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A widely held view of the visual system supported the perspective that the primate brain
is organized in two main specialized streams, called the ventral and dorsal streams. The
ventral stream is known to be involved in object recognition (e.g., form and orientation).
In contrast, the dorsal stream is thought to be more involved in spatial recognition
(e.g., the spatial relationship between objects and motion direction). Recent evidence
suggests that these two streams are not segregated but interact with each other.
A class of visual stimuli known as Glass patterns has been developed to shed light
on this process. Glass patterns are visual stimuli made of pairs of dots, called dipoles,
that give the percept of a specific form or apparent motion, depending on the spatial
and temporal arrangement of the dipoles. In this review, we show an update of the
neurophysiological, brain imaging, psychophysical, clinical, and brain stimulation studies
which have assessed form and motion integration mechanisms, and the level at which
this occurs in the human and non-human primate brain. We also discuss several studies
based on non-invasive brain stimulation techniques that used different types of visual
stimuli to assess the cortico-cortical interactions in the visual cortex for the processing
of form and motion information. Additionally, we discuss the timing of specific visual
processing in the ventral and dorsal streams. Finally, we report some parallels between
healthy participants and neurologically impaired patients in the conscious processing of
form and motion.

Keywords: glass patterns, motion-form integration, ventral and dorsal stream, neural modulation, conscious
perception

INTRODUCTION

It is generally claimed that motion perception in visual stimuli involves sensors selective to
direction, while form perception involves neurons selective to orientation and size (Mishkin
et al., 1983; Ungerleider and Haxby, 1994; Braddick et al., 2000). The visual system is organized
in two anatomically distinct pathways: the dorsal stream and the ventral stream. The dorsal
stream connects the striate cortex and the parietal area. It is known as the “where” stream
because it is involved in motion, spatial processing, and goal-directed actions. On the other
hand, the ventral pathway connects the striate cortex and the inferior temporal area, and it is
known as the “what” stream because it processes form information (Shen et al., 1999; Figure 1).
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FIGURE 1 | Example of motion streak reported by Apthorp et al. (2013). The
blurred line that precedes the object (the playing card) gives an index of
motion direction. Photo credit: Tod Klassy.

Ungerleider and Mishkin (1982) were the first authors to propose
the idea that the cortico-cortical projections that originate from
the striate cortex are organized into two functionally distinct and
anatomically separate streams.

However, there is evidence that the dorsal and ventral streams
are not independent and separate as initially thought but that they
constantly interact to provide a uniform and stable representation
of the visual scene.

An example of form and motion interaction comes from
the studies on “motion streaks” (Geisler, 1999). Motion streaks
are blurred lines created by fast motion that follow the object’s
trajectory. This phenomenon is due to the persistence of the
retinal image, and it usually aids the processing of directional
motion (Figure 2; Burr and Ross, 2002).

A peculiar feature of motion streaks is that they are speed
dependent (Apthorp et al., 2009, 2013; Alais et al., 2011). In a
set of psychophysical experiments conducted by Geisler (1999),
the author found that participants reported higher detection
thresholds when the motion of a Gaussian dot (target) was
masked by parallel dynamic random lines (noise) compared
to the condition in which the noise was perpendicular to the
direction of the Gaussian dot. However, this result was obtained
only when the speed threshold was approximately one dot width
per 100 ms. This phenomenon occurs because cells in the
early visual cortex have a temporal integration window of ∼100
milliseconds (Burr, 1980; Snowden and Braddick, 1989; Apthorp
et al., 2009; Alais et al., 2011); consequently, rapid moving objects
produce motion smear.

According to Geisler’s model (Geisler, 1999), the visual system
uses the orientation information created by the partial smearing
of an object to infer its trajectory. Therefore, orientation-selective
neurons contribute to improving the perception of motion
direction. Geisler’s model might be considered an example of
interaction of the dorsal and ventral streams that strengthens the
encoding of “motionness” of visual stimuli (Kourtzi et al., 2008;
Or et al., 2010; McCarthy et al., 2012; Apthorp et al., 2013;

FIGURE 2 | Common types of static GPs used in studies that investigate the
neural basis of form and motion interaction. (A) Circular GP; (B) radial GP; (C)
spiral GP; (D) translational/parallel GP.

Mather et al., 2013; Blair et al., 2014; Tang et al., 2015; Pavan
et al., 2017b). This means that the orientation information that
is thought to be processed by the ventral stream facilitates the
perception of motion direction that is known to be processed
by the dorsal stream. Geisler’s model goes beyond the classical
view of the visual system that considers motion and form as
two segregated and distinct processes (Ungerleider and Mishkin,
1982). There is neurophysiological evidence in cats and monkeys
that motion streaks are processed by both motion and form
selective areas in the visual cortex (Geisler et al., 2001). This
was also confirmed by a neuroimaging study of Apthorp et al.
(2013). The authors used fMRI to measure brain activity while
participants observed either fast random-dot stimuli drifting at
13.02 deg/s (i.e., inducing motion streaks), slow random-dot
stimuli (1.63 deg/s) moving in different directions, or static-
oriented stimuli. The authors found patterns of brain activity
in early visual cortical areas distinguishing between different
static orientations. A multivariate pattern classifier trained on
the brain activity evoked by the static oriented stimuli could
then distinguish the direction of fast (i.e., motion streaks) but
not slow motion. The authors found that the early visual cortex
was activated for fast motion, while human area MT (hMT +)
responded similarly to fast and slow motion. This indicates that
fast directional motion that elicited “motion streaks” was not
only processed by the motion complex (hMT +), as reported by
early cell recording studies, but also by the primary visual cortex
sensitive to the oriented cues created by high-speed motion.

The role of the area MT in visual motion processing was firstly
studied by Allman and Kaas (1971) in owl monkeys through a
set of experiments that explored the visuotopic organization of
the middle temporal gyrus. Subsequently, Zeki (1974) identified
in macaque monkeys an equivalent visual motion area in the
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superior temporal sulcus (STS). Recent researches are now
focused on studying not only motion processing but also how
form and orientation signals can influence the perception of
motion; motion streak studies are an example.

Ross et al. (2000) also provided experimental evidence in
support of the motion streak hypothesis. The authors used
a class of visual stimuli called Glass patterns (GPs; Glass,
1969) that are formed by pairs of dots known as dipoles to
demonstrate that form cues give the percept of coherence to
an incoherent motion. Different and complex shapes can be
obtained from GPs depending on the geometric transforms
applied to the local orientation of dipoles. The aim of the
experiment of Ross et al. (2000) was to assess the limits of
the perceived spin in dynamic GPs. In particular, they used
dynamic circular GPs made by ten independent frames and
asked participants to judge from 0 to 9 whether the circular
motion they perceived was clear and vivid or not. Although
participants saw circular motion in GPs, the perceived motion
direction was ambiguous (i.e., whether the motion was clockwise
or counter-clockwise). Comparing participants’ performance in
discriminating the spin of circular GPs and the spin of real
rotational motion, created by simple directional dots, participants
showed similar performance for both types of visual stimuli. This
indicates that the visual system does not distinguish between
apparent and real circular motion. In conclusion, Ross et al.
(2000) demonstrated that the orientation (form) signal contained
in GPs influences the perception of motion direction because,
in dynamic GPs, the perception of motion is not generated by
directional motion signal, but it is created from internal form
cues. An additional study with GPs that supports the motion
streak hypothesis was performed by Burr and Ross (2002).
Their study aimed to demonstrate how motion streaks facilitate
the perception of motion direction when streaks are aligned
with motion trajectory or alter motion direction when they are
oriented incongruently with respect to the motion trajectory.
The authors used GPs as visual stimuli and the bandpass-
limited noise-masking technique. The experiment consisted in
showing participants discontinuous motion in correspondence
to the presentation of either oriented noise or GPs. The results

showed that when the orientation of the narrow-band noise
corresponded to motion direction, participants had a worse
performance in motion direction detection. This can be explained
considering that the noise masked the motion streak created
by directional motion, desensitizing orientation processing.
Moreover, GPs discrimination showed that dipole orientation
could either influence the apparent motion direction when both
are congruent, as demonstrated by Ross et al. (2000), or impair
participants’ performance when dipole orientation supplies an
apparent false direction, for example by randomly varying dipole
orientation in a range of orientations between −20 to + 20
deg from horizontal (Burr and Ross, 2002). Considering the
aforementioned studies, it becomes clear that GPs are an ideal
class of visual stimuli to study form and motion processing.
In the following paragraphs, we report in detail the spatial
and temporal features of GPs that allow us to investigate the
mechanisms of form and motion integration. In particular, we
focus on the mechanism underlying the perception of GPs as
directional moving patterns with no apparent directional motion,
clinical-based research with GPs, non-invasive brain stimulation
assessing form and motion processing, and the feedforward
and feedback connections that contribute to the encoding and
integration of form and motion signals.

GLASS PATTERN OVERVIEW

Glass patterns (GPs; Glass, 1969) are composed of an ensemble
of dot pairs (dipoles) randomly displayed in a specific window.
Different types of geometrical transforms can be applied to the
dipoles to induce the perception of a variety of shapes, such
as a translational/parallel (i.e., oriented) GPs, radial, spiral, or
concentric GPs (Figure 3).

The global orientation of a GP depends on the local
orientation of the dipoles that follows specific geometric rules
(Chen, 2009). GPs are an important tool to study how and
where the visual processing of global form of different complexity
takes place. GPs can be either static or dynamic. Static GPs are
characterized by only one video frame, while dynamic GPs are

FIGURE 3 | Schematic representation of the ventral and dorsal stream functions according to state of the art starting from V2. The red boxes report some areas and
functions of the dorsal stream, where-as the blue boxes report areas and functions of the ventral stream. Adapted from Perry and Fallah (2014).
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characterized by a rapid sequence of frames with no dipole-to-
dipole correlation between consecutive video frames (Nankoo
et al., 2012; Pavan et al., 2017a). Despite the lack of dipole
directional motion, dynamic GPs activate motion-sensitive areas
and induce the perception of non-directional apparent motion
(Ross et al., 2000; Krekelberg, 2005b; Ostwald et al., 2008;
Or et al., 2010; Pavan et al., 2017a,b).

Pavan et al. (2017a) argued that the perception of dipole
orientation in dynamic GPs is influenced by Geisler’s (1999)
spatial motion sensor; that is, the information coming from
motion sensors integrated with the signals from orientation-
selective units. Apparent motion direction in dynamic GPs is
perceived according to the orientation of dipoles. For this reason,
dynamic GPs have been used to investigate the neural basis of
form and motion processing and, in particular, to assess the
interaction between the ventral and dorsal streams.

The perception of both static and dynamic GPs involves
two main processing stages: firstly, the local processing that
allows the detection of the orientation of the single dipoles, and
secondly, the global processing that enables the extraction of the
overall shape from the pooling of local orientation cues (Prazdny,
1984; Wilson and Wilkinson, 1998; Pei et al., 2005; Chen, 2009;
Chung and Khuu, 2014).

PROBING FORM AND MOTION CUES:
EFFECTS OF STIMULUS
CONFIGURATION

Several studies explored the differences in the detection
thresholds of various types of GPs, suggesting that the human
visual system differently discriminate GPs based on their global
form (Wilson and Wilkinson, 1998; Morrone et al., 1999;
Dakin and Bex, 2001; Seu and Ferrera, 2001; Chen, 2009;
Nankoo et al., 2012; Pavan et al., 2019).

Wilson and Wilkinson (1998) found that static GPs with a
circular orientation are the easiest to perceive, while parallel GPs
are the most difficult. This result was confirmed by Lee and Lu
(2010), who found lower detection thresholds for concentric and
radial GPs rather than translational GPs. The evidence clearly
shows that human participants perceive more easily complex
GPs (e.g., circular and radial) than simpler oriented GPs (i.e.,
parallel/translational). Seu and Ferrera (2001) investigated the
detection thresholds of circular, radial, and spiral GPs. They
showed that circular and radial GPs are easier to perceive
than spiral GPs, with spiral GPs having intermediate coherence
thresholds between radial and circular patterns.

In a recent study, Rampone and Makin (2020) found a similar
pattern of results. The authors measured the differences in brain
responses for static translational, circular, and radial GPs using
EEG and event-related potentials (ERPs). In particular, they
measured the sustained posterior negativity (SPN) that is an
ERP, indicating the perceptual goodness of various geometric
regularities. Perceptual goodness is a concept introduced by
Gestalt psychologists to refer to what they called “gute Gestalt,”
i.e., “good shape.” Therefore, perceptual goodness indicates
a visual perceptual experience characterized by regularities,

simplicity, and order (Pashler, 2002). Perceptual goodness is also
influenced by the number of parts of the object: as the number of
parts of the object increases, the number of sides increases as well
and consequently the overall complexity of the object. Wide SPN
amplitudes point to high perceptual goodness regularities of the
visual stimulus (Makin et al., 2016). Rampone and Makin (2020)
studied the perceptual goodness in various types of GPs, and they
found that observers had similar SPN for circular and radial GPs
but not for translational GPs. Finally, observers reported weak
responses to translational GPs, suggesting that translational GPs
were more difficult to identify.

Chen (2009) investigated the detection thresholds of different
static GPs using masking, which is useful to explore the coding
efficiency of different GP types. In particular, the author tested
whether the global perception of a target GP (either a radial
GP or a concentric GP) was disrupted by the presentation of
another GP (the masker). Seven types of masking GPs were used:
noise (0% of coherence), radial, vertical, plaid, concentric, and
spiral. The author investigated the detection thresholds of the GPs
and observed the differences in the target threshold according
to the masker used. The results showed that for concentric
targets, concentric and spiral maskers had the best masking
effect, whereas for radial targets, a low-curvature spiral mask
produced the higher masking effect. Moreover, measuring the
detection thresholds of the different GPs, circular GPs were easier
to perceive than radial GPs.

A different pattern of results is obtained for the detection
of real/directional motion with distinct trajectories created by
random dot kinematograms (RDKs). In this regard, there are two
studies of Blake and Aiba (1998) and Morrone et al. (1995) who
found that there are no differences in the detection thresholds of
translational, concentric, or radial trajectories evoked by RDKs.
The only difference in the detection thresholds of directional
RDKs concerns spiral trajectories, for which detection thresholds
are higher than for the other moving patterns (i.e., circular, radial,
and translational motion) (Morrone et al., 1999).

Nankoo et al. (2012) investigated whether, using various
stimulus configurations (concentric, horizontal, radial, spiral,
and vertical patterns), the detection thresholds of dynamic GPs
were more similar to the detection thresholds of RDKs or to
those of static GPs. In general, the detection threshold of dynamic
GPs is lower than those of static GPs (Burr and Ross, 2006;
Or et al., 2010). Nankoo et al. (2012) aimed to assess whether
detection thresholds of dynamic GPs are lower than those of
static GPs because they are processed by motion-sensitive units
or because their processing relies on mechanisms that drive static
GP perception. The interesting result was that dynamic GPs
were perceived more similarly to static GPs than RDKs because
the detection thresholds of dynamic GPs had a similar trend to
those of static GPs rather than to those of RDKs. This outcome
suggests that the stimulus information in dynamic GPs is
integrated throughout the various independent frames; therefore,
dynamic GPs seem to rely on temporal summation processes.
Moreover, the authors found that participants were particularly
sensitive to concentric and radial GPs and discriminated better
vertical GPs than horizontal GPs (either dynamic or static), a
phenomenon called “horizontal effect.” This effect was also found
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and explained by another research conducted by Hansen and
Essock (2004) who demonstrated that in natural images, it is
more common to see a vertical organization than a horizontal
pattern. Nankoo et al. (2012) found a different trend for RDKs;
in fact, participants did not show any significant difference in the
detection threshold for concentric, horizontal, radial, and vertical
RDKs, but they found a higher detection threshold for spiral
RDKs, although spiral GPs were perceived as relatively good. In
summary, despite Nankoo et al. (2012) found a similar detection
threshold between different static and dynamic GPs, dynamic
GPs showed generally lower detection thresholds than static
GPs. An explanation of this result is that in dynamic GPs, form
and motion information is integrated. The difference between
dynamic GP and RDK detection threshold suggests that dynamic
GPs are primarily perceived and processed for their global form
and the involvement of the motion system steps in afterward.

Additionally, Nankoo et al. (2015) investigated whether the
lower detection thresholds found in dynamic GPs depend on a
temporal summation process of form signals. Considering that
dynamic GPs are made up of different and independent static
GPs presented on consecutive video frames, they possess multiple
global form information. To test this hypothesis, the authors
measured participants’ detection thresholds for translational
static GPs and dynamic translational GPs by manipulating the
number of unique frames and the consequent temporal frequency
of the dynamic patterns. The authors expected lower detection
thresholds for dynamic GPs with a higher number of unique
frames, providing that form signals are summed over frames.
Moreover, they used only translational GPs because, in their
previous study (Nankoo et al., 2012), they found that the
difference in participants’ detection threshold between static and
dynamic GPs was greater for translational GPs compared to other
types of GPs. Therefore, the usage of translational GPs should
provide high statistical sensitivity as the numbers of unique
frames and the temporal frequency vary. The task consisted of
a two-alternative forced-choice task where participants had to
indicate in which time interval the coherent translational GP
was presented. The lowest detection threshold was obtained
in the dynamic condition with the highest number of unique
frames (i.e., 12). Although the results confirmed the hypothesis
of temporal summation across unique frames of GPs, the authors
did not exclude that motion processing mechanisms might
contribute to the coding of dynamic translational GPs.

The integration between form and motion processing seems
to play an essential role in the creation of a coherent image
of the dynamic environment that surrounds us (Kourtzi et al.,
2008). In order to explore the existence of form and motion
interaction, Pavan et al. (2017b) conducted a study with
dynamic-oriented GPs. In the experiment, the authors varied the
angle between dipole orientation and dipoles’ motion direction
(“conflict angle”). In their first experiment, the speed of the
moving dipoles was likely to limit the presence of motion streaks,
whereas in the second experiment the speed was adjusted to
promote the presence of orientation signals from motion (i.e.,
motion streaks). In separate experimental sessions, participants
had to report either the perceived motion trajectory or the
global orientation of the dynamic GPs. The results showed
that apparent GP motion direction is attracted toward dipole

orientation, and GP orientation is repulsed from GP motion.
Additionally, the authors found stronger repulsion effects when
judging the GP orientation; however, stronger motion streaks
from the GP motion could dominate over the signals provided by
conflicting dipole orientation. These results are consistent with
the notion that two separate but communicating mechanisms
contribute to our perception of GPs which contain conflicting
orientation and motion information: (i) perceived GP motion is
mediated by spatial motion-direction sensors, in which signals
from motion sensors are combined with excitatory input from
orientation-tuned sensors tuned to orientations parallel to the
axis of GP motion, and (ii) perceived GP orientation is mediated
by orientation-tuned sensors which mutually inhibit each other.
In the next section, we discuss the neural correlates of form-
motion integration in GPs.

THE NEURAL CORRELATES OF
FORM-MOTION INTEGRATION IN GLASS
PATTERNS

The early visual areas, starting from V1, are known to process
local shape information (Hubel and Wiesel, 1968; Wilson, 1991),
while the neural circuits that process global shape in GPs are
different and vary according to the GP global shape. However,
it is widely accepted that high occipitotemporal areas are more
sensitive to global shapes rather than local form cues (Kourtzi
and Kanwisher, 2001; Murray et al., 2002; Altmann et al., 2003;
Kourtzi et al., 2003; Ostwald et al., 2008). There is experimental
evidence that local orientation and motion cues in dynamic GPs
are processed in the early visual cortex through the formation of
motion streaks (Geisler, 1999; Nankoo et al., 2012; Pavan et al.,
2017a,b). If so, the first stage of form and motion interaction
takes place in the early visual areas. Nonetheless, fMRI studies
revealed that form and motion interaction is also present at the
level of the extrastriate areas (Braddick et al., 2000; Murray et al.,
2003; Apthorp et al., 2013). This means that there are neurons
tuned to orientation/form information and are also involved in
the processing of the apparent/non-directional motion (Albright,
1984; Lennie, 1998; Kourtzi, 2004; Kourtzi et al., 2005, 2008;
Krekelberg, 2005a; Ostwald et al., 2008 Apthorp et al., 2013;
Pavan et al., 2017b). This is supported by human brain imaging
and physiological evidence on macaque monkeys.

Neuroimaging Studies
Human brain imaging studies have been fundamental in the
understanding of how the brain perceives and processes GPs.
For example, Ostwald et al. (2008) found that static concentric
GPs were correlated with activation in higher-order visual
areas (ventral lateral regions), whereas translational patterns
activated mainly low-level visual areas. However, the authors
did not exclude the role of the higher-level visual areas in
the processing of translational GPs. The findings indicate a
continuum in the integration process from selectivity for local
orientation and position cues in early visual areas to selectivity
for global form in higher occipitotemporal regions. Additionally,
higher-level occipitotemporal areas showed higher classification
accuracy than low-level areas in discerning differences in global
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form structure, consistent with global pooling mechanisms
of local signals with similar statistics (i.e., orientation and
position). Wilson and Wilkinson (1998) also argued that the
global form processing in GPs is supported by neurons in
higher occipitotemporal areas that integrate local signals from
early visual areas.

Contrasting evidence comes from another fMRI study by
Mannion et al. (2009). The authors showed that complex shapes
produced by clockwise and counter-clockwise static spiral GPs
also activate the visual cortical areas V1, V2, and V3. They
found that early visual areas have an important role also in
the processing of local orientation features in complex shapes.
So far, there are conflicting results on the role of the early
visual areas in the processing of complex forms and curvature
(i.e., radial, circular, and spiral) from GPs. Hence, additional
studies are required to clarify the role of early visual cortex in
complex textures.

Krekelberg et al. (2005) performed another fMRI study with
dynamic circular and radial GPs and RDKs, which showed
that both real/directional motion and apparent/non-directional
motion activated the extrastriate area hMT + . hMT + does not
seem to distinguish between motion generated by motion cues
and motion generated by form cues such as in dynamic GPs,
a characteristic that has been called cue invariance (Krekelberg
et al., 2005). This phenomenon occurs not only with dynamic
GPs but also with other types of visual stimuli such as the Enigma
optical illusion (Zeki et al., 1993) and the rotating snakes illusion
(Kitaoka and Ashida, 2003). Furthermore, they showed that not
all the brain cells that respond to real/directional motion are
also activated for apparent/non-directional motion. In particular,
measuring the selectivity index from the activation measures
regarding both the real/directional motion and the implied/non-
directional motion, the authors inferred that only 45% of neurons
overlapped in the processing of real and apparent motion.

Moreover, using magnetoencephalography (MEG), Liu et al.
(2017) investigated the recurrent brain connectivity underlying
the processing of global form in dynamic GPs. They found
that the perceptual integration of form cues in dynamic GPs
was associated with consistent responses in visual areas of the
dorsal pathway. The authors showed that perceptual integration
induced robust and rapid responses along the dorsal visual
pathway in a reversed hierarchical manner. In particular, the
authors found that the anterior intraparietal sulcus initially
responded within 100 ms, followed by backpropagation of
activity to the early visual areas. This experiment showed that the
visual areas in the dorsal pathway extract the global form that
subsequently guides low-level processing for further refinement
of the visual percept. This is an example of the interaction
between the ventral and dorsal streams in the processing of global
form and motion in dynamic GPs.

Physiological Studies
Physiological studies on macaque monkeys and computational
models revealed that V4 is a cortical area that is activated
with circular, radial, and hyperbolic gratings rather than parallel
patterns (Kobatake and Tanaka, 1994; Gallant et al., 1996; Wilson
et al., 1997). The role of V4 in the processing of concentric

forms is further confirmed by lesion studies which found that
the disruption of this area causes severe visual form processing
deficits (Heywood et al., 1992; Merigan, 1996; Aspell et al., 2006;
Dumoulin and Hess, 2007). Moreover, Smith et al. (2007), using
extracellular recording in macaque monkeys, showed that V1
and V2 do not show a significant activation to circular and
radial static GPs, as found by Mannion et al. (2009) using
human neuroimaging, but they are involved in the processing of
translational and oriented GPs.

Krekelberg et al. (2003) performed another cell recording
study with GPs in two male macaque monkeys. The authors
recorded the activity of 168 brain cells in the two hemispheres
of the macaques. They observed that motion areas of the superior
temporal sulcus (STS) are activated in the processing of dynamic
translational GPs, suggesting that the STS is sensitive not only
to motion cues but also to form cues contained in dynamic GPs.
Thus, this area can integrate form and motion signals to create
the perception of a coherent visual stimulus.

Albright (1984) recorded the activity of cells in macaques’ MT
area and found that this visual area is not only characterized
by cells selective to pattern-motion but also by cells sensitive to
orientation cues. Indeed, orientation information might be used
by hMT + cells as a hint of motion direction (Movshon et al.,
1985). Additionally, Lennie (1998) found that while many MT
cells in the macaque monkey cortex respond strongly to motion
information, they also respond to a smaller degree to orientation.

Overall, the aforementioned studies show that the visual areas
of the ventral and dorsal streams continuously interact for the
processing of complex dynamic GPs. However, the connection
between the dorsal and ventral streams is not only functional
but also anatomical. Rockland and Van Hoesen (1999) showed
that there are anatomical connections between the ventral and
dorsal pathways. A part of the dorsal pathway, the parieto-medial
temporal stream runs to the caudal area of the inferior parietal
cortex reaching the hippocampus and the parahippocampal area
that is a part of the ventral pathway. Moreover, the lateral
parts of the ventral and dorsal pathways are connected by the
posterior arcuate fasciculus and the vertical occipital fasciculus.
Besides the anatomical connection between the two pathways, a
broad interest is upon the functional interplay between the two
streams that still deserves to be explored (Yeatman et al., 2014;
Weiner et al., 2017).

To conclude, GPs revealed to be a useful category of visual
stimuli suitable to increase the knowledge regarding the neural
substrates of the interaction between the two streams. GPs
have been widely used in basic research to understand the
visual functions; however, considerable findings come also from
clinical-based research with GPs that showed interesting results
regarding the functioning of the ventral and dorsal streams and
the processing of form and motion.

CLINICAL APPLICATIONS OF GLASS
PATTERNS

Several clinical studies (McKendrick et al., 2005; Ditchfield
et al., 2006; Spencer and O’Brien, 2006; Tsermentseli et al., 2008;
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Grinter et al., 2009, 2010; Taylor et al., 2009; Brittain et al., 2010;
Koldewyn et al., 2010; Rislove et al., 2010; Englund and
Palomares, 2012; Palomares and Shannon, 2013; Day and
Palomares, 2014; Bakroon and Lakshminarayanan, 2016) used
GPs as a tool to assess form and motion processing in individuals
with specific disorders such as autism, reading disorders, dyslexia,
and schizophrenia. Spencer and O’Brien (2006) investigated
whether children with high-functioning autism show a deficit
in form and motion integration besides their difficulty in visual
processing such as object recognition and global perception
associated with a dysfunction of the ventral stream. Autism is a
developmental disorder that causes social, visual, and cognitive
deficiencies. In their study, the authors compared three groups
of participants: (i) developing individuals with high functioning
autism; (ii) developing individuals with Asperger syndrome1;
and (iii) developing individuals without any disorder (control
group). In order to measure the detection thresholds of spatial
and form coherence in visual stimuli, the authors used static
circular GPs with a background composed of random dots.
Participants had to indicate on which side (i.e., either left or
right) of the screen they saw the coherent pattern. The results
showed that children with autism have an impaired perception
of form coherence; however, children with Asperger syndrome
did not show impairments of low-level form processing and
global motion processing. This evidence is in contrast with
the classification of the Asperger syndrome among the autistic
spectrum disorders (ASD) because it locates the Asperger
syndrome at the lighter end of the continuum. Grinter et al.
(2009) performed another study on the autism spectrum disorder
using static circular GPs and single moving dots to investigate,
respectively, global form and motion processing. In particular,
the authors compared two groups of participants: (i) individuals
who self-reported high levels of autistic traits and (ii) individuals
with a diagnosed autism disorder. The results showed that
individuals with high levels of autistic traits had difficulties in
the processing of global form and motion integration. This
confirms the previous finding of Spencer and O’Brien (2006).
Bakroon and Lakshminarayanan (2016) argued that individuals
with ASD show good performance in static visuospatial tasks
and impaired performance in dynamic visual tasks. According
to them, individuals with autism spectrum disorders have
dorsal stream deficits and atypical visual cortex interconnectivity
that causes an alteration of low-level perceptual processing.
However, this statement has been challenged by Koldewyn et al.
(2010), who found that adolescents with autism do not show
dysfunction in the dorsal stream but only deficits in high-
level dynamic attentional processes. Therefore, further studies
are needed to clarify the relationship between visual perception
and attentional processes related to dynamic visual stimuli in
individuals with ASD.

Other evidence comes from a study of Palomares and Shannon
(2013) on Williams syndrome. Williams syndrome is a rare
genetic and neurodevelopmental disease that causes intellectual

1It should be noted that the DSM-V has just a single broad category for autism:
autism spectrum disorder (ASD), which replaces all the previous disorders within
the spectrum, including Asperger’s disorder.

disability and visuospatial deficits. In this study, the authors
aimed to investigate the functioning of the ventral and dorsal
streams in individuals with Williams syndrome by using RDKs
and static and dynamic circular GPs. They found that Williams
syndrome causes a delay in the development of form processing
compared to global motion processing, indicating an impairment
in the ventral stream but not in the dorsal stream. In contrast, in
typical development, global form processing is developed earlier
than global motion processing. Therefore, the late development
of form processing in individuals with Williams syndrome leads
to difficulties in recognizing shapes and objects. Global form and
motion perception have also been studied in other disorders such
as schizophrenia (Brittain et al., 2010). Brittain et al. (2010) used
single moving dots and static radial and circular GPs to test the
functioning of the magnocellular and parvocellular pathways in
a group of 64 patients with schizophrenia. The performance of
the patients revealed an impairment of the early visual processing
of form and motion and, consequently, a deficit of both the
magnocellular and parvocellular pathways.

Ditchfield et al. (2006) used static circular GPs and dynamic
random dots to evaluate the capacity to integrate local cues
into global form and motion visual information in migraineurs.
Previous TMS studies demonstrated that migraineurs show
an altered neural function of the extrastriate visual area V5
compared to non-headache individuals (Battelli et al., 2002;
Fierro et al., 2003). This reflected a poor performance in global
motion perception (McKendrick et al., 2001; McKendrick and
Badcock, 2004). The main aim of Ditchfield et al. (2006) was
to assess whether migraineurs have difficulties in processing
both global motion and form or just global motion. The results
showed, for the first time, that individuals who suffer from
migraine have deficits in the perception of global form and
motion in the period between the headaches attacks.

The same difficulty in form and motion integration has been
found by McKendrick et al. (2005) in individuals who suffered
from glaucoma. Glaucoma is a drainage alteration of the fluids
of the eyes that causes abnormal pressure levels. This unusual
eye pressure damages the optic nerve that is a bridge between
the eye and the brain. The interesting result is that in glaucoma
problems that arise with complex visual tasks are not predicted by
the exams of visual field loss. Specifically, people with glaucoma
can have a high level of difficulties in form and motion processing
in areas in which the visual field seems to be normal after standard
automated perimetry (SAP).

In another study, Rislove et al. (2010) compared the
discrimination performance of static translational and circular
GPs in adult individuals with strabismic amblyopia. They found
that participants had a higher level of difficulty in discriminating
static translational GPs than circular GPs. This further suggests
that the mechanisms and the cortical visual areas that allow
the detection of translational and circular patterns are different.
Some authors have also wondered about the relationship between
visual form and motion processing in reading fluency (Conlon
et al., 2004; Tsermentseli et al., 2008; Englund and Palomares,
2012). Most of the studies focused on the investigation of reading
disorders instead of the healthy development of reading skills
in typically developing children. Englund and Palomares (2012)
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filled this gap, assessing the typical development and involvement
of the ventral and dorsal streams in regard to fluency in typically
developing children of 9 years of age. The authors measured the
participants’ performance in two different form and motion tasks
using two different types of visual stimuli: rotating RDKs and
static circular GPs. They found that accurate reading is correlated
with form processing but reading speed is not correlated with
motion coherence thresholds. Moreover, a fluent reading was
correlated with good processing of visual information such as
form and coherent motion, which rely on the ventral and
dorsal streams, respectively. Indeed, previous studies on typically
developing participants showed that poor reading skills were
correlated with poor coherent motion detection (Cornelissen
et al., 1998; Conlon et al., 2004). Another study with RDKs
and static GPs was conducted by Alnawmasi et al. (2019).
They assessed the functioning of the dorsal and ventral streams
in mild traumatic brain injury (TBI) patients with single or
multiple concussions, who reported vision-related issues. The
results contrast with the hypothesis of dorsal stream vulnerability.
Individuals with mild TBI report the same level of impairment
in the dorsal and ventral streams, consequently the same level
of difficulty in the form and motion processing. The authors
concluded that an accurate and precise assessment of global
form and motion perception is fundamental in the phase of
recovery from mild TBI.

In conclusion, clinical-based research revealed to be useful
to better understand the neural basis of form and motion
processing and the functioning of the ventral and dorsal streams.
The aim of future studies is to develop innovative recovery
protocols for specific dysfunctions of the ventral and dorsal
streams. Recent research points to exploit non-invasive brain
stimulation (NIBS) techniques to potentiate specific brain areas
and to compensate the dysfunctions of different cortical sites.
Indeed, these techniques add knowledge on brain connectivity.

FORM–MOTION INTERACTION PROBED
WITH NON-INVASIVE BRAIN
STIMULATION

Contributions in the understanding of the neural basis of
form–motion interaction also come from non-invasive brain
stimulation (NIBS) studies (Ellison et al., 2007; Laycock et al.,
2007; Tang et al., 2015; Cattaneo et al., 2017; Pavan et al.,
2017b). NIBS techniques have been widely used in the last
30 years to understand the causal link between human brain
activity and behavior by temporarily modulating the neural
functions. Brain stimulation techniques aim to establish the
causal involvement of a specific brain region in a cognitive
or perceptual function and the time course of its involvement
(Silvanto, 2013). NIBS techniques increased the brain functions
knowledge that correlational techniques, such as fMRI, could not
directly assess (Polanía et al., 2018). There are two main groups
of NIBS techniques: transcranial magnetic stimulation (TMS)
and transcranial electrical stimulation (tES). TMS modulates
the neuronal activity through magnetic fields and triggering
action potentials, whereas with tES techniques different types of

electrical currents can be delivered through the scalp (e.g., direct
or alternating current) and modulate the cortical activity.

For example, Pavan et al. (2017b) using repetitive TMS
(rTMS), investigated the role of early visual areas (V1/V2) and
hMT+ in the perception of dynamic and static translational GPs.
The authors showed that rTMS applied over early visual areas
affected the perception of static GPs, but the stimulation of area
V5/MT did not affect the observers’ performance. On the other
hand, when rTMS was delivered over either V1/V2 or V5/MT
strongly impaired the perception of dynamic GPs. As pointed
out by previous neuroimaging studies, early visual areas might
be involved in the processing of the spatial structure of GPs,
and interfering with the extraction of the global spatial structure
also affects the extraction of the motion component, possibly
interfering with early form–motion integration and limiting
the formation of motion streaks. However, visual area V5/MT
is likely to be involved only in the processing of the motion
component of dynamic GPs, suggesting that motion and form
cues may interact as early as V1/V2. TMS is also an important
technique to explore the connections between different cortical
areas. For example, Ellison et al. (2007) used a dual-site TMS
technique to study the interaction of posterior parietal cortex
(PPC) and human motion area hMT + in a visual search task.
Although it is known that both brain areas are involved in visual
search tasks, less is known about their connections. The results
showed that the two brain areas interact in motion/orientation
tasks. Indeed, participants’ performance decreased only when
TMS was delivered in combination over PPC and hMT + .
Further evidence comes from a study by Thompson et al. (2009)
who conducted an rTMS study with plaid stimuli to investigate
the mechanisms involved in the integration and segregation
of motion cues. Plaid stimuli are made by superimposing two
moving gratings with different angles. Plaid stimuli can evoke
two different precepts: (i) motion in two different directions and
(ii) motion in the same direction due to the integration of the
two drifting superimposed gratings. In this study, the authors
used 1.0 Hz offline rTMS and showed a dissociation between
V1 and the extrastriate visual areas (e.g., V3/V3a and V5) in
motion integration processing. Indeed, their results indicated
that rTMS over V1 enhanced the perception of coherent motion;
instead, extrastriate stimulation decreased the coherent motion
perception. The double dissociation found between V1 and the
extrastriate areas for the perception of plaid motion adds further
knowledge about the neural basis of motion perception and how
the visual cortex encodes complex visual stimuli such as plaid.

The double dissociation between V1 and hMT + was also
investigated by Silvanto et al. (2005). The authors assessed the
awareness for moving stimuli by delivering single-pulse TMS
over visual areas V1 and hMT+ . TMS was delivered in different
time windows: after the presentation of the visual stimulus and
in correspondence of the visual stimulus. The results showed that
the detection of real motion involves the activity of V1 at a later
stage compared to hMT + . Finally, they found that projections
from hMT+ to V1 are fundamental for motion visual awareness.
Therefore, this study highlights the existence and the importance
of cortico-cortical connections between V1 and hMT + not only
for form and motion processing but also for the awareness. This
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confirms that the ventral and dorsal streams are not segregated
as initially proposed by Ungerleider and Mishkin (1982) but are
highly interconnected.

Matsuyoshi et al. (2007) showed that hMT + is causally
involved in the processing of motion that is generated by form
cues. They applied offline rTMS over the left hMT + and the
posterior inferior temporal gyrus (IT) to explore the role of
these two brain areas in apparent motion processing. rTMS over
hMT + significantly affected the perception of apparent/non-
directional motion, but rTMS over IT did not have any effect.

Furthermore, in order to investigate the mechanisms
underlying form–motion interaction, Tang et al. (2015) used the
visual aftereffect which consisted of the adaptation to a static
grating that caused a tilted perception of motion direction of the
subsequently presented moving stimulus. Additionally, they used
transcranial direct current stimulation (tDCS) to manipulate the
neuronal activity of visual area V1 to test the role of the primary
visual cortex in the processing of orientation information.
Participants were adapted for 3 s to a Gabor patch with a spatial
frequency of 3 c/deg; after an interstimulus interval of 160 ms,
a global dot motion was presented. Participants had to report
whether the direction of the pattern was right or left from vertical.
The aftereffect was measured considering the repulsion direction
from vertical of the global dot motion (the test stimulus) after
adaptation to the oriented Gabor patch. Anodal tDCS was used
to enhance the activity of V1, positioning the active electrode
over the mastoid bone and the reference electrode over Cz.
The results showed that anodal tDCS caused a reduction of the
visual aftereffect, suggesting that the primary visual cortex has a
fundamental role in the processing of orientation information.
Moreover, the authors found that the visual aftereffect is elicited
adapting to a wide range of orientations which indicates that
various types of orientation information influence the perception
of motion direction at a later stage (i.e., hMT +). These results
were confirmed by a computational model on motion direction
in which motion selective neurons were tuned to orientation-
sensitive neurons of V1. To conclude, the authors demonstrated
that form information influences motion direction processing.

In summary, NIBS techniques are useful to investigate
the mechanisms underlying form–motion integration for three
reasons: (i) assess the functional specialization of various visual
areas, (ii) assess the deployment over time of a specific visual
function, and (iii) understand the heterogeneity of spatial and
temporal properties of visual units selective to form/orientation
and motion (Silvanto, 2013).

DISCUSSION

The percept of apparent/non-directional motion induced by
dynamic GPs has been used as a tool to investigate the neural
basis of form and motion interaction (Lennie, 1998; Or et al.,
2010; Mather et al., 2013; Pavan et al., 2017a,b). The existence of
systematic interactions between form and motion is in contrast
to the old and long-standing view that considers the dorsal
and ventral visual pathways as anatomically and functionally
independent (Mishkin et al., 1983).

Ungerleider and Mishkin (1982) proposed the classical view
that the ventral and dorsal streams are two distinct and
independent pathways that do not communicate with each other
and independently process form and motion information to
guide actions. The perspective that considers the dichotomy
between the ventral and dorsal streams is based on the idea
that the brain is modular, therefore characterized by separate
and independent modules that correspond to precise brain areas
(Burr, 2000). The experimental evidence reported in this review
supports the notion that the brain is an interconnected network
where cortical areas continuously exchange information (Sporns
et al., 2004; Schlösser et al., 2006; Craggs et al., 2007; Rogers et al.,
2007). There is psychophysical, physiological, brain imaging,
and computational evidence (Braddick et al., 2000; Berzhanskaya
et al., 2007; Farivar, 2009; Beck and Neumann, 2010; Or et al.,
2010; Mather et al., 2012) that the ventral and dorsal streams are
not segregated but interact at several levels of visual processing.
For instance, as previously mentioned, coherent motion in
a dynamic GP has been linked to the induction of motion
streaks (Ross et al., 2000; Krekelberg et al., 2005) that, in other
terms, indicates that form cues aid direction discrimination
of moving objects.

Subsequently, Goodale and Milner (1992) proposed a model
based on the distinction between visual perception versus
vision for goal-directed action. The authors aimed at suggesting
an innovative view about the functional organization of the
ventral and the dorsal streams. They argued that the functional
differences of the two streams might be better understood
by looking at the outputs mediated by the two pathways
(Milner and Goodale, 2006, 2008). The authors stated that
although both streams are sensitive, to a different extent,
to form and motion signals, the two streams process and
transmit input signals in different ways: the ventral stream
is specialized to convert visual inputs to the representation
of objects’ form and spatial relationships, whereas the dorsal
stream controls visually guided actions (i.e., reaching and
grasping objects) instead of guiding perception. This view
that considers the dorsal stream involved in the vision for
action has been confirmed by various neuropsychological,
neurophysiological, and human neuroimaging studies (Fogassi
et al., 1992, 1996; Clower et al., 1996; Kawashima et al.,
1996; Rizzolatti et al., 1996; Robertson et al., 1997; Karnath
and Perenin, 2005; Culham et al., 2006). The model of
Goodale and Milner (1992) might be better understood if we
consider that three different main pathways originate from the
dorsal stream: the parieto–prefrontal pathway that is involved
in spatial working memory, the parieto–premotor pathway
important for visually guided action, and the parieto–medial
temporal pathway that is related to spatial navigation. These
three pathways that process different types of visuospatial
functions might be the precursors of the dorsal stream. In this
perspective, the dorsal stream might be considered responsible
for visuospatial and motion perception and of visually guided
actions (Kravitz et al., 2011).

Freud and Ganel (2015) studied the mechanisms underlying
goal-directed action. In their experiment, the task consisted of
asking participants to grasp 2-D objects with a rectangular shape
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shown on a computer screen. Their results were compared with
those obtained by Ganel and Goodale (2003) on 3-D object
grasping. The authors observed that the representations that rely
on 2-D and 3-D objects diverge. 3-D objects grasping is based
on analytical representations of the shape of objects, whereas
2-D objects grasping is based on holistic representations. In
conclusion, 2-D objects are not a reliable proxy for real-object
representation, especially for visually guided actions.

In another study, Freud et al. (2017) investigated the idea that
objects’ shape could be processed by the dorsal stream (Theys
et al., 2015). The authors found that the lateral regions of the
ventral stream and the posterior area of the dorsal stream were
both activated in relation to shape processing. Furthermore,
they showed that the ventral and dorsal streams have a close
topographical organization such as similar connectivity to other
cortical areas of the brain. Their results challenged the model
initially proposed by Ungerleider and Mishkin (1982). In another
study of Freud et al. (2018), the authors further explored the
role of the dorsal stream in object perception. In this study, they
used an interocular suppression technique, the continuous flash
suppression (CFS), which makes the visual stimuli undetectable
for a few seconds. It is known that the CFS deactivates the ventral
pathway while the dorsal pathway activity remains operative
(Fang and He, 2005; Almeida et al., 2008; Sakuraba et al.,
2012; Han et al., 2016; Tettamanti et al., 2017). Freud et al.
(2018) found that 3-D object perception involves the activity of
the dorsal stream, showing evidence in contrast to the model
of Goodale and Milner (1992): the dorsal stream is not only
involved in the processing of the geometric features of the objects
that subserve a goal-directed action but also involved in object
perception itself. Therefore, the representations of 3-D objects are
processed in the dorsal stream (Beer et al., 2009); however, these
representations influence perceptual decisions (Fang and He,
2005; Freud et al., 2018; Erlikhman et al., 2019). This suggestion
finds support in a study of Konen and Kastner (2008) in which
they showed that the ventral and dorsal streams represent similar
objects features such as form, size, and viewpoint. However,
3-D processing is not processed similarly in human primates
and non-human primates brain (Vanduffel et al., 2002). In fact,
Vanduffel et al. (2002) using fMRI found that monkeys did
not show a significant activation of intraparietal areas as in
humans, while occipital and mid-level extrastriate visual areas
revealed similar activation between the two species. Based on
the reviewed findings on form–motion integration and object
perception, we propose an updated schematic representation
from Perry and Fallah (2014), of the main visual areas composing
the dorsal and ventral streams, their connections and functions
(see Figure 3).

Another type of research that focused on the understanding
of form and motion interaction was performed by McCarthy
and Grey (2015). They focused on how spatio-temporal form
integration (STFI) occurs in the processing of a moving object
when only some parts of the object are visible. In particular,
they explored the representations of static and rotating objects.
In their fMRI study, the authors found that the visual cortical
brain areas responsible for STFI are located beyond V1/V2.
Furthermore, they showed that despite that motion perception

based on form cues activates a wide portion of the visual cortex
(Krekelberg et al., 2005), the brain responses related to the
updating position of rotating objects were mainly located in
visual areas KO and hMT+.

On the other hand, some researchers investigated the
interaction of the dorsal and ventral streams not through the
study of form and motion processing but through the study
of how the brain process objects position. In particular, these
studies used the motion-induced position shift (MIPS) (Mather
and Pavan, 2009; Anstis and Cavanagh, 2017; Kohler et al., 2017).
MIPS is an illusion in which a moving visual stimulus appears
shifted in its spatial position. Kohler et al. (2017) found that
the encoding of object position takes place in both high-level
and early visual areas, indicating that ventral and dorsal streams
cooperate to establish the perceived position of an object.

CONCLUSION

Several studies reported in this review demonstrate the
importance of form and motion integration for the perception of
moving objects and complex shapes. The interaction of form and
motion processing has deep roots; it starts at the level of the early
visual cortex and proceeds toward the motion complex (hMT+).
Indeed, the processing of form and motion cues demands
recurrent connectivity between low and high visual regions
to integrate spatial and temporal characteristics of a moving
visual stimulus. In the present review, we also described how
form/orientation signals could affect the perception of motion.

Most of the scientific literature that explores form and
motion integration, especially in Glass patterns (GPs), is based
on correlational methodologies such as fMRI and single-cell
recording technique. We suggest deepening the neural basis of
dynamic GPs, also using causal-based tools such as TMS and
tES that might provide important insights on the recurrent
brain connectivity.
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