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Unsupervised analysis of background noise sources in active offices

Domenico De Salvio,1 Dario D’Orazio,1 and Massimo Garai1

Department of Industrial Engineering (DIN), University of Bologna,

Viale Risorgimento 2, 40136 Bologna, Italya

Inside open-plan offices, background noise affects the workers’ comfort, influencing1

their productivity. Recent approaches identify three main source categories: mechan-2

ical sources (HVAC equipment, office devices, etc.), outdoor traffic noise, and human3

sources (speech). While the first two groups are taken into account by technical4

specifications, human noise is still often neglected. The present paper proposes two5

procedures to identify the human and mechanical noise sources during working hours,6

based on machine-learning techniques. Two unsupervised clustering methods, specif-7

ically Gaussian Mixture Model and K-means, were used to separate the recorded8

sound pressure levels recorded finding the candidate models. Thus, the clustering9

validation was used to find the number of sound sources within the office and then,10

statistical and metrical features were used to label the sources. The results were11

compared with the common parameters used in noise monitoring in offices, i.e. the12

equivalent continuous and the 90th percentile levels. The spectra obtained by the two13

Algorithms match with the expected shapes of human speech and mechanical noise14

tendencies. The outcomes validate the robustness and reliability of these procedures.15
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I. INTRODUCTION16

Different kinds of noise can affect the individual perception, depending on personal fac-17

tors (Ellermeier et al., 2001), on the task to do (Braat-Eggen et al., 2019), and on the nature18

of the noise source (Koskela et al., 2014). To ensure a more comfortable workspace, it is19

important to take into account which work tasks are performed, the spatial distribution of20

the workstations and the balance between ease of communication and concentration (Per-21

rin Jegen and Chevret, 2017). In many cases, distraction in the work place is not strictly22

related to the sound pressure level but more to the effect of irrelevant sound (Ellermeier23

and Zimmer, 2014; Jones, 1999). In this latter case, the most distracting noise is due to24

speech and the unintentional listening of the workmates conversations (Braat-Eggen et al.,25

2019; Hongisto, 2005). The perception of mechanical noise has been investigated by clas-26

sifying its characteristics (Iannace et al., 2018). In some cases, this kind of noise sources27

could even increase performance (Alimohammadi and Ebrahimi, 2017). These instances are28

faced by acoustic consultants, who should balance the acoustic absorption inside open plan29

offices while keeping the background noise at a reasonable level, because it is fundamental30

to guarantee a low speech intelligibility (Di Blasio et al., 2019; Schlittmeier and Liebl, 2015).31

The spatial distribution of Speech Transmission Index (STI) was proved to be a work-32

ers’ performance metrics (Hongisto, 2005). The STI depends on the acoustical quality of33

the room and on the background noise, even if international regulations on open-plan of-34

fice acoustic quality (ISO 3382, 2012) state that STI must be evaluated by neglecting the35

contribution of human noise. This condition that tends to underestimate the real acoustic36
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environment (Harvie-Clark et al., 2019). It implies the assumption that the most distracting37

situation is due to a single talker and not to a multi-talker scenario (Yadav and Cabrera,38

2019; Yadav et al., 2017). It is based on the fact that measurements in an unoccupied con-39

dition are much more easily performed, when the role of the human activities involved in40

background noise can be neglected. Consequently, it is neglected also during the evaluation41

of the acoustic parameters. Open plan offices constitute dynamic scenarios in which people42

are no longer to be considered only as sensitive receivers but also as sound sources them-43

selves (Renz et al., 2018a,b). A more specific background noise condition can be selected44

to post-processing the STI values, so, in light of this, the measurement of this parameter45

is crucial (D’Orazio et al., 2018; Rindel, 2018). Different criteria have been proposed with46

the aim to produce an objective descriptor of an acoustic environment, that enables people47

to estimate its impact on their comfort and productivity (Renz et al., 2019; Vellenga et al.,48

2017).49

In the field of room acoustics, data-analysis based techniques (Bianco et al., 2019) were50

used to measure the background noise due to human activity into classrooms (D’Orazio et al.,51

2020; Hodgson et al., 1999) and - in a preliminary way - in open plan offices too (Dehlbæk52

et al., 2016).53

The aim of this work is to identify the sound sources via an unsupervised statistical54

analysis of long-term monitoring, including the number of sources, their origin and the55

sound pressure level they produce. The data population obtained from the recording done56

with a sound level meter can be processed with algorithms used in unsupervised learning to57

find pattern and create clusters. Then, each sound source can be reliably associated to each58
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cluster. In particular, machine learning techniques can help in precisely delineating human59

noise. The results of the algorithms are compared with standard procedures to measure60

background noise.61

II. SOUND SOURCE DETECTION THROUGH DATA ANALYSIS62

In the field of open-plan office acoustics, noise monitoring is often made with percentile63

levels. Several thresholds of percentiles are used, often compared with the equivalent contin-64

uous level Leq. Vellenga-Persoon et al. used L5 in the so called “liveliness ratio” (Vellenga65

et al., 2017), whereas percentiles L5, L10, L90, and L95 were compared by Renz et al. (Renz66

et al., 2019).67

This kind of approach requires either the knowledge of the distribution of the occurrences68

of the sound levels in the environment during monitoring time, or a supervision by the69

operator. For these reasons, unsupervised algorithms can represent a useful tool for accurate70

monitoring without the need of human supervision.71

A. Clustering algorithms72

Clustering algorithms allow to identify different candidate noise sources by analyzing the73

data collected from a recording. In this section, the Gaussian Mixture Model (GMM) and74

the K-Means Clustering (KM) are introduced.75

GMM is a clustering method which decomposes the original model data in a sum of76

gaussian curves. Assuming a set of observations x1, . . . , xn (e.g. the short-time equivalent77

levels recorded), the Gaussian probability density function f(xi) of these observations – in78
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FIG. 1. The three unsupervised methods used in this work. In figure (a) the continuous line

represent the cumulative distribution of the recorded SPL of a sound level meter and the ∗ corre-

sponds to the 90th Percentile Level L90. In figure (b) the continuous line represents the occurrences

distribution of the same measurement. The asymmetrical distribution can be decomposed in four

Gaussian curves. The mean values of Gaussian curves indicated with ∗ correspond to the sound

levels attributed to each sound source. In figure (c) the four histograms represent four different

clusters obtained via K-means clustering.
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the following called target density – can be expressed as a sum of K Gaussian densities79

fk(xi, µk, σ
2
k):80

f(xi) ≃
K∑
k=1

πkfk(xi, µk, σ
2
k) (1)

where πk are the so called mixing proportions (McLachlan, G.J. and Peel, D., 2000), non-

negative quantities that sum to one; that is,

0 ≤ πk ≤ 1 (k = 1, . . . , K)

and

K∑
k=1

πk = 1.

The likelihood function for a mixture model with K univariate Normal components is:81

L(x) =
n∏

i=1

K∑
k=1

πkfk(xi) =
n∏

i=1

K∑
k=1

πk
1√
2πσ2

k

e
− (xi−µk)2

2σ2
k . (2)

The equality in 1 is usually realized by maximum likelihood optimization algorithm, e.g.82

the Expectation-Maximization (EM) (Dempster et al., 1977). In the context of background83

noise in open-plan offices, Dehlbaek et al. (Dehlbæk et al., 2016) proposed a preliminary84

analysis based on GMM. The probability distribution function of equivalent levels recorded85

in several offices is fitted with one or more Gaussian curves. The means a Gaussian curve86

is taken as the sound pressure levels of a sound source. If two normal curves are used,87

then the higher mean is identified as human activity and the lower one as the background88

noise in the office. The contribution of human activity is taken into account only if the89

10th statistical percentile of the corresponding curve is greater than the background noise90

measured in unoccupied condition.91
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While GMM is based on statistical properties of the data population, KM optimizes a92

metric distance of each single point data to form clusters. The set of observations x1, . . . , xn93

can be clustered into a set of K clusters, C = {ck; k = 1, . . . , K}, where µk is the mean94

of cluster ck. The squared Euclidean distances between µk and the points in cluster ck is95

defined as:96

J(ck) =
∑
xi∈ck

||xi − µk||2. (3)

The goal of K-means is to minimize the sum of the squared Euclidean distances over all K97

clusters:98

J(C) =
K∑
k=1

∑
xi∈ck

||xi − µk||2. (4)

The process converges to a local minimum in two steps: first, the optimal partition for a99

given set of µk is found; then, the cluster centroids are computed once C is fixed (Lloyd,100

1982). A K-means clustering was preliminary used by Wang and Brill to monitor the noise101

levels in occupied and unoccupied conditions in several K-12 classrooms (Wang et al., 2020).102

B. Clustering validation103

Clustering algorithms may produce redundant results, i.e. a number of clusters greater104

than the number of actual sound sources. Indeed, the maximum likelihood principle results105

in selecting the highest possible dimension (Schwarz, 1978). The clustering validation allows106

to assess the best model among candidates through specific metrics. In this work the Akaike107

Information Criterion (AIC) (Akaike, 1974) and the silhouette method (Rousseeuw, 1987)108

have been used to assess the optimal number of clusters for, respectively, GMM and KM.109

AIC provides an assessment based on a reward for the goodness of fit to help in choosing110
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the best candidate as well as a penalization for the complexity of the model. Assuming k111

as the number of estimated parameters in the model and L the likelihood function defined112

above, the AIC is:113

AIC = 2k − 2 ln [L(x)] . (5)

The first term of eq. 5 is the penalization of the complexity, whereas the second term concerns114

the goodness of the fit. Thus, the greater the likelihood the lower the AIC. It follows that115

the lowest value indicates the best model. Plotting the AIC obtained with different values116

of K, the elbow of the curve highlights the optimal number of clusters. More in detail, the117

AIC coefficient estimates the error caused by the loss of information due to the statistical118

modelling of the initial data (Rodŕıguez, 2005). Instead of other information criteria like119

the Bayesian information criterion (BIC), the AIC assumes that all the candidate models120

are wrong, i.e. none of them is the true model that generated the data. Thus, the BIC121

seeks the true model, which is the most probable, whereas the AIC seeks the wrong model122

with the lowest loss of information, which is the most predictive referred to the initial data.123

Moreover, it has been shown that AIC performs better than other information criteria when124

the models are non-nested, i.e. one model is not a particular case of another (Gabbay et al.,125

2011). The AIC has been chosen in the present work since all the candidate models are126

assumed wrong and non-nested.127

The silhouette method is a quantitative assessment of the degree of separation among128

the clusters. Assuming i as a data point in the cluster Am, the mean distance between i and129

the other data points in the same cluster, is:130
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a(i) =
1

|Am| − 1

∑
i,j∈Am,i ̸=j

d(i, j) (6)

where d(i, j) is the distance between i and j in the cluster Am.131

Thereafter, the mean dissimilarity of i to another cluster Bn is defined as the mean132

distance between i and the other points l in Bn. Thus:133

b(i) = min
1

|Bn|
∑

l∈Bn,l ̸=i

d(i, l) (7)

is the shortest mean distance between i and all the other points in the other clusters. Of134

course, this is possible only with a number of clusters K > 1. The cluster with the smallest135

mean dissimilarity is defined as “neighbor” and represents the second-best choice for i. The136

silhouette value s(i) is defined as:137 

1− a(i)/b(i) if a(i) < b(i),

0 if a(i) = b(i),

b(i)/a(i)− 1 if a(i) > b(i).

(8)

Thus −1 ≤ s(i) ≤ 1, which means that i is properly clustered if s(k) is near 1, while it is138

wrongly clustered if s(i) is near -1, whereas an s(i) near 0 means that i can be assigned to139

either A or B. The silhouette values s(i) expresses how each data point is well clustered.140

Hence, the mean of each silhouette value of clusters s̄(i) can be considered as a metric for141

the whole clustering process. The silhouette coefficient SC, then is defined as:142

SC = max
k

s̄(k) (9)
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where k is the number of clusters. The silhouette coefficient, as well as being one of the most143

well-known clustering validation indices, is assessed as very viable among different kinds of144

dataset (Jauhiainen and Kärkkäinen, 2017).145

III. METHOD146

A. Checking through 1-day recordings147

In order to evaluate the performance of the two methods, an office with four workstations148

was chosen as test room.149

The office is placed in a building away from the city center and road traffic. This means150

that the expected soundscape involves only two main noise sources: human activity and151

mechanical systems. Moreover, the room has an acoustically treated ceiling and thus, it152

can be considered as a “dead” environment. Hence, the goal is to identify these two sound153

sources during work hours. This test office, given the above mentioned simplifications,154

allows to monitor the appropriate noise sources: human activity of several people at the155

same time, mechanical noise due to air conditioning systems (which could be switched off156

during measurements) and other office devices. The workplace layout is made up of four157

workstations (ws A, ws B, ws C and ws D) and a meeting table. Despite the small size of158

the office, the meeting table is far enough from the workstations to allow the analysis of159

speech at the position number 4 (in figure 2).160

Sound pressure levels monitoring was carried out throughout an entire working day, so to161

allow to record enough data (ISO 22955, 2020). A statistical data population was obtained by162
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recording short-time equivalent levels, 100 ms integration time, octave-band filtered (125Hz163

- 4000Hz), for an amount of time long enough to validate the central limit theorem.164

Thereafter, the collected data were processed through the procedures shown in the fol-165

lowing section. Furthermore, equivalent continuous Leq, and percentile levels (L90, L50, and166

L10) were extracted in order to compare the results with previous studies on this topic (Renz167

et al., 2019).168

B. Description of the three-steps procedures169

The unsupervised analysis proposed here is based on two Algorithms. Algorithm 1 per-170

forms the clustering via GMM and AIC. Algorithm 2 performs the clustering via KM and171

silhouette. Both Algorithms act in three steps:172

1. Preliminary clustering analysis, finding several numbers of candidate noise sources.173

2. Selection of the best candidate through clustering validation.174

3. Final clustering analysis and association of each cluster to a noise contribute on the175

basis of statistical (Algorithm 1) or temporal (Algorithm 2) conditions.176

In Algorithm 1, the first step performs the clustering via GMM. The procedure has been177

repeated with a variable number of clusters k = 1, ..., 10. The EM algorithm returns the178

mean µk, the standard deviation σk, and the mixing proportions πk of the each Gaussian179

curve (see eqs. 1 and 2). In order to achieve meaningful results, EM algorithm is initialized180

by means of the components, the covariance matrices, and the mixing proportions. An181

option has been set in order to replicate the algorithm several times starting from different182
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FIG. 2. Layout of the office with four workstations and a meeting table. The measurement positions

(1 - 4) were used to evaluate the STI values and the role of irrelevant speech. The sound level

meter, used for the long-time monitoring was placed between the workstations and the meeting

table.
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Algorithm 1: GMM and AIC

Input: xi short-time levels octave-band filtered, f(xi) target distribution

Output: Lhuman; Lmech

1 init EM

2 init Lmech, Lhuman = −∞

3 // first step

4 for k = 1 : 10 do

5 (πk, µk, σk) = EM(k, xi)

6 end

7 // second step

8 for k = 1 : 10 do

9 AIC(k) = 2k − 2 ln (L(πk, µk, σk; f(xi)))

10 end

11 E = elbow(AIC(k))

12 // third step

13 (πj , µj , σj) = EM(E, xi)

14 for j = 1 : E do

15 if statistical condition then

16 Lhuman = 10 log
(
10µj/10 + 10Lhuman/10

)
17 end

18 else

19 Lmech = 10 log
(
10µj/10 + 10Lmech/10

)
20 end

21 end
13



Algorithm 2: KM and Silhouette

Input: xi short-time levels octave-band filtered, f(xi) target distribution

Output: Lhuman; Lmech

1 init KM

2 init Lmech, Lhuman = −∞

3 // first step

4 for k = 1 : 10 do

5 ck = KM(k, xi)

6 end

7 // second step

8 for k = 2 : 10 do

9 s(k) = Silhouette(ck; f(xi))

10 end

11 A = k : maxk (s(k))

12 // third step

13 cj = KM(SC, xi)

14 for j = 1 : SC do

15 if metrical condition then

16 Lhuman = 10 log
(
10centroid(cj)/10 + 10Lhuman/10

)
17 end

18 else

19 Lmech = 10 log
(
10centroid(cj)/10 + 10Lmech/10

)
20 end

21 end
14



points, then the maximum likelihood is fitted. A covariance matrix of diagonal type is set,183

whereas the mixing proportions are used with default parameters, which means that the184

initial values are uniform. In the second step of Algorithm 1, the optimal number of clusters185

is investigated through the AIC calculation according to equation 5. The goodness of fit186

is rewarded through the likelihood function and, at the same time, the model is penalized187

if it exceeds in complexity. The number k corresponding to the elbow of the curve is used188

to perform again the GMM with the optimal number of clusters (see figure 3). Then, the189

association among numerical and real sources existing within the office is made. Since in the190

dataset used in the present study the traffic noise is negligible, in the third step of Algorithm191

1 the way to discern the type of source was statistical. In fact, the standard deviation is192

used as the parameter to distinguish the nature of the source, either mechanical or human.193

It is expected that a low s.d. belongs to the mechanical sources, whereas a high s.d. to194

human activity.195

Instead, Algorithm 2 is based on KM and silhouette. The K-means clustering was set196

using the square Euclidean distance as the metric to be minimized within the cluster ck197

and all over the k clusters (see eqs. 3 and 4). Then, as seen above for GMM, a specific198

option to replicate the algorithm starting from different points was set to avoid the use of199

the same centroids in the iterations. Also, Algorithm 2 was repeated with a variable number200

of clusters k = 2, ..., 10. Then, the silhouette method was used to choose the best model201

among candidates. The mean values of the silhouettes of each cluster provides a metric to202

evaluate the clustering goodness. Thus, the clustering validity is rated finding the highest203

silhouette coefficient SC (equation 9) among candidate models, which means for various204
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number of clusters k, as described in the previous section. Then, KM is performed again205

with the optimal k. The subdivision between mechanical and human noise is based on a206

metrical hypothesis. The average distance of data points and the centroid within a cluster207

describes the density of clusters. A short distance can be associated to a mechanical source208

whereas a large value to human activity. The size of clusters can bring information about209

the frequency – in the temporal meaning – of the sound sources. For instance, a quiet office,210

with a low human activity within, will have a corresponding cluster with a large percentage211

of samples relative to the whole population.212

C. Influence on Privacy-criteria213

In order to evaluate the influence of background noise on the intelligibility of speech, a214

numerical model of the office was done using a ray tracing software to provide the mod-215

ulation transfer function of the room. The model was calibrated using the reverberation216

time measured in the office, assuming that the diffusivity conditions are met. This means217

that the calibration is achieved when the difference between the measured and simulated218

reverberation times lies within the just noticeable difference (JND), which is ±5%, follow-219

ing the recommendations of the state-of-art (Vorländer, 2020). Once the model is set, the220

modulation transfer functions matrix (mtf) can be calculated from the simulated impulse221

response h(t) for each k-th octave band and the modulation frequency fm (IEC 60268, 2020):222

mk(fm) =

∣∣∫∞
0

h2
k(t)e

−j2πfmtdt
∣∣∫∞

0
h2
k(t)dt

[
1 + 10−

(LS,k−LN,k)
10

]−1

(10)
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where LS,k is the useful speech level, which depends on the distance, and LN,k the background223

noise. Through this matrix, the Speech Transmission Index can be calculated for each224

workstation varying the background noise levels. Then, a predictive analysis of privacy225

criteria within the active office can be carried out as function of the sound sources extracted.226

This is very useful since it is directly linked to the studies about annoyance during work227

hours (Ebissou et al., 2015). Four positions were chosen as representative of the activity228

performed inside the office: three near the workstations and one near the meeting table.229

According to ISO 3382-3, the simulation of privacy criteria was carried out using a directional230

sound source set at “normal” vocal effort. Different source-receiver configurations were231

simulated by moving the source in one position (from n.1 to n.4) and the receivers in the232

others. In order to calculate the matrix of the modulation transfer functions (mtf) for each233

octave band (see equation 10), and then the speech transmission indices (STI), LN,k values234

were set using the levels obtained by the Algorithms 1 and 2. In this way, it was possible235

“to map” the speech privacy criteria for each source-receiver combination (Dickschen et al.,236

2018).237

IV. RESULTS238

Tables I and II include the results of first step of clustering for both Algorithms. The239

candidate noise sources are sought here. For Algorithm 1, this is achieved by looking for240

the lowest AIC value in each octave band. Algorithm 2 is applied with the same number of241

clusters used in Algorithm 1 in order to make a fair comparison. The standard deviations242

of the Algorithm 1 are shown in brackets to have an overview of the clusters’ density.243
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The intermediate values achieved in the second step are shown in Figure 3. The clustering244

evaluation metrics – AIC for Algorithm 1 and silhouettes for Algorithm 2 – assess the two245

unsupervised techniques for a number of clusters K from 1 to 10 for AIC and 2 from246

10 for silhouettes. Even though the analyses were carried out for K up to 10, the most247

significant results are plotted up to K = 6 for a better visualization. K = 2 represents the248

best candidate model for both metrics. For Algorithm 1, since AIC has an asymptotical249

tendency, the elbow of the curves represents the reference for the best outcome. The 2 and250

4 kHz octave bands reveal a slight change of slope between K = 2 and K = 3, but not251

significant. For Algorithm 2, silhouettes show the high coefficients for K = 2 in each octave252

band.253

Then, the final outcomes produced by both Algorithms in the third step are shown in254

Table III. Now the candidate sound sources are labeled as either mechanical or human,255

on the basis of the above mentioned hypotheses (see Section III B). Bottalico and Astolfi256

measured vocal doses of elementary male and female teachers finding an uncertainty of the257

mean of the SPLs of about 4 dB (Bottalico and Astolfi, 2012). Olsen measured a standard258

deviation of the mean of speech in the range of 4-6 dB (Olsen, 1998). Iannace et al. measured259

the mechanical noise within an open-plan office in three operating conditions: two different260

speeds and the background noise with the HVAC system off. The standard deviations in the261

first two cases were about 1 dB, in the third was about 4 dB (Olsen, 1998). Leonard and262

Chilton reported the measured ambient noise levels of previous studies in open-plan offices.263

It is shown how the difference between minima and maxima SPLs span between 5 and and264

11 dB (Peter and Anthony, 2019).265
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Concerning the results of the present work, for Algorithm 1 the distinction is made setting266

a standard deviation equal to 5 dB as threshold. If for a given sound source the standard267

deviation is smaller than 5 dB, then this source is classified as mechanical, otherwise it268

is associated to human activity. The standard deviations and the mixing proportions of269

each Gaussian curve are shown in brackets. Regarding the Algorithm 2, the identification270

is carried out analyzing the average distance of data points from the centroid within a271

cluster. These distances and the size of clusters, represented as a percentage of the whole272

data population, are shown in brackets. A short distance means a low spread of data points273

within the cluster, which is referable to a mechanical source. A large distance highlights274

a dynamic behaviour of the source, thus it is reasonable to associate this kind of source275

to human activity. The clusters percentage breakout indicates that a large amount of data276

belong to the mechanical source, on average 79% on the whole population. Consequently, the277

office under study can be considered as a quiet environment. On the bottom of Table III, the278

equivalent Leq, and the percentile levels L90, L50, and L10 have been reported for comparison.279

V. DISCUSSION280

The office under study is located far from the city center in a quiet area, so indoor noises281

were expected to be the main components of the monitored soundscape (Acun and Yilmazer,282

2018). In particular, they are the noise due to service equipments and office devices, and283

the human noise. The results of unsupervised analyses confirm this intuition: indeed the284

clustering evaluation finds K = 2 as the best model among candidates. Now, it has to be285

ascertained wether these numbers have a physical sense.286
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TABLE I. Results of the first step for Algorithm 1. Here, the candidate noise sources are sought.

The results are obtained taking into account the lowest AIC possible. The standard deviations of

the Gaussian curves are shown in brackets. All values are presented in dB for each octave band.

Frequency octave band (Hz)

125 250 500 1000 2000 4000

Algorithm 1

– – – – 17.2 (0.4) 19.0 (0.4)

– – – – 17.9 (0.3) 20.8 (0.3)

– – 23.5 (1.2) – 18.6 (0.4) 21.2 (0.2)

– 26.8 (1.4) 25.7 (1.1) 19.7 (1.0) 19.6 (0.6) 21.7 (0.2)

– 28.5 (1.0) 27.9 (1.0) 21.3 (0.8) 21.1 (0.9) 22.1 (0.3)

– 30.5 (1.0) 30.2 (1.1) 23.1 (1.1) 23.2 (1.2) 22.8 (0.7)

31.1 (1.9) 32.9 (1.4) 33.1 (1.7) 25.9 (1.9) 26.3 (1.7) 24.4 (1.6)

34.6 (3.3) 36.2 (2.6) 37.1 (2.9) 31.2 (3.9) 30.4 (3.0) 27.9 (3.2)

44.2 (6.9) 45.2 (6.8) 46.3 (7.9) 39.0 (8.3) 35.8 (7.1) 34.2 (6.0)
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TABLE II. Results of the first step for Algorithm 2. Here, the candidate noise sources are sought.

Algorithm 2 is applied with the same number of clusters set for Algorithm 1 in order to make a

fair comparison. The average distances between each data point and the centroid within a cluster

are shown in brackets. All values are presented in dB for each octave band.

Frequency octave band (Hz)

125 250 500 1000 2000 4000

Algorithm 2

– – – – 17.8 (0.40) 20.6 (0.36)

– – – – 19.9 (0.48) 21.8 (0.15)

– – 23.9 (1.6) – 22.6 (0.68) 23.4 (0.31)

– 27.0 (1.57) 27.8 (1.35) 20.6 (1.35) 25.7 (0.82) 25.7 (0.49)

– 30.6 (1.19) 32.0 (1.58) 24.3 (1.46) 28.9 (0.98) 28.3 (0.67)

– 34.6 (1.69). 36.5 (2.23) 29.0 (2.22) 32.5 (1.32) 31.4 (0.96)

31.3 (3.58) 39.8 (2.98) 42.4 (3.50) 34.7 (3.29) 36.8 (1.91) 35.2 (1.49)

37.7 (5.79) 46.8 (4.17) 49.5 (4.97) 42.0 (6.10) 42.2 (3.28) 40.0 (2.99)

49.6 (17.70) 54.0 (10.35) 58.0 (11.63) 52.1 (18.82) 49.8 (12.10) 47.7 (13.76)
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TABLE III. Results of the third step for both Algorithms. The final outcomes associated to

mechanical or human sources are shown. They are obtained running both Algorithms with K = 2,

the optimal number of clusters found in the second step through the evaluation clustering (see

Figure 3). For Algorithm 1, the standard deviations and the mixing proportions of the Gaussian

curves of the Gaussian curves are shown, in brackets. For Algorithm 2, the average distances

between each data point and the centroid within a cluster, and the size of each cluster expressed as

percentage on the whole population, are shown, in brackets. Lastly, the equivalent and the 10th,

50th, and 90th percentile levels are shown for comparison. All values are presented in dB for each

octave band.

Source type Frequency octave band (Hz)

125 250 500 1000 2000 4000

Algorithm 1 – K=2

Mech. (LB) 32.5 (2.7 – 0.73) 30.0 (3.1 – 0.67) 28.1 (3.9 – 0.65) 22.2 (2.3 – 0.53) 18.6 (1.3 – 0.44) 21.6 (0.8 – 0.61)

Human (LS) 41.6 (7.0 – 0.27) 41.3 (7.7 – 0.33) 40.7 (9.1 – 0.35) 32.5 (7.8 – 0.47) 28.0 (6.9 – 0.56) 27.5 (5.4 – 0.39)

Algorithm 2 – K=2

Mech. (LB) 32.7 (8.25 – 82%) 30.6 (11.75 – 79%) 28.6 (17.15 – 77%) 23.4 (10.16 – 75%) 20.3 (7.97 – 74%) 22.2 (3.01 – 84%)

Human (LS) 45.5 (28.27 – 18%) 45.8 (31.65 – 21%) 45.8 (46.72 – 23%) 37.8 (40.45 – 25%) 33.7 (32.52 – 26%) 32.4 (21.11 – 16%)

L10 42.9 45.4 45.5 37.7 34.0 30.0

L50 33.3 31.7 30.3 24.6 21.3 22.1

L90 29.5 26.7 23.7 19.9 17.5 20.7

Leq 42.6 44.1 46.2 40.1 34.6 30.3

22



1 2 3 4 5 6

1.6

1.8

2

2.2

2.4

2.6

·106

Number of sources

A
IC

va
lu

e

125 Hz 250 Hz 500 Hz

1 kHz 2 kHz 4 kHz

1 2 3 4 5 6

0.65

0.7

0.75

0.8

0.85

0.9

Number of sources

S
il
h
ou

et
te

co
effi

ci
en

t

125 Hz 250 Hz 500 Hz

1 kHz 2 kHz 4 kHz

FIG. 3. Results of the second step for both Algorithms. AIC values on the top and silhouette

evaluation on the bottom are shown for each octave band. The lower the AIC the better the model.

The elbow of these curves represents the reference to evaluate the proper number of clusters to

take into account in the analysis. Concerning the silhouettes, the higher the coefficient the better

the model.
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The two initial hypotheses used to identify the kind of source – i.e. mechanical or human287

– are similar but have different concepts and applications. The continuous and constant288

activity of the mechanical systems and devices is addressed with two different approaches:289

the statistical occurrences in Algorithm 1, and the number of bins in Algorithm 2.290

The unsupervised algorithms are able to detect different densities within the SPLs col-291

lected by a sound level meter, regardless of its nature, mechanical or human. Finding the292

centre of gravity, like means or centroids, implies the capability of quantifying the sources293

in a dynamic context.294

In the following, the results of both Algorithms will be compared from a statistical and295

spectral point of view, respectively.296

A. Statistical remarks on the sound sources297

After finding the clusters, hence the active sound sources, it is necessary to label them,298

i.e. to associate each cluster to an existing sound source. The statistical approach of299

Algorithm 1 has more features to investigate in order to find the metrics and describe the300

nature of the source. The metrical approach of Algorithm 2 needs to find similar metrics301

in order to compare the results. In this regard, a small standard deviation means that the302

associated sound source produces stable sound pressure levels continuously during time. It303

is reasonable to associate this kind of behaviour to a mechanical source. In contrast, a high304

standard deviation means a more accidental nature of the sound source, like human activity305

(Bottalico and Astolfi, 2012). Similarly, a cluster shaped by a mechanical source should have306

a high density of data points. This means a short average distance among the data points307
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and their centroid within the cluster. A more random source should have more spread sound308

pressure levels, thus a lesser density and a larger average distance among data points and309

the centroid. These considerations are confirmed by the fact that standard deviations from310

Algorithm 1 and average distances of data points from Algorithm 2 have the same trend.311

Moreover, the mixing proportions of clusters is quite similar as well. In fact, the absolute312

values of the weight of each cluster take different values in the two Algorithms, but in both313

methods the mechanical source has the higher weight. Just one exception is present, in the314

2 kHz band.315

GMM can be considered as a generalization of KM for very small variances (MacKay,316

2003). The higher the variances the larger the differences between the values achieved by317

Algorithm 1 and 2. Thus, this can be considered as a consequence of the heteroscedasticity318

of data.319

The large population of the recorded data seems to give more robustness to Algorithm320

1. Concerning this point, in Figure 4 the coefficients of variation, i.e. the ratio between the321322

standard deviations and the mean values, are plotted for each octave band and for the two323

kind of sources, previously identified as mechanical and human. These coefficients show the324

dispersion of the data distribution for Algorithm 1. The trend is the same up to the 500 Hz325

octave band. Beyond this point, the gap between the curves of the mechanical and human326

coefficients of variation increases. The spread of the human activity noise increases up to327

the 2 kHz octave band: this source increases its dynamical behaviour in a range crucial for328

the human speech, where most formants occur. In the 4 kHz band there is a change of329
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FIG. 4. Coefficient of variation of the two sources, the mechanical noise and the human activity,

obtained by Algorithm 1. Results are plotted for each octave band.
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tendency. So, this general trend supports the identification of the higher curve as belonging330

to the human activity.331

B. Spectral remarks332

The human nature of the higher means and centroids resulting from the unsupervised333

analysis can be confirmed by a spectral matching technique. Thus, the sound pressure levels334

of speech in the office under study, was calculated using the diffuse field hypotheses and the335

in situ measured values of reverberation time (Hodgson et al., 2007). In fact, all the distances336

among workstations are greater than the critical distance of the room. A talking time of337

about the 20% of the whole monitoring time was considered. Because the background338339340

noise levels, measured within the office, remain almost below 45 dB, the Lombard effect is341

not triggered; this allows to use a constant value of speech power level (Peter and Anthony,342

2019). The sound power level of normal speech has been set, according to the ISO 3382-343

3, as an averaged value between male and female speakers and for a normal voice effort.344

Taking into account recent findings, it is worth noting that the speech spectrum may change345

in noisy environments, especially on lower bands (Leembruggen et al., 2016; Rindel et al.,346

2012). In light of this, the 125 and 250 Hz octave bands of the ISO speech spectrum have347

been increased respectively of 6 and 3 dB. The SPLs calculated in this way were then348

compared with the measured values of human noise obtained with Algorithm 1, Algorithm349

2, and Leq (see Figure 5). The human activity is not continuous in each recorded frame; it350

represent just a percentage of time of the whole data population collected. In Figure 5 the351

dashed curve refers to the expected speech spectrum.352
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field assumption; dashed line) and inferred values of the noise source identified as human using

Algorithms 1 and 2 in the office under study. The dashed line is plotted assuming the speech

running for the 20% of the monitoring time.
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detectable limit of the equipment used.
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The qualitative analysis of the results shows how the detected human activity has a353

similar spectrum of the calculated speech in the office. The quantitative analysis shows354

differences among the methods. The Algorithm 1 gives significantly lower values compared355

to other methods and the expected curve. This gap among values could concern the type of356

classification of the clustering techniques. The GMM is defined as a soft clustering technique,357

i.e. each data point is assigned to each cluster with different probabilities, whereas the KM358

is an hard clustering technique, thus each data point can be assigned to one and only one359

cluster (Saxena et al., 2017). Thus, the overlap zone between two Gaussian curves obtained360

by a mixture seems to lower the SPLs attributable to the source, corresponding to the mean361

values of the Gaussian curves. The hard clustering performed by the Algorithm 2, seems362

to process the classification similarly to the equivalent levels and the expected spectrum363

calculated instead. The quite flat tendencies on lower frequencies obtained via Algorithms364

1 and 2 could be due to the masking effects of the mechanical noise, which is louder in365

this octave band, with respect to the few energy of the speech spectrum in these octave366

bands. Such effect has been already noticed by (D’Orazio et al., 2020). Nevertheless, the367

flat tendency at the low frequencies falls within the uncertainties mentioned above.368

Concerning Algorithm 1, this outcome can be led back to the low offset noticed in Fig-369

ure 4. The separation in the lower band of 125 and 250 Hz seems to be more challenging,370

maybe due to the high energetic contribution of both sources, mechanical and human. The371

comparison between the mean values identified as human source and the diffuse speech levels372

characteristic of the office under study shows the same trend with differences up to 4 dB.373

This result confirms, with good approximation, the threshold chosen for the standard devi-374
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ation. Another confirmation of the reliability of the Algorithms 1 and 2 is obtained looking375

at the clusters obtained by Algorithm 2. In fact, the average percentage over all the octave376

band of the human activity is about 21% of the monitoring time (see Table III). This can377

be assumed, in a first approximation, as the percentage of speech occurrence in the office378

during work hours. Thus, the trend of the Algorithm 2, shown in Figure 5, seems to be the379

more similar to the energetic model, since it is near the expected curve of the speech for the380

20% of the whole monitoring time.381

Moreover, in Fig. 6 the spectra of the mechanical noise obtained by Algorithms 1 and 2382

and the 90th percentile levels are shown. The small differences between Algorithm 1 and383

Algorithm 2, as stated in the previous section, can be explained as a consequence of the small384

heteroscedasticity, and thus the low variances of the data, between the mechanical sources385

obtained via GMM and KM. Moreover, the mechanical noise measured via Algorithms 1386

and 2 has greater values than the 90th percentile level usually used.387

An unforeseen tendency is presented by the 4000 Hz octave band in both spectra, me-388

chanical and speech. In fact, it is expected a strong decrease of these values for both sources.389

The dotted line represents the lowest limit detectable of the sound level meter used. Looking390

at this and considering the high quiet of the office, the growth of the levels in the 4000 Hz391

band of the mechanical spectrum, as well as the small decrease of this octave band in the392

speech spectrum, can be given to the intrinsic error of the instrument. This observation393

seems to be confirmed by the behaviour of the AIC and the silhouette coefficient of the 4000394

Hz octave band shown in Figure 3. The large gap of the AIC value and the different ten-395

dency of the silhouette coefficient, compared to the other octave bands, suggests a different396
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distribution of the SPLs within the database, hence imputable to the intrinsic noise of the397

measurement.398

C. Background noise correction for STI evaluation399

A simulation of the office was done to obtain the STI values without background noise,400

STI∞, and then they were corrected with the background noise levels obtained with the two401

Algorithms and the percentile levels (table III). STI values, corrected with the contribution402

of mechanical and human noise separately, are shown in a source – receiver matrix (see403

Figure 7) where the gray scale reveals the variation of the parameter: from 0.5 (in black),404

which is the lower measured value, to 1 (in white), which is the ideal value of perfect405

intelligibility achieved when source and receiver are in the same workstation. The correction406

of STI∞ was made in two steps: at first, only the background noise due to the mechanical407

sources has been considered; then the contribution of the human activity was added . In408

figure 7 it is possible to see that there is a slight difference in the gray shade between the409

first two matrices in a row and only in the third matrix, when both the types of noise are410

considered, the shades are darker. For Algorithm 1, the variation of STI values is noticeable411

when only the mechanical contribution or the human contribution is considered. These412

results highlight that a more detailed analysis of the background noise allows to better413

evaluate the variation of STI values, avoiding to overestimate this important quantity.414

These results suggest how to assess the effective privacy condition within the office,415

which is quite different than the privacy condition measured with the mechanical noise only,416

as currently required by technical standards. In fact, the effective privacy is significantly417
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FIG. 7. Matrices of the STI values among the workstations in the office under study. The source

has been set at the “normal” speech level. On each row, going from the left to right, the STI

is presented first without background nose (indicated as LN = −∞), then corrected with the

background noise levels obtained through the unsupervised analysis. First adding the mechanical

contribution only (indicated as LN = Lmech), then summing up the human contribution as well

(indicated as LN = Lmech + Lhuman). The sidebar on the right represents the legend of the STI

values. On the axis of the matrix are reported the source-receiver positions (1 – 4) corresponding

to the three workstations and the meeting table (see Figure 2).
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affected by the social context (Rasmussen and Carrascal Garćıa, 2019). Where the active418

noise masking is used, the speech privacy can be quite constant over the working areas.419

In other cases, such as the one under study, the privacy fluctuates dynamically in time.420

The results obtained with the procedure presented in this work allow to assess different421

scenarios, thus broadening the characterization of privacy criteria of ISO 3382-3. Further422

analyses could be done with these unsupervised Algorithms with longer monitoring times, in423

order to investigate the existence of more significant correlations with percentile levels (Renz424

et al., 2019).425

VI. CONCLUSIONS426

Workers’ comfort and productivity inside offices is influenced by the background noise,427

which is due to different contributions (mechanical equipment, outdoor traffic, human ac-428

tivity). Therefore it is highly desirable to be able to separate these contributions from the429

temporal history provided by a simple monitoring systems. This would allow to control430

HVAC noise during working hours or to dynamically optimize the speech privacy between431

workers. Therefore, unsupervised algorithms capable to perform this task in an automated432

manner are required. However, even if some procedures were proposed in previous research,433

the instance seems to be still open. In the present work, two unsupervised methods capable434

to separate and identify different noise sources from the same recording are described in435

details. Both are based on clustering algorithms (GMM and K-Means) and further refined436

by a clustering evaluation. The third step of each Algorithm may be adapted on the context437

under study, on the basis of statistical and temporal preliminary observations.438
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The two Algorithms have been checked on a dataset of short-time (100 ms) equivalent439

levels, coming from the recording of a whole working day in a small office. Two noise440

sources, later identified as mechanical and human noise, were extracted from the dataset. It441

has been shown how the candidates noise sources - extracted in the first step - were easily442

reduced by the clustering evaluation. The Akaike information criterion and the silhouette443

criterion where applied in each octave band, returning comparable results. It was noted that444

Algorithm 1 is more sensitive to the statistical characteristics of the noise sources, while445

Algorithm 2 is more sensitive to the temporal behavior. As a consequence, in the third step,446

the proposed Algorithms return slightly different results. Indeed the two kind of noise sources447

vary less (the mechanical one) or more (the human one) in time, so that the homoscedasticity448

is not reached. Therefore, there are uncertainties at low frequencies, where the speech noise449

energy is lower than the mechanical noise one. Increasing the frequency of the input signal,450

the two sound sources seem to be identified by the statistical-based approach (Algorithm451

1) better than by the metric-based approaches (Algorithm 2). Nevertheless, Algorithm 2452

return information on the temporal behavior that are useful to optimize Algorithm 1, so453

both of them seems to be needed for in a depth analysis.454

With respect to previous researches, the unsupervised Algorithms presented here are455

quite robust and, after a preliminary set, they could be implemented, e.g., in continuous456

monitoring systems.457
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Rasmussen, B., and Carrascal Garćıa, T. (2019). “Acoustic regulations for offices-550

comparison between selected countries in europe,” in INTER-NOISE and NOISE-CON551

Congress and Conference Proceedings, Institute of Noise Control Engineering, Vol. 259,552

pp. 8141–8150.553

Renz, T., Leistner, P., and Liebl, A. (2018a). “Auditory distraction by speech: Can a bab-554

ble masker restore working memory performance and subjective perception to baseline?,”555

Applied Acoustics 137, 151–160.556

Renz, T., Leistner, P., and Liebl, A. (2018b). “Auditory distraction by speech: Sound557

masking with speech-shaped stationary noise outperforms- 5 db per octave shaped noise,”558

The Journal of the Acoustical Society of America 143(3), EL212–EL217.559

Renz, T., Leistner, P., and Liebl, A. (2019). “Use of energy-equivalent sound pressure levels560

and percentile level differences to assess the impact of speech on cognitive performance561

and annoyance perception,” Applied Acoustics 153, 71–77.562

40



Rindel, J. H. (2018). “Open plan office acoustics–a multidimensional optimization problem,”563

Proceedings of DAGA2018, Munich, Deutsche Gesellschaft für Akustik .564

Rindel, J. H., Christensen, C. L., and Gade, A. C. (2012). “Dynamic sound source for565

simulating the lombard effect in room acoustic modeling software,” in INTER-NOISE and566

NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering,567

Vol. 2012, pp. 954–966.568
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