

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli

This is the submitted version (pre peer-review, preprint) of the following publication:

Published Version: Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli / Nissen, Lorenzo; Casciano, Flavia; Babini, Elena; Gianotti, Andrea. - In: LEBENSMITTEL-WISSENSCHAFT + TECHNOLOGIE. -ISSN 0023-6438. - ELETTRONICO. - 151:November 2021(2021), pp. 112201.1-112201.9. [10.1016/j.lwt.2021.112201]

Availability: This version is available at: https://hdl.handle.net/11585/834487 since: 2024-02-24

Published:

DOI: http://doi.org/10.1016/j.lwt.2021.112201

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

LWT

Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli. --Manuscript Draft--

Manuscript Number:	LWT-D-21-02886R1
Article Type:	Research paper
Keywords:	Cannabis sativa sativa; bran; metabolomics; multivariate analysis; p-Cymene
Corresponding Author:	Lorenzo Nissen, PhD UNIBO DISTAL: Universita degli Studi di Bologna Dipartimento di Scienze e Tecnologie Agro-Alimentari Bologna, ITALY
First Author:	Lorenzo Nissen, PhD
Order of Authors:	Lorenzo Nissen, PhD
	Flavia Casciano, MSc
	Elena Babini, PhD
	Andrea Gianotti, PhD
Abstract:	Plant-based feedstock nutritionally and functionally rich are evermore requested in the food industry, although sustainability is a must. An untapped and sustainable source is hemp seed bran (HPB), which is a byproduct of industrial hemp seed flour. In this research we have studied the fermentation of HPB with different beneficial bacteria with the intention to valorize HPB for further food applications as a fiber supplement. Prebiotic activity was tested in vitro, and microbiological features were monitored and studied, as fermentation process and release of volatile organic compounds (VOCs). Results indicate that fermentation is able to increase terpenes and organic acids of HPB, particularly when is conducted by a bacterial pool. Besides, p -Cymene, Myrcene, and Eugenol are the VOCs majorly correlated to prebiotic activity. Although other studies must be conducted, this paper suggests that HPB should be valorized as a substrate to produce sustainable and chemical free prebiotics.

When citing, please refer to the published version: Lorenzo Nissen, Flavia Casciano, Elena Babini, Andrea Gianotti, Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli, LWT, Volume 151, 2021, 112201, ISSN 0023-6438, <u>https://doi.org/10.1016/j.lwt.2021.112201</u>. (<u>https://www.sciencedirect.com/science/article/pii/S0023643821013542</u>) Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli.

Highlights

- Hemp seed bran is an untapped food source for human consumption
- Prebiotic activity was studied analyzing microbial growth and bioactives production
- A bacterial pool fermented better hempseed bran than single bacterial species
- Volatile SCFAs and terpenes of bran are increased with lactobacilli fermentation
- Fermentation improves prebiotic potential of hemp seed bran

1	Prebiotic potential and bioactive volatiles of hemp byproduct fermented by
2	lactobacilli.
3	
4	Lorenzo Nissen*1, Flavia Casciano ² , Elena Babini ³ , Andrea Gianotti ^{1,2,3}
5	
6	¹ CIRI (Interdepartmental Centre of Agri-Food Industrial Research), Alma Mater Studiorum -
7	University of Bologna, P.za G. Goidanich 60, 47521 Cesena, Italy
8	² DISTAL (Department of Agricultural and Food Sciences), Alma Mater Studiorum - University of
9	Bologna, V.le Fanin 44, 40127, Bologna, Italy.
10	³ DISTAL (Department of Agricultural and Food Sciences), Alma Mater Studiorum - University of
11	Bologna, P.za G. Goidanich 60, 47521, Cesena, Italy.
12	
13	*Corresponding author: lorenzo.nissen@unibo.it
14	Mobile: +39 328 9245215 Office: +39 0547 338146
15	
16	FC: flavia.casciano2@unibo.it
17	EB: elena.babini2@unibo.it
18	AG: andrea.gianotti@unibo.it
19	
20	
21	
22	
23	
24	

26	lactobacilli.
27	
28	Lorenzo Nissen*1, Flavia Casciano ² , Elena Babini ³ , Andrea Gianotti ^{1,2,3}
29	
30	¹ CIRI (Interdepartmental Centre of Agri-Food Industrial Research), Alma Mater Studiorum -
31	University of Bologna, P.za G. Goidanich 60, 47521 Cesena, Italy
32	² DISTAL (Department of Agricultural and Food Sciences), Alma Mater Studiorum - University of
33	Bologna, V.le Fanin 44, 40127, Bologna, Italy.
34	³ DISTAL (Department of Agricultural and Food Sciences), Alma Mater Studiorum - University of
35	Bologna, P.za G. Goidanich 60, 47521, Cesena, Italy.
36	
37	*Corresponding author: lorenzo.nissen@unibo.it
38	Mobile: +39 328 9245215 Office: +39 0547 338146
39	
40	FC: flavia.casciano2@unibo.it
41	EB: elena.babini2@unibo.it
42	AG: andrea.gianotti@unibo.it
43	
44	Highlights
45	Hemp seed bran is an <u>unexploited_untapped</u> food source for human consumption
46	<u>PThe prebiotic potentialactivity</u> is studied couplingwas studied analyzing microbial
47	growth-microbiology and bioactives production
48	<u>A bacterial pool fermented better hempseed bran than single bacterial species</u> <u>The best</u>
49	fermentations of hemp seed bran are those made with a bacterial pool.

25 Prebiotic potential and bioactive volatiles of hemp byproduct fermented by

50	Volatile SCFAs and terpenes of bran are increased with lactobacilli fermentation
51	Fermentation improves prebiotic potential of hemp seed bran
52	
53	
54	Abstract
55	Plant-based feedstock nutritionally and functionally rich are evermore requested in the food
56	industry, although sustainability is a must. An untapped and sustainable source is hemp seed bran
57	(HPB), which is a byproduct of industrial hemp seed flour. This research concerns over the
58	exploration of prebiotic activity of hemp seed bran and its exploitation throughout fermentation by
59	beneficial lactobacilliIn this research we have studied the fermentation of HPB with different
60	beneficial bacteria with the intention to valorize -Its aim is to shed light on hemp seed branHPB for
61	further food applications as a fiber supplement in foods. Prebiotic activity was tested in vitro, and
62	microbiological features were monitored and studied, as fermentation process and release of volatile
63	organic compounds (VOCs). The assessment of its prebiotic activity, investing over bacterial
64	growth and prebiotic related volatilome, rResultsed indicate that fermentation is able to higher
65	scores with fermentation by increment in increase terpenes and organic acids of HPB, particularly
66	when is conducted by a bacterial pool. Besides, p-Cymene, Myrcene, and Eugenol were are those
67	the VOCscompounds majorly correlated to prebiotic activity. Though the hemp seed value is well
68	known, Although other studies must be conducted, wealthy byproducts hitherto scarcely studied
69	should be valorized, and thisthis paper suggests that HPB should be valorized as a substrate-work
70	vows to provide some basics- to produce sustainable and chemical free prebiotics.
71	

72 Keywords

Cannabis sativa sativa; bran; metabolomics; multivariate analysis; *p*-Cymene

75	Myrcene (PubChem CID:31253); p-Cymene (PubChem CID:7463); Acetic Acid (PubChem
76	CID:176); Propionic Acid (PubChem CID:1032); Butyric Acid (PubChem CID:264); 1-Octen-3-ol
77	(PubChem CID:18827); Eugenol (PubChem CID:3314); Terpinolene (PubChem CID:11463);
78	Myrtenal (PubChem CID:61130); Fenchyl Alcohol (PubChem CID:6997371).
79	
80	1. Introduction
81	Hemp (Cannabis sativa subsp. sativa) is the non-drug variety with no and contains legal content of
82	psychotropic agent effect (Korus, Witczak, Ziobro & Juszczak, 2017). The food products derived
83	are steering a large sector market that is constantly rising worldwide up to. The global sector
84	expected to generate around USD 4.89 billion by 2026 (at a CAGR (Compound Annual Growth
85	Rate) of around 6.2% between 2019 and 2026 (Zion Market Research 2018). This high rise is due to
86	the ease on legal restraints for registered varieties with no psychotropic effect, considering plants
87	cultivation and transformation and consumption of derived products. The feedstock principally
88	exploited in the hemp food industry are the seeds, that are free of cholesterol, are rich in proteins,
89	vitamins, and minerals, are plenty of dietary fibers and bioactives (Hartsel, Eades, Hickory &
90	Makriyannis, 2016; Wang, Jiang & Xiong, 2018; El Sohly, Radwan, Gul, Chandra & Galal, 2017)
91	and do not contain any psychotropic agent. <u>Hemp seeds are rich in \mathbf{F}_{t} terpenes of hemp have with</u>
92	outstanding antioxidant activity (Frassinetti et al., 2018) and their use is regulated as are flavor and
93	fragrance components generally regarded as safe (GRAS) by several regulatory agencies (Hao, Gu
94	& Xiao, 2015). Hemp seeds are transformed in flour is that is principally produced used for human
95	consumption, while the proteinaceous cake is used for animal feeds, and t. Whatever the industrial
96	process, the derived bran is a byproduct mainly discarded, but possibly represents a high value
97	material to suitstill valid for further food applications. A specific address could be that of prebiotics.
98	The current definition is stating that "a prebiotic is a substrate that is selectively utilized by host
99	microorganisms conferring a health benefit" (Gibson et al., 2017), and this version enlarged the
100	concept to other compounds than traditional polysaccharides. Consequently, complex substrates as
1	4

101	dietary fibers, that bring and liberate or serve for the gut microbiota to generate different bioactive
102	molecules such as (short chain organic acids or terpenes). could attain to this new description. The
103	para prebiotic activity of some fibers could be improved with in vitro fermentation by beneficial
104	bacteria. This strategy permits to obtain a product with Besides, it is important to consider that
105	fermentation by lactobacilli improves the quality of the final product substantially over two aspects:
106	firstly, the deconstruction of the fiber liberates other compounds, such the so-called postbiotics, that
107	improves the prebiotic potential of the original product, while secondly the yield and more
108	bioactives and to improve their bio accessibility of many different bioactives (polyohenols and
109	terpenes)-resulted augmented. These bacteria are able to ferment plant-based matrices generating
110	and transforming metabolites. For For instance, when Lacticaseibacillus rhamnosus Lactobacillus
111	rhamnosus LGG is applied in combination and different with two-Lactiplantibacillus plantarum
112	subsp. plantarum Lb. plantarum isolates to ferment plant based products, improves the content of
113	phenols and flavonoids of blueberry pomace (Yan et al., 2019). In fact, the enzymatic arsenal of
114	lactobacilli, such as that of Strains of Lp. plantarum Lb. plantarum, Lc. rhamnosus Lb. rhamnosus,
115	and Limosilactobacillus fermentum improve the content of bioactives of hemp seed products Lb.
116	fermentum perfectly conveys them for fermentation of plant-based matrices (Nissen, Demircan,
117	Taneyo-Saa & Gianotti, 2019; Nissen, di Carlo & Gianotti, 2020). Additionally, these species are
118	beneficial, and some related strains own the claim of probiotics, as Lb. rhamnosus GG (LGG), Lp.
119	plantarumLb. plantarum K10, and Lm. fermentum Lb. fermentum ME-3 (Darby, Naudin, Luo &
120	Jones, 2019: Kim, Huang, Park, Holzapfel & Lim, 2018; Nowak, Paliwoda & Błasiak, 2019).
121	Up today, no works were conducted exploring the functional properties of hemp seed bran (HPB)
122	after fermentation. Due to this reason, we made Fthis work with the intention to explored
123	characterize and valorize d hemp seed branHPB (HPB) potential functionalities as a consequence of
124	LAB (lactic acid bacteria) fermentation. by coupling its We aimed to achieve this goal by coupling
125	prebiotic activity to to the release of potential volatile organic bioactives volatile organic
126	compounds (VOCs)as a consequence of LAB fermentation: i), such as low organic acids, coming
I	5

127	directly from microbial metabolismpostbiotics produced by LAB fermentation, and ii)-terpenes,
128	more related to intrinsic compounds of hemp seed bran matrix compounds modification. We have
129	compared HPB to a positive control, i.e. fructooligosaccharides (FOS) from chicory, as the most
130	renowned prebiotics. The This work wants to give more details on the valorization of HPB for food
131	applications that resulted still unexplored novelty of this work has to be found in the byproduct
132	tested, that up to now results poorly characterized (Setti et al.Samaei, Maggiore, Nissen, Gianotti &
133	Babini, 2020) employing emerging approaches to study, improve, and highlight and on the
134	methodology used to assay prebiotic activity, the prebiotic potential of HPB-based on a combination
135	of molecular methods to quantify bacterial cells and bioactive VOCs.
136	
137	2. Materials and methods
138	2.1. HPB-Hemp seed bran preparation
139	HPB, a byproduct remaining after mechanical pressing of hemp seeds and subsequent grinding and
139 140	HPB, a byproduct remaining after mechanical pressing of hemp seeds and subsequent grinding and sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp
140	sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp
140 141	sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp variety was Futura 75. Five grams of HPB were suspended in 30 mL of distilled water, sterilized
140 141 142	sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp variety was Futura 75. Five grams of HPB were suspended in 30 mL of distilled water, sterilized (121 °C and 100 kPa for 20 min) (Vapor Matic 770, ASAL Srl, Milan, Italy) in independent 50 mL
140 141 142 143	sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp variety was Futura 75. Five grams of HPB were suspended in 30 mL of distilled water, sterilized (121 °C and 100 kPa for 20 min) (Vapor Matic 770, ASAL Srl, Milan, Italy) in independent 50 mL Falcon conical tubes (Corning Inc., NY, USA)50 mL plastic tubes (121 °C and 100 kPa for 20
140 141 142 143 144	sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp variety was Futura 75. Five grams of HPB were suspended in 30 mL of distilled water, sterilized (121 °C and 100 kPa for 20 min) (Vapor Matic 770, ASAL Srl, Milan, Italy) in independent 50 mL Falcon conical tubes (Corning Inc., NY, USA)50 mL plastic tubes (121 °C and 100 kPa for 20 min), named TBH (Treated Bran Hemp), and then used as substrate for bacterial fermentations,
140 141 142 143 144 145	sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp variety was Futura 75. Five grams of HPB were suspended in 30 mL of distilled water, sterilized (121 °C and 100 kPa for 20 min) (Vapor Matic 770, ASAL Srl, Milan, Italy) in independent 50 mL Falcon conical tubes (Corning Inc., NY, USA)50 mL plastic tubes (121 °C and 100 kPa for 20 min), named TBH (Treated Bran Hemp), and then used as substrate for bacterial fermentations, named FBH (Fermented Bran Hemp). Before <u>fermentation addition of the bacterial inoculum</u> , the
140 141 142 143 144 145 146	sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp variety was Futura 75. Five grams of HPB were suspended in 30 mL of distilled water, sterilized (121 °C and 100 kPa for 20 min) (Vapor Matic 770, ASAL Srl, Milan, Italy) in independent 50 mL Falcon conical tubes (Corning Inc., NY, USA)50 mL plastic tubes (121 °C and 100 kPa for 20 min), named TBH (Treated Bran Hemp), and then used as substrate for bacterial fermentations, named FBH (Fermented Bran Hemp). Before <u>fermentation addition of the bacterial inoculum</u> , the suspension was adjusted to 27 mL-of volume, in order to add later just 3 mL of bacterial inoculum.
140 141 142 143 144 145 146 147	sieving, was supplied by a local company (Hemp Positive World, Cesena, Italy). Original hemp variety was Futura 75. Five grams of HPB were suspended in 30 mL of distilled water, sterilized (121 °C and 100 kPa for 20 min) (Vapor Matic 770, ASAL Srl, Milan, Italy) in independent 50 mL Falcon conical tubes (Corning Inc., NY, USA)50 mL plastic tubes (121 °C and 100 kPa for 20 min), named TBH (Treated Bran Hemp), and then used as substrate for bacterial fermentations, named FBH (Fermented Bran Hemp). Before <u>fermentation addition of the bacterial inoculum</u> , the suspension was adjusted to 27 mL-of volume, in order to add later just 3 mL of bacterial inoculum. Controls used were: i) not inoculated sterile HPB/water suspension (NF = Not Fermented); ii) not

2.2. Microbial strains and culture conditions

152	All microbial strains tested belong to the microbial collection of DISTAL (Dept. of Agricultural and
153	Food Sciences), University of Bologna (Bologna, Italy) and have been previously isolated from
154	plant-based products and extensively studied (Babini, Tagliazucchi, Martini, Dei Più & Gianotti,
155	2017; Nissen, Demircan, Taneyo-Saa & Gianotti, 2019; Babini, et al. 2020; Nissen, di Carlo &
156	Gianotti, 2020; Nissen, Casciano & Gianotti, 2021). Lactiplantibacillus plantarum subsp.
157	plantarum 98b, Limosilactobacillus fermentum MR13, Lacticaseibacillus rhamnosus C1112 (used
158	for hemp bran fermentation), Bifidobacterium bifidum NCIMB 700795 and Escherichia coli ATCC
159	25922 (used for prebiotic activity) were cultured from glycerol stocks stored at -80 $^{\circ}$ C and were
160	propagated in selective media (Oxoid, Thermo Fisher Scientific, Waltham, MA, USA) at specific
161	conditions (Nissen, di Carlo & Gianotti, 2020).
162	
163	2.3. Fermentations
164	The hemp seed bran samples were fermented independently by Lc. rhamnosus C1112 (C), Lp.
165	plantarum 98b (L), Lm. fermentum MR13 (M), and by a bacterial pool (P) containing equal
166	proportion of the aforementioned strains. Cell load of inoculated bacteria was standardized by
167	spectrophotometric means based on plate counts and qPCR (quantitative PCR). I- For each
168	inoculuma were made by three 3 mL of 7 Log ₁₀ cells/mL of bacterial cells, were centrifugated and
169	resuspend two times in sterile distilled water. Each inoculum was added to 27 mL of TBH
170	besuspension fore addition to TBH, whose fermentation was conducted in 30 mL. Fermentation-and
171	fermentation was conducted aerobically at 37 °C up to 72 h in 50 mL Falcon conical tubes
172	(Corning, USA) aerobically at 37 °C up to 72 h to obtain FBH (Fermented HB) samples. Each
173	duplicate of a time point sample was made in distinct 50 mL Falcon conical tubes (Corning, USA).
174	Non inoculated autoclaved hemp bran (TBH) was used as control. Two biological replicates of each
175	sample were performed. For each inoculated sample (C, L, M, and P) sampling was performed after
176	6, 24, 48, and 72 h as reported in Supplementary Table 1. Analyses were regarded to bacterial
177	quantifications, pH, and VOCs (volatile organic compounds) characterization at least in duplicates.

180 For all bacteria 1 mL of each sample was aseptically transferred into a sterile tube of-with 9 mL of 181 physiological solution (0.9 g/dL NaCl) to be serially diluted (1/10) and plated in 182 duplicates. Lactobacilli and the pool were counted on MRS agar (Oxoid, Thermo Fisher Scientific, 183 USA) after incubation for at least 24 h at 37 °C in jars with anaerobiosis catalyst (Oxoid, Thermo Fischer Scientific, USA). B. bifidum NCIMB 700795 was counted on MRS agar supplemented with 184 185 0.005 g/dL L-cysteine (Sigma, USA) after incubation in the same conditions of lactobacilli. E. coli ATCC 25922 was counted on BHI agar (Oxoid, Thermo Fisher Scientific, USA) at 37 °C for 186 24 h. 187 188 2.5. pH measurement 189 190 The pH was determined with a pH_meter (Crison, Alella, Spain) at 20 °C appropriately calibrated with three standard buffer solutions at pH 9.21, pH 4.00, and pH 2.00. The pH values were 191 192 measured in duplicate at three different times to monitor the fermentation. 193 194 2.6. Quantification by qPCR Bacterial DNA from fermented hemp bran and from broths for prebiotic activity assay was 195 extracted with the Pure Link Microbiome kit (Invitrogen, Thermo Fisher Scientific, USA). Genetic 196 197 198 199

2.4. Bacterial CFU-Culture-Dependent Counting

178

179

standards for qPCR were prepared from serially diluted PCR products (1/10) obtained amplifying gene targets with specific primers (Supplementary Table 2) with ProFlex PCR System (Thermo Fisher Scientific, USA) and SuperFi Platinum Taq (Thermo Fisher Scientific, USA), and purified with GeneJet PCR purification kit (Thermo Fisher Scientific, USA). qPCR was performed with a 200 201 RotorGene 6000 (Qiagen, Hilden, Germany) and the RotorGene Q Series Software 2.3.1 (Qiagen,

202 Germany). PCR and qPCR reactions were performed according to previously published protocols 203 (Nissen, Demircan, Taneyo-Saa & Gianotti, 2019; Nissen, di Carlo & Gianotti, 2020; Nissen,

- 204 Bordoni & Giano<u>t</u>ti, 2020).
- 205

206 2.7. Prebiotic activity

207 The best performing time point, selected based on the best growth and pH reduction, was used to 208 choose the FBH samples to screen for prebiotic activity, that was calculated with the related 209 formula from two independent experiments and triplicates as previously described (Fissore, Santo 210 Domingo, Gerschenson & Giannuzzi, 2015; Huebner, Wehling, Parkhurst & Hutkins, 2008), 211 including qPCR quantifications (Nissen, di Carlo & Gianotti, 2020). FBH samples were filtered 212 (Minisart® Syringe Filter 0.22 µm, Sartorius, Gottingen, Germany) and then all samples including BH and TBH controls were freeze dried using a Savant freeze-dryer Lyolab 3000 apparatus 213 214 (Thermo Fisher Scientific, USA), in order to add a 1g/dL of product to 10 mL of culture media. 215 FOS from chicory (Sigma, USA) was used as prebiotic positive control, and FH (commercial hemp seed flour) sample was used as an additional control, along with prebiotic positive control fructo-216 217 oligosaccharides (FOS) from chicory (Sigma, USA). The media employed as control to calculate 218 the prebiotic scores were instead added with 1g/dL of glucose. The bacterial type strains Lp. plantarumLb. plantarum 98b, B. bifidum NCIMB 700795, and E. coli ATCC 25922 were used at 219 final concentration of 6 Log₁₀ CFU/mL (Fissore, Santo Domingo, Gerschenson & Giannuzzi, 2015; 220 221 Nissen, di Carlo & Gianotti, 2020). 222 2.8. Solid-Phase Microextraction Gas chromatography/Mass spectrometry (SPME-GC-MS) 223 224 Evaluation of VOCs was carried out on an Agilent 7890A Gas Chromatograph (Agilent Technologies, Santa Clara, CA, USA) coupled to an Agilent Technologies 5975 mass spectrometer 225 operating in the electron impact mode (ionization voltage of 70 eV), equipped with a Chrompack 226 227 CP-Wax 52 CB capillary column (50 m length, 0.32 mm ID) (Chrompack, Middelburg, NL). The

228 protocols for SPME-GC-MS analyses and for the identification of VOCs were previously published

230 231 232	Demircan, Taneyo-Saa & Gianotti, 2019;-Nissen, di Carlo & Gianotti, 2020; Nissen, Casciano di Carlo & Gianotti, 2020). Briefly, before each SPME sampling, the fiber was exposed to the GC inlet for 10 min for thermal desorption at 250 °C in a blank sample. Prior analyses 6 µL of 10,000 mg/mk of 2-Pentanol, 4-methyl (Merck, Darmstadt, Germany) as internal standard were injected into the vial containing 3 mL of liquid sample and let to equilibrate for 10 min at 40 °C in a water
	inlet for 10 min for thermal desorption at 250 °C in a blank sample. Prior analyses 6 µL of 10,000 mg/mk of 2-Pentanol, 4-methyl (Merck, Darmstadt, Germany) as internal standard were injected
232	mg/mk of 2-Pentanol, 4-methyl (Merck, Darmstadt, Germany) as internal standard were injected
233	into the vial containing 3 mL of liquid sample and let to equilibrate for 10 min at 40 °C in a water
234	
235	bath. The SPME fiber was exposed to each sample for 40 min, and finally the fiber was inserted
236	into the injection port of the GC for a 10 min sample desorption. The temperature program was: 50
237	°C for 1 min, then programmed at 1.5 °C/min to 65 °C, and finally at 3.5 °C/min to 220 °C, which
238	was maintained for 25 min. Injector, interface, and ion source temperatures were 250, 250, and 230
239	°C, respectively. Injections were carried out in split-less mode and helium (3 mL/min) was used as
240	a carrier gas. Identification was obtained with NIST 11 MSMS library and the NIST MS Search
241	program 2.0 (NIST, Gaithersburg, MD, USA). Acetic acid, Propionic acid, and Butyric acid were
242	absolutely quantified in mg/kg-employing an internal standard (Di Cagno et al., 2011; Nissen, di
243	<u>Carlo & Gianotti, 2020) (LOQ = 0.03 mg/kg and LOD = 0.01 mg/kg, while terpenes compounds</u>
244	were relatively quantified from chromatogram peak areas, as a ratio peak area/total peak of different
245	samples (Bonfrate et al, 2020) (LOD = 0.001 mg/kg) and then normalized with the mean centering
246	method (Nissen, Demircan, Taneyo-Saa & Gianotti, 2019; Nissen, di Carlo & Gianotti, 2020;
247	Nissen, Casciano Bordoni & Gianotti, 2020). The samples analyzed were 3 mL of each time points
248	case, namely 0 h, 6 h, 24 h, 48 h, and 72 h. The Samples analyzed were those collected from two
249	technical replicas of two independent experiments.
250	
251	2.9. Statistical analyses

- 252 All statistical analyses were performed using TIBCO Statistica 8.0 (Tibco Inc., Palo Alto, CA,
- 253 USA). Normality was checked with the Shapiro-Wilk's test and homoscedasticity was evaluated
- with the Levene's test (Granato, Araujo Calado & Jarvis, 2015). Differences between all samples

255	were evaluated with Analysis of Variance (ANOVA), while Principal Component Analysis (PCA),
256	K-Means clustering, Spearman Rank Correlations, Two-way joining heatmap, and MANOVA were
257	used to study the relationship between the variables (Nissen et al., 2020). To compare a sample to
258	another within the same dependent variables a Student's T-test was employed ($P < 0.05$), while to
259	compare different cases and different variables was used a Tukey's HSD (Honestly Significant
260	Differences) test ($P < 0.05$). For PCA and Spearman Rank Correlations, the dataset was normalized
261	using the mean centering method, including terpenes VOCs, delta pH, delta values of bacterial
262	growth, and the prebiotic scores. All results are expressed as mean values obtained at least from
263	duplicates batches in two independent experiments. qPCR and pH results were obtained from three
264	replicates from two independent experiments.
265	
266	3. Results
267	3.1. pH values, bacterial quantifications of TBH fermentations
268	pH values were expressed as delta reduction over time (Supplementary Table 3). Starting from The
268 269	pH values were expressed as delta reduction over time (Supplementary Table 3). Starting from The initial pH of every sample had a-a mean $-pH$ value of 6.55 ± 0.06 , then acidification was induced
269	initial pH of every sample had a a mean $\frac{1}{\text{pH}}$ value of 6.55 ± 0.06, then acidification was induced
269 270	<u>initial pH of every sample had a a</u> mean ${pH}$ value of 6.55 \pm 0.06 <u>, then</u> acidification was <u>induced</u> actively lasting up to 24 h or 24 or 48 h and a plateau was maintained afterwards. After Indeed,
269 270 271	initial pH of every sample had a a mean pH value of 6.55 ± 0.06 , then acidification was induced actively lasting up to 24 h or 24 or 48 h and a plateau was maintained afterwards. After Indeed, after 24 h, the mean pH reduction was 2.16 ± 0.19 (<i>P</i> < 0.05) but and no significant differences
269 270 271 272	initial pH of every sample had a a mean pH value of 6.55 ± 0.06 , then acidification was induced actively lasting up to 24 h or 24 or 48 h and a plateau was maintained afterwards. After Indeed, after 24 h, the mean pH reduction was 2.16 ± 0.19 ($P < 0.05$) but and no significant differences were seen up to the endpoint (72 h) ($P < 0.05$). C1112 (C) was the best and fastest in the
269 270 271 272 273	initial pH of every sample had a-a mean -pH value of 6.55 ± 0.06 , then acidification was induced actively lasting up to 24 h or 24 or 48 h and a plateau was maintained afterwards. After Indeed, after 24 h, the mean pH reduction was 2.16 ± 0.19 ($P < 0.05$) but and no significant differences were seen up to the endpoint (72 h) ($P < 0.05$). C1112 (C) was the best and fastest in the acidification of the medium, scoring the top value among the dataset at the early time pointsample
269 270 271 272 273 274	initial pH of every sample had a-a mean -pH value of 6.55 ± 0.06 , then acidification was induced actively lasting up to 24 h or 24 or 48 h and a plateau was maintained afterwards. After-Indeed, after 24 h, the mean pH reduction was 2.16 ± 0.19 ($P < 0.05$), but and no significant differences were seen up to the endpoint (72 h) ($P < 0.05$). C1112 (C) was the best and fastest in the acidification of the medium, scoring the top value among the dataset at the early time pointsample that after 24 h generated the maximum reduction of pH (-2.38 ± 0.17). Bacterial quantifications
269 270 271 272 273 274 275	initial pH of every sample had a-a mean -pH value of 6.55 ± 0.06 , then acidification was induced actively lasting up to 24 h or 24 or 48 h and a plateau was maintained afterwards. After Indeed, after 24 h, the mean pH reduction was 2.16 ± 0.19 ($P < 0.05$) but and no significant differences were seen up to the endpoint (72 h) ($P < 0.05$). C1112 (C) was the best and fastest in the acidification of the medium, scoring the top value among the dataset at the early time pointsample that after 24 h generated the maximum reduction of pH (-2.38 ± 0.17). Bacterial quantifications were expressed as means values of plate counts and qPCR results, and they were presented as cell
269 270 271 272 273 273 274 275 276	initial pH of every sample had a-a mean -pH value of 6.55 ± 0.06 , then acidification was induced actively lasting up to 24 h or 24 or 48 h and a plateau was maintained afterwards. After-Indeed, after 24 h, the mean pH reduction was 2.16 ± 0.19 ($P < 0.05$), but and no significant differences were seen up to the endpoint (72 h) ($P < 0.05$). C1112 (C) was the best and fastest in the acidification of the medium, scoring the top value among the dataset at the early time pointsample that after 24 h generated the maximum reduction of pH (-2.38 ± 0.17). Bacterial quantifications were expressed as means values of plate counts and qPCR results, and they were presented as cell number increase, expressed as Log ₁₀ cells/mL (Supplementary Table 4). Generally, in TBH samples
269 270 271 272 273 274 275 276 277	initial pH of every sample had a-a mean -pH value of 6.55 ± 0.06 , then acidification was induced actively lasting up to 24 h or 24 or 48 h and a plateau was maintained afterwards. After-Indeed, after 24 h, the mean pH reduction was 2.16 ± 0.19 ($P < 0.05$), but and no significant differences were seen up to the endpoint (72 h) ($P < 0.05$). C1112 (C) was the best and fastest in the acidification of the medium, scoring the top value among the dataset at the early time pointsample that after 24 h generated the maximum reduction of pH (-2.38 ± 0.17). Bacterial quantifications were expressed as means values of plate counts and qPCR results, and they were presented as cell number increase, expressed as Log ₁₀ cells/mL (Supplementary Table 4). Generally, in TBH samples all inocula kept growing exponentially up to 48 h (5.96 ± 0.31 Log ₁₀ cells/mL) ($P < 0.05$). M13 (M)

3.2. Volatile (low molecular weight) organic acids

282	Quantifications of volatile aceticAcetic, propionicPropionic, and butyricButyric acids iares
283	reported in mg/kg, and the mean values of any each mean value of Ffermented HPBH samples were
284	was compared to that of NF samples. In Figure 1A and Supplementary Table 5 it is described that
285	the abundance of acetic-Acetic acid increased on a time-basis. In factdetails, it-this organic acid was
286	found in traces (lower than 0.5 mg/kg) in NF cases but after fermentation of TBH by any bacterial
287	inoculum was able to increase accounted for significantly higher means values the content
288	($P < 0.05$). <u>Samples C, M, and L (LB325) were able to Theincrease the trend of every sample</u>
289	fermented quantity of Acetic acid exponentially during fermentation up to the endpoint, while P
290	with single inoculum was defined by an exponential raise up towas able up to 48 hours and
291	followed by a lighter one up to the endpoint. Differently acted the pool of strains whose curve
292	reached earlier a higher top value and declined afterwards. The maximum mean value amid among
293	the dataset was that of P48, accounting for 11.13 ± 1.01 mg/kg, the double more than the mean of
294	every single inoculum at that timepoint ($P < 0.05$). Considering the single inoculainoculum, the best
295	doer was CLb. rhamnosus C1112 at 72 h (C72), recording 7.43 ± 0.72 mg/kg. The high levels of
296	acetate Acetic acid recorded by P48 were consistent with high bacterial growth, but not with mild
297	acidification observed.
298	In Figure 1B and Supplementary Table 5 the mean values of propionic_Propionic_acid are described.
299	<u>TFor this compound</u> , a similar scenario to acetic acid was seen. In fact, ffrom a very low-little value
300	in NF (0.04 \pm 0.04 mg/kg) , the production of propionic acid was raisingraised constantly over time
301	up to the endpoint for the average of single inoculum <u>C, L, and M,</u> and up to 48 h for the pool <u>P</u> .
302	Considering the mean of values of C, L, and M, Propionic acid abundance was 5.75-, 10.58-, and
303	<u>14.25-folds larger at 24, 48, and 72 h. Excluding not significant early time point increase ($P > 0.05$)</u> ,
304	the increment means of the single inocula were 5.75-, 10.58-, and 14.25-folds more at 24, 48, and
305	72 h, respectively. Otherwise, the increment values performed by the pool <u>P</u> were 24.00-, 29.00-,
306	and 22.00-folds more at 24, 48, and 72 h, respectively. Thus, the poolP already produced higher
	12

yields at 24 h, 4.17-folds more than the average of single inoculathe mean of C, L, and M. The maximum value among the dataset was once more that of P48, scoring 1.16 ± 0.13 mg/kg, 2.74folds more than the mean of every single inoculum at that timepoint (*P* < 0.05). Considering the single inoculainoculum, the best performer was <u>MLb. fermentum MR13</u> at 72 -h (M72), recording 0.71 ± 0.15 mg/kg.

312 Butyric acid quantification (Figure 1C and Supplementary Table 5) showed significant differences when fermented cases FBH samples were compared to NF mean values amples (P < 0.05), except 313 314 for those at the early time point. In fact, fFrom a very low value in NF (0.08 ± 0.02 mg/kg), all single inoculum samplesC, L, and M produced constant higher yields up to the endpoint, while the 315 poolP reached the top value at 48 h and declined slightly after. Excluding not significant early time 316 317 point increase (P > 0.05), the increment means of the single inoculaC, L, and M were 5.00-, 11.58-, and 17.00-folds more at 24, 48, and 72 h, respectively. Otherwise the increases performed by the 318 319 poolP were 15.10-, 26.00-, and 20.08-folds more at 24, 48, and 72 h, respectively. Thus, the poolP 320 already produced higher yields at 24-h, 5.00-folds more than the average mean of single C, L, and 321 M single inocula. The maximum value among the dataset was once more that of P48, scoring 2.08 \pm 0.17 mg/kg, 2.24-folds more than the mean of every single inoculum at that timepoint (P < 0.05). 322 323 Considering the single inocula₁₇ the best producer was <u>CLb. rhamnosus C1112</u> at 72 h (C72), recording 1.53 ± 0.14 mg/kg. 324 325 In summary, TBH samples fermented with the bacterial pool accounted forrecorded the highest 326 vields-values of the three organic acids, and the time of fermentation that gave overall the best

- 327 performances was set, principally at 48 h.
- 328

329 **3.3. Terpenes**

Among the whole dataset of identified VOCs, we selected 37 compounds, based on their chemical class (terpenes and sesquiterpenes), normality distribution, significant difference of variance (P < 0.05), and renowproved bioactivity (Figure 2). From the PCAs (Figures 4A-2A and 2B) a robust

333	plane was evidenced, based on two factors defining the 26.11% and 26.63% of total representations.
334	Coupling PCAs to K-Means clustering analysis (Figure $\frac{4C_{2C}}{C}$) it was possible to identify five
335	clusters of samples-cases described by significant differences ($P < 0.05$) on relative abundances of
336	30 molecules. In Figure 2A, cluster 1 (blue dot) was positioned on quadrant III of PCA's plane
337	oriented distant to the left side and grouped just NF samples. This cluster was described by 30
338	compounds but just eight had relative higher $(P < 0.05)$ abundances (P < 0.05) than FBH samples,
339	such as β- pinene γ-Elemene, cis-β-Farnesene, Aromadendrene, 9-
340	methyldecalinMethyldecalin, α -Farnesene, Geraniol, and Myrtenal. Thereof, all other samples-cases
341	(n = 32) were <u>relative to</u> the FBH ones <u>samples and were</u> distributed in four specific clusters.
342	Cluster 2-(fuchsia dot) included early time pointall the samplecases at the early time points plus
343	two relatives to 24 h time pointand other two (L24 and L24_2) and was mainly fitted in quadrant IV
344	of PCA's plane. This cluster was described by 17 variables, but just three had abundancies
345	relatively higherwere more abundant than those found in other clusters ($P < 0.05$), <i>i.e.</i> butylated
346	Butylated hydroxytoluene, trans-Pinocarveol, and p-Vinylguaiacol. Cluster 3 included just MR13
347	and LB325 fermented samples FBH samples fermented by M and L at intermediate and end time
348	points. In particular, M13 at 24, 48, and 72 h time points, while LB325 at 48 and 72 h time points. It
349	was described by 24 compounds, but none had abundancies was significantly higher than those of
350	other clusters ($P > 0.05$). Cluster 4 included all <u>FBH samples the pool (P)</u> -fermented <u>by P samples</u>
351	except that at the early time point and it was set in quadrant I of PCA's plane oriented to the top. It
352	was described by 24 compounds, whose and eight had abundanciewere s-significantly higher more
353	<u>abundant</u> ($P < 0.05$) than those of other clusters, <i>i.e.</i> Caryophillene oxide, 1-(R)- α -Pinene,
354	Eudesma-4(14),11-diene, <i>p</i> -Cymene, Myrcene, Δ-3-Carene, 1-Octen-3-ol, and Citronellol. Cluster 5
355	contained all-the cases related to intermediate and end time point FBH samples fermented by C1112
356	fermented samples relatives to intermediate and end time points and was positioned in quadrant IV
357	of PCA's plane. It was described by 23 terpenes in varying abundancies, among which and in
358	particular that of 4-Trimethylsilyl-9,9-dimethyl-9-silafluorene, 4(10)-Thujen-3-ol, acetate, and
I	14

359	Borneol were significantly more abundant significantly higher ($P < 0.05$) than those of other
360	clusters ($P < 0.05$). In summary, the products of TBH fermentation that had the largest speciation
361	and the highest yield abundance of in terpenes were that those obtained relatively to TBH samples
362	fermented by the pool and byby P and C-C1112 at least after 48 h of incubation.
363	
364	3.4. Targeted MANOVA: fermentation dynamics and strain performances
365	<u>MANOVA ($P < 0.01$) was performed</u> The on the ddataset of the 37 normally distributed variables
366	with two categorical predictors: i) was categorized on the bacterial inoculum and ii) on the time of
367	fermentation to perform MANOVA ($P < 0.01$) (Figure 3A and BTables 1 and 2), in order to address
368	specifically the production of terpenes. Considering the different fermenting agentbacterial
369	inoculum (Figure 3ATable 1), 20 variables had significant differences ($P < 0.01$) and it emerged
370	that not fermented samples NF (Control)samples were the sole accountindescribed byg for Geraniol
371	(100%), and for more than the 76.0% of total-9-Methyldecalin (76.0%), and 72.1% of β -Selinene
372	(72.1%)-abundances. The quantities of the remaining 17 VOCs were all significantly augmented
373	with fermentation. In particular, some compounds were produced in higher proportion by a given
374	inoculum in respect to the others, and differently by the inoculum. For example, C1112 was
375	responsible for 48.9% of total production of α -Caryophillene, 40.6% of Borneol, and 43.2% of
376	Eucalyptol. Fermentation by LB325 led to the production of 52.9% of total β -Linalool and 37.7% of
377	total <i>p</i> -Cymen-8-ol. Fermentation conducted by MR13 was distinguished by 49.9% of total
378	abundance of <i>p</i> -Cymene and by 50.5% of total Myrtenal. The pooPl was responsible for the 59.9%
379	of the total yield in 1-(R)- α - <u>pinenePinene</u> , for the 63.9% of total γ -Elemene, the 57.6% of total cis-
380	β-Farnesene, the 51.8% of total Myrcene, the 44.8% of total Δ-3- $careneCarene$, the 47.8% of total
381	Fenchyl alcohol, the 45.8% of total 4(10)-Thujen-3-ol, acetate, and the 45.8% of total Eugenol. So
382	far, TBH fermented by the pool showed to be the inoculum that accounted for higher production of
383	more compounds than the single strains. In fact, the pool <u>P</u> produced had higher amount of 9
384	terpenes in comparison to the 3 of C1112, and the 2 of both LB325 and MR13.

385	Instead, considering the MANOVA categorized for the time points of fermentation showed that, 20
386	compounds- <u>VOCs</u> had significant differences among the independent variables ($P < 0.01$) (Figure
387	Table 244). Seven terpenes were intrinsic features of HPB and were not subject to significant
388	increases through with fermentation, in particular- β -Pinene, and Geraniol, and α -Farnesene was
389	were almost not detected after fermentation an exclusive signature of NF samples. The other
390	compounds were: Aromadendrene, accounting for the 66.4% of total abundance, 9-Methyldecalin,
391	accounting for the 76.0%, β Selinene for the 72.1%, and α Farnesene for the 94.6%. For any other
392	compound, the abundance was in higher proportion at the late time points. In factIn brief, , after 24
393	h just the 33.7% of total Eucalyptol and the 62.6% of total p Vinylguaiacol were produced. Instead,
394	afterat 48 h the VOCs discriminated were: 70.9% of total-Eudesma-4(14), 11-diene, (70.9%), as
395	well as the 50.9% of total p-Cymene (50.9%), the 56.6% of total Terpinolene (56.6%), the 40.6% of
396	total-1-Octen-3-ol (40.6%), and the 42.1% of total-2-Decen-1-ol, (E) (42.1%) were produced. Lastly,
397	at the end point major proportions on total yields of γ -Elemene (84.4%), of Citronellol (38.6%), and
398	of Myrtenal (54.4%) were achieved.

3.5. Prebiotic score

401	The prebiotic scores were calculated from the equation proposed by Huebner, Wehling & Hutkin	<u>s,</u>
402	(2007) and revised by Fissore, Santo Domingo, Gerschenson & Giannuzzi, (2015), which consider	ers
403	the effect of a fiber in comparison to glucose towards the growth of a beneficial bacteria in respec	<u>2t</u>
404	to the growth of pathogenic <i>E. coli</i> . The highest score for prebiotic activity (Table <u>13</u>) versus <u>Lp.</u>	
405	plantarum Lb. plantarum 98b was achieved by P48, that was the sole sample scoring significantly	у
406	higher than FOS ($P < 0.05$). In fact particular, <u>TBH fermented by P48 was significantly stronger</u>	
407	than FOS in the containment of E. coli ATCC 25922 even if the growth of Lb. plantarum 98b on	4
408	g/dL of TBH fermented by P48 was slightly lower than that of FOS, the inhibition of the former	ən
409	<i>E. coli</i> ATCC 25922 was significantly stronger ($P < 0.05$) (Supplementary Table 6). Besides, in	
410	comparison to FH, TBH fermented by P48P48 reached a prebiotic score onhad a prebiotic score	
l		10

411	<u>1.8-folds higher versus Lp. plantarum 98b-Lb. plantarum 98b 1.8 folds higher than FH that had the</u>
412	lowest value. The prebiotic score raised in respect to score raised in respect to the intensity of HPB
413	treatment, in details BH had the lowest value and TBH the highest from the lowest of BH to the top
414	of fermented TBH. Among the fermented samples the runner up was C48, with a score slightly
415	lower than FOS, but significantly higher than similar samples (L48 and M48). Considering the
416	prebiotic activity towards <i>B. bifidum</i> NCIMB 700795 (Table <u>+3)</u> , a similar trend was evidenced.
417	Tthe best performing sample was C48, higher than FOS and P48, but with no significant difference
418	(P > 0.05). Even in this context, Similarly to the previous prebiotic target, FOS made foster more B.
419	bifidum NCIMB 700795 to grow more than the best TBH fermented sample (C48), but this latter
420	was stronger in the containment of <i>E. coli</i> ATCC 25922 inhibition ($P < 0.05$) (Supplementary Table
421	6). Besides, TBH fermented by C48 hit the top prebiotic score versus <i>B. bifidum</i> NCIMB 700795
422	and was <u>S</u> significantly different from any other samples ($P < 0.05$) ees were seen in respect to all
423	other samples, and in particular the prebiotic activity of C48 was 1.7 folds more effective than that
424	of FH. Thus, both C48 and then P48 scored higher values than other fermented or not fermented
425	samples ($P < 0.05$). In brief, among the strains tested after 48 h of fermentation of the pool <u>TBH</u> , the
426	pool demonstrated to produce a substrate that had the topwith the best prebiotic activity versus
427	<i>lactobacilliLp. plantarum</i> , while C1112 hit the topwith the best versus <i>B. bifidum</i> bifidobacteria.
428	
429	3.6. Spearman rank correlations
430	We used Spearman rank analysis to evidence d correlations between variables related to ecological
431	features (bacterial growth, pH decrease, and prebiotic activity) and those related to abundances of
432	VOCs-considered, on independent variables (n = 32) (Figure $\frac{13}{2}$). Considering the bacterial growth,

433 **<u>*T</u>**he variable "delta cells" <u>indicates the was obtained from the difference of in</u> Log₁₀ cells/mL at the

- endpoint and between the beginning and end of fermentation. Significant correlations (P < 0.05)
- 435 indicated evidenced that during fermentation of TBH samples the the more growth of bacterial grew
- 436 in fermentation the morewas positively correlated with quantity of SCFAs, and minorly p-

437	Cymene, and Citronellol-was found in fermented TBH samples. In contrast three terpenes, <i>i.e.</i>
438	Caryophyllene, Δ -3-Carene, and β -Selinene, were inversely proportional correlated to bacterial
439	growth. It is likely that their accumulation in the substrate resulted in a constraint for lactobacilli.
440	As a matter of fact, Considering that from previous MANOVA ($P < 0.05$) resulted that the longer
441	was the fermentation time the larger the quantity of these three VOCs from MANOVA was found
442	that almost 50% of total yield of these VOCs was fostered by fermentation,. it is likely that their
443	accumulation in the substrate resulted in a constraint for lactobacilli as the fermentation was
444	prolonged over time when bacterial load was richer.
445	Acetic acid abundance was even significantly proportional to acidification, as well as that of 1-
446	Octen-3 ol and Fenchyl alcohol. Considering the prebiotic activity, it is interest to stress out that
447	correlation trend was similar for both probiotics. A group of terpenes-VOCs including p-Cymene,
448	Myrcene, Eugenol, 1-Octen-3-ol, Terpinolene, and β -Pinene resulted significantly associated to
449	prebiotic activity ($P < 0.05$), while Caryophyllene, Eucalyptol, and β - <u>linalool-Linalool</u> were
450	<u>negative</u> inversely proportional correlated ($P < 0.05$). This issue could mean that just the former list
451	of VOCs related to prebiotic activity has generate a selective bioactivity versus certain
452	bacteria effects, e.g. inhibiting inhibition of enteropathogenic E. coli enteropathogens and capacity
453	to fostering probiotics B. bifidum or lactobacilliLp. plantarum, instead the latter list of VOCs had a
454	broader spectrum of antimicrobial activity.
455	
456	4. Discussion
457	When TBH was fermented, interestingly Interestingly, when TBH was fermented the high
458	lactobacilli loadgrowth, and the high content of acetic-Acetic acid did not lead to extreme
459	acidification levels. In fact, the pH values were not reduced excessively (C1112 hit top acidification
460	after 48 h with pH value of 4.21 \pm 0.02), <u>likely-like</u> happens during the most of fermentation
461	processes performed on when plant-based material are fermented. For example, lactobacilli

fermenting carrot, cabbage or radish can bring pH down to less than 4 after 72 h (Vatansever, Vegi,

463	Garden-Robinson & Hall, 2017). Kimchi fermentation by indigenous LAB, including Lactobacillus
464	spp., can acidify the substrate up to pH 3.5 after 24 h (Joon-Yeon & Kunz, 2009). In our work, from
465	24 h to the <u>end</u> time point the pH remained was stable with <u>a</u> mean <u>value</u> of 4.41 ± 0.15 , besides and
466	in this period-bacterial cells kept growing up to an endpointa mean of $12.23 \pm 0.24 \text{ Log}_{10} \text{ cells/mL}$.
467	Therefore, HPB positively reflects the essentialshowed characteristic of ato be a substrate for which
468	fosters probiotic growth including and owns a pH buffering capacity (Nissen, di Carlo & Gianotti,
469	2020).
470	The prebiotic activity second recorded by fermented TBH was surprisingly effective even due to a
471	stronger containment of the growth of E. coli ATCC 25922, in comparison to other samples and the
472	FOS. Hemp female inflorescences and hemp seeds bring many terpenes with renowned
473	antimicrobial activity(Nissen et al., 2010 (Pellati, Brighenti, Sperlea, Marchetti, Bertelli &
474	Benvenutiet al., 2018; Leghissa, Hildenbrand & Schug, 2018), that alone or in synergism show to
475	be capable to inhibit opportunistic and food borne pathogens (Nuutinen, 2018; Nafis et al., 2019).
476	The antimicrobial activity of hemp seed is reckoned to be triggered by the synergistic effects of
477	different terpenes present in hemp seed oil (Nafis et al., 2019, Nissen et al., 2010). On the
478	contrary, other plant-based materials able to foster probiotics do not have a prebiotic activity
479	because cannot tackle the growth of enteropathogens (Vieira, Bedani, Albuquerque, Biscola &
480	Saad, 2017). A fundamental criterium to classify a food ingredient as a prebiotic is the scientific
481	ability to foster the growth and support the activity of beneficial intestinal bacteria (Gibson et al.
482	2017). In this view the assay of prebiotic activity adopted reflects the ability of a prebiotic to
483	jointlymutually foster the growth of probiotics and limit that of enteropathogens in comparison to
484	glucose (Fissore, Santo Domingo, Gerschenson & Giannuzzi, 2015; Huebner, Wehling, Parkhurst
485	& Hutkins, 2008). Another element that supports the The ss trong prebiotic activity of FBH that we
486	have observed could be partly due to the recorded higher quantity levels of acetic Acetic,
487	propionicPropionic, and butyric Butyric acids generated s, particularly by fermentation with in P48
488	and in-C72. Lactobacilli are able to liberate and produce low organic acids during fibers
I	19

489	degradation, thus improving the original content in the fermented product (Massa et al., 2020). The
490	quality and quantity of these organic acids depend on the type of fiber used (Gill, van Zelm, Muir &
491	<u>Gibson 2018).</u>
492	In fact <u>T</u> , the beneficial effects of low organic acids are renown <u>ed and , are multi-targets, not solely</u>
493	directed to the host epithelial mucosa, and to the blood stream, but even to the microbiota, as a
494	selective substrate (Goverse et al., 2017). Aabundant production of these compounds is linked to
495	well-being (Goverse et al., 2017) and their nutritional supplementation are-is suggested for the
496	treatment of in different intestinal diseases (Gill, van Zelm, Muir & Gibson 2018).
497	From Spearman Rank correlation, the abundance of <i>p</i> -Cymene, Myrcene, Eugenol, 1-Octen-3-ol,
498	Terpinolene, and β -Pinene was linked to prebiotic activity, and all these VOCs, except the latter,
499	were increased with fermentation of TBH. These results are in line with recent literature, where it is
500	reported that bacterial fermentation is able to improve the original terpenes content of cheese (Alves
501	Bezerra et al., 2017), mango peel (Jin et al., 2018), okara from soybean (Gupta, Lee & Chen, 2018),
502	hemp seed drinks (Nissen, di Carlo & Gianotti, 2020), hemp seed enriched doughs (Nissen,
503	Bordoni, Gianotti, 2020), and blueberry pomace (Cheng et al., 2020). The antimicrobial properties
504	and the applications in foods of terpenes such as p-Cymene (Marchese et al., 2017), Terpinolene
505	(Fiorini et al., 2019; Karas et al., 2020), Myrcene (Mitropoulou et al., 2107), and Eugenol (Talón,
506	Vargas, Chiralt & González-Martínez. 2019) is proved. Additionally, these VOCs are promising
507	health related compounds due to the strong anti-oxidant and anti-inflammatory capacity, as good
508	radicals' scavengers (De Oliveira et al., 2015; Boulebd, 2021; Yi, Sun, Bao, Ma & Sun, 2019; da
509	Silva et al., 2018). Myrcene that was plenty in FBH samples. In fact, this monoterpene rules almost
510	a third of Futura 75 hemp seed essential oil content (Nissen et al., 2010), and besides has
511	antioxidant and anti-inflammatory capacities (Mitropoulou et al., 2107; Yi, Sun, Bao, Ma & Sun,
512	2019). Then we found high abundance of Terpinolene, that is a monoterpene and a structural isomer
513	of (+)-Limonene that is found largely in hemp inflorescence up to 9.7% of total weight, and is
514	currently used in the food industry (Fiorini, Molle, Nabissi, Santini, Benelli & Maggi, 2019). It has 20

515	been reported to have antioxidant capacities as a good radicals' scavengers (Boulebd, 2021), and to
516	act as antimicrobial (Karas, Wong, Paulin, Mazeh, Hussein, Li & Velkov, 2020). Eugenol is a
517	natural phenolic compound found abundantly in cinnamon and in clove essential oils and is the
518	main responsible for clove aroma (Talón, Vargas, Chiralt & González-Martínez, 2019). Eugenol is
519	indicated for several therapeutic effects, because is a good radicals' scavengers with antibacterial
520	effeet (da Silva, Monte, de Lemos, do Nascimento, Costa, de Paiva, 2018). <i>p</i>-Cymene is a
521	monoterpene found in more than 100 plant species able to counteract different food borne
522	pathogens (Marchese et al., 2017). It shows numerous biological activities, increasing the activity of
523	antioxidant enzymes, contributing to reduce oxidative stress (De Oliveira et al., 2015).
524	Thus, according to the new definition of prebiotics, FBH had an higher prebiotic score than FOS
525	because its effect was jointly generated by other beneficial compounds and the polysaccharides. In
526	fact, considering metabolomics, multivariate analysis defined that HPB samples prior fermentation
527	were described by 28 different terpenes, whose two were exclusively found at this stage, such as β -
527 528	were described by 28 different terpenes, whose two were exclusively found at this stage, such as β- Pinene and Geraniol. The other compounds were all positively subjected to the effect of
528	Pinene and Geraniol. The other compounds were all positively subjected to the effect of
528 529	Pinene and Geraniol. The other compounds were all positively subjected to the effect of fermentation process, which have surged their release. Consequently, in our study the more the
528 529 530	Pinene and Geraniol. The other compounds were all positively subjected to the effect of fermentation process, which have surged their release. Consequently, in our study the more the terpenes bioactive VOCs (low organic acids and terpenes) were abundant and the more the prebiotic
528 529 530 531	Pinene and Geraniol. The other compounds were all positively subjected to the effect of fermentation process, which have surged their release. Consequently, in our study the more the terpenes bioactive VOCs (low organic acids and terpenes) were abundant and the more the prebiotic activity was effective. <u>, microbial fermentation is able to improve the original terpenes content of</u>
528 529 530 531 532	Pinene and Geraniol. The other compounds were all positively subjected to the effect of fermentation process, which have surged their release. Consequently, in our study the more the terpenes-bioactive VOCs (low organic acids and terpenes) were abundant and the more the prebiotic activity was effective. <u>, microbial fermentation is able to improve the original terpenes content of cheese (Alves Bezerra et al., 2017), mango peel (Jin et al., 2018), okara from soybean (Gupta, Lee</u>
528 529 530 531 532 533	Pinene and Geraniol. The other compounds were all positively subjected to the effect of fermentation process, which have surged their release. Consequently, in our study the more the terpenes bioactive VOCs (low organic acids and terpenes) were abundant and the more the prebiotic activity was effective. , microbial fermentation is able to improve the original terpenes content of cheese (Alves Bezerra et al., 2017), mango peel (Jin et al., 2018), okara from soybean (Gupta, Lee & Chen, 2018), hemp seed drinks, and hemp seed enriched doughs (Nissen, di Carlo, Gianotti,
528 529 530 531 532 533 534	Pinene and Geraniol. The other compounds were all positively subjected to the effect of fermentation process, which have surged their release. Consequently, in our study the more the terpenes-bioactive VOCs (low organic acids and terpenes) were abundant and the more the prebiotic activity was effective. <u>, microbial fermentation is able to improve the original terpenes content of</u> <u>eheese (Alves Bezerra et al., 2017), mango peel (Jin et al., 2018), okara from soybean (Gupta, Lee</u> <u>& Chen, 2018), hemp seed drinks, and hemp seed enriched doughs (Nissen, di Carlo, Gianotti,</u> <u>2020; Nissen, Bordoni, Gianotti, 2020), and blueberry pomace (Cheng et al., 2020). Actually, from</u>
528 529 530 531 532 533 534 535	Pinene and Geraniol. The other compounds were all positively subjected to the effect of fermentation process, which have surged their release. Consequently, in our study the more the terpenes-bioactive VOCs (low organic acids and terpenes) were abundant and the more the prebiotic activity was effective. <u>, microbial fermentation is able to improve the original terpenes content of</u> <u>eheese (Alves Bezerra et al., 2017), mango peel (Jin et al., 2018), okara from soybean (Gupta, Lee</u> <u>& Chen, 2018), hemp seed drinks, and hemp seed enriched doughs (Nissen, di Carlo, Gianotti,</u> <u>2020; Nissen, Bordoni, Gianotti, 2020), and blueberry pomace (Cheng et al., 2020). Actually, from</u> Spearman Rank correlation, the abundance of <i>p</i> -Cymene, Myrcene, Eugenol, 1-Octen 3-ol,

because its effect was jointly generated by other beneficial compounds and the polysaccharides.

540	Lactobacilli are able to liberate and produce low organic acids during libers degradation, thus
541	improving the original content in the fermented product (Massa et al., 2020). Besides the organic
542	acids production is differently triggered by different fibers (Gill, van Zelm, Muir & Gibson 2018).
543	Similarly, microbial fermentation is able to improve the original terpenes content of cheese (Alves
544	Bezerra et al., 2017), mango peel (Jin et al., 2018), okara from soybean (Gupta, Lee & Chen, 2018),
545	hemp seed drinks, and hemp seed enriched doughs (Nissen, di Carlo, Gianotti, 2020; Nissen,
546	Bordoni, Gianotti, 2020), and blueberry pomace (Cheng et al., 2020).
547	Hemp female inflorescences bring many terpones (Nissen et al., 2010; Pellati, Brighenti, Sporlea,
548	Marchetti, Bertelli & Benvenuti, 2018; Leghissa, Hildenbrand &
549	Sehug, 2018), that alone or in synergism show to be capable to inhibit food borne pathogens (Nafis
550	et al., 2019).
551	Among the most effective terpenes that we have detected and described there were five that recently
552	attracted scientist for their biological activities, namely Myrcene, Terpinolene, Eugenol, p-Cymene,
553	and 1-Octen 3-ol. The first is Myreene that was plenty in FBH samples. In fact, this-monoterpene
554	rules almost a third of Futura 75 hemp seed essential oil content (Nissen et al., 2010), and besides
555	has antioxidant and anti-inflammatory capacitics (Mitropoulou et al., 2107; Yi, Sun , Bao, Ma &
556	Sun, 2019). Then we found high abundance of Terpinolene, that is a monoterpene and a structural
557	isomer of (+) Limonene that is found largely in homp inflorescence up to 9.7% of total weight, and
558	is currently used in the food industry (Fiorini, Molle, Nabissi, Santini, Benelli & Maggi, 2019). It
559	has been reported to have antioxidant capacities as a good radicals' seavengers (Boulebd, 2021),
560	and to act as antimicrobial (Karas, Wong, Paulin, Mazeh, Hussein, Li & Velkov, 2020). Eugenol-is
561	a natural phenolic compound found abundantly in cinnamon and in clove essential oils and is the
562	main responsible for clove aroma (Talón, Vargas, Chiralt & González-Martínez, 2019). Eugenol is
563	indicated for several therapeutic effects, because is a good radicals' seavengers with antibacterial
564	effect (da Silva, Monte, de Lemos, do Nascimento, Costa, de Paiva, 2018). <i>p</i>-Cymene is a
565	monoterpene found in more than 100 plant species able to counteract different food borne
1	22

566	pathogens (Marchese et al., 2017). It shows numerous biological activities, increasing the activity of
567	antioxidant enzymes, contributing to reduce oxidative stress (De Oliveira et al., 2015).
568	1 Octen 3 of has been described in different plants and fungi and is a short- chain oxylipin,
569	oxygenated derivative of linoleic acids, able to protect plants in response to external challenges
570	(Zhang et al., 2021) and successfully tested <i>in vitro</i> against food borne pathogens (Xiong, Li, Li,
571	Chen, Chen, Huang, 2017).
572	The bioactives that we have described use to act in synergism, resulting to exalt the beneficial effect
573	for the host (Nafis et al., 2019; Nissen et al., 2010; Russo, 2011); for example, it has been proposed
574	that phytocannabinoids and terpenoids interact together to deliver joint effect in the treatment of
575	inflammation and microbial pathogenesis (Nuutinen, 2018).
576	In this way a human colonic model may represent the proper <i>in vitro</i> approach for a deep
577	knowledge of potential functionalities of HPB (Nissen, Casciano, Chiarello, Di Nunzio, Bordoni &
578	Gianotti, 2021). Throughout the aid of such tools it will be possible to landscape the complexity of
579	the shift of the microbial populations, as restraint of enteropathogens and promotion of probiotics,
580	and to reveal in detail the metabolic faith of bioactive VOCs.
581	
582	5. Conclusions
583	Development of functional foods for our next future could be afforded just employing sustainable
584	approaches and renewable feedstock, including the exploitation of industrial byproducts. These
585	needs could be satisfied by hemp seed that is a multi-tasking feedstock, is a powerhouse of nutrients
586	and health related compounds. HoweverIts cultivation rinses the soil and gives generous yields with
587	low demanding attributes in terms of chemicals, land, and water. Also, the industrial process uses to
588	discard potentially high value plant component, such as hemp seed bran <u>HPB</u> , that deserves to be
589	valorized.
590	In the present work we have demonstrated that fermented hemp seed bran could be considered

591 <u>technically improved_with fermentation, resulting inas a product with higher prebiotic activity due</u>

592	to more is possible to extend to the byproducts the nutritional and health potential characters of the
593	principal feedstock, as well as to increase the original content and yields of certain-bioactives, such
594	as SCFA-organic acids which fostered the growth of probiotics, and some selected terpenes that
595	tackled enteropathogenic E. coli.
596	This work discovered that HPB is a fine substrate for beneficial lactobacilli as well as for
597	probiotiesand propose to apply HPB as a prebiotic ingredient. Furthermore, for the first time,
598	unprocessed or differently treated and fermented HPB were assessed, compared, and discussed on
599	their prebiotic potential, targeting also the VOCs deputed to this bioactivity. Besides, with
600	fermentation of HPB the bioactives related to prebiotic activity could be increased. We have found
601	that the prebiotic activity of HPB samples is the result of the action of a pool of health-related
602	compounds, and that their presence is related toproduction could be balanced by fermenta
603	fermentation processtion with specific bacteria Considering the synergistic effort that different
604	terpenes generally use for the generation of the final bioactive effect, we can write that even the
605	prebiotic activity of HPB samples is the result of the action of a pool of health-related compounds.
606	The results were obtained by a robust multivariate statistical approach that permitted to discriminate
607	the contribution of each inoculum fermenting HPB on the prebiotic properties of the final product.
608	Although this work is still an in vitro investigation, it
609	The present research offers some statistically robust basics over the valorization of an outcasted
610	byproduct derived from the industrial transformation chain of hemp seed foods and the recipient
611	results yow that and introduces that HPB could have prebiotic application.
612	
613	Funding source
614	This research was supported by Alma IDEA grant from University of Bologna

616 Credit authorship contribution statement

617	Lorenzo Nissen: Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
618	Software, Supervision, Visualization, Writing - original draft, Writing - review & editing.
619	Flavia Casciano: Formal analysis, Investigation, Writing - review & editing.
620	Elena Babini: Conceptualization, Funding acquisition, Resources, Supervision, Validation, Writing
621	- review & editing.
622	Andrea Gianotti: Conceptualization, Data curation, Funding acquisition, Methodology, Project
623	administration, Resources, Supervision, Validation, Visualization, Writing - original draft, Writing -
624	review & editing.
625	
626	Declaration of Competing Interest
627	The authors declare that they have no known competing financial interests or personal relationships
628	that could have appeared to influence the work reported in this paper.
629	
630	References
631	Alves Bezerra, T. K., de Oliveira Arcanjo, N. M., Ribeiro de Araújo, A. R., Menêses de Queiroz, A.
632	L., Gomes de Oliveira, M. E., Pereira Gomes, A. M., & Suely Madruga, M. (2017). Volatile profile
632 633	
	L., Gomes de Oliveira, M. E., Pereira Gomes, A. M., & Suely Madruga, M. (2017). Volatile profile
633	L., Gomes de Oliveira, M. E., Pereira Gomes, A. M., & Suely Madruga, M. (2017). Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. <i>LWT - Food Science and</i>
633 634	L., Gomes de Oliveira, M. E., Pereira Gomes, A. M., & Suely Madruga, M. (2017). Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. <i>LWT - Food Science and</i>
633 634 635	L., Gomes de Oliveira, M. E., Pereira Gomes, A. M., & Suely Madruga, M. (2017). Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. <i>LWT - Food Science and Technology</i> , <i>76</i> , 209-215. <u>https://doi.org/10.1016/j.lwt.2016.03.041</u>
633 634 635 636	L., Gomes de Oliveira, M. E., Pereira Gomes, A. M., & Suely Madruga, M. (2017). Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. <i>LWT - Food Science and</i> <i>Technology</i> , <i>76</i> , 209-215. <u>https://doi.org/10.1016/j.lwt.2016.03.041</u> Babini, E., Taneyo-Saa, D. L., Tassoni, A., Ferri, M., Kraft, A., Grän-Heedfeld, J., Bretz, K., Roda,
633 634 635 636 637	 L., Gomes de Oliveira, M. E., Pereira Gomes, A. M., & Suely Madruga, M. (2017). Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. <i>LWT - Food Science and Technology</i>, <i>76</i>, 209-215. <u>https://doi.org/10.1016/j.lwt.2016.03.041</u> Babini, E., Taneyo-Saa, D. L., Tassoni, A., Ferri, M., Kraft, A., Grän-Heedfeld, J., Bretz, K., Roda, A., Michelini, E., Calabretta, M. M., Guillon, F., Tagliazucchi, D., Martini, S., Nissen, L., &
633 634 635 636 637 638	 L., Gomes de Oliveira, M. E., Pereira Gomes, A. M., & Suely Madruga, M. (2017). Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. <i>LWT - Food Science and Technology</i>, <i>76</i>, 209-215. <u>https://doi.org/10.1016/j.lwt.2016.03.041</u> Babini, E., Taneyo-Saa, D. L., Tassoni, A., Ferri, M., Kraft, A., Grän-Heedfeld, J., Bretz, K., Roda, A., Michelini, E., Calabretta, M. M., Guillon, F., Tagliazucchi, D., Martini, S., Nissen, L., & Gianotti, A. (2020). Microbial fermentation of industrial rice-starch byproduct as valuable source of

641	Babini, E., Tagliazucchi, D., Martini, S., Dei Più, L., & Gianotti, A. (2017). LC ESI QTOF MS
642	identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of
643	vegetable proteins. Food Chemistry, 228, 186-196.
644	Bonfrate, L., Di Palo, D. M., Celano, G., Albert, A., Vitellio, P., De Angelis, M., Gobbetti, M., &
645	Portincasa, P. (2020). Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus
646	HN001 in IBS patients. European Journal of Clinical Investigation, 50(3), e13201.
647	https://doi.org/10.1111/eci.13201
648	
649	Boulebd, H. (2021). Are thymol, rosefuran, terpinolene and umbelliferone good scavengers of
650	peroxyl radicals?. Phytochemistry, 184, 112670. https://doi.org/10.1016/j.phytochem.2021.112670
651	
652	Cheng, Y., Wu, T., Chu, X., Tang, S., Cao, W., Liang, F., Fang, Y., Pan, S., & Xu, X. (2020).
653	Fermented blueberry pomace with antioxidant properties improves fecal microbiota community
654	structure and short chain fatty acids production in an in vitro mode. LWT - Food Science and
655	Technology, 125, 109260. https://doi.org/10.1016/j.lwt.2020.109260
656	
657	Darby, T. M., C. R., Naudin, C. R., Luo, L., & Jones, R. M. (2020). Lactobacillus rhamnosus GG-
658	induced expression of leptin in the intestine orchestrates epithelial cell proliferation. Cellular and
659	Molecular Gastroenterology and Hepatology, 9(4), 627-639.
660	https://doi.org/10.1016/j.jcmgh.2019.12.004
661	
662	De Oliveira, T. M., de Carvalho, R. B. F., da Costa, I. H. F., de Oliveira, G. A. L., de Souza, A. A.,
663	de Lima, S. G., & de Freitas, R. M. (2015). Evaluation of p-cymene, a natural antioxidant.
664	Pharmaceutical Biology, 53, 423-428. https://doi.org/10.3109/13880209.2014.923003

da Silva, F. F. M., Monte, F. J. Q., de Lemos, T. L. G., do Nascimiento, P. G. G., de L	Medeiros
667 Costa A.K., & de Paiva, L. M. M. (2018). Eugenol derivatives: synthesis, characteriz	ation, and
evaluation of antibacterial and antioxidant activities. <i>Chemistry Central Journal</i> , 12,	34.
669 <u>https://doi.org/10.1186/s13065-018-0407-4</u>	
670	
671 De Oliveira, T. M., de Carvalho, R. B. F., da Costa, I. H. F., de Oliveira, G. A. L., de	Souza, A. A.,
672 de Lima, S. G., & de Freitas, R. M. (2015). Evaluation of p-Cymene, a natural antiox	<u>idant.</u>
673 <i>Pharmaceutical Biology</i> , <i>53</i> , 423-428. https://doi.org/10.3109/13880209.2014.92300	<u>13</u>
674	
675 Di Cagno, R., De Angelis, M., De Pasquale, Ndagijimana, M., Vernocchi, P., Ricciut	ti, P.,
676 Gagliardi, F., Laghi, L., Crecchio, C., Guerzoni, M. E., Gobbetti, M, & Francavilla, F	<u>R. (2011).</u>
677 Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabo	lome
678 characterization. <u>BMC Microbiology</u> , 11, 219. https://doi.org/10.1186/1471-2180-11-	-219
679	
El Sohly, M. A., Radwan, M. M., Gul, W., Chandra, S., & Galal, A. (2017). Phytoche	emistry of
681 Cannabis sativa L In: Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J. (eds) Phyto	ocannabinoids.
682 <u>Progress in the chemistry of organic natural products</u> , vol 103. Springer, Cham.	
683 <u>https://doi.org/10.1007/978-3-319-45541-9_1</u>	
684	
685 Fiorini, D., Molle A., Nabissi, M., Santini, G., Benelli, G., & Maggi, F. (2019). Valor	rizing
686 industrial hemp (<i>Cannabis sativa</i> L.) by-products: Cannabidiol enrichment in the infl	orescence
687 essential oil optimizing sample pre-treatment prior to distillation. <i>Industrial Crops an</i>	ıd Products,
688 <i>128</i> , 581-589. <u>https://doi.org/10.1016/j.indcrop.2018.10.045</u>	
689	

691 effect of dietary fiber fractions obtained from artichoke (*Cynara cardunculus* L. var. *scolymus*) on 27

692	the growth of intestinal bacteria associated with health. Food and Function, 6(5), 1667-1674.
693	https://doi.org/10.1039/C5FO00088B
694	
695	Frassinetti, S., Moccia, E., Caltavuturo, L., Gabriele, M., Longo, V., Bellani, L., Giorgi, G., Giorgetti,
696	L. (2018). Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chemistry,
697	262, 56-66. https://doi.org/10.1016/j.foodchem.2018.04.078
698	
699	Gibson, G. R. Hutkins, R. Sanders, M. E. Prescott, S. L. Reimer, R. A. Salminen, S. J., Scott, K.,
700	Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid G. (2017). Expert consensus
701	document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus
702	statement on the definition and scope of prebiotics. Nature Review Gastroenterology and
703	Hepatology, 14, 491-502. https://doi.org/10.1038/nrgastro.2017.75
704	
705	Gill, P. A., van Zelm, M. C., Muir, J. G., & Gibson P. R. (2018). Short chain fatty acids as potential
706	therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology
707	and Therapeutics, 48(1), 15-34. https://doi.org/10.1111/apt.14689
708	
709	Goverse, G., Molenaar, R., Macia, L., Tan, J., Erkelens, M. N., Konijn, T., Knippenberg, M., Cook,
710	C. L., Hanekamp, D., Veldhoen, M., Hartog, A., Roeselers, G., Mackay, C. R., & Mebiu, R. E.
711	(2017). Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal
712	tolerogenic dendritic cells. Journal of Immunology, 198, 2172-2181.
713	https://doi.org/10.4049/jimmunol.1600165
714	
715	Granato, D., Araujo Calado, M. V., & Jarvis, B. (2014). Observations on the use of statistical
716	methods in food science and technology. Food Research International, 55, 137-149.
1	

717 <u>https://doi.org/10.1016/j.foodres.2013.10.024</u>

719	Guerzoni, M. E., Vernocchi, P., Ndagijimana, M., Gianotti, A., & Lanciotti, R. (2007). Generation
720	of aroma compounds in sourdough: effects of stress exposure and lactobacilli-yeasts interactions.
721	Food Microbiology, 24(2), 139-148.
722	
723	Hao, D. C., Gu, XJ., & Xiao, P. G. (2015). Phytochemical and biological research of Cannabis
724	pharmaceutical resources. Medicinal Plants, 431_464. https://doi.org/10.1016/B978-0-08-100085-
725	4.00006-2
726	
727	Hartsel, J. A., Eades, J., Hickory, B., & Makriyannis, A. (2016). Cannabis sativa and Hemp.
728	Nutraceuticals, 735-754. https://doi.org/10.1016/B978-0-12-802147-7.00053-X
729	
730	Huebner, J., Wehling, R. L., Parkhurst, A. & Hutkins, R. W. (2008). Effect of processing
731	conditions on the prebiotic activity of commercial prebiotics. International Dairy Journal, 18, 287-
732	293. https://doi.org/10.1016/j.idairyj.2007.08.013
733	
734	Jin, X., Chen, W., Chen, H., Chen, W., & Zhong, Q. (2018). Comparative evaluation of the
735	antioxidant capacities and organic acid and volatile contents of mango slurries fermented with six
736	different probiotic microorganisms. Journal of Food Science, 83(12), 3059-
737	3068. https://doi.org/10.1111/1750-3841.14373
738	
739	Joo-Yeon, L., & Benno, K. (2009). Investigation of the microbiological and biochemical properties
740	of Kimchi in the submerged model system designed for fermented sausages. Food Science of Animal
741	Resources, 29(4), 423-429. https://doi.org/10.5851/kosfa.2009.29.4.423
742	

743	Karas, J. A., Wong, L. J., Paulin, O. K., Mazeh, A. C., Hussein, M. H., Li, J., & Velkov, T. (2020).
744	The antimicrobial activity of cannabinoids. Antibiotics, 9(7), 406.
745	https://doi.org/10.3390/antibiotics9070406
746	
747	Kim, S., Huang, E., Park, S., Holzapfel, W., & Lim, S-D. (2018). Physiological characteristics and
748	anti-obesity effect_of Lactobacillus plantarum K10. Food Science of Animal Resources, 38(3), 554-
 749	569. <u>https://doi.org/10.5851/kosfa.2018.38.3.554</u>
750	
751	Klocke, M., Mundt, K., Idler, C., McEniry, J., O'Kiely, P., & Barth, S. (2006). Monitoring
752	Lactobacillus plantarum in grass silages with the aid of 16S rDNA-based quantitative qPCR assays.
753	Systematic and Applied Microbiology, 29, 49-58. https://doi.org/10.1016/j.syapm.2005.06.001
754	
755	Korus, J., Witczak, M., Ziobro, R., & Juszczak, L. (2017). Hemp (Cannabis sativa subsp. sativa)
756	flour and protein preparation as natural nutrients and structure forming agents in starch_based gluten-
757	free bread. LWT - Food Science and Technology, 84, 143-150.
758	https://doi.org/10.1016/j.lwt.2017.05.046
759	
760	Joo-Yeon, L., & Benno, K. (2009). Investigation of the and of Kimchi in the for . Food Science of
761	Animal Resources, 29(4), 423-429. <u>https://doi.org/10.5851/kosfa.2009.29.4.423</u>
762	
763	Karas, J. A., Wong, L. J., Paulin, O. K., Mazeh, A. C., Hussein, M. H., Li, J., & Velkov, T. (2020).
764	The antimicrobial activity of cannabinoids. Antibiotics, 9(7), 406.
765	https://doi.org/10.3390/antibiotics9070406
766	

767	Leghissa, A., Hildenbrand, Z. L., & Schug, K. A. (2018). A review of methods for the chemical
768	characterization of cannabis natural products. Journal of Separation Science, 41(1), 398-415.
769	https://doi.org/10.1002/jssc.201701003
770	
771	Yi, F., Sun, J., Bao, X., Ma, B., & Sun, M. (2019). Influence of molecular distillation on antioxidant
772	and antimicrobial activities of rose essential oils. LWT Food Science and Technology, 102, 310-316.
773	https://doi.org/10.1016/j.lwt.2018.12.051
774	
775	Malinen, E., Kassinen, A., Rinttila, T., & Palva, A. (2003). Comparison of real-time PCR with SYBR
776	Green I or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes
777	in quantification of selected faecal bacteria. Microbiology, 149(1), 269-277.
778	https://doi.org/10.1099/mic.0.25975-0
779	
780	Marchese, A., Arciola, C. R., Barbieri, R., Silva, A. S., Nabavi, S. F., Tsetegho Sokeng, A. J., Izadi,
781	M., Jafari, N. J., Suntar, I., Daglia, M., & Nabavi, S. M. (2017). Update on monoterpenes as
782	antimicrobial agents: a particular focus on p-Cymene. Materials, 10, 947.
783	https://doi.org/10.3390/ma10080947
784	
785	Masco, L., Vanhoutte, T., Temmerman, R., Swings, J., & Huys, G. (2007). Evaluation of real-time
786	PCR targeting the 16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic
787	
	products. International Journal of Food Microbiology, 113(3), 351-357.
788	products. International Journal of Food Microbiology, 113(3), 351-357. https://doi.org/10.1016/j.ijfoodmicro.2006.07.021
788 789	
789	https://doi.org/10.1016/j.ijfoodmicro.2006.07.021

793	<i>Bifidobacterium</i> indicate prebiotic properties. <i>LWT - Food Science and Technology</i> , 131, 109766.
794	https://doi.org/10.1016/j.lwt.2020.109766
795	
796	Mitropoulou, G., Fitsiou, E., Spyridopoulou, K., Tiptiri-Kourpeti, A., Bardouki, H., Vamvakias, M.,
797	Panas, P., Chlichlia, K., Pappa, A., & Kourkoutas, Y. (2017). Citrus medica essential oil exhibits
798	significant antimicrobial and antiproliferative activity. LWT - Food Science and Technology, 84,
799	344-352. https://doi.org/10.1016/j.lwt.2017.05.036
800	
801	Nafis, A., Kasrati, A., Jamali, C. A., Mezrioui, N., Setzer, W. A., Abbad, L., & Hassani, L. (2019).
802	Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with
803	antimicrobial standards. Industrial Crops and Products, 137, 396-400.
804	https://doi.org/10.1016/j.indcrop.2019.05.032
805	
806	Nissen, L., Bordoni, A., & Gianotti, A. (2020). Shift of Volatile Organic Compounds (VOCs) in
807	gluten-free hemp-enriched sourdough bread: A metabolomic approach. Nutrients, 12(4), 1050.
808	https://doi.org/10.3390/nu12041050
809	
810	Nissen, L., Demircan, B., Taneyo-Saa, D. L., & Gianotti, A. (2019). Shift of aromatic profile in
811	probiotic hemp drink formulations: A metabolomic approach. Microorganisms, 7, 509.
812	https://doi.org/10.3390/microorganisms7110509
813	
814	Nissen, L., di Carlo, E., & Gianotti, A. (2020). Prebiotic potential of hemp blended drinks
815	fermented by probiotics. Food Research International, 31, 109029.
816	https://doi.org/10.1016/j.foodres.2020.109029
817	
I	

818	Nissen, L., Rollini, M., Picozzi, C., Musatti, A., Foschino, R., & Gianotti A. (2020). Yeast-free
819	doughs by Zymomonas mobilis: evaluation of technological and fermentation performances by
820	using a metabolomic approach. Microorganisms, 8(6), 792.
821	https://doi.org/10.3390/microorganisms8060792
822	
823	Nissen, L., Casciano, F., Chiarello, E., di Nunzio, M., Bordoni, A., & Gianotti, A. (2021). Colonie
824	In Vitro Model Assessment of the Prebiotic Potential of Bread Fortified with Polyphenols Rich
825	Olive Fiber. Nutrients, 13(3), 787. https://doi.org/10.3390/nu13030787
826	A
827	Nissen, L., Zatta, A., Stefanini, I., Grandi, S., Sgorbati, B., Biavati. B., & Monti, A. (2010).
828	Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis
829	sativa L.). Fitoterapia, 81(5), 413-419. <u>https://doi.org/10.1016/j.fitote.2009.11.010</u>
830	
831	Nowak, A., Paliwoda. A., & Błasiak, J. (2019). Anti-proliferative, pro-apoptotic and anti-oxidative
832	activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic
833	perspectives. Critical Reviews Food Science and Nutrition, 59(21), 3456-3467.
834	https://doi.org/10.1080/10408398.2018.1494539
835	
836	Nuutinen, T. (2018). Medicinal properties of terpenes found in Cannabis sativa and Humulus
837	lupulus. European Journal Medical Chemistry, 157, 198-
838	228. <u>https://doi.org/10.1016/j.ejmech.2018.07.076</u>
839	
840	Pellati, F., Brighenti, V., Sperlea, J., Marchetti, L., Bertelli, D., <u>&</u> Benvenuti, S. <u>(</u> 2018 <u>)</u> . New
841	methods for the comprehensive analysis of bioactive compounds in Cannabis sativa L. (hemp).
842	Molecules, 23, 2639. https://doi.org/10.3390/molecules23102639

844	Russo, EB., (2011). Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid
845	entourage effects. British Journal of Pharmacology, 163(7), 1344-1364.
846	https://doi.org/10.1111/j.1476-5381.2011.01238.x
847	
848	Setti, L., Samei, P., Maggiore, I., Nissen, L., Gianotti, A., <u>& Babini, E. (2020).</u> Comparing the
849	effectiveness of three different biorefinery processes at recovering bioactive products from hemp
850	(Cannabis sativa L.) by product. Food and Bioprocess Technology, 13, 2156-2171.
851	https://doi.org/10.1007/s11947-020-02550-6
852	
853	Schwendimann, L., Kauf, P., Fieseler, L., Gantenbein-Demarchi, C., Miescher Schwenninger, S.,
854	2015. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and
855	Lactobacillus fermentum in cocoa bean fermentation. Journal of Microbiological Methods, 115, 94-
856	99. <u>https://doi.org/10.1016/j.mimet.2015.05.022</u>
857	
858	Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films
859	with encapsulated eugenol. Application to sunflower oil preservation. LWT - Food Science and
860	Technology, 113, 108290. https://doi.org/10.1016/j.lwt.2019.108290
861	
862	Vatansever, SO., Vegi, A., Garden-Robinson, J., <u>&</u> Hall, C. <u>(2017)</u> . The effect of fermentation on
863	the physiochemical characteristics of dry-salted vegetables. Journal Food Research, 6(5), 32-40.
864	https://doi.org/10.5539/jfr.v6n5p32
865	
866	Vieira, ADS., Bedani, R., Albuquerque, MAC., Biscola, V., & Saad, SM. I. (2017). The
867	impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter
868	microorganisms. Food Research International, 97, 356-
869	363. https://doi.org/10.1016/j.foodres.2017.04.026

870	
871	Xiong, C., Li, Q., Li, S., Chen, C., Chen, Z., Huang, W., 2017. In vitro antimicrobial activities and
872	mechanism of 1-octen-3 ol against food-related bacteria and pathogenic fungi. Journal of Oleo
873	Science, 66, 1041–1049. <u>https://doi.org/10.5650/jos.ess16196</u>
874	Walter, J., Hertel, C., Tannock, G. W., Lis, C. M., Munro, K., & Hammes, W. P. (2001). Detection
875	of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-
876	specific PCR primers and denaturing gradient gel electrophoresis. Applied and Environmental
877	Microbiology, 67, 2578-2585. https://doi.org/10.1128/AEM.67.6.2578-2585.2001
878	
879	Wang, Q., Jiang, J., <u>& Xiong Y. L. (2018)</u> . High pressure homogenization combined with pH shift
880	treatment: A process to produce physically and oxidatively stable hemp milk. Food Research
881	International, 106, 487-494. https://doi.org/10.1016/j.foodres.2018.01.021
882	
883	Yan, Y., Zhang, F., Chai, Z., Liu, M., Battino, M., & Meng, X. (2019). Mixed fermentation of
884	blueberry pomace with L. rhamnosus GG and L. plantarum-1: Enhance the active ingredient,
885	antioxidant activity and health-promoting benefits. Food Chemistry and Toxicology, 131, 110541.
886	https://doi.org/10.1016/j.fct.2019.05.049
887	
888	
889	Yi, F., Sun, J., Bao, X., Ma, B., & Sun, M. (2019). Influence of molecular distillation on antioxidant
890	and antimicrobial activities of rose essential oils. LWT - Food Science and Technology, 102, 310-316.
891	https://doi.org/10.1016/j.lwt.2018.12.051
892	Zhang, X., Zhang, J., Wang, Y., Xu, D., Fan, X., Zhang, Y., Ma, J., Ye, N. 2021. The oxylipin
892 893	
	Zhang, X., Zhang, J., Wang, Y., Xu, D., Fan, X., Zhang, Y., Ma, J., Ye, N. 2021. The oxylipin

896 Zion Market Research 2018. Global hemp milk market: industry size, share, trends, growth,

897 applications, analysis, and forecast. <u>https://www.zionmarketresearch.com/report/hemp-milk-</u>

Figure 1. A) Acetic acid, B) Propionic acid, and C) Butyric acid quantification by SPME GC-MS of

- 898 <u>market</u>.
- 899

901

900 Figure captions

902 not fermented (NF) and fermented hemp bran (FBH), expressed in mg/kg. Plots are indicating results from two different replications and two independent experiments. Boxes indicate means 903 904 values; rectangles indicate means values \pm S.D.; whiskers indicate means values \pm 1.96*S.D. 905 NF = not fermented TBH; C6, C24, C48, and C72 = TBH fermented by Lacticaseibacillus 906 *rhamnosus* C1112 after 6 h, 24 h, 48 h, and 72 h; L6, L24, L48, and L72 = TBH fermented by 907 Lactiplantibacillus plantarum subsp. plantarum LB325 after 6 h, 24 h, 48 h, and 72 h; M6, M24, 908 M48, and M72 = TBH fermented by *Limosilactobacillus fermentum* MR13 after 6 h, 24 h, 48 h, and 909 72 h; P6, P24, P48, and P72 = TBH fermented by the pool after 6 h, 24 h, 48 h, and 72 h. Means with different letters are significantly different at P < 0.05 by Student T-test. 910 911 912 Figure 2. Multivariate analysis on 37 VOCs terpenes quantified by SPME GC-MS of not fermented (NF) and fermented hemp bran (FBH) samples. (A) PCA of cases; (B) PCA of variables; (C) K-913 Means clusterization based on dependent variables. Cluster 1 = blue plot; Cluster 2 = fuchsia plot; 914 915 Cluster 3 = green plot; Cluster 4 = black plot; Cluster 5 = yellow plot. *1,4,7, Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z-; **4-Trimethylsilyl-9,9-dimethyl-9-silafluorene; ***Phenol, 2,4-bis(1,1-916

917 dimethylethyl)-. Codes of samples: X0 = not fermented samples; C6, C24, C48, and C72 = TBH

fermented by *Lacticaseibacillus rhamnosus* C1112 after 6 h, 24 h, 48 h, and 72 h; L6, L24, L48,

- and L72 = TBH fermented by *Lactiplantibacillus plantarum subsp. plantarum* LB325 after 6 h, 24
- h, 48 h, and 72 h; M6, M24, M48, and M72 = TBH fermented by *Limosilactobacillus fermentum*

921	MR13 after 6 h, 24 h	, 48 h, and 72 h; P6, P24, P4	8, and $P72 = TBH$ fermented	l by the pool after 6 h,
-----	----------------------	-------------------------------	------------------------------	--------------------------

- 922 24 h, 48 h, and 72 h.
- 923

9	24	Figure 3. MANOVA plots of terpenes with categorical predictors ($P < 0.01$) set on inocula (A) and
9	25	on time (B). *** Phenol, 2,4 bis(1,1 dimethylethyl) . % values indicate the contribution of each
9	26	eategorized cases on the total load on the dataset of each dependent variable (the VOCs)

927

- 929 terpenes of 32 independent variables from treated hemp bran (TBH), including not fermented TBH
- p30 and TBH fermented (FBH) for 6 h, 24 h, 48 h, and 72h at 37 °C by *Lacticaseibacillus rhamnosus*
- 931 C1112, Lactiplantibacillus plantarum subsp. plantarum LB325, Limosilactobacillus fermentum
- MR13, and by the pool of these three strains. * P < 0.05. X Axis labels: Delta cells = Log cells/ml
- 933 increase; [Delta pH] = Acidification of substrate; PS Lb. plan = Prebiotic Score on
- 934 *Lactiplantibacillus plantarum subsp. plantarum* 98b; PS *B. bif* = Prebiotic Score on
- 935 Bifidobacterium bifidum NCIMB 700795.

936

⁹²⁸ Figure 4<u>3</u>. Two-way joining heatmap of double matrix Spearman rank correlations on VOCs

±

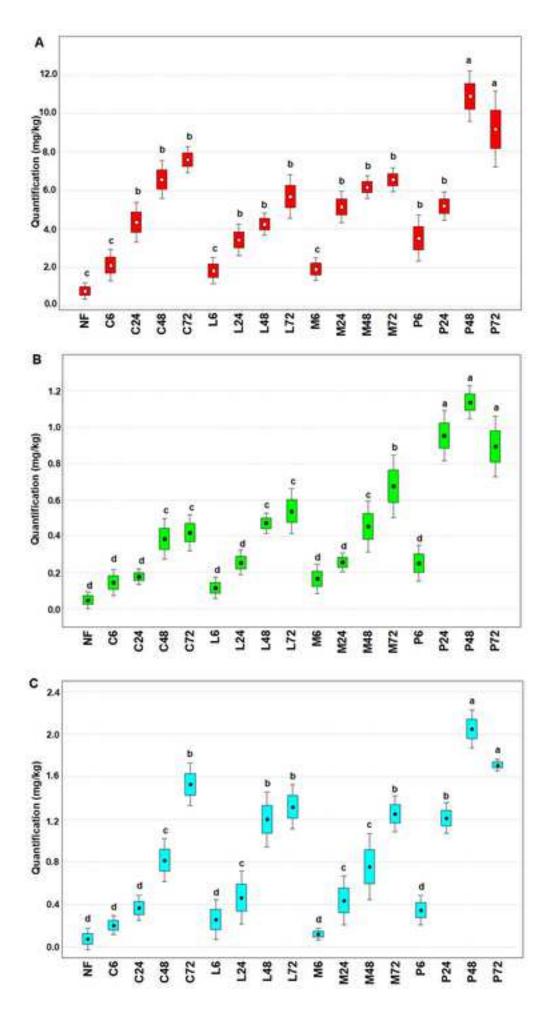
VOC	NF	C1112	LB325	MR13	Pool	P value
α-Caryophyllene	11.24 ^c	48.85 ^a	6.54 ^d	6.74 ^d	26.63 ^b	0.00605
1R-α-Pinene	15.33 ^b	7.97 ^{bc}	10.80 ^b	5.94 ^c	59.96 ^a	0.00121
p-Cymene	13.20 ^c	0.00 ^e	4.56 ^d	49.88 ^a	32.36 ^b	0.00955
γ-Elemene	7.53 ^c	22.67 ^b	5.82 ^c	0.00 ^d	63.98 ^a	0.01410
cis-β-Farnesene	5.17 ^c	18.60 ^b	18.60 ^b	0.00 ^d	57.63 ^a	0.00850
Myrcene	19.53 ^b	11.78 ^c	0.00 ^d	16.90 ^b	51.79 ^a	0.00788
Δ -3-Carene	5.68 ^c	22.92 ^b	22.24 ^b	4.31 ^c	44.84 ^a	0.04027
9-Methyldecalin	76.05 ^a	6.95 ^b	9.15 ^b	0.00^{c}	7.86 ^b	0.00012
β-Selinene	72.15 ^a	3.89 ^c	6.04 ^c	0.00 ^d	17.92 ^b	0.00324
Geraniol	100.00 ^a	0.00^{b}	0.00^{b}	0.00^{b}	0.00^{b}	< 0.00001
β-Linalool	4.94 ^d	20.76 ^b	52.94 ^a	4.81 ^d	16.55 ^c	0.00002
p-Cymen-8-ol	7.70 ^c	23.33 ^b	37.75 ^a	8.13 ^c	23.09 ^b	0.00954
Fenchyl alcohol	0.00^{c}	19.14 ^b	16.56 ^b	16.49 ^b	47.81 ^a	0.00103
4(10)-Thujen-3-ol, acetate	6.04 ^d	29.67 ^b	10.98 ^c	7.49 ^{cd}	45.82 ^a	0.00006
Borneol	2.10 ^e	40.56 ^a	16.63 ^c	7.81 ^d	32.89 ^b	0.00285
Eucalyptol	6.48 ^{cd}	43.21 ^a	21.07 ^b	10.30 ^{cd}	18.93 ^b	0.00522
Eugenol	36.63 ^a	2.23 ^d	15.34 ^c	0.00 ^e	45.81 ^a	0.00314
Phenol, 2,4-bis***	39.12 ^a	7.59 ^d	16.84 ^c	9.65 ^d	26.80 ^b	0.00165
Citral	6.18 ^c	25.87 ^a	15.41 ^b	27.07 ^a	25.47 ^a	0.00160
Myrtenal	1.76 ^d	2.23 ^d	9.15 ^c	50.50^{a}	36.36 ^b	0.00408

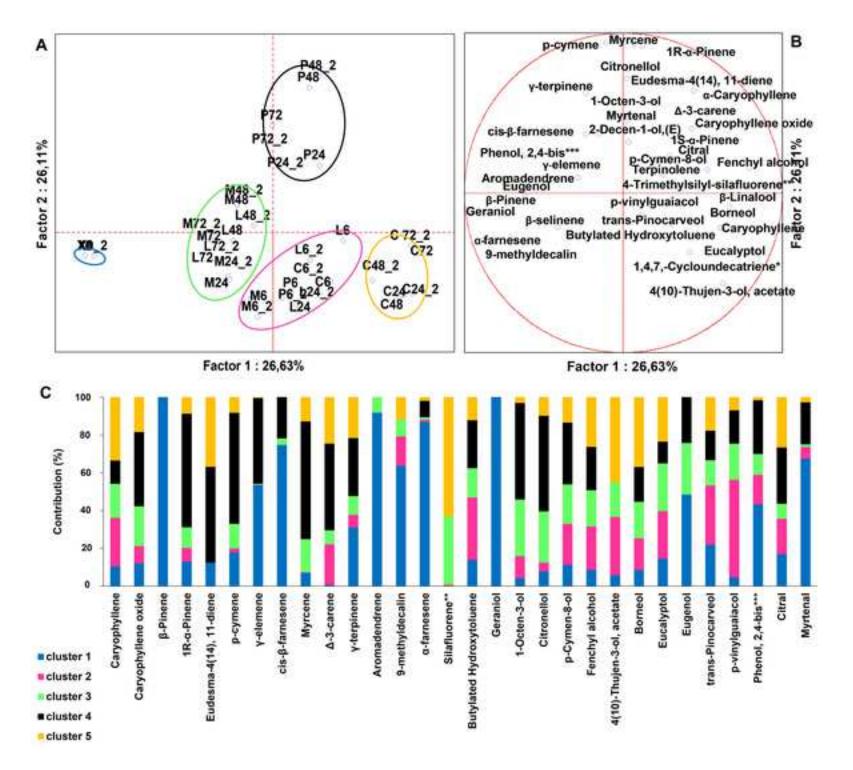
Table 1. MANOVA based on bacterial inoculum as categorical predictor. % of production and significance.

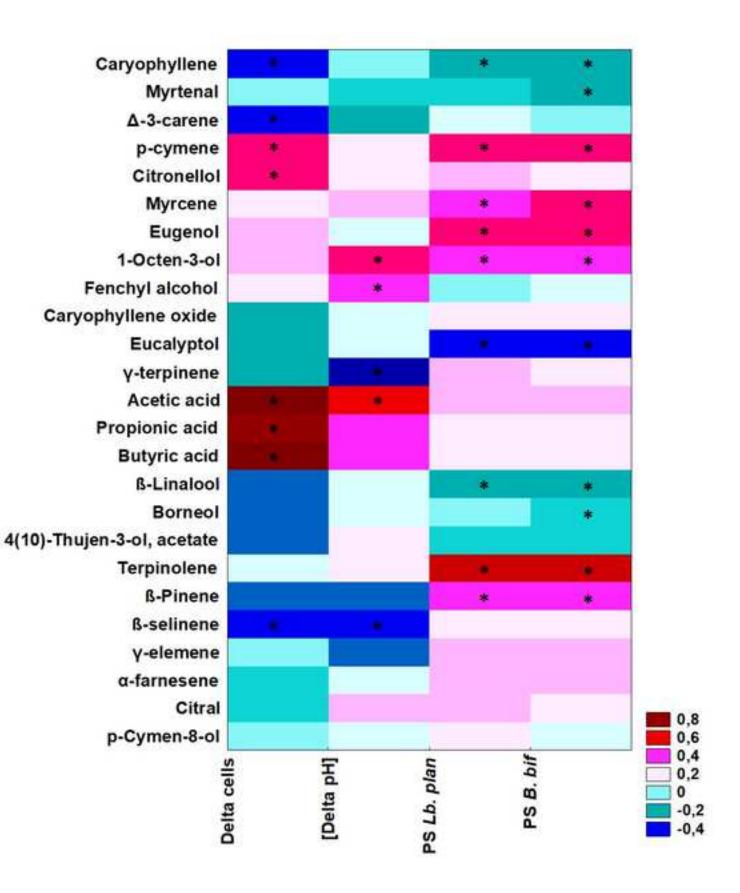
**Phenol, 2,4-bis(1,1-dimethylethyl)-; ^{abc}Different letters indicate statistical significance by Tukey's HSD post-hoc test (P < 0.05); NF = Not Fermented TBH; C1112 = TBH fermented by *Lacticaseibacillus rhamnosus* C1112; LB325 = TBH fermented by *Lactiplantibacillus plantarum subsp. plantarum* LB325; MR13 = TBH fermented by *Limosilactobacillus fermentum* MR13; Pool = TBH fermented by bacterial pool.

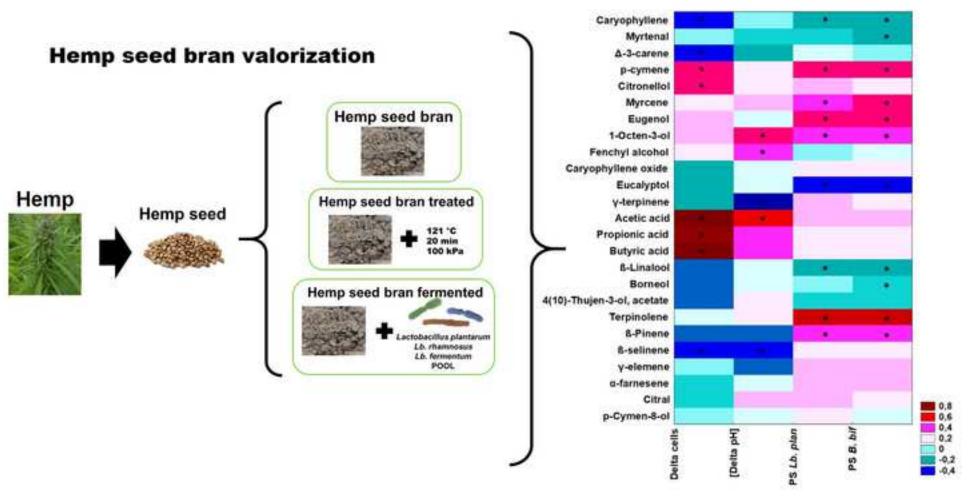
VOC	0 h*	6 h	24 h	48 h	72 h	P value
β-Pinene	100.00 ^a	0.00 ^b	0.00 ^b	0.00 ^b	0.00 ^b	< 0.00001
Eudesma-4(14), 11-diene	2.42 ^c	18.42 ^b	0.00^{c}	70.92 ^a	8.24 ^b	0.01642
p-Cymene	20.47 ^b	0.00 ^c	16.73 ^b	50.99 ^a	11.81 ^b	0.01179
γ-Elemene	10.18 ^b	2.22 ^c	1.46 ^c	1.69 ^c	84.45 ^a	0.04626
Terpinolene	6.16 ^b	33.44 ^a	3.70 ^b	56.64 ^a	0.06 ^b	0.04962
γ-Terpinene	45.10 ^a	16.95 ^b	4.30 ^c	17.81 ^b	15.84 ^b	0.04564
Aromadendrene	66.43 ^a	33.57 ^b	0.00^{c}	0.00^{c}	0.00^{c}	0.00569
9-Methyldecalin	76.05 ^a	14.73 ^b	6.98 ^{bc}	2.24 ^{bc}	0.00^{c}	0.00006
β-Selinene	72.15 ^a	6.87 ^{bc}	17.09 ^b	3.89 ^c	0.00 ^c	0.00397
α-Farnesene	94.64 ^a	2.59 ^b	2.04 ^b	0.73 ^b	0.00^{b}	0.00006
Geraniol	100.00 ^a	0.00 ^b	0.00^{b}	0.00^{b}	0.00^{b}	< 0.00001
1-Octen-3-ol	10.43 ^{bc}	6.72 ^c	23.68 ^{abc}	40.64 ^a	18.54 ^{abc}	0.01441
Citronellol	9.36 ^b	6.65 ^b	7.88 ^b	37.50 ^a	38.61 ^a	0.04779
2-Decen-1-ol, (E)-	6.43 ^c	8.33 ^{bc}	32.69 ^{ab}	42.09 ^a	10.47 ^{bc}	0.00332
Fenchyl alcohol	0.00^{b}	22.61 ^a	27.35 ^a	26.66 ^a	23.38 ^a	0.00005
Eucalyptol	7.93 ^b	22.48 ^{ab}	33.68 ^a	13.71 ^{ab}	22.20 ^{ab}	0.00163
Eugenol	64.26 ^a	0.00 ^c	1.08 ^c	13.05 ^b	22.71 ^b	0.00091
trans-Pinocarveol	0.00^{c}	27.10 ^a	16.40 ^{ab}	34.71 ^a	21.79 ^a	0.03245
p-Vinylguaiacol	0.00^{b}	5.18 ^b	62.58 ^a	27.71 ^{ab}	4.54 ^b	0.04211
Myrtenal	4.18 ^b	7.78 ^b	17.21 ^b	16.48 ^b	54.35 ^a	0.04909

Table 2. MANOVA based on time of fermentation as categorical predictor. % of production and significance.


^{abc}Different letters indicate statistical significance by Tukey's HSD post-hoc test (P < 0.05); *hours of fermentation.


±


Туре	score on Lactiplantibacillus plantarum			score on <i>Bifidobacterium bifidum</i> NCIMB 700795				
	subsp. plantarum 98b		arum 98b	NCI	MB 7	/00//95		
P48	0.408	<u>+</u>	0.077 ^d	0.259	±	0.043 ^c		
C48	0.359	±	0.088^{c}	0.307	±	0.033 ^c		
L48	0.279	±	0.096 ^b	0.201	±	0.052^{b}		
M48	0.252	±	0.039 ^b	0.226	±	0.029^{b}		
TBH	0.308	±	0.071 ^c	0.243	±	0.027^{b}		
BH	0.258	±	0.084 ^b	0.234	±	0.046 ^b		
FH	0.227	±	0.079^{b}	0.182	±	0.028^{b}		
FOS	0.362	±	0.042 ^c	0.305	±	0.031 ^c		


Table 1. Prebiotic activity scores obtained from cell density (Log_{10} cells/ml) of bacterial cultures grown with 1 g/dL of differently treated hemp seed bran as carbohydrate sources.

Values are means of three different replications and two independent experiments \pm standard deviation. ^{a,b,c,d} = means with different letters within a column are significantly different at P < 0.05 by Student T-test. P48 = 48 h bacterial pool fermented, filtered, and freeze-dried hemp seed bran; C48 = 48 h *Lacticaseibacillus rhamnosus* C1112 fermented, filtered, and freeze-dried hemp seed bran; L48 = 48 h *Lactiplantibacillus plantarum subsp. plantarum* LB325 fermented, filtered, and freeze-dried hemp seed bran; M48 = 48 h *Limosilactobacillus fermentum* MR13 fermented, filtered, and freeze-dried hemp seed bran; TBH = thermally treated and freeze-dried hemp seed bran; BH = hemp seed bran; FH = hemp seed flour; FOS = fructooligosaccharides from chicory.

Prebiotic potential

Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli

CRediT authorship contribution statement

Lorenzo Nissen: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Supervision, Visualization, Writing - original draft, Writing - review & editing.

Flavia Casciano: Formal analysis, Investigation, Data curation, Investigation, Software, Writing - review & editing.

Elena Babini: Conceptualization, Funding acquisition, Resources, Supervision, Validation, Writing - review & editing.

Andrea Gianotti: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

'Declarations of interest: none'