Supporting Information (10 pages, 3 Tables, 6 Figures)

Facilitating nitrification inhibition through green, mechanochemical synthesis of a novel nitrapyrin complex

Lucia Casali,[†] Valquiria Broll,[‡] Stefano Ciurli,[‡]* Franziska Emmerling,^{††}* Dario Braga,[†] Fabrizia

Grepioni.**

† Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.

E-mail: fabrizia.grepioni@unibo.it

‡ Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of

Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy. E-mail: stefano.ciurli@unibo.it

††BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489

Berlin, Germany. E-mail: franziska.emmerling@bam.de

Single Crystal X-ray Diffraction	2
Powder X-ray diffraction	3
Raman spectroscopy	4
Inhibition tests	6
TEM and EDX	7
¹ H-NMR spectroscopy in solution	8
Thermogravimetric Analysis (TGA)	9
References	10

Single Crystal X-ray diffraction

 Table S1. Crystal data and details of measurement for nitrapyrin (NP).

	NP
Formula	C ₆ H ₃ Cl ₄ N
Mr (g mol ⁻¹)	230.89
Temperature (K)	293
Morphology, colour	Prism, colourless
Crystal System	Monoclinic
Space group	P2 ₁ /m
Z	4
a (Å)	9.0327(4)
b (Å)	7.2075(6)
c (Å)	13.7485(6)
α (deg)	90
β (deg)	102.079(4)
γ (deg)	90
V (ų)	875.25(9)
d (g/cm³)	1.752
μ (mm ⁻¹)	1.281
θ-range (deg)	3.645 – 26.301
Refls collected/unique	3920/2139
GoF	1.0354
Threshold expression	Fo > 4σ(Fo)
R1(obs)	0.0570
wR2 (all)	0.1798

Powder X-ray diffraction.

Fig. S1. Comparison of the XRPD patterns of β -CD·NP synthesized by kneading (green line) with the starting materials β -CD (black line) and NP (red line): the powder pattern of the complex is clearly distinct from the diffractograms of the reagents and from the one of the grinding mixture (blue line).

Fig. S2. Pawley refinement plot with the corresponding unit cell parameters and FOM for the inclusion complex β -CD·NP synthesized via mechanochemistry.

Fig. S3. 2D plot as in Figure 2 of the main text, but without the red and orange boxes.

Raman spectroscopy

Table S2. Raman wavenumbers (cm⁻¹) and assignments for the main bands of β -CD,¹ NP²⁻⁴ and β -CD·NP [For sake of clarity, NP and β -CD are indicated here as N and B, respectively].

β-CD	NP	β-CD/NP	Assignments
	3133	3138	CH stretching (N)
	3073	3083	CH stretching (N)
2943		2945	CH stretching (B)
2908		2905	CH stretching (B)
	1564	1568	ring stretching + CH in plane bending (N)
1466		1462	CH bending (B)
1453		1456	CH bending (B)
	1434	1434	ring stretching + CH in plane bending (N)
	1401	1401	ring stretching + CH in plane bending (N)
1340		1340	OH in plane bending (B)

	1281	1271	CH in plane bending (N)
1258		1261	OH in plane bending (B)
1248		1245	OH in plane bending (B)
	1209	1215	ring stretching (N)
	1159	1143	ring stretching (N)
	1093	1113	CH in plane bending + CCl_3 asymmetric stretching (N)
1083		1089	coupled CC and CO stretching (B)
1042		1046	coupled CC and CO stretching (B)
	988	988	ring breathing (N)
948		948	ring vibration (B)
	931	927	CH out of plane bending (N)
	810	817	CH out of plane bending (N)
	776	762	CCl ₃ symmetrical deformation mode (N)
	633	633	CCl ₃ asymmetrical deformation mode (N)
587		594	ring vibration (B)
576		576	ring vibration (B)
480		480	ring vibration (B)
440		440	ring vibration (B)
	411	411	C _{ring} -Cl stretching (N)

With regard to β -CD, the main variations are attributable to CH stretching (change in the band profile at about 3000-2900 cm⁻¹), CH bending (at about 1400-1380 cm⁻¹), OH in plane bending (at about 1330 cm⁻¹), coupled CC and CO stretching (in the 1050–1030 cm⁻¹ range), and ring and skeletal vibrations (600–400 cm⁻¹). It is interesting to note that the bands assignable to β -CD appear strengthened.

The main bands of NP that undergo changes are C-H stretching (at about 3100 cm⁻¹), CH bending (around 1400 cm⁻¹), ring stretching (at about 1200-1100 cm⁻¹) and C-Cl stretching (411 cm⁻¹). It can be observed that some NP bands noticeably vary in intensity because of the interaction with β -CD. These results prove the occurrence of interactions between NP and β -CD because they indicate a change in the chemical environment experienced by both components upon formation of the inclusion complex.

Inhibition tests

Table S3. Full data related to Figure 6 in the main text.

 O_2 consumption by *N. europaea* in the absence of inhibitors, in the presence of 100 μ M NP or in the presence of 100 μ M β -CD·NP complex, at t = 0 h

	Mean (%)	SD (%)
Nitrosomonas europaea	100	0.3
+NP 100 μM	52.4	0.3
+ β-CD・NP 100 μM	57.7	0.6

 O_2 consumption after 2 h incubation of *N. europaea* in the absence of inhibitors, in the presence of 100 μ M NP or in the presence of 100 μ M β -CD·NP complex, at t = 2 h

	Mean (%)	SD (%)
Nitrosomonas europaea	100	0.2
+NP 100 μM	15.4	0.5
+ β-CD•NP 100 μM	15.7	0.2

Nitrite production by *N. europaea* in the absence of inhibitors, in the presence of 100 μ M NP or in the presence of 100 μ M β -CD·NP complex, at t = 0 h

	Mean (%)	SD (%)
Nitrosomonas europaea	100	0.03
+NP 100 μM	113.2	0.03
+ β-CD·NP 100 μM	118.9	0.03

Nitrite production after 2 h incubation of *N. europaea* with increasing amount of NP or β -CD·NP complex

	Mean (%)	SD (%)
Nitrosomonas europaea	100	0.012
+NP 10 μM	79.6	0.004
+NP 25 μM	24.0	0.006
+NP 50 μM	0.05	0.014
+NP 100 μM	0.01	0.022
Nitrosomonas europaea	100	0.012
+ β-CD•NP 10 μM	79.6	0.012
+ β-CD•NP 25 μM	26.6	0.006
+ β-CD•NP 50 μM	0.05	0.020
+ β-CD·NP 100 μM	0.01	0.006

TEM and EDX

(b)

Fig. S4. (a) Elemental mapping on a single crystal of the inclusion complex β -CD·NP, and (b) the corresponding spectrum resulting from the contribution of each element in the sample: C, N, Cl and O atoms are all detectable.

4. ¹H-NMR spectroscopy⁵

 β -CD·NP powder was dissolved in D₂O and an ¹H-NMR spectrum was recorded on a Varian INOVA 400 (400 MHz) spectrometer. Chemical shifts are reported in ppm, with tetramethylsilane as internal reference standard.

Fig. S5. ¹H-NMR spectrum in D₂O of the inclusion complex β -CD-NP mechanochemically synthesized (the purity of the sample was previously verified by PXRD analysis). Evidence of the inclusion complex formation is found in the signals of NP, which would otherwise be undetectable given its insolubility in water. By comparing the integration of the peaks corresponding to the two components, it was possible to calculate the host/guest stoichiometric ratio of the complex; integration of diagnostic peaks for β -CD (H1, 7.00 H, $\delta \approx 5.1$ ppm) and nitrapyrin (Hc, 1.04 H, $\delta \approx 7.7$ ppm) confirms the 1:1 stoichiometry.

5. Thermogravimetric Analysis (TGA)

Fig. S6. TGA traces for NP (top), β -CD (middle) and β -CD·NP (bottom). The weight loss at T < 100 °C for the complex corresponds to ca. 3 water molecules per formula unit.

References

- Russell, N. R.; McNamara, M. FT-IR and Raman Spectral Evidence for Metal Complex Formation with β-Cyclodextrin as a First Sphere Ligand. *J. Incl. Phenom. Mol. Recognit. Chem.* **1989**, *7* (4), 455–460. https://doi.org/10.1007/BF01079781.
- Mahalakshmi, G.; Balachandran, V. FT-IR, FT-Raman and DFT Study of 3,3'-Bis (Trifluoromethyl)
 Benzophenone and Its Biological Activity with Other Halogen (Cl, Br) Atoms. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.* 2014, 124, 328–340. https://doi.org/10.1016/j.saa.2014.01.038.
- Govindarajan, M.; Karabacak, M.; Udayakumar, V.; Periandy, S. FT-IR, FT-Raman and UV Spectral Investigation: Computed Frequency Estimation Analysis and Electronic Structure Calculations on Chlorobenzene Using HF and DFT. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* 2012, *88*, 37–48. https://doi.org/10.1016/j.saa.2011.11.052.
- (4) Sundaraganesan, N.; Ilakiamani, S.; Anand, B.; Saleem, H.; Joshua, B. D. FTIR, FT-Raman Spectra and Ab Initio DFT Vibrational Analysis of 2-Amino-5-Chloropyridine. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* 2006, 64 (3), 586–594. https://doi.org/10.1016/j.saa.2005.07.061.
- T. Pessine, F. B.; Calderini, A.; L., G. Review: Cyclodextrin Inclusion Complexes Probed by NMR Techniques. *Magn. Reson. Spectrosc.* 2012, No. March. https://doi.org/10.5772/32029.