKDR are expressed and exert a permissive role in proliferation, that can be anta-
gonized by K+ channel blockers[84].

The use of dyes of the DiBAC family also allowed to establish that bioelectricity is 
deeply involved in cell migration and communication. In fact, a combination of optical 
membrane-potential measurements with mechanical stimulation showed that the 
physical bridging provided by tunneling nanotubes (TNTs), embedding microtubules 
and to a lesser extent actin filaments, mainly acted as a form of electric connectedness
[85,86]. Thus, neuronal migration and differentiation, as well as long-distance neuron-
astrocyte communication, are supported by a form of bioelectronic circuitry through 
TNT-mediated depolarization. Consonant with these studies, modulation of potassium 
channels has been shown to control stem cell migration and invasiveness[87].

THE NEW COURSE: ADDING SUPPORT TO THE NOTION OF A MORPHO-
GENETIC CODE
While these findings point at the role of bioelectricity at cellular level, it is now 
becoming evident that the seminal intuitions and discoveries of Harold Saxton Burr 
and the studies of Scientists who continued to work in the groove traced by him, have 
laid the foundation to understand how bioelectric fields are a part of a morphogenetic 
code.

Cellular electric fields, electromagnetic and light radiation, as well as nanomech-
anical oscillations, are now emerging as vibrational signatures, imparting informa-
tional messages that contribute to the onset, unfolding and continuous remodeling of 
forms and of their inherent functions.

It is now clear that understanding the genetic, or protein level of cell signaling 
would only minimally help taking a glimpse on the most complex informational 
hierarchies underlying biological morphologies. Rather, considering biological 
systems as part of the vibrational nature of the Universe is now fostering more 
transdisciplinary efforts. The work of Scientists from multiple disciplines is gathering 
data showing that physical energies may act as a sort of software program driving the 
transition from nanoarchitectonics and supramolecular interactions to cellular shapes, 
and positioning, up to growth regulatory patterning that lead to the specification of 
tissues/organs and of the whole individual.

The observation that a wide-ranging spectrum of channelopathies, and consequent 
derangement in ion transport, are unequivocally linked to deep subversion of normal 
morphogenesis, leading to multi-organ crumbling and failure[88,89], should have been 
supported over time the notion that signaling through physical energies must had 
been regarded as a major determinant in the establishment of forms and functions. 
Nevertheless, discussing about forms, the “forma mentis” of Scientists has been slowly 
changing according to these evidence, and only recently a large body of compelling 
data is boosting molecular biologists to think in terms of biophysical signaling. The 
outstanding work performed by Michael Levin and his Coworkers is now providing 
clear-cut evidence for the intimate connection between molecular signaling, gene 
transcription and bioelectric signaling[90]. Levin’s work is yielding fundamental data 
in showing that a continuous tuning of cellular patterning with the whole organism 
requirements underlies the establishment of shapes throughout embryogenesis[91-95] 
and the preservation of forms during the development of a hostile environment (i.e., 
injury or tumorigenesis)[96-100]. Understanding the informational mechanisms that 
govern the establishment of complex anatomy has required a paradigm shift from the 



Tassinari R et al. Physical energies, chemical signaling and morphogenetic code

WJSC https://www.wjgnet.com 1388 October 26, 2021 Volume 13 Issue 10

observation of local cell communication to the attempt of approaching biological 
intelligence as a computational process that entails a network of maps encoded by 
physical energies. By this approach, Levin’s group have shown the feasibility of 
modeling somatic computation via non-neural bioelectric networks, and that the 
spreading of multifaceted ion fluxes over space and time merges with molecular 
signaling in non-excitable cells[101,102]. This strategy has been further refined by the 
use of voltage sensitive dyes in combination with defined extracellular ionic solutions, 
an approach that has allowed investigating the consequences of resting membrane 
potential manipulation on cellular dynamics[78-80]. The development of targeted 4D 
imaging and related data analysis has also been part of studies that highlighted 
membrane potential as a tunable tool in the modulation of calcium-primed signaling 
in Xenopus embryogenesis[101,103-105]. Further contribution to the understanding of 
these dynamics, and to the deployment of control strategies of bioelectric patterning, 
came from the development of the BioElectric Tissue Simulation Engine (BETSE) by 
Pietak and Levin[106]. BETSE proved effective as a multiphysics simulator, and for a 
predictive spatio-temporal profiling of bioelectric patterns from the modeling of ion 
channel and gap junction activity. These approaches have been at the basis of a 
number of interrelated findings showing a crucial role of defined bioelectric patterns 
in: (1) The establishment of morphogenetic patterning during embryo development
[107-110]; (2) The deployment of optogenetics in developmental biology, through the 
use of light to handle ion flux-dependent voltage and signals in embryo development
[101]; (3) The physiological control of the large-scale mechanisms operating in tissue 
regeneration[111,112]; (4) Regenerative processes from the level of wound healing, up 
to the rescue of brain defects induced following animal model exposure to teratogenic 
or mutagenic agents[113]; and (5) The establishment of micro-environmental signals 
suitable for revealing, inducing or even counteracting cancer onset and progression[96,
97,114].

CONCLUSION
The journey for understanding how Physics may orchestrate molecular and cellular 
patterning up to contribute shapes and anatomical homeodynamics has started many 
years ago. Nevertheless, only recently we are facing the re-discovery of the potential 
for using physical energies to afford efficient modulation of cell signaling, tissue 
patterning and rescue.

Considering the diffusive properties of such physical stimuli, we may also envision 
a novel strategy of regenerative medicine relying upon the reprogramming of stem 
cells in situ, where they are resident in all tissues of the human body. This approach 
may hold promise for affording tissue regeneration without cell or tissue 
transplantation, but rather boosting our own self-healing potential. So far, the effects 
elicited at the stem cell level by endogenous electric patterning, or by mechanical 
vibration and electromagnetic radiation (including light), have been investigated 
mainly in mouse ES cells, and hMSCs. Nevertheless, besides hematopoietic stem cells, 
other tissue-resident multipotent elements, such as pericytes[115,116], and cells 
exhibiting pluripotency features in the adulthood, as the “multilineage-differentiating, 
stress-enduring” cells[117-119], may conceivably be targeted by mechanical and/or 
electromagnetic stimulation. Addressing this issue may disclose novel perspectives in 
regenerative and precision medicine, and should be the subject for future investig-
ations.

We hope that our efforts will lead to a progressive awareness among the scientific 
community of the chance of using bioelectricity, electromagnetic radiation and 
nanomechanics to afford efficient re-setting in the epigenetics up to modulate tissue 
morphogenesis and regeneration, even offering chances to control oncogenesis and 
metastatic dissemination.

Progression within this context may be supported by the development of a transdis-
ciplinary endeavor led by a novel generation of committed Scientists, and by the 
availability of targeted funding platforms.
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