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Abstract
FollowingMumford and Chiodo, we compute the Chern character of the derived
pushforward ch

(
𝑅∙𝜋∗𝒪(𝖣)

)
, for𝖣 an arbitrary element of the Picard group of the

universal curve over the moduli stack of stable marked curves. This allows us to
express the pullback of universal Brill–Noether classes via Abel–Jacobi sections
to the compactified universal Jacobians, for all compactifications such that the
section is a well-defined morphism.
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1 INTRODUCTION

Let 𝜋∶ 𝑔,𝑃 →𝑔,𝑃 be the universal curve over the moduli stack of stable marked curves, where 𝑃 is a nonempty set of
markings. The (weak version of) Franchetta’s conjecture, now a theorem due to Harer [7] and Arbarello–Cornalba [1],
gives an explicit description of the Picard group of the universal curve. Every divisor on 𝑔,𝑃, up to a divisor pulled back
from𝑔,𝑃, is linearly equivalent to

𝖣 = 𝓁𝐾𝜋 +
∑
𝑝∈𝑃

𝑑𝑝𝜎𝑝 +
∑
ℎ,𝑆

𝑎ℎ,𝑆𝐶ℎ,𝑆 (1.1)

for some integers 𝓁, 𝑑𝑝 and 𝑎ℎ,𝑆 . Here𝐾𝜋 = 𝑐1
(
𝜔𝜋

)
is the first Chern class of the relative dualising sheaf, 𝜎𝑝 is the class of

the 𝑝-th section, and 𝐶ℎ,𝑆 (see Definition 2.3) is the class of the irreducible component not containing the moving point
lying above the boundary divisor Δℎ,𝑆 ⊂𝑔,𝑃 (more details in Section 2).
Our main result is an explicit formula for the Chern character of the derived pushforward

ch
(
𝑅∙𝜋∗𝒪(𝖣)

)
,
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in terms of certain standard generators of the tautological ring (boundary strata classes decorated with 𝜅 classes and 𝜓
classes). These generators, denoted 𝐗, 𝐗̃, 𝐘̃ and 𝐙, are introduced in Notation 2.5. To state our main result we first recall
the definition of the Bernoulli polynomials 𝐵𝑡(𝓁), which are defined by the identity∑

𝑡≥0

𝐵𝑡(𝓁)
𝑡!

𝑥𝑡 ..= 𝑒𝓁𝑥
𝑥

𝑒𝑥 − 1
.

In particular, 𝐵𝑡 ..= 𝐵𝑡(0) are the classical Bernoulli numbers.
In Section 3 we prove:

Theorem 1.1. If 𝖣 is as in (1.1), then

ch
(
𝑅∙𝜋∗𝒪(𝖣)

)
= Ω+ Φ,

where

Ω =
∑
𝑡≥1

𝑎+𝑏=𝑡

𝐵𝑏(𝓁)
𝑏!

∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

⎛⎜⎜⎜⎝
𝑟∏

𝑗=1

𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝑘𝑗!

⎞⎟⎟⎟⎠𝐙
𝐤𝑟,𝑏−1
(𝐡𝑟),(𝐒𝑟)

+
∑
𝑡≥1

𝑎+𝑏=𝑡
𝑏>0

𝛼+𝛽=𝑏

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!

∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

⎛⎜⎜⎜⎝
𝑟∏

𝑗=1

𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝑘𝑗!

∑
𝑝∈𝑃⧵𝑆𝑟

𝑑𝛼𝑝(−𝜓𝑝)
𝑏−1

⎞⎟⎟⎟⎠𝐗
𝐤𝑟
(𝐡𝑟),(𝐒𝑟)

and

Φ =
∑
𝑡≥2

∑
𝑎+𝑏=𝑡
𝑏>0 even
𝑎≥0

𝐵𝑏
𝑏!

∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

𝑟∏
𝑗=1

𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝑘𝑗!

∑
0≤𝑒≤𝑏−2

(−1)𝑒

⋅

(( ∑
(𝑙,𝑇)>(ℎ𝑟,𝑆𝑟)

𝐗̃𝐤𝑟,(𝑒,𝑏−2−𝑒)
(𝐡𝑟,𝑙),(𝐒𝑟,𝑇)

)
+ 𝐘̃𝐤𝑟,(𝑒,𝑏−2−𝑒)

(𝐡𝑟),(𝐒𝑟)
+ (−1)𝑘𝑟 𝐗̃𝐤𝑟−1,(𝑒+𝑘𝑟,𝑏−2−𝑒)

(𝐡𝑟−1,ℎ𝑟),(𝐒𝑟−1,𝑆𝑟)

)

and the symbol
(
ℎ1, 𝑆1

)
< ⋯ <

(
ℎ𝑟, 𝑆𝑟

)
denotes a strictly ordered chain of stable bipartitions (see Notation 2.4).

Our formula expresses ch𝑡
(
𝑅∙𝜋∗𝒪(𝖣)

)
as a polynomial of degree 𝑡 + 1 in the variables 𝓁, 𝑑𝑝, 𝑎ℎ,𝑆 with coefficients in

the tautological ring of𝑔,𝑃. The special case where all 𝑎ℎ,𝑆 = 0 can be extracted from Chiodo’s formula [3, Thm. 1.1.1].
We prove Theorem 1.1 by applying the Grothendieck–Riemann–Roch formula to the universal curve𝜋, as inMumford’s

seminal calculation of the Chern character of the Hodge bundle [16, Sect. 4].
The formula in Theorem 1.1 has been implemented into the Sage program [18] and is available upon request from the

third named author.
Ourmainmotivation is computing the pullback of (extended, cohomological) Brill–Noether classes𝗐𝑟𝑑 on the universal

Jacobian via the Abel–Jacobi sections. Here we give a preview, full details are in Section 4.
Fix 0 ≤ 𝑑 ≤ 𝑔 − 1 and let  𝑑

𝑔,𝑃 →𝑔,𝑃 be the universal Jacobian parametrising line bundles of degree 𝑑 over smooth
𝑃-pointed curves of genus 𝑔. Letℒ denote the universal (or Poincaré) line bundle on the universal curve

𝜋∶  𝑑
𝑔,𝑃 ×𝑔,𝑃

𝑔,𝑃 →  𝑑
𝑔,𝑃.
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For 0 ≤ 𝑟 ≤ 𝑑∕2, the universal Brill–Noether locus𝑟
𝑑 is set-theoretically defined by

𝑟
𝑑
..=

{
(𝐶, 𝑃, 𝐿) | 𝐿 ∈ Pic𝑑 𝐶, ℎ0(𝐶, 𝐿) > 𝑟

}
⊂  𝑑

𝑔,𝑃,

and can be endowed with the scheme structure of the (𝑔 − 𝑑 + 𝑟)-th Fitting ideal of 𝑅1𝜋∗ℒ. Each 𝑟
𝑑 is in general not

equidimensional, and the dimension of its irreducible components is unknown. However, a cohomological Brill–Noether
class 𝗐𝑟𝑑 supported on𝑟

𝑑 and of the expected dimension can be defined, via the Thom–Porteous formula, as the (𝑟 + 1) ×
(𝑟 + 1) determinant

𝗐𝑟𝑑 = Δ(𝑟+1)𝑔−𝑑+𝑟𝑐
(
− 𝑅∙𝜋∗ℒ

)
∈ 𝐴∙

(
 𝑑
𝑔,𝑃

)
. (1.2)

The notationΔ(𝑝)𝑞 𝑐 stands for the𝑝 × 𝑝 determinant |𝑐𝑞+𝑗−𝑖|, for 1 ≤ 𝑖, 𝑗 ≤ 𝑝 and a general series 𝑐 =
∑
𝑘 𝑐𝑘 (see Section 4.2

for more details).
The discussion of the previous paragraph extends verbatim to𝑔,𝑃. One constructs a compactified universal Jacobian

 𝑔,𝑃(𝜙) →𝑔,𝑃 (1.3)

for all nondegenerate polarisations 𝜙, and classes 𝗐𝑟𝑑(𝜙) also defined by Formula (1.2), mutatis mutandis. The compact-
ified universal Jacobian (1.3) extends  𝑑

𝑔,𝑃 →𝑔,𝑃 and consists of torsion free sheaves of rank 1 on stable curves, whose
multidegree is prescribed by 𝜙. The rational sections of (1.3) are called Abel–Jacobi sections. By Franchetta’s conjecture,
they are all of the form

𝗌∶ (𝐶, 𝑃) ↦ 𝜔𝓁𝜋

(∑
𝑝∈𝑃

𝑑𝑝𝜎𝑝 +
∑
ℎ,𝑆

𝑎ℎ,𝑆𝐶ℎ,𝑆

)
, (1.4)

for some integers 𝓁, 𝑑𝑝 and 𝑎ℎ,𝑆 .
A natural question that has attracted lots of attention is computing the pullback of𝗐𝑟𝑑(𝜙) via the section 𝗌. This problem

is complicated by the fact that the latter section is, in general, only a rational map. Theorem 1.1 allows one to compute
𝗌∗𝗐𝑟𝑑(𝜙) for every 𝜙 such that 𝗌 is a morphism (these 𝜙’s are characterised in [13, Sect. 6.1]). Indeed, for every such 𝜙, we
will prove in Corollary 4.7 the equality

𝗌∗𝗐𝑟𝑑(𝜙) = Δ(𝑟+1)𝑔−𝑑+𝑟𝑐
(
− 𝑅∙𝜋∗𝒪(𝖣(𝜙))

)
, (1.5)

where𝖣(𝜙) is amodification of a divisor𝖣 as in (1.1) obtained by replacing the coefficients 𝑎ℎ,𝑆 with the unique coefficients
𝑎ℎ,𝑆(𝜙) such that 𝖣(𝜙) is 𝜙-stable on all curves with 1 node. Combining (1.5) with Theorem 1.1 and with the inversion
formula (see Equation (4.9)) for the Chern character, we obtain an explicit expression, for all 𝜙 such that 𝗌 is a morphism,
for the cohomology class 𝗌∗𝗐𝑟𝑑(𝜙) in terms of the standard generators of the tautological ring.
The case 𝑟 = 𝑑 = 0 is related to the problem of extending and calculating the (𝓁-twisted) Double Ramification Cycle—

more details are in Section 4.3 (see also Example 4.3).

Conventions. Wewill work over the field of complex numbersℂ. If𝑋 is a smooth Deligne–Mumford stack, we will denote
by 𝐴∙(𝑋) its Chow ring with rational coefficients.

2 TAUTOLOGICAL CLASSES

2.1 Definition of the tautological ring

Throughout we fix an integer 𝑔 ≥ 1 and a set of markings 𝑃 ≠ ∅. We follow the exposition and the notation of [2, Sect. 17.4]
to introduce the tautological ring of the moduli space𝑔,𝑃 of stable 𝑃-pointed curves of genus 𝑔.
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It is well-known that the universal curve over the moduli stack of stable 𝑃-pointed curves can be identified with the
forgetful morphism from the moduli stack with one extra marking. Throughout we will denote them by

𝑔,𝑃 =𝑔,𝑃∪{ 𝑥 }
𝜋
O→𝑔,𝑃,

and we will freely switch from one description to the other.
For each marking 𝑝 ∈ 𝑃, we let

𝜎𝑝 ∈ 𝐴1
(
𝑔,𝑃

)
denote the divisor class corresponding to the 𝑝-th section of 𝜋. Let 𝜔𝜋 be the relative dualising sheaf, and set

𝐾𝜋 ..= 𝑐1

(
𝜔𝜋

(∑
𝑝

𝜎𝑝

))
, 𝐾𝜋 ..= 𝑐1

(
𝜔𝜋

)
= 𝐾𝜋 −

∑
𝑝

𝜎𝑝.

We define the cotangent line classes by

𝜓𝑝 ..= 𝜎∗𝑝𝐾𝜋 ∈ 𝐴1
(
𝑔,𝑃

)
.

For 𝑎 ≥ 0, we define the kappa classes

𝜅𝑎 ..= 𝜋∗𝐾
𝑎+1
𝜋 ∈ 𝐴𝑎

(
𝑔,𝑃

)
.

The tautological ring of the moduli space of stable marked curves

𝑅∙
(
𝑔,𝑃

)
⊂ 𝐴∙

(
𝑔,𝑃

)
was originally defined byMumford in [16, Sect. 4] in the unmarked case𝑃 = ∅ (which is not discussed in this paper), and an
elegant definition for all moduli spaces of stable marked curves at once was later given by C. Faber and R. Pandharipande
[4]. We will give here an alternative definition to suit our purposes.
First we recall the notion of decorated boundary stratum class. For Γ = (V(Γ), E(Γ), L(Γ)) in the set𝖦𝑔,𝑃 of isomorphism

classes of stable 𝑃-pointed graphs of genus 𝑔 (see [2, Ch. XII.10] for the precise definition of a stable graph and of the set
𝖦𝑔,𝑃), we let

Γ =
∏

𝑣∈V(Γ)

g𝑣,P𝑣

and denote by 𝜉Γ ∶ Γ →𝑔,𝑃 the associated clutchingmorphism. Here, P𝑣 is the set of half-edges and legs issuing from
the vertex 𝑣, and we require that the stability condition 2g𝑣 − 2 + |P𝑣| > 0 is fulfilled for all vertices 𝑣. A “decoration”
𝜃 =

(
𝜃𝑣

)
𝑣
on the graph Γ is the datum of a monomial

𝜃𝑣 =
∏
𝑝∈P𝑣

𝜓
𝑎𝑝
𝑝

∏
𝑗

𝜅
𝑏𝑗
𝑗 ∈ 𝐴∙

(
g𝑣,P𝑣

)
for each vertex 𝑣 ∈ V(Γ). Classes of the form

1|Aut|𝜉Γ∗
( ∏
𝑣∈V(Γ)

𝜃𝑣

)
∈ 𝐴∙

(
𝑔,𝑃

)
,

for Γ and 𝜃 as above, are called decorated boundary strata classes. (Here and in the following, we omit writing the pullback
via the projection map to the factor, and we omit writing the tensor product of classes, unless that helps identifying which
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factor they are pulled back from). We define 𝑅∙
(
𝑔,𝑃

)
to be the vector subspace of 𝐴∙

(
𝑔,𝑃

)
generated by these classes

and then endow it with the intersection product. When 𝜃𝑣 is trivial for all 𝑣, we simply write 𝛿Γ ..= 𝜉Γ∗(𝟙)∕|Aut|.
The collection of decorated boundary strata classes can be made into a finite set (for fixed 𝑔 and 𝑃) by only considering

decorations 𝜃 that are not obviously vanishing for degree reasons. Even so, this collection is far from being a basis. All
known relations among these generators belong to a vector space generated by the so-called Pixton’s relations, see [17] and
[11], but whether or not these are all the existing relations is so far unknown.
In this paper, “calculating” an element of 𝑅∙

(
𝑔,𝑃

)
always means expressing it as an explicit, non-unique, linear com-

bination of decorated boundary strata classes. We will often use graph notation for these classes; for example we will
denote by

the class 𝜉Γ∗
(
𝜓𝑖𝑝1 ⊗ 𝟙 ⊗ 𝜅𝑎

)
, where 𝜉Γ is the clutching morphism

3,𝑆∪{𝑝1} ×1,𝑇∪{𝑝2,𝑝3} ×2,{𝑝4} ⟶6,𝑆∪𝑇

which glues 𝑝1 to 𝑝2 and 𝑝3 to 𝑝4.

2.2 Boundary divisors

Here we discuss and fix some convention for the particular case of the tautological classes that correspond to boundary
divisors.

Definition 2.1. Wedefine the set of stable bipartitions of (𝑔, 𝑃) to be the collection of pairs (ℎ, 𝑆)where 𝑆 ⊆ 𝑃 is a subset of
the set of markings, and 0 ≤ ℎ ≤ 𝑔 is such that if ℎ = 0 then |𝑆| ≥ 2 and if ℎ = 𝑔 then |𝑆𝑐| ≥ 2 (where 𝑆𝑐 = 𝑃 ⧵ 𝑆 denotes
the complement).

We also make the following:

Convention 2.2. We assume that for every stable bipartition (ℎ, 𝑆), the set 𝑆 contains a distinguished marking 1 ∈ 𝑃. (In
particular, 𝑆 is never empty.)

With this convention, there is a bijection between the set of stable bipartitions and the set of stable graphs Γℎ,𝑆 ∈ 𝖦𝑔,𝑃
with two vertices and one edge.
The (codimension one) clutching morphism corresponding to Γℎ,𝑆 is denoted

𝜉ℎ,𝑆 ∶ ℎ,𝑆∪{ 𝑞 } ×𝑔−ℎ,𝑆𝑐∪{ 𝑟 } →𝑔,𝑃.

Its image is the boundary divisor Δℎ,𝑆 and its class 𝛿Γℎ,𝑆 will simply be denoted by 𝛿ℎ,𝑆 .
There is one more boundary divisor of𝑔,𝑃, which parametrises irreducible singular curves. That divisor is the image

of the clutching morphism 𝜉irr that corresponds to the stable graph Γirr consisting of one vertex of genus 𝑔 − 1with a loop
and with all markings 𝑃.

Definition 2.3. For a fixed stable bipartition (ℎ, 𝑆) of (𝑔, 𝑃), the inverse image 𝜋−1
(
Δℎ,𝑆

)
in the universal curve 𝑔,𝑃

consists of two irreducible components. We will denote by 𝐶+ℎ,𝑆 the class of the component that contains the moving point
𝑥 on the universal curve, and by 𝐶ℎ,𝑆 the class of the other component, see Figure 1.
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F IGURE 1 After identifying 𝑔,𝑃 with 𝑔,𝑃∪{ 𝑥 }, the divisor class 𝐶ℎ,𝑆 (resp. 𝐶+ℎ,𝑆) corresponds to the stable (𝑃 ∪ { 𝑥 })-pointed graph
depicted on the left (resp. on the right)

2.3 Products of components on the universal curve

In this sectionwe compute the product of components𝐶ℎ,𝑆 in the Chow ring of the universal curve 𝑔,𝑃. This will motivate
introducing the notation that appears in our main formula, Theorem 1.1. That notation will be first used in the follow-
ing section.
Recall that by Convention 2.2 every subset 𝑆 ⊆ 𝑃 contains 1. We define a partial ordering on the stable bipartitions (ℎ, 𝑆)

by setting (
ℎ1, 𝑆1

)
≤

(
ℎ2, 𝑆2

)
if and only if ℎ1 ≤ ℎ2 and 𝑆1 ⊆ 𝑆2. (2.1)

Notation 2.4. For 𝑟 > 0 and a strictly ordered chain of stable bipartitions
(
ℎ1, 𝑆1

)
< ⋯ <

(
ℎ𝑟, 𝑆𝑟

)
and for nonnegative

indices 𝑖1, … , 𝑖𝑟 and 𝑗1, … , 𝑗𝑟, we define the class

in 𝑅∙
(
𝑔,𝑃∪{𝑥}

)
= 𝑅∙

(
𝑔,𝑃

)
.

With the same notation as above, we also define the classes

in 𝑅∙
(
𝑔,𝑃

)
. For later convenience, we allow 𝑏 ≥ −1 and we fix the convention that

𝜅−1𝜓
𝑡 ..= 𝜓𝑡−1, 𝜓−1 = 0. (2.2)
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The classes that appear in Theorem 1.1 are those introduced in the previous notation, with a suitable choice of indices,
and a suitable coefficient, as described in the following.

Notation 2.5. Let 𝑟 ≥ 0, 𝑏 ≥ −1 and 𝑘1, … , 𝑘𝑟 > 0 be integers, and let
(
ℎ1, 𝑆1

)
< ⋯ <

(
ℎ𝑟, 𝑆𝑟

)
be an ordered chain of stable

bipartitions. Set 𝐡𝑟 =
(
ℎ1, … , ℎ𝑟

)
, 𝐒𝑟 =

(
𝑆1, … , 𝑆𝑟

)
and finally 𝐤𝑟 =

(
𝑘1, … , 𝑘𝑟

)
. We define the codimension

∑
1≤𝑎≤𝑟 𝑘𝑎,

resp. 𝑏 +
∑
1≤𝑎≤𝑟 𝑘𝑎 classes:

𝐗𝐤𝑟
(𝐡𝑟),(𝐒𝑟)

..=

⎧⎪⎪⎨⎪⎪⎩

1 when 𝑟 = 0,∑
0≤𝑖1≤𝑘1−1

⋯
0≤𝑖𝑟≤𝑘𝑟−1

(
𝑟∏

𝑗=1

(−1)𝑘𝑗−1
(𝑘𝑗 − 1

𝑖𝑗

))
𝑋(𝑖1,𝑘1−1−𝑖1),…,(𝑖𝑟 ,𝑘𝑟−1−𝑖𝑟)
(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟)

when 𝑟 > 0,

𝐙𝐤𝑟,𝑏
(𝐡𝑟),(𝐒𝑟)

..=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜅𝑏 when 𝑟 = 0,∑
0≤𝑖1≤𝑘1−1

⋯
0≤𝑖𝑟≤𝑘𝑟−1

(
𝑟∏

𝑗=1

(−1)𝑘𝑗−1
(𝑘𝑗 − 1

𝑖𝑗

))
𝑍(𝑖1,𝑘1−1−𝑖1),…,(𝑖𝑟 ,𝑘𝑟−1−𝑖𝑟),𝑏
(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟)

when 𝑟 > 0,

∑
0≤𝑖1≤𝑘1−1

⋯
0≤𝑖𝑟≤𝑘𝑟−2

(
𝑟∏

𝑗=1

(−1)𝑘𝑗−1
(𝑘𝑗 − 1

𝑖𝑗

))
𝑋(𝑖1,𝑘1−1−𝑖1),…,(𝑖𝑟 ,𝑘𝑟−2−𝑖𝑟)
(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟)

when 𝑏 = −1.

Given additional integers 𝑖 and 𝑗, we define the codimension 𝑖 + 𝑗 + 1 +
∑
1≤𝑎≤𝑟 𝑘𝑎 class:

Finally, given a further stable bipartition
(
ℎ𝑟+1, 𝑆𝑟+1

)
>

(
ℎ𝑟, 𝑆𝑟

)
as well, we define the codimension 𝑖 + 𝑗 + 1 +

∑
1≤𝑎≤𝑟 𝑘𝑎

class:

For uniformity of notation in sums, it will be convenient to define the latter tautological class 𝐗̃ even when the index 𝑟
equals −1. In this case we set that class to equal zero.

The motivation for introducing the tautological classes described above will become clear when in Section 3 we will
prove Theorem 1.1, but the reason to package the coefficients the way we did already appears in the following lemma.
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Lemma 2.6. If
(
ℎ1, 𝑆1

)
≰

(
ℎ2, 𝑆2

)
and

(
ℎ2, 𝑆2

)
≰

(
ℎ1, 𝑆1

)
then

𝐶ℎ1,𝑆1 ⋅ 𝐶ℎ2,𝑆2 = 0.

Let 𝑟 > 0 and assume
(
ℎ1, 𝑆1

)
< ⋯ <

(
ℎ𝑟, 𝑆𝑟

)
is a strictly ordered chain, and 𝑘1, … , 𝑘𝑟 > 0 are integers. Then we have

𝑟∏
𝑗=1

𝐶
𝑘𝑗
ℎ𝑗,𝑆𝑗

=
∑

0≤𝑖1≤𝑘1−1
⋯

0≤𝑖𝑟≤𝑘𝑟−1

(
𝑟∏

𝑗=1

(−1)(𝑘𝑗−1)
(𝑘𝑗 − 1

𝑖𝑗

))
𝐶(𝑖1,𝑘1−1−𝑖1)…(𝑖𝑟,𝑘𝑟−1−𝑖𝑟)
(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟)

.

Proof. This is a direct computation using [6, Appendix] where we use our convention that 𝑆𝑖 always contains the marking
1 and 𝑆𝑐𝑖

..= (𝑃 ∪ { 𝑥 }) ⧵ 𝑆𝑖 always contains the extra marking 𝑥 coming from the identification 𝑔,𝑃 =𝑔,𝑃∪{𝑥}.
Let 𝐺𝑖 be the graph associated to 𝐶ℎ𝑖,𝑆𝑖 . The intersection 𝐶ℎ1,𝑆1 ⋅ 𝐶ℎ2,𝑆2 is the sum of all graphs 𝐺 with 2 edges 𝑒1 and

𝑒2, such that contracting the edges 𝑒𝑖 gives the graph 𝐺𝑖 . The genus of the vertex 𝑣 of 𝐺 with the marking 1 has to equal
min

(
ℎ1, ℎ2

)
and its markings have to be 𝑆1 ∩ 𝑆2. Since both the edges 𝑒1 and 𝑒2 separate the markings 1 and 𝑥 only one

of these edges can be incident to 𝑣. Contracting the edge 𝑒𝑖 not incident to 𝑣 can only produce the graph 𝐺𝑖 associated to
𝐶ℎ𝑖,𝑆𝑖 if ℎ𝑖 = min

(
ℎ1, ℎ2

)
and 𝑆𝑖 = 𝑆1 ∩ 𝑆2. This proves the first part of the lemma.

The second part of the statement follows from repeatedly applying the same procedure together with the fact that
𝐶𝑘𝑖ℎ𝑖 ,𝑆𝑖

= 𝜉ℎ𝑖,𝑆𝑖 , ∗ (−𝜓∙ − 𝜓⋆)
𝑘𝑖−1, where ∙ and ⋆ are the half edges associated to the edge of 𝐶ℎ𝑖,𝑆𝑖 . □

F IGURE 2 Graphs 𝐺 contracting generically to 𝐺1 and 𝐺2

To conclude this section, we compute the pushforward of the classes of the previous lemma under the forgetful mor-
phism 𝜋∶ 𝑔,𝑃∪{𝑥} →𝑔,𝑃. This will be key to Section 2.4.

Lemma 2.7. Let 𝑟 > 0 and assume
(
ℎ1, 𝑆1

)
< ⋯ <

(
ℎ𝑟, 𝑆𝑟

)
is a strictly ordered chain of stable bipartitions. Let 𝑖1, … , 𝑖𝑟 ,

𝑗1, … , 𝑗𝑟 be nonnegative integers. We have

𝜋∗
(
𝐶(𝑖1,𝑗1),…,(𝑖𝑟 ,𝑗𝑟)
(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟)

)
=

{
0, 𝑗𝑟 = 0,

𝑋(𝑖1,𝑗1),…,(𝑖𝑟 ,𝑗𝑟−1)
(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟),

𝑗𝑟 > 0.

Proof. This follows immediately from Lemma 2.6 and from the String Equation (see [2, Prop. 4.9]). □

2.4 Pushforward of products of divisors on the universal curve

To establish our main result, Theorem 1.1, we will need a formula for the pushforward

𝜋∗

(
𝐾𝛼
𝜋 ⋅

∏
𝑝∈𝑃

𝜎
𝛽𝑝
𝑝

∏
ℎ,𝑆

𝐶
𝛾ℎ,𝑆
ℎ,𝑆

)

of an arbitrary product of divisor classes from the universal curve. By using the vanishing relations

1. 𝜎𝑝 ⋅ 𝜎𝑞 = 0 for all 𝑝 ≠ 𝑞,
2. 𝐾𝜋 ⋅ 𝜎𝑝 = 0 for all 𝑝 ∈ 𝑃,
3. 𝐶ℎ1,𝑆1 ⋅ 𝐶ℎ2,𝑆2 = 0 if

(
ℎ1, 𝑆1

)
≰

(
ℎ2, 𝑆2

)
and

(
ℎ2, 𝑆2

)
≰

(
ℎ1, 𝑆1

)
(see Lemma 2.6),
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this is reduced to the problem of proving the remaining lemmas of this section.
For the next result, we will also make use of the relation

𝜎𝑝 ⋅ 𝐶ℎ,𝑆 = 0 for all 𝑝 ∈ 𝑆. (2.3)

Lemma 2.8. Let 𝑟 ≥ 0 and assume
(
ℎ1, 𝑆1

)
< ⋯ <

(
ℎ𝑟, 𝑆𝑟

)
is a strictly ordered chain of stable bipartitions of (𝑔, 𝑃). Let

𝑏, 𝑘1, … , 𝑘𝑟 > 0 be integers. Then

𝜋∗

(
𝜎𝑏𝑝 ⋅

𝑟∏
𝑗=1

𝐶
𝑘𝑗
ℎ𝑗,𝑆𝑗

)
=

⎧⎪⎨⎪⎩
(
− 𝜓𝑝

)𝑏−1
𝐗𝐤𝑟
(𝐡𝑟),(𝐒𝑟),

if 𝑝 ∈ 𝑃 ⧵ 𝑆𝑟,

0 if 𝑝 ∈ 𝑆𝑟.

Proof. The second equality follows immediately from Equation (2.3). The first equality follows from Lemma 2.6 and from
the String Equation (see [2, Prop. 4.9]). □

Remark 2.9. The classes 𝜓𝑏−1𝑝 𝐗𝐤𝑟
(𝐡𝑟),(𝐒𝑟)

belong to the set of standard generators because of the equality 𝜓𝑒𝑝 ⋅ 𝜉Γ∗(𝛼) =
𝜉Γ∗

(
𝜓𝑒𝑝 ⋅ 𝛼

)
, which follows from the projection formula combined with the fact that psi classes pull back along the clutch-

ing morphisms.

Lemma 2.10. Let 𝑟 ≥ 0 and assume
(
ℎ1, 𝑆1

)
< ⋯ <

(
ℎ𝑟, 𝑆𝑟

)
is a strictly ordered chain of stable bipartitions of (𝑔, 𝑃). For

all integers 𝑘1, … , 𝑘𝑟 > 0 and 𝑏 ≥ 0 we have the identity

𝜋∗

(
𝐾𝑏
𝜋 ⋅

𝑟∏
𝑗=1

𝐶
𝑘𝑗
ℎ𝑗,𝑆𝑗

)
= 𝐙𝐤𝑟,𝑏−1

(𝐡𝑟),(𝐒𝑟)
.

Proof. The case 𝑏 = 0 follows immediately from Lemma 2.7 when 𝑟 > 0, and from the very definition of 𝐙𝐤𝑟,𝑏−1
(𝐡𝑟),(𝐒𝑟)

in the
case (𝑟, 𝑏) = (0, 0).
Let now 𝑏 > 0. Note that under the identification of the universal curve 𝑔,𝑃 with𝑔,𝑃∪{ 𝑥 } the class 𝐾𝜋 corresponds to

𝜓𝑥. The claim then follows from Lemma 2.6 and from the Dilaton Equation (see [2, Prop. 4.9]). □

3 PROOF OFMAIN THEOREM

This section provides a proof of our main result, Theorem 1.1, using the notation established in Section 2. We prove the
theorem by following Mumford (and later Chiodo), namely by applying the Grothendieck–Riemann–Roch formula to
the universal curve 𝜋. There are, in principle, different ways to approach the calculation. Our approach is to reduce this
computation to the pushforward along𝜋 of products of divisors, andwe know how to express them as linear combinations
of decorated boundary strata classes following Section 2.4.
Consider the divisor class

𝖣 = 𝓁𝐾𝜋 +
∑
𝑝∈𝑃

𝑑𝑝𝜎𝑝 +
∑
ℎ,𝑆

𝑎ℎ,𝑆𝐶ℎ,𝑆,

on the universal curve 𝑔,𝑃, where the indices (ℎ, 𝑆) run over the set of stable bipartitions of (𝑔, 𝑃) and 𝓁, 𝑑𝑝, 𝑎ℎ,𝑆 ∈ ℤ. It
will be convenient to write

𝖣 = 𝓁𝐾𝜋 + 𝖢 + 𝖲, (3.1)

where

𝖢 =
∑
ℎ,𝑆

𝑎ℎ,𝑆𝐶ℎ,𝑆, 𝖲 =
∑
𝑝∈𝑃

𝑑𝑝𝜎𝑝.
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For later use, we use the multinomial theorem and Lemma 2.6 to expand the power

𝖢𝑎

𝑎!
=

1
𝑎!

∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

( 𝑎
𝑘1, … , 𝑘𝑟

) 𝑟∏
𝑗=1

𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝐶
𝑘𝑗
ℎ𝑗,𝑆𝑗

=
∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

∑
0≤𝑖1≤𝑘1−1

⋯
0≤𝑖𝑟≤𝑘𝑟−1

𝑟∏
𝑗=1

⎛⎜⎜⎜⎝
𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝑘𝑗!
(−1)(𝑘𝑗−1)

(𝑘𝑗 − 1

𝑖𝑗

)⎞⎟⎟⎟⎠𝐶
(𝑖1,𝑘1−1−𝑖1),…,(𝑖𝑟 ,𝑘𝑟−1−𝑖𝑟)
(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟)

,

(3.2)

where
(
ℎ1, 𝑆1

)
< ⋯ <

(
ℎ𝑟, 𝑆𝑟

)
denotes any strictly ordered chain of stable bipartitions (such partial order being defined

in (2.1)).
Let Σ ⊂ 𝑔,𝑃 be the smooth closed codimension two substack parametrising the nodes in the fibers of the universal

curve 𝜋. Running the Grothendieck–Riemann–Roch formula we find

ch
(
𝑅∙𝜋∗𝒪(𝖣)

)
= 𝜋∗

(
ch(𝒪(𝖣)) ⋅ Td∨

(
Ω1
𝜋

))
= 𝜋∗

(
𝑒𝖣 ⋅

𝐾𝜋

𝑒𝐾𝜋 − 1
⋅ Td∨(𝒪Σ)

−1

)
.

Aclassical argument first given byMumford anddescribed in [2, Ch. 17.5] shows thatTd∨
(
𝒪Σ

)−1
− 1 intersects𝐾𝜋 trivially.

Therefore

ch
(
𝑅∙𝜋∗𝒪(𝖣)

)
= 𝜋∗

(
𝑒𝖣 ⋅

𝐾𝜋

𝑒𝐾𝜋 − 1
⋅
(
1 + Td∨

(
𝒪Σ

)−1
− 1

))
= 𝜋∗

(
𝑒𝖣 ⋅

𝐾𝜋

𝑒𝐾𝜋 − 1

)
+ 𝜋∗

((
Td∨

(
𝒪Σ

)−1
− 1

)
𝑒𝖣

)
= Ω+ Φ

where Ω (resp. Φ) is defined to be the first summand (resp. the second summand) of the previous equality.
The term Φ is computed in the following lemma.

Lemma 3.1. We have

𝜋∗
((
Td∨

(
𝒪Σ

)−1
− 1

)
𝑒𝖣

)
=

∑
𝑡≥2

∑
𝑎+𝑏=𝑡
𝑏>0 even
𝑎≥0

𝐵𝑏
𝑏!

∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

𝑟∏
𝑗=1

𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝑘𝑗!

∑
0≤𝑒≤𝑏−2

(−1)𝑒

×

(( ∑
(𝑙,𝑇)>(ℎ𝑟,𝑆𝑟)

𝐗̃𝐤𝑟,(𝑒,𝑏−2−𝑒)
(𝐡𝑟,𝑙),(𝐒𝑟,𝑇)

)
+ 𝐘̃𝐤𝑟,(𝑒,𝑏−2−𝑒)

(𝐡𝑟),(𝐒𝑟)
+ (−1)𝑘𝑟 𝐗̃𝐤𝑟−1,(𝑒+𝑘𝑟,𝑏−2−𝑒)

(𝐡𝑟−1,ℎ𝑟),(𝐒𝑟−1,𝑆𝑟)

)
.

Recall that in Notation 2.5 we set the class 𝐗̃𝐤−1 to equal zero.

Proof. A classical argument given in [2, Ch. 17.5] shows that 𝐾𝜋 and 𝜎𝑝 intersect
(
Td∨

(
𝒪Σ

)−1
− 1

)
trivially. We therefore

have

𝜋∗
((
Td∨

(
𝒪Σ

)−1
− 1

)
𝑒𝖣

)
= 𝜋∗

((
Td∨

(
𝒪Σ

)−1
− 1

)
𝑒𝖢

)
.
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The class Td∨
(
𝒪Σ

)−1
− 1 is also explicitly computed in [2, Ch. 17.5] as

Td∨
(
𝒪Σ

)−1
− 1 =

∑
𝑏>0
𝑏 even

𝐵𝑏
𝑏!

𝑏−2∑
𝑒=0

(−1)𝑒
(∑

𝑙,𝑇

𝐴(𝑒,𝑏−2−𝑒)
𝑙,𝑇 + 𝐵(𝑒,𝑏−2−𝑒)

)
(3.3)

where (𝑙, 𝑇) runs over all stable bipartitions, and we set

We expand 𝑒𝖢 =
∑
𝑎≥0 𝖢

𝑎∕𝑎! via (3.2), so that multiplying (3.3) with 𝑒𝖢 we obtain

(
Td∨

(
𝒪Σ

)−1
− 1

)
𝑒𝖢 =

∑
𝑡≥1

∑
𝑎+𝑏=𝑡
𝑏>0 even

𝐵𝑏
𝑏!

∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

∑
0≤𝑖1≤𝑘1−1

⋯
0≤𝑖𝑟≤𝑘𝑟−1

𝑟∏
𝑗=1

⎛⎜⎜⎜⎝
𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝑘𝑗!
(−1)(𝑘𝑗−1)

(𝑘𝑗 − 1

𝑖𝑗

)⎞⎟⎟⎟⎠

×

(
𝑏−2∑
𝑒=0

(−1)𝑒
(∑

𝑙,𝑇

𝐴(𝑒,𝑏−2−𝑒)
𝑙,𝑇 + 𝐵(𝑒,𝑏−2−𝑒)

))
𝐶(𝑖1,𝑘1−1−𝑖1)…(𝑖𝑟,𝑘𝑟−1−𝑖𝑟)
(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟)

.

By a straightforward computation in the spirit of Lemma 2.6 it follows that, if (𝑙, 𝑇) >
(
ℎ𝑟, 𝑆𝑟

)
(or if 𝑟 = 0),

If (𝑙, 𝑇) =
(
ℎ𝑟, 𝑆𝑟

)
and 𝑗𝑟 = 0,

and in all other cases,

𝜋∗
(
𝐴(𝑖′,𝑗′)
𝑙,𝑇 𝐶(𝑖1,𝑗1),…,(𝑖𝑟 ,𝑗𝑟)

(ℎ1,…,ℎ𝑟),(𝑆1,…,𝑆𝑟)

)
= 0.
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Similarly

Putting everything together we deduce the statement. □

The remainder of this section is devoted to computing the remaining term

Ω = 𝜋∗

(
𝑒𝖣 ⋅

𝐾𝜋

𝑒𝐾𝜋 − 1

)
.

This will conclude the proof of Theorem 1.1. First, in the notation of Equation (3.1), we find

Ω = 𝜋∗

(
𝑒𝖢+𝖲 ⋅

∑
𝑡≥0

𝐵𝑡(𝓁)
𝑡!

𝐾𝑡
𝜋

)

where we have used the identity ∑
𝑡≥0

𝐵𝑡(𝓁)
𝑡!

𝑥𝑡 = 𝑒𝓁𝑥
𝑥

𝑒𝑥 − 1

defining the Bernoulli polynomials 𝐵𝑡(𝓁). Now we use that

𝐾𝑡
𝜋 = 𝐾𝑡

𝜋 + (−1)𝑡
∑
𝑝∈𝑃

𝜎𝑡𝑝, for all 𝑡 > 0.

We obtain

Ω = 𝜋∗

(
𝑒𝖢+𝖲 ⋅

(
1 +

∑
𝑡>0

𝐵𝑡(𝓁)
𝑡!

𝐾𝑡
𝜋 +

∑
𝑡>0

(−1)𝑡𝐵𝑡(𝓁)
𝑡!

∑
𝑝∈𝑃

𝜎𝑡𝑝

))

= 𝜋∗𝑒
𝖢+𝖲 + 𝜋∗

(
𝑒𝖢+𝖲 ⋅

(
−1 + 1 +

∑
𝑡>0

𝐵𝑡(𝓁)
𝑡!

𝐾𝑡
𝜋

))
+ 𝜋∗

(
𝑒𝖢+𝖲 ⋅

(
−1 + 1 +

∑
𝑡>0

(−1)𝑡𝐵𝑡(𝓁)
𝑡!

∑
𝑝∈𝑃

𝜎𝑡𝑝

))
. (3.4)

Let us expand the second summand of (3.4). Before the pushforward, we have

𝑒𝖢+𝖲 ⋅

(
1 +

∑
𝑡>0

𝐵𝑡(𝓁)
𝑡!

𝐾𝑡
𝜋

)
= 𝑒𝖢 ⋅

(
𝑒𝖲 +

∑
𝑡>0

𝐵𝑡(𝓁)
𝑡!

𝐾𝑡
𝜋

)

because 𝐾𝜋 ⋅ 𝖲 = 0. It follows that

𝜋∗

(
𝑒𝖢+𝖲 ⋅

(
−1 + 1 +

∑
𝑡>0

𝐵𝑡(𝓁)
𝑡!

𝐾𝑡
𝜋

))
= −𝜋∗𝑒

𝖢+𝖲 + 𝜋∗

(
𝑒𝖢 ⋅

(
𝑒𝖲 +

∑
𝑡>0

𝐵𝑡(𝓁)
𝑡!

𝐾𝑡
𝜋

))

= 𝜋∗

(
𝑒𝖢 ⋅

(
−1 + 1 +

∑
𝑡>0

𝐵𝑡(𝓁)
𝑡!

𝐾𝑡
𝜋

))
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= −𝜋∗𝑒
𝖢 + 𝜋∗

((∑
𝑎≥0

𝖢𝑎

𝑎!

)
⋅

(∑
𝑏≥0

𝐵𝑏(𝓁)
𝑏!

𝐾𝑏
𝜋

))

= −𝜋∗𝑒
𝖢 +

∑
𝑡>0

𝑎+𝑏=𝑡

𝐵𝑏(𝓁)
𝑎!𝑏!

𝜋∗
(
𝖢𝑎 ⋅ 𝐾𝑏

𝜋

)
.

It remains to compute the last summand in (3.4). We start by observing that the formula

𝖲𝛼 ⋅

(∑
𝑝∈𝑃

𝜎𝑝

)𝛽

=
∑
𝑝∈𝑃

𝑑𝛼𝑝𝜎
𝛼+𝛽
𝑝 (3.5)

holds whenever (𝛼, 𝛽) ≠ (0, 0). We have

𝑒𝖲 ⋅

(
1 +

∑
𝑡>0

(−1)𝑡𝐵𝑡(𝓁)
𝑡!

∑
𝑝∈𝑃

𝜎𝑡𝑝

)
= 𝑒𝖲 ⋅

⎛⎜⎜⎝1 +
∑
𝑡>0

(−1)𝑡𝐵𝑡(𝓁)
𝑡!

(∑
𝑝∈𝑃

𝜎𝑝

)𝑡⎞⎟⎟⎠
= 1 +

∑
𝑡>0

𝛼+𝛽=𝑡

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!
𝖲𝛼 ⋅

(∑
𝑝∈𝑃

𝜎𝑝

)𝛽

= 1 +
∑
𝑡>0

𝛼+𝛽=𝑡

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!

∑
𝑝∈𝑃

𝑑𝛼𝑝𝜎
𝑡
𝑝.

We were allowed to apply (3.5) in the last equality thanks to the fact that 𝛼 and 𝛽 cannot both vanish. Now the last
summand in (3.4) equals

−𝜋∗𝑒
𝖢+𝖲 + 𝜋∗

⎛⎜⎜⎜⎝𝑒
𝖢 ⋅

⎛⎜⎜⎜⎝1 +
∑
𝑡>0

𝛼+𝛽=𝑡

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!

∑
𝑝∈𝑃

𝑑𝛼𝑝𝜎
𝑡
𝑝

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠.

This can be rewritten as

− 𝜋∗𝑒
𝖢+𝖲 + 𝜋∗

⎡⎢⎢⎢⎣1 +
∑
𝑡>0

⎛⎜⎜⎜⎝
𝖢𝑡

𝑡!
+

∑
𝑎+𝑏=𝑡
𝑏>0

𝖢𝑎

𝑎!

∑
𝛼+𝛽=𝑏

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!

∑
𝑝∈𝑃

𝑑𝛼𝑝𝜎
𝑏
𝑝

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

= −𝜋∗𝑒
𝖢+𝖲 + 𝜋∗𝑒

𝖢 +
∑
𝑡>0

𝑎+𝑏=𝑡
𝑏>0

𝛼+𝛽=𝑏

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!𝑎!

∑
𝑝∈𝑃

𝑑𝛼𝑝𝜋∗
(
𝖢𝑎 ⋅ 𝜎𝑏𝑝

)
. (3.6)

Summing up, we obtain

Ω =
∑
𝑡>0

𝑎+𝑏=𝑡

𝐵𝑏(𝓁)
𝑎!𝑏!

𝜋∗
(
𝖢𝑎 ⋅ 𝐾𝑏

)
+

∑
𝑡>0

𝑎+𝑏=𝑡
𝑏>0

𝛼+𝛽=𝑏

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!𝑎!

∑
𝑝∈𝑃

𝑑𝛼𝑝𝜋∗
(
𝖢𝑎 ⋅ 𝜎𝑏𝑝

)
.
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Combining (3.2) with Lemma 2.10, the first summand of Ω reads

∑
𝑡>0

𝑎+𝑏=𝑡

𝐵𝑏(𝓁)
𝑎!𝑏!

𝜋∗
(
𝖢𝑎 ⋅ 𝐾𝑏

)
=

∑
𝑡>0

𝑎+𝑏=𝑡

𝐵𝑏(𝓁)
𝑏!

∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

⎛⎜⎜⎜⎝
𝑟∏

𝑗=1

𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝑘𝑗!

⎞⎟⎟⎟⎠𝐙
𝐤𝑟,𝑏−1
(𝐡𝑟),(𝐒𝑟)

.

By Lemma 2.8, the second summand of Ω reads

∑
𝑡>0

𝑎+𝑏=𝑡
𝑏>0

𝛼+𝛽=𝑏

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!𝑎!

∑
𝑝∈𝑃

𝑑𝛼𝑝𝜋∗
(
𝖢𝑎 ⋅ 𝜎𝑏𝑝

)
=

∑
𝑡>0

𝑎+𝑏=𝑡
𝑏>0

𝛼+𝛽=𝑏

(−1)𝛽𝐵𝛽(𝓁)

𝛼!𝛽!

∑
𝑟≥0

𝑘1+⋯+𝑘𝑟=𝑎
𝑘𝑗>0

(ℎ1,𝑆1)<⋯<(ℎ𝑟,𝑆𝑟)

⎛⎜⎜⎜⎝
𝑟∏

𝑗=1

𝑎
𝑘𝑗
ℎ𝑗,𝑆𝑗

𝑘𝑗!

∑
𝑝∈𝑃⧵𝑆𝑟

𝑑𝛼𝑝
(
− 𝜓𝑝

)𝑏−1⎞⎟⎟⎟⎠𝐗
𝐤𝑟
(𝐡𝑟),(𝐒𝑟)

.

This concludes the proof of Theorem 1.1. □

Example 3.2. As a sanity check, we compute ch0
(
𝑅∙𝜋∗𝒪(𝖣)

)
using our formula in Theorem 1.1. This means extracting

the term with degree equal to 1 in the variable 𝑡. In particular, Φ does not contribute.
The only nonzero contribution from Ω occurs when 𝑎 = 0 and 𝑏 = 1 and it equals (first summand)(

𝓁 −
1
2

)
𝜅0 =

(
𝓁 −

1
2

)
(2𝑔 − 2 + 𝑛)

plus (second summand)

∑
𝑝∈𝑃

𝑑𝑝 −

(
𝓁 −

1
2

)
𝑛

which gives, for 𝑑 ..= 𝓁(2𝑔 − 2) +
∑
𝑝∈𝑃 𝑑𝑝, the Riemann–Roch formula

ch0
(
𝑅∙𝜋∗𝒪(𝖣)

)
= 𝑑 + 1 − 𝑔.

Example 3.3. Let us compute ch1
(
𝑅∙𝜋∗𝒪(𝖣)

)
in the generating set (which is actually a basis as long as 𝑔 ≥ 3) for the

rational Chow group of codimension-1 classes of𝑔,𝑃 consisting of

𝜅1,
{
𝜓𝑝

}
𝑝∈𝑃

, 𝛿irr,
{
𝛿ℎ,𝑆

}
(ℎ,𝑆)

.

This amounts to extracting the term of degree 2 in the variable 𝑡 from the formula of Theorem 1.1.
The summand Φ only contributes to 𝛿 = 𝛿irr +

∑
ℎ,𝑆 𝛿ℎ,𝑆 , and with coefficient

1

12
.

The summand Ω contributes to 𝜅1 with coefficient (from 𝑎 = 0 and 𝑏 = 2)

𝐵2(𝓁)
2!

=
𝓁2 − 𝓁 +

1

6

2
.

It contributes to 𝜓𝑝 for 𝑝 ∈ 𝑃 with coefficient (also from 𝑎 = 0 and 𝑏 = 2 but from the second summand of Ω)

−
1
2
𝑑2𝑝 +

(
𝓁 −

1
2

)
𝑑𝑝 −

𝓁2 − 𝓁 +
1

6

2
.

(The three summands correspond to the cases (𝛼, 𝛽) = (2, 0), (𝛼, 𝛽) = (1, 1), and (𝛼, 𝛽) = (0, 2) respectively).
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Furthermore, the term Ω contributes to 𝛿ℎ,𝑆 as follows. Setting 𝑑𝑆𝑐 ..=
∑
𝑝∈𝑃⧵𝑆 𝑑𝑝 the contribution of Ωwith 𝑎 = 𝑏 = 1

reads: ((
𝓁 −

1
2

)
(2𝑔 − 2ℎ − 1) + 𝑑𝑆𝑐

)
⋅ 𝑎ℎ,𝑆.

(We get 𝐵1(𝓁) ⋅ 𝑎ℎ,𝑆 ⋅ 𝐙
𝑘1=1,0
ℎ,𝑆 = (𝓁 − 1∕2) ⋅ 𝑎ℎ,𝑆 ⋅ (2𝑔 − 2ℎ − 1 + |𝑆𝑐|) from the first summand ofΩ. A further contribution

𝑑𝑆𝑐 ⋅ 𝑎ℎ,𝑆 comes from (𝛼, 𝛽) = (1, 0), whereas (𝛼, 𝛽) = (0, 1) contributes −(𝓁 − 1∕2) ⋅ 𝑎ℎ,𝑆|𝑆𝑐|.)
Finally, the contribution of Ωwith (𝑎, 𝑏) = (2, 0) is

−
𝑎2ℎ,𝑆
2
.

The coefficient of 𝛿ℎ,𝑆 is therefore

1
12

+
1
2
𝑎ℎ,𝑆 ⋅

(
(2𝑔 − 2ℎ − 1)(2𝓁 − 1) + 2𝑑𝑆𝑐 − 𝑎ℎ,𝑆

)
.

4 PULLBACK OF BRILL–NOETHER CLASSES VIA ABEL–JACOBI SECTIONS

In this section we review the definition of compactified universal Jacobians  𝑔,𝑃(𝜙) and then define the cohomological
universal Brill–Noether classes

𝗐𝑟𝑑(𝜙) ∈ 𝐴𝑔−𝜌
(
 𝑔,𝑃(𝜙)

)
,

where 𝜌 = 𝑔 − (𝑟 + 1)(𝑔 − 𝑑 + 𝑟) is the Brill–Noether number. We always assume 𝑟 ≥ 0 and 𝑑 < 𝑔 + 𝑟 throughout.
For fixed integers 𝓁 and 𝑑𝑃 ..=

{
𝑑𝑝 ∣ 𝑝 ∈ 𝑃

}
, in (4.7) we define the pullbacks

𝖹𝑟
𝓁,𝑑𝑃

(𝜙) = 𝗌∗𝗐𝑟𝑑(𝜙),

where 𝗌 = 𝗌𝓁,𝑑𝑃 is the Abel–Jacobi section defined by (1.4).
Finally, we observe how the main result of the previous section allows one to explicitly compute the classes 𝖹𝑟

𝓁,𝑑𝑃
(𝜙) in

terms of decorated boundary strata classes, for all 𝜙’s such that the section 𝗌 is a well-defined morphism on𝑔,𝑃.

4.1 Compactified universal jacobians

We first review the definition of the stability space 𝑉𝑑
𝑔,𝑃 from [13, Def. 3.2] and the notion of nondegenerate elements

therein. An element
𝜙 ∈ 𝑉𝑑

𝑔,𝑃

is an assignment, for every stable 𝑃-pointed curve (𝐶, 𝑃) of genus 𝑔 and every irreducible component 𝐶′ ⊆ 𝐶, of a real
number 𝜙(𝐶, 𝑃)𝐶′ such that ∑

𝐶′⊆𝐶

𝜙(𝐶, 𝑃)𝐶′ = 𝑑,

and

1. if 𝛼 ∶ (𝐶, 𝑃) → (𝐷,𝑄) is a homeomorphism of pointed curves, then

𝜙(𝐷,𝑄) = 𝜙(𝛼(𝐶, 𝑃));

2. the assignment 𝜙 is compatible with degenerations of pointed curves (in the sense of [13, Def. 3.2]).
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The notion of 𝜙-(semi)stability was introduced in [13, Def. 4.1 and 4.2]:

Definition 4.1. Given 𝜙 ∈ 𝑉𝑑
𝑔,𝑃 we say that a family 𝐹 of rank 1 torsion free sheaves of degree 𝑑 on a family of stable

curves is 𝜙-stable if the inequality

||||||deg𝐶0(𝐹) −
∑
𝐶′⊆𝐶0

𝜙(𝐶, 𝑃)𝐶′ +
𝛿𝐶0(𝐹)

2

|||||| <
#
(
𝐶0 ∩ 𝐶

𝑐
0

)
− 𝛿𝐶0(𝐹)

2
(4.1)

holds for every stable 𝑃-pointed curve (𝐶, 𝑃) of genus 𝑔 of the family, and for every subcurve (i.e. a union of irreducible
components) ∅ ≠ 𝐶0 ⊊ 𝐶. Here 𝛿𝐶0(𝐹) denotes the number of nodes 𝑝 ∈ 𝐶0 ∩ 𝐶

𝑐
0 such that the stalk of 𝐹 at 𝑝 fails to be

locally free. Semistability with respect to 𝜙 is defined by allowing equality in (4.1).
A stability parameter 𝜙 ∈ 𝑉𝑑

𝑔,𝑃 is said to be nondegenerate when 𝜙-semistability coincides with 𝜙-stability for all stable
𝑃-pointed curves of genus 𝑔.

For all 𝜙 ∈ 𝑉𝑑
𝑔,𝑃 there exists a moduli stack  𝑔,𝑃(𝜙) of 𝜙-semistable sheaves on stable curves, which comes with a

forgetful morphism

𝑝∶  𝑔,𝑃(𝜙) →𝑔,𝑃.

When 𝜙 is nondegenerate, by [13, Cor. 4.4], the stack  𝑔,𝑃(𝜙) is a smooth Deligne–Mumford stack, and the morphism 𝑝
is representable, proper and flat.

4.2 Universal Brill–Noether classes and their pullbacks

Let 𝜙 ∈ 𝑉𝑑
𝑔,𝑃 be nondegenerate. Then by [14, Cor. 4.3] and [13, Lem. 3.35] combined with our general assumption 𝑃 ≠ ∅,

there exists a tautological familyℒ(𝜙) of rank 1 torsion free sheaves of degree 𝑑 on the total space of the universal curve

𝜋 ∶  𝑔,𝑃(𝜙) ×𝑔,𝑃
𝑔,𝑃 →  𝑔,𝑃(𝜙).

Recall the following notation from [5, Ch. 14]. Let 𝑐 =
∑
𝑘∈ℤ 𝑐𝑘 be a formal sum of elements in a ring 𝑅. Then the 𝑝 × 𝑝

determinant |||𝑐𝑞+𝑗−𝑖||| in 𝑅 is denoted
Δ(𝑝)𝑞 𝑐 =

|||||||||
𝑐𝑞 𝑐𝑞+1 ⋯ 𝑐𝑞+𝑝−1
𝑐𝑞−1 𝑐𝑞 ⋯ 𝑐𝑞+𝑝−2
⋮ ⋮ ⋱ ⋮

𝑐𝑞−𝑝+1 𝑐𝑞−𝑝+2 ⋯ 𝑐𝑞

|||||||||
.

Generalising the idea of [14, Def. 3.38] (where the authors extended the universal theta divisor 𝗐0𝑔−1), we define the (uni-
versal, cohomological) Brill–Noether class using the Thom–Porteous formula, namely by

𝗐𝑟𝑑(𝜙)
..= Δ(𝑟+1)𝑔−𝑑+𝑟𝑐

(
− 𝑅∙𝜋∗ℒ(𝜙)

)
∈ 𝐴𝑔−𝜌

(
 𝑔,𝑃(𝜙)

)
, (4.2)

for 𝜌 = 𝑔 − (𝑟 + 1)(𝑔 − 𝑑 + 𝑟) the Brill–Noether number. One can interpret the class (4.2) as follows. Define the universal
Brill–Noether scheme as the closed subscheme

𝑟
𝑑(𝜙) = Fit𝑔−𝑑+𝑟

(
𝑅1𝜋∗ℒ(𝜙)

)
⊂  𝑔,𝑃(𝜙), (4.3)

defined by the (𝑔 − 𝑑 + 𝑟)-th Fitting ideal of 𝑅1𝜋∗ℒ(𝜙) (see [2, Ch. 21] for the use of Fitting ideals in Brill–Noether theory).
Then the Poincaré dual of (4.2) is the class that𝑟

𝑑(𝜙) would have as its fundamental class if it were pure of the expected
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codimension 𝑔 − 𝜌. The scheme (4.3) has an explicit description as a degeneracy scheme, which was already described in
the proof of [9, Lem. 6] in the case 𝑟 = 𝑑 = 0. Fix a sufficiently 𝜋-ample divisor𝐻, and consider the short exact sequence

0 → ℒ(𝜙) → ℒ(𝜙)(𝐻)
𝑢
O→ ℒ(𝜙) ⊗ 𝒪𝐻(𝐻) → 0.

Pushing this forward via 𝜋 yields a presentation

ℰ0
𝜋∗𝑢
⟶ ℰ1 → 𝑅1𝜋∗ℒ(𝜙) → 0

of 𝑅1𝜋∗ℒ(𝜙), where 𝜋∗𝑢 is a morphism of vector bundles whose virtual rank is

rkℰ0 − rkℰ1 = 𝑑 − 𝑔 + 1

by Riemann–Roch. The 𝑘-th degeneracy scheme of 𝜋∗𝑢, where 𝑘 = rkℰ0 − (𝑟 + 1) = rkℰ1 − (𝑔 − 𝑑 + 𝑟), is by definition
the zero scheme

𝑍
(
∧𝑘+1𝜋∗𝑢

)
⊂  𝑔,𝑃(𝜙), (4.4)

which agrees with (4.3) by the general theory of Fitting ideals. Note that, by this identification, the vanishing locus (4.4)
is independent of the choice of 𝐻. Moreover,𝑟

𝑑(𝜙) is set-theoretically supported on{
(𝐶, 𝑃, 𝐹) | ℎ0(𝐶, 𝐹) > 𝑟

}
⊂  𝑔,𝑃(𝜙).

The definition (4.2) is motivated by the following lemma.

Lemma 4.2. The class 𝗐𝑟𝑑(𝜙) is supported on𝑟
𝑑(𝜙). If the Brill–Noether scheme

𝑟
𝑑(𝜙) is pure of the expected codimension

𝑔 − 𝜌, then 𝗐𝑟𝑑(𝜙) is its fundamental class.

Proof. The first statement is proven in exactly the same manner as the first statement of [9, Lem. 6] (dealing with the case
𝑟 = 𝑑 = 0), namely by observing that the class (4.2) is by construction supported on the degeneracy scheme (4.4). The
second statement follows from [5, Thm. 14.4]. □

Example 4.3. For 𝑟 = 0 we have

𝗐0𝑑(𝜙) = 𝑐𝑔−𝑑
(
− 𝑅∙𝜋∗ℒ(𝜙)

)
. (4.5)

These classes can therefore be seen as some formal analogues of the 𝜆-classes on𝑔,𝑃, where −𝑅∙𝜋∗ℒ(𝜙) is taking the
role of the pushforward of the relative dualising sheaf, namely of the Hodge bundle 𝔼 = 𝜋∗𝜔𝜋. Note that for fixed 𝑑 the
classes (4.5) determine, by their defining formula (4.2), all other classes 𝗐𝑟𝑑(𝜙) for arbitrary 𝑟.

Remark 4.4. While the restriction0
𝑑 of

0
𝑑(𝜙) to𝑔,𝑃 always has the expected dimension (being the image of the 𝑑-th

symmetric product of the universal curve under the summationmap), arguing as in [9, Rem. 7] one sees that for each stable
bipartition (ℎ, 𝑆) there exists a nondegenerate 𝜙 such that0

𝑑(𝜙) contains the inverse image in  𝑔,𝑃(𝜙) of the boundary
divisor Δℎ,𝑆 . In particular,0

𝑑(𝜙) is, in general, not even equidimensional.

From now on we fix integers 𝓁 ∈ ℤ and 𝑑𝑃 ..=
{
𝑑𝑝 |𝑝 ∈ 𝑃

}
and set 𝑑 ..= 𝓁(2𝑔 − 2) +

∑
𝑝 𝑑𝑝. For 𝜙 ∈ 𝑉𝑑

𝑔,𝑛 nondegener-
ate, we define the rational map

𝗌 = 𝗌𝓁,𝑑𝑃 (𝜙)∶ 𝑔,𝑃 ⤏  𝑔,𝑃(𝜙) (4.6)

by Rule (1.4), for some choice of coefficients 𝑎ℎ,𝑆 . (This map is actually independent of the coefficients 𝑎ℎ,𝑆 of 𝐶ℎ,𝑆 as these
divisors are zero on the open dense substack that parametrises line bundles over smooth pointed curves).
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Definition 4.5. We define the pullback classes 𝖹𝑟
𝓁,𝑑𝑃

(𝜙) by the formula

𝖹𝑟
𝓁,𝑑𝑃

(𝜙) ..= 𝗌∗𝗐𝑟𝑑(𝜙) = 𝑝∗
(
𝗐𝑟𝑑(𝜙) ⋅

[
Σ(𝜙)

])
, (4.7)

where Σ(𝜙) is the closure in  𝑔,𝑃(𝜙) of the image of the section 𝗌.

The second equality of Formula (4.7) follows from the definition of pullback of an algebraic class by a rational map, and
it is well-defined because  𝑔,𝑃(𝜙) is proper.
When 𝜙 is such that the line bundle𝖣 of (1.1) is 𝜙-stable, themap (4.6) is a well-definedmorphism on𝑔,𝑃 but, because

the map is insensitive to the coefficients 𝑎ℎ,𝑆 , the converse is not true.

Definition 4.6. We define the open substack

𝑈(𝜙) ..= 𝑈𝓁,𝑑𝑃 (𝜙) ⊂𝑔,𝑃

to be the largest locus where the Abel–Jacobi section 𝗌 = 𝗌𝓁,𝑑𝑃 (𝜙) extends to a well-defined morphism.

In [13, Sect. 6.1] the authors describe the locus 𝑈(𝜙) in terms of 𝖣, and we now review that description. For all non-
degenerate 𝜙 ∈ 𝑉𝑑

𝑔,𝑃 there is a unique modification 𝖣(𝜙) of 𝖣 that coincides with 𝖣 on the locus parametrising smooth
curves and that is 𝜙-stable on all curves with exactly 1 node. More explicitly, 𝖣(𝜙) is obtained from 𝖣 by modifying the
coefficients 𝑎ℎ,𝑆 of 𝐶ℎ,𝑆 into coefficients 𝑎ℎ,𝑆(𝜙) in the unique way that makes the resulting 𝖣(𝜙) a divisor that is 𝜙-stable
on all curves of 𝑔,𝑃 with 1 node. By [13, Prop. 6.4] the open substack 𝑈(𝜙) can be characterised as the locus of 𝑔,𝑃

where 𝖣(𝜙) = 𝖣𝓁,𝑑𝑃 (𝜙) is 𝜙-stable.
We now show how Theorem 1.1 allows one to compute the restriction to 𝑈(𝜙) of the class 𝗌∗𝗐𝑟𝑑(𝜙). Chiodo’s formula

recovers the particular case when 𝖣(𝜙) equals 𝓁𝐾𝜋 +
∑
𝑝∈𝑃 𝑑𝑝𝜎𝑝.

Corollary 4.7. Let 𝜙 ∈ 𝑉𝑑
𝑔,𝑃 be nondegenerate. Then the equality of classes

𝖹𝑟
𝓁,𝑑𝑃

(𝜙) = Δ(𝑟+1)𝑔−𝑑+𝑟𝑐(−𝑅
∙𝜋∗𝒪(𝖣(𝜙))) (4.8)

holds on the open substack𝑈(𝜙) of 𝑔,𝑃.

Proof. Consider the Cartesian square

defining 𝗌′. We have the following equalities in the Chow group of 𝑈(𝜙):

𝗌∗𝑐𝑘
(
− 𝑅∙𝜋∗ℒ(𝜙)

)
= 𝑐𝑘𝗌

∗
(
− 𝑅∙𝜋∗ℒ(𝜙)

)
= 𝑐𝑘

(
− 𝑅∙𝜋∗𝗌

′∗ℒ(𝜙)
)
= 𝑐𝑘

(
− 𝑅∙𝜋∗𝒪(𝖣(𝜙))

)
.

All equalities require to restrict to the locus where 𝗌 is a morphism. The first follows from the fact that Chern classes
commute with pullbacks via lci morphisms. The second is cohomology and base change [10, Thm. 8.3.2], using that 𝜋
is flat and 𝑅∙𝜋∗ℒ(𝜙) is represented by a two-term complex of vector bundles. The third and the last follow from the
definition of a tautological sheaf and of 𝗌′. Formula (4.8) now follows from the definition of 𝖹𝑟

𝓁,𝑑𝑃
(𝜙) and from the fact

that the pullback along the morphism 𝗌 is a ring homomorphism. □
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Combining Formula (4.8) with the formula

𝑐𝑡(𝖥) =

[
exp

(∑
𝑠≥1

(−1)𝑠−1(𝑠 − 1)! ch𝑠(𝖥)

)]
𝑡

(4.9)

expressing the Chern classes of a 𝐾-theory element 𝖥 in terms of the Chern character, and then applying Theorem 1.1,
yields an explicit formula, in terms of decorated boundary strata classes, for the restriction of 𝖹𝑟

𝓁,𝑑𝑃
(𝜙) to the open locus

𝑈(𝜙) of 𝑔,𝑃. In particular, this computes𝖹𝑟𝓁,𝑑𝑃 (𝜙) for all 𝜙 such that the corresponding Abel–Jacobi section (4.6) extends

to a morphism on𝑔,𝑃.

4.3 Relation to the double ramification cycle

We conclude this section by relating the classes 𝖹𝑟
𝓁,𝑑𝑃

(𝜙) (defined in 4.5) for 𝑟 = 𝑑 = 0 to the large body of literature on
the Double Ramification Cycle (DRC). We will start by introducing the DRC, following the perspective of [9], which is in
turn based on the resolution of the indeterminacy of the Abel–Jacobi section by D. Holmes [8] (see also [15]). For more
details we refer the reader to [9].
Let  0

𝑔,𝑃 be the universal generalised Jacobian, or the moduli stack of multidegree zero line bundles on stable curves
(equivalently, the unique semiabelian extension of the degree zero universal Jacobian over 𝑔,𝑃). For fixed integers
𝓁 ∈ ℤ, 𝑑𝑃 ∶ 𝑃 → ℤ such that

𝓁(2𝑔 − 2) +
∑
𝑖∈𝑃

𝑑𝑖 = 0,

let 𝖲 ⊂ 
0
𝑔,𝑃 be the closure of the image of the Abel–Jacobi section 𝗌 = 𝗌𝓁,𝑑𝑃 ∶ 𝑔,𝑃 ⤏ 

0
𝑔,𝑃. Call 𝑓 the restriction to 𝖲 of

the forgetful morphism 
0
𝑔,𝑃 →𝑔,𝑃, and consider the fiber product diagram

that defines the upper left corner. Here 𝑠̃ is the inclusion and 𝑒 is the pullback of the zero section 𝑒. Denoting by
[
𝖲̃
]
the

class of the image of 𝑠̃, one can define the 𝓁-twisted DRC following Holmes’ work [8] by

𝖣𝖱𝖢
(
𝓁, 𝑑𝑃

) ..= 𝑓∗𝑒
∗
[
𝖲̃
]
. (4.10)

(The fact that when 𝓁 = 0 this definition coincides with the “usual” DRC defined as the pushforward of the virtual class
on the moduli space of relative stable maps to rubber ℙ1 follows from [8, Thm. 1.3], combined with the observation in [9,
Lem. 11] that Holmes’ stack

◊
𝑔,𝑛 equals the normalisation of 𝖲).

Denoting by [𝖤] the class of the image of the zero section in 
0
𝑔,𝑃, we deduce the equality of classes

𝖣𝖱𝖢
(
𝓁, 𝑑𝑃

)
= 𝗌∗

𝓁,𝑑𝑃
[𝖤] (4.11)

by the projection formula and by the definition of pullback along the rational map 𝗌. This expression for the DRC is now
closely related to the definition of the classes𝖹 (Definition 4.5). Indeed, whenever𝜙 ∈ 𝑉0

𝑔,𝑛 is nondegenerate and such that

0
𝑔,𝑃 ⊂  𝑔,𝑃(𝜙), by [9, Cor. 10] we have that𝗐00(𝜙) = [𝖤], so that𝖣𝖱𝖢

(
𝓁, 𝑑𝑃

)
= 𝖹0

𝓁,𝑑𝑃
(𝜙). Combining this with Corollary 4.7,

we deduce the equality
𝖣𝖱𝖢

(
𝓁, 𝑑𝑃

)|𝑈(𝜙) = 𝑐𝑔
(
− 𝑅∙𝜋∗𝖣(𝜙)

)|𝑈(𝜙), (4.12)
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which is valid whenever the inclusion 
0
𝑔,𝑃 ⊂  𝑔,𝑃(𝜙) holds. Note that 𝑈(𝜙) always contains the moduli stack ct

𝑔,𝑃 of
curves of compact type.
The right hand side of (4.12) can be computed in terms of standard tautological classes by applying Theorem 1.1 in

combination with (4.9). For 𝓁 = 0, the left hand side of (4.12) has been computed in terms of standard tautological classes
by Janda–Pandharipande–Pixton–Zvonkine [12]. This produces lots of explicit relations in the tautological ring of the
moduli stackct

𝑔,𝑃 of curves of compact type. We do not know if there is any reason to expect that these relations should
be expressible as linear combinations of known ones, i.e. Pixton’s relations proven in [17] and [11].
Relation (4.12) is also valid over𝑔,𝑃 for some choices of 𝓁, 𝑑𝑃. In [9, Prop. 14] the authors observed that𝑈(𝜙) coincides

with𝑔,𝑃 if and only if 𝓁 = 0 and 𝑑𝑃 = 𝑒𝑖 − 𝑒𝑗 for some 𝑖, 𝑗 ∈ 𝑃, where 𝑒𝑡 ∶ 𝑃 → ℤ is defined by

𝑒𝑡(𝑝) ..=

{
1 when 𝑡 = 𝑝,

0 otherwise.

For 𝖣𝑖,𝑗 ..= 𝜎𝑖 − 𝜎𝑗 , Relation (4.12) becomes

𝖣𝖱𝖢
(
𝓁 = 0, 𝑒𝑖 − 𝑒𝑗

)
= 𝑐𝑔

(
− 𝑅∙𝜋∗𝖣𝑖,𝑗(𝜙)

)
∈ 𝑅𝑔

(
𝑔,𝑃

)
, (4.13)

which again is valid whenever 𝜙 is such that the inclusion 
0
𝑔,𝑃 ⊂  𝑔,𝑃(𝜙) holds. Explicitly, the modified divisor 𝖣𝑖,𝑗(𝜙)

equals

𝖣𝑖,𝑗(𝜙) = 𝜎𝑖 − 𝜎𝑗 −
∑

(ℎ,𝑆)∶𝑖∈𝑆,𝑗∉𝑆

𝐶ℎ,𝑆 +
∑

(ℎ,𝑆)∶𝑗∈𝑆,𝑖∉𝑆

𝐶ℎ,𝑆.

Again, the right hand side of (4.13) is computed by combining Theorem 1.1 with (4.9), and the left hand side was calculated
in [12]. Using [18] we have verified that the ensuing relation of standard tautological classes can be expressed as a linear
combination of Pixton’s relations for all 𝑔 ≤ 4. This also provides a non-trivial check of our formula in Theorem 1.1. Again,
we do not know of an a priori reason to expect these relations to follow from Pixton’s, except when 𝑖 = 𝑗 where the right
hand side of (4.13) simply equals 𝜆𝑔.

5 OPEN PROBLEMS

We conclude the paper with a list of natural open questions.

5.1 Is 𝗭(𝝓) tautological?

Formula (4.8) implies that the restriction of each class 𝖹(𝜙) to𝑈(𝜙) is tautological on𝑈(𝜙) – meaning that it is the restric-
tion to 𝑈(𝜙) of a tautological class globally defined on 𝑔,𝑃. That tautological class is explicitly expressed in terms of
decorated boundary strata by combining Theorem 1.1 with Formulas (4.8) and (4.9). We do not know whether the class
𝖹(𝜙) is, in general, itself tautological on𝑔,𝑃, althoughwe do expect that this should be the case. Except forwhen𝖹(𝜙)has
codimension 1 or 2 (whenwe know that the entire cohomology of 𝑔,𝑃 is tautological), the only classes𝖹(𝜙) that we know
to be tautological on 𝑔,𝑃 for general 𝑔 and 𝑃 are those for 𝑟 = 𝑑 = 𝑘 = 0 and 𝜙 a small perturbation of 0 ∈ 𝑉0

𝑔,𝑃. This
follows from the main result of [9], showing that this class coincides with the Double Ramification Cycle, see Section 4.3.
The latter is shown to be tautological in [4].

5.2 Wall-crossing

For fixed 𝑑 ∈ ℤ and for every choice of nondegenerate elements 𝜙 and 𝜙′ of 𝑉𝑑
𝑔,𝑃 one has classes 𝗐

𝑟
𝑑(𝜙) ∈ 𝐴∙

(
 𝑔,𝑃(𝜙)

)
and 𝗐𝑟𝑑(𝜙

′) ∈ 𝐴∙
(
 𝑔,𝑃(𝜙

′)
)
. A natural question is to “compute” (in terms of some natural classes) the difference

𝗐𝑟𝑑(𝜙) − 𝛼∗
(
𝗐𝑟𝑑(𝜙

′)
)
∈ 𝐴𝑔−𝜌

(
 𝑔,𝑃(𝜙)

)
,
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where 𝛼 is any birational isomorphism  𝑔,𝑃(𝜙) ⤏  𝑔,𝑃(𝜙
′) that commutes with the forgetful morphisms to𝑔,𝑃 (such

birationalmaps are esplicitly characterised in [13, Sect. 6.2]). To the best of our knowledge, this question has been answered
only for the case of the theta divisor, namely when 𝑟 = 0 and 𝑑 = 𝑔 − 1, in [14, Thm. 4.1].
Another natural question is to compute the difference of the pullbacks

𝖹𝑟
𝓁,𝑑𝑃

(𝜙) − 𝖹𝑟
𝓁′,𝑑′𝑃

(𝜙′) ∈ 𝐴𝑔−𝜌
(
𝑔,𝑃

)
(5.1)

for different assignments
(
𝓁, 𝑑𝑃

)
,
(
𝓁′, 𝑑′𝑃

)
such that 𝓁(2𝑔 − 2)

∑
𝑝∈𝑃 𝑑𝑝 = 𝓁′(2𝑔 − 2)

∑
𝑝∈𝑃 𝑑

′
𝑝 = 𝑑 and different nonde-

generate 𝜙, 𝜙′ ∈ 𝑉𝑑
𝑔,𝑃. The case of the pullback of the theta divisor is again covered explicitly in [14, Thm. 5.1]. Theorem 1.1

immediately allows us to generalise the result in loc. cit., in the sense that it computes explicitly, in terms of decorated
boundary strata classes of𝑔,𝑃, the difference (5.1), whenever 𝜙 and 𝜙′ are such that the corresponding Abel–Jacobi sec-
tions 𝗌 and 𝗌′ extend to morphisms on𝑔,𝑃. Example 3.3 checks that the results of this paper match the earlier results of
[14] for the case of the pullback of the theta divisor.
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