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Abstract: In this paper we suggest an improvement of the Extended Marshall-
Olkin methodology by allowing an implicit effect of the common shocks affecting
the elements of the system. Properties of this new model are studied. We propose
an empirical application to a sample of censored residual lifetimes of couples of
insureds extracted from a data set of annuities contracts of a large Canadian life
insurance company. We obtain estimation of the model parameters using a two-stage
maximum likelihood technique and discuss the obtained results.

JEL classification: C34, C46, G22
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1 Introduction and preliminaries

The classical bivariate Marshall-Olkin (MO) shock model has a long history since
the seminal paper of Marshall and Olkin (1967). It is specified by the stochastic
representation

(X1, X2) = (min(T1, T3),min(T2, T3)), (1)

where non-negative continuous random variables T1 and T2 identify the occurrence
of independent ”individual shocks” affecting two devices and T3 is their ”common
shock” arrival time under the assumption that the shocks are governed by indepen-
dent homogeneous Poisson processes, i.e., Ti’s in (1) are exponentially distributed.
The random vector (X1, X2) represents the joint distribution of both lifetimes and
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let us denote its joint survival function by SX1,X2 (x1, x2) = P (X1 > x1, X2 > x2) for
all x1, x2 ≥ 0.

In general, the MO construction (1) implies that the distribution of (X1, X2) has a
singularity along the line {x1 = x2} generated by the occurrence of the simultaneous
default of both elements in the system, due to the fact that P(X1 = X2) > 0.

The stochastic relation (1) can be equivalently rewritten as

SX1,X2 (x1 + t, x2 + t) = SX1,X2 (x1, x2)SX1,X2(t, t) for all x1, x2, t ≥ 0, (2)

characterizing the bivariate lack of memory property (BLMP). The only solution
with exponential marginals of the functional equation (2) is given by

SMO(x1, x2) = SX1,X2(x1, x2) = exp{−λ1x1 − λ2x2 − λmax(x1, x2)}, (3)

for all x1, x2 ≥ 0 and λ1, λ2, λ > 0, see Marshall and Olkin (1967).
The MO bivariate exponential distribution (3) has exponential marginals with

parameters λ1 + λ and λ2 + λ and hence, constant marginal failure (hazard) rates.
This restricts its usefulness for practical needs. As a response, other solutions of (2)
with non-exponential marginals have been introduced. Let us mention Block and
Basu (1974), Proschan and Sullo (1974), Friday and Patil (1977). An important
contribution to the bivariate lack of memory notion is offered by Kulkarni (2006)
who suggested a class of bivariate distributions possessing BLMP specified by (2),
but having increasing or/and decreasing marginal failure rates which should satisfy
a set of restrictions.

Many textbooks use as a base and give a special attention to the BLMP and
related bivariate exponential distributions, see Barlow and Proschan (1981), Bal-
akrishnan and Lai (2009), Gupta et al. (2010), McNeil et al. (2015) and Joe (2015)
among others. More than 2000 articles complement and extend Marshall-Olkin’s
bivariate exponential distribution (3), justifying advantages in analysis of various
data sets from engineering, medicine, insurance, finance, biology, etc. For example,
Li and Pellerey (2011) launched the Generalized Marshall-Olkin (GMO) model con-
sidering non-exponential independent random variables Ti in (1), i = 1, 2, 3. The
corresponding joint distributions do not possess BLMP, but Denuit et al. (2006)
show that

P (X2 > x2 |X1 > x1, X2 > x1) = P (X2 > x2 |X2 > x1) , for x2 > x1

meaning that the survival of X1 to time x1 is irrelevant for the survival of X2 to
time x2 if X2 > x1. A multidimensional version of the GMO model is studied by
Lin and Li (2014).

As a further step, Pinto and Kolev (2015) introduced the Extended MO (EMO)
model generated through (1) by assuming dependence between arbitrary non-negative
random variables T1 and T2, but keeping T3 independent of them. The motivation
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is that the individual shocks might be dependent if the items share a common envi-
ronment. Thus, the EMO model is specified by the joint survival function

SEMO(x1, x2) = SX1,X2(x1, x2) = ST1,T2(x1, x2)ST3(max(x1, x2)) (4)

for all x1, x2 ≥ 0. New properties of the EMO model (4) are provided by Gobbi et al.
(2019), where the authors justify its utility in joint life insurance pricing. Indeed,
in joint life insurance, the dependence of lives X1 and X2 arises from exogenous
events that are individual to each life in the couple (represented by T1 and T2) and
a common (fatal) one, identified by T3. For example, the common shock may be
an accident or the onslaught of a contagious disease, see Denuit et al. (2006) for a
relevant interpretation and discussion.

All MO-type models and their generalizations listed above assume that the
shocks (identified by random variables T1, T2 and T3) are explicit, i.e., they have
immediate killing effect. A notable exceptions are the papers of Ghurye and Mar-
shall (1984) and Ryu (1993). The practice shows that such a fatal scenario is not
always true. For instance, a general financial crisis affects first the weaker finance
institutions and has a delayed impact on stronger ones, see examples in Cherubini
et al. (2015). Therefore, it would be natural and valuable to investigate MO-type
models with implicit shocks, i.e., when the fatal event is registered later than the
shock occurrence. We refer the reader to the recent book of Cha and Finkelstein
(2018) where one can find applications of Generalized Polya and shot noise processes,
being able to model the possible delay of the shocks (see Chapter 9).

An immediate extension of model (1) with implicit impact of the common shock
can be described by relation

(X1, X2) = (min(T1, T3),min(T2, f(T3))), (5)

where f(.) is some appropriate increasing continuous function in the first quadrant
ensuring that the corresponding SX1,X2(., .) is a proper bivariate survival function.
Let us give a reliability interpretation of (5). Denote by Xi the lifetime of a com-
ponent i, i = 1, 2. The stochastic relation (5) tells us that a common ”fatal shock”
destroys immediately the first component and has a delayed effect on the second
one. Kolev and Pinto (2018) studied a special case of (5) when f(x) = αx for some
α > 1. Therefore, an important characteristic of construction (5), is that it permits
a ”late” failure of one component when a ”fatal shock” strikes both components (as
a counterpart of MO models generated by (1) where both components fail simul-
taneously if occurs a common ”fatal shock” distinguished by the random variable
T3).

In order to model a real practical scenario with implicit breakdowns, Ryu (1993)
considers a two component system which is subject to common shocks governed by
a homogeneous Poisson process {N(t)}t≥0 causing a delayed effect, improving the
MO model generated by (1) as follows: A realization of N(t) can be equivalently
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represented through a sequence of shock arrival times τ1, τ2, . . .. Let wi = const be
the impact size (magnitude) of those Poisson shocks affecting the i−th component,
i = 1, 2. Then, given a realization of the homogeneous Poisson process N(t), the
hazard rate of the corresponding duration variable Zi at time t for the i-th element
is given by wiN(t) for i = 1, 2.

Under this setting, Ryu (1993) investigates the MO model with implicit common
shocks generated by the stochastic representation

(X1, X2) = (min(T1, Z1),min(T2, Z2)), (6)

where T1, T2, Z1 and Z2 are non-negative random variables, T1 and T2 being inde-
pendent and exponentially distributed with parameters λ1 and λ2. In fact, T1 and
T2 represent the occurrence of independent individual shocks (governed by two com-
plementary homogeneous Poisson processes). The lifetime vector (T1, T2) is assumed
independent of the common shocks represented by associated duration random vari-
ables Zi, i = 1, 2 causing delayed (implicit) effects under the condition that Z1 and
Z2 are conditionally independent given realization of the process N(t).

In this case,

P(Zi > t|N) = exp
{
− wi

∫ t

0

N(u)du
}
, i = 1, 2,

consult Ryu (1993). Taking the expectation of this equation with respect to the
stochastic nature of N(t), the unconditional survival function is given by

P(Zi > t) = E[P(Zi > t|N)].

The conditional joint distribution of (X1, X2|N) can be represented as

P(X1 > x1, X2 > x2|N) = exp{−λ1x1 − λ2x2}P(Z1 > x1, Z2 > x2|N),

where

P(Z1 > x1, Z2 > x2|N) = exp
{
− w1

∫ x1

0

N(u)du− w2

∫ x2

0

N(u)du
}
.

In this paper we suggest an improvement of the Extended Marshall-Olkin method-
ology embodying the ideas of Ryu (1993), i.e., by allowing an implicit effect of the
common shocks affecting the elements of the system. In Section 2 we provide an
explicit formula for the joint distribution of (X1, X2) in a general EMO model gen-
erated by (6), where the vector (T1, T2) is independent of a bivariate stochastic
processes governing the common shocks that might be non-fatal and represented by
the associated random vector (Z1, Z2). In Section 3 we simplify the model assuming
that the common shocks are conducted by a homogeneous Poisson process being
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fatal if their magnitude is greater than a pre-specified threshold. The influence of
the parameters involved on the bivariate lifetime and corresponding mortality in-
tensities is studied. We find convenient to test the model (6) in joint life insurance
context, since it allows a delayed effect identified by (Z1, Z2). For example, the
common shock might involve both spouses, but only one of them dies. We apply
the Ryu-type EMO model specified by (6) to a sample of censored residual life-
times of couples of insureds extracted from a data set of annuities contracts of a
large Canadian life insurance company1 in Section 4. We obtain the two-stage max-
imum likelihood estimates of the parameters and compare the results with other
inspections on the same data set. Concluding remarks are given in Section 5.

2 General Ryu-type EMO model

Our aim is to investigate an EMO-type model with implicit common shocks gen-
erated by the stochastic representation (6). Following EMO methodology developed
by Pinto and Kolev (2015) and incorporating Ryu’s (1993) approach we assume that

A1. The random variables T1 and T2 represent the occurrence of individual shocks
which are supposed to be dependent. The distribution of the pair (T1, T2)
is defined by their joint survival function ST1,T2(x1, x2) that we assume to be
absolutely continuous;

A2. The variables Zi causing delayed (implicit) common effect are conditionally in-
dependent given the realizations of a bivariate stochastic process H = (H1(t), H2(t))t≥0,
where the marginal processes (Hi(t))t≥0 are increasing, right-continuous, such
that Hi(0) = 0 and lim

t→∞
Hi(t) = +∞ a.s. for i = 1, 2;

A3. The lifetime vector (T1, T2) is independent of the the underlying bivariate
stochastic processes H and of the associated random vector (Z1, Z2);

A4. We suppose that

P (Zi > xi|H) = P (Zi > xi|Hi(xi)) = exp{−Hi(xi)}, xi ≥ 0, i = 1, 2.

Remark 2.1. To justify assumption A4, note that exp{−Hi(xi)} is the survival
function of exponentially distributed random variable Ei with parameter 1 evaluated
at Hi(xi), i = 1, 2. Hence, the last equation can be rewritten as

P (Zi > xi|Hi(xi)) = P (Ei > Hi(xi)) ,

1We wish to thank the Society of Actuaries, through the courtesy of Edward (Jed) Frees and
Emiliano Valdez, for allowing the use of the data in this paper.
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or equivalently

P (Zi ≤ xi|Hi(xi)) = P (Ei ≤ Hi(xi)) = P
(
H−1i (Ei) ≤ xi

)
.

Therefore, the time to delayed effect Zi coincides with the time at which the process
Hi crosses the random threshold Ei, i.e., Zi = H−1i (Ei), i = 1, 2.

Of course, one can postulate an appropriate absolutely continuous distribution
different than the unit exponential one, see Theorem 2 in Singpurwalla (2006).

Under this setting, the unconditional survival distribution of Zi is given by

P (Zi > xi) = E [P (Zi > xi|Hi(xi))] = E [exp{−Hi(xi)}] = LHi(xi)(1), i = 1, 2,

where LHi(xi)(1) denotes the Laplace transform of Hi(xi) evaluated at 1.
The conditional joint survival distribution of the random variables X1 and X2

specified by (6) can be written as

P (X1 > x1, X2 > x2|H) = ST1,T2(x1, x2)P (Z1 > x1, Z2 > x2|H)

= ST1,T2(x1, x2)P (Z1 > x1|H)P (Z2 > x2|H)

= ST1,T2(x1, x2) exp{−H1(x1)−H2(x2)}

and therefore,

SX1,X2 (x1, x2) = ST1,T2(x1, x2)E [exp{−H1(x1)−H2(x2)}]

Thus, we can formulate our main statement as follows.

Theorem 2.1. Under assumptions A1-A4, the unconditional joint survival function
SX1,X2 (x1, x2) of the model generated by (6) can be represented by

SX1,X2 (x1, x2) = ST1,T2(x1, x2)L(H1(x1),H2(x2))(1, 1) (7)

where L(H1(x1),H2(x2)) denotes the joint Laplace transform of (H1(x1), H2(x2)).

Example 2.1. Let (W 1
k ,W

2
k )k=1,2,... be a sequence of i.i.d. random vectors with posi-

tive components and N = (N(t))t≥0 be a homogeneous Poisson process with intensity
λ > 0 independent of (W 1

k ,W
2
k )k=1,2,.... We consider the bivariate stochastic process

H =

N(t)∑
k=1

W 1
k ,

N(t)∑
k=1

W 2
k

 .

In this case,

P (Z1 > x1, Z2 > x2|H) = exp

−N(x1)∑
k=1

W 1
k −

N(x2)∑
k=1

W 2
k


6



which corresponds to the bivariate survival distribution of two dicrete random vari-
ables taking values in {τ1, τ2, . . .} where τj is the j-th jump time of the Poisson
process N with

P (Zi = τj|H) = exp

(
−

j−1∑
k=1

W i
k

)
− exp

(
−

j∑
k=1

W i
k

)
, i = 1, 2.

Notice that

lim
xi→∞

P (Zi > xi|H) = exp

(
−
∞∑
k=1

W i
k

)
,

might be positive, allowing for the possibility that the fatal shock never occurs.

Straightforward computations imply that, for x1 ≤ x2,

LH1(x1),H2(x2)(1, 1) = exp
{
λx1

(
LW 1

1+W
2
1
(1)− 1

)
+ λ(x2 − x1)

(
LW 2

1
(1)− 1

)}
.

A similar expression can be obtained when x1 > x2.
Under the knowledge of ST1,T2(x1, x2) one can apply Theorem 2.1 to get the joint

survival function SX1,X2(x1, x2). For example, if we assume that W 1
i are independent

and Gamma distributed with shape parameter αi and rate parameter µ for i = 1, 2,
then from (7) we obtain

SX1,X2(x1, x2) = ST1,T2(x1, x2) exp
{
λx1

[(
1 + µ−1

)−α1−α2 − 1
]
+λ(x2−x1)

[(
1 + µ−1

)−α2 − 1
]}

for x1 ≤ x2.

Remark 2.2. A general scenario, very close to the model based on assumptions
A1-A4 is considered by Mercier and Pham (2017). Rewritten in terms of our no-
tations, the authors assume that random variables T1 and T2 are independent and
the dependence is induced by the random vector (Z1, Z2) in (6). On the other side,
in Mercier and Pham (2017) the random variables Z1 and Z2 are not, in general,
conditionally independent.

The general formula (7) might be useful for practical needs under simplifying
assumptions. In the next section we will study a particular case, assigning a pre-
determined threshold for the amplitude of common shocks governed by a homoge-
neous Poisson process.

3 Ryu-type EMO model with threshold

Consider a homogeneous Poisson process N = (N(t))t≥0 governing the common
shock arrival times of a two components system with lifetimes (X1, X2) generated
by stochastic representation (6). We will believe that the shock corresponding to
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the first jump of the Poisson process is fatal if its magnitude is larger than a given
threshold w > 0. Otherwise, the shock is implicit (non-fatal) and its impact on
the residual lifetimes results in an increment of the corresponding stochastic hazard
rate.

To proceed, we postulate hereafter the following assumptions:

B1. The random variables T1 and T2 represent the occurrence of individual shocks
and are supposed to be dependent with joint absolutely continuous survival
function ST1,T2(x1, x2);

B2. Common shock arrival times are modeled by a homogeneous Poisson process
N = (N(t))t≥0 with intensity λ > 0 and the magnitude of implicit common
shocks are represented by two independent random variables Y1 and Y2 being
independent of the Poisson process N . We assign a threshold w > 0 and
constants w1, w2 ∈ [0, w], such that

P (Yi > w) = pi ∈ [0, 1] and P (Yi = wi ≤ w) = 1− pi = p̄i, i = 1, 2;

B3. The variables Zi, i = 1, 2 modeling the delayed (implicit) effects are condi-
tionally independent given the realizations of the Poisson process N and of the
random variables Y1 and Y2.

B4. The lifetime vector (T1, T2) is independent of the Poisson process N , of the
random variables Y1 and Y2 and of the corresponding random vector (Z1, Z2);

B5. Following Ryu (1993), we assume that

P (Zi > t|Yi = wi ≤ w) = E
[
exp

(
−wi

∫ t

0

N(u)du

)]
, i = 1, 2.

The model specified by (6) under assumptions B1-B5 will be referred as a REMO
model hereafter.

The assumption B2 means that, when the magnitude of Yi is larger than a given
threshold w, we treat the shock as fatal and this event happens with a probability pi,
i = 1, 2. In such a case, without loss of generality, we may assume that wi → +∞.
In fact, Yi is a discrete random variable with mass at +∞ and wi with probabilities
pi and 1 − pi, respectively. Note that when wi = 0, then the common shock does
not have influence on i-th lifetime.

Observe that if τ1 is the first jump of the Poisson process and Yi > w, then
Zi = τ1 and therefore

P (Zi > t|Yi > w) = P (τ1 > t) , i = 1, 2.
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Under assumption B2, the bivariate stochastic process H defined in A2 can be
represented as

H =

(
Y1

∫ t

0

N(u)du, Y2

∫ t

0

N(u)du

)
t≥0

with Yi = +∞ when Yi > w, i = 1, 2. In other words,

P (Z1 > x1, Z2 > x2|H) = P (Z1 > x1, Z2 > x2|Y1, Y2, N) =

= exp

(
−Y1

∫ x1

0

N(u)du− Y2
∫ x2

0

N(u)du

)
.

Finally, applying Theorem 2.1 for the REMO model we arrive to

SX1,X2 (x1, x2) = ST1,T2(x1, x2)SZ1,Z2(x1, x2) = ST1,T2(x1, x2)L(Y1
∫ x1
0 N(u)du,Y2

∫ x2
0 N(u)du)(1, 1).

We will present in the next an explicit expression for the joint survival function
of the REMO model subject to common implicit shocks governed by a homogeneous
Poisson process. The corresponding copula function will be derived as well. We will
compute and analyze associated bivariate hazard rate intensities introduced by Cox
(1972) in consequence.

3.1 Joint survival function

To compute the joint survival function of the pair (Z1, Z2), we first need to obtain
an expression for the conditional probability P (Z1 > x1, Z2 > x2|Y1 = w1, Y2 = w2).
Under assumptions B2 and B5, thanks to Proposition 2 in Ryu (1993), we have

G(x1, x2) = P (Z1 > x1, Z2 > x2 |Y1 = w1, Y2 = w2) = E
[
e−(w1

∫ x1
0 N(u)du+w2

∫ x2
0 N(u)du)

]
=

 exp
[
−λx2 + λ

w2

(
1− e−w2(x2−x1)

)
+ λ

w1+w2

(
e−w2(x2−x1) − e−w1x1−w2x2

)]
, x2 ≥ x1;

exp
[
−λx1 + λ

w1

(
1− e−w1(x1−x2)

)
+ λ

w1+w2

(
e−w1(x1−x2) − e−w1x1−w2x2

)]
, x2 < x1.

(8)
According to hypothesis B2, if at lest one of Yi’s is above the threshold w, the

corresponding probability can be obtained from (8) when wi tends to +∞, i = 1, 2.
Therefore,

• When wi → +∞, i = 1, 2, we have

lim
w1→+∞,w2→+∞

G(x1, x2) = G11(x1, x2) =

{
exp(−λx2), x2 ≥ x1,
exp(−λx1), x2 < x1;

(9)

• When w1 → +∞ and w2 < w ∈ (0,+∞), the expression is

lim
w1→+∞

G(x1, x2) = G10(x1, x2) =

{
exp

[
−λx2 + λ

w2

(
1− e−w2(x2−x1)

)]
, x2 ≥ x1,

exp(−λx1), x2 < x1;
(10)
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• If w1 < w ∈ (0,+∞) and w2 → +∞, then

lim
w2→+∞

G(x1, x2) = G01(x1, x2) =

{
exp(−λx2), x2 ≥ x1,

exp
[
−λx1 + λ

w1

(
1− e−w1(x1−x2)

)]
, x2 < x1.

(11)

Thus, we arrive to the following statement.

Proposition 3.1. Under assumptions B1-B5, the joint survival function of the
vector (Z1, Z2) can be represented as

SZ1,Z2(x1, x2) = exp{−λmax(x1, x2)}A(x1, x2),

where

A(x1, x2) = pδ1,2 + p̄δ1,2p3−δ1,2 exp

(
λ

wδ1,2

(
1− e−wδ1,2 |x2−x1|

))
+

+ p̄δ1,2 p̄3−δ1,2 exp

(
λ

wδ1,2

(
1− e−wδ1,2 |x2−x1|

)
+ e−wδ1,2 (|x2−x1|)

λ

w1 + w2

(
1− e−(w1+w2)·min(x1,x2)

))
(12)

with δ1,2 = δ(x1, x2) = 1 · 1{x1>x2} + 2 · 1{x1≤x2}.

Proof. Let x2 ≥ x1. Then,

SZ1,Z2(x1, x2) = E
[
E
[

exp

(
−Y1

∫ x1

0

N(u)du− Y2
∫ x2

0

N(u)du

)∣∣∣∣Y1, Y2]]
= E

[
exp

(
−Y1

∫ x1

0

N(u)du− Y2
∫ x2

0

N(u)du

)∣∣∣∣Y1 > w, Y2 > w
]
p1p2

+ E
[
exp

(
−w1

∫ x1

0

N(u)du− Y2
∫ x2

0

N(u)du

)∣∣∣∣Y1 = w1, Y2 > w
]
p̄1p2

+ E
[
exp

(
−Y1

∫ x1

0

N(u)du− w2

∫ x2

0

N(u)du

)∣∣∣∣Y1 > w, Y2 = w2

]
p1p̄2

+ E
[
exp

(
−w1

∫ x1

0

N(u)du− w2

∫ x2

0

N(u)du

)∣∣∣∣Y1 = w1, Y2 = w2

]
p̄1p̄2,

i.e.,

SZ1,Z2(x1, x2) = G11(x1, x2)p1p2 +G01(x1, x2)p̄1p2 +G10(x1, x2)p1p̄2 +G(x1, x2)p̄1p̄2.

Substituting the expressions of functions G, G11, G10 and G01 from (8), (9), (10)
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and (11), correspondingly, we get

SZ1,Z2(x1, x2) = exp (−λx2) p2 + exp
{
− λx2 +

λ

w2

(
1− e−w2(x2−x1)

)}
p1p̄2+

+ exp
{
− λx2 +

λ

w2

(
1− e−w2(x2−x1)

)
+

λ

w1 + w2

(
e−w2(x2−x1) − e−w1x1−w2x2

)}
p̄1p̄2 =

= exp (−λx2) p2 + exp
{
− λx2 +

λ

w2

(
1− e−w2(x2−x1)

)}
p1p̄2+

+ exp
{
− λx2 +

λ

w2

(
1− e−w2(x2−x1)

)
+
e−w2(x2−x1)λ

w1 + w2

(
1− e−(w1+w2)x1

)}
p̄1p̄2.

When x2 < x1, we obtain

SZ1,Z2(x1, x2) = exp (−λx1) p1 + exp
{
− λx1 +

λ

w1

(
1− e−w1(x1−x2)

)}
p2p̄1+

+ exp
{
− λx1 +

λ

w1

(
1− e−w1(x1−x2)

)
+
e−w1(x1−x2)λ

w1 + w2

(
1− e−(w1+w2)x2

)}
p̄1p̄2,

which completes the proof.

In the following two remarks we offer a probability interpretation of the compo-
nents of the function A(x1, x2) from (12) and provide a decomposition of the survival
function of marginals Zi, i = 1, 2.

Remark 3.1. The function A(x1, x2) given by (12) represents the contribution
caused by implicit shocks to the joint survival function of the EMO model gener-
ated by (4). Indeed, if the common shock is fatal, then pi = 1, p̄i = 0 for i = 1, 2,
and hence A(x1, x2) = 1 for all x1, x2 > 0. Remind that Z1 = Z2 = τ1 in this case,
where τ1 is the first jump of the common Poisson process.

When p1 and p2 are not both equal to 1, then A(x1, x2) can be represented as a
weighted sum. When x2 ≥ x1 one gets

A(x1, x2) = p2 + p1p̄2L(x1, x2) + p̄1p̄2M(x1, x2),

where

L(x1, x2) = exp
{ λ

w2

(
1− e−w2(x2−x1)

)}
and

M(x1, x2) = exp
{ λ

w2

(
1− e−w2(x2−x1)

)
+ e−w2(x2−x1) λ

w1 + w2

(
1− e−(w1+w2)x1

)}
.

The term L(x1, x2) corresponds to the case in which the shock is fatal only for lifetime
1. It can be easily shown that

P (x1 < τ1 ≤ x2, Z2 > x2|Y2 = w2) = exp (−λx2) [L(x1, x2)− 1] .

11



When the common shock is not fatal for both lifetimes, then the expression
M(x1, x2) governs the associated contribution and

P (Z1 > x1, Z2 > x2, τ1 ≤ x1|Y1 = w1, Y2 = w2) = exp (−λx2) [M(x1, x2)− L(x1, x2)] .

Similar probability interpretations hold when x2 ≤ x1.

Remark 3.2. The marginal distribution of Zi is given by

SZi(xi) = pi exp(−λxi) + p̄i exp
{
− λxi +

λ

wi

(
1− e−wixi

)}
, i = 1, 2.

It is a mixture of the exponential distribution with parameter λ (when the shock is
fatal for the i-th component) and the second term is the survival distribution obtained
by Chiang and Conforti (1989), governing the delay effect.

We summarize the above facts in the following Theorem.

Theorem 3.1. Under Assumptions B1-B5, the joint survival function of the vector
(X1, X2) of the REMO model defined by the stochastic relation (6) is given by

SREMO(x1, x2) = SEMO(x1, x2)A(x1, x2) (13)

where
SEMO(x1, x2) = ST1,T2(x1, x2) exp{−λmax(x1, x2)}

is the survival function of the EMO model generated by (4) when the common shock
arrival time T3 is exponentially distributed with parameter λ and A(x1, x2) has the
representation (12).

Proof. Using (7) and Proposition 3.1 we conclude that

SX1,X2(x1, x2) = ST1,T2(x1, x2)SZ1,Z2(x1, x2)

= ST1,T2(x1, x2) exp{−λmax(x1, x2)}A(x1, x2).

Thanks to (4), we know that ST1,T2(x1, x2) exp{−λmax(x1, x2)} is the survival func-
tion of the EMO model in the particular case when the common fatal shock arrival
time T3 coincides with the first jump τ1 of the Poisson process. Thus, we get (13).

Note that the REMO model exhibits singularity along the line {x1 = x2} since

SREMO(t) = P (X1 = X2 > t) = P (t < Z1 ≤ T1, t < Z2 ≤ T2|Y1 > w, Y2 > w) p1p2

= P (T1 ≥ τ1, T2 ≥ τ1 > t) p1p2

= p1p2

∫ +∞

t

P (T1 ≥ z, T2 ≥ z)λe−λzdz

= λp1p2

∫ +∞

t

ST1,T2(z, z)e−λzdz

= p1p2SEMO(t)

12



where SEMO(t) = λ
∫ +∞
t

ST1,T2(z, z)e−λzdz is the probability that the simultaneous
end occurs after time t in the EMO model when the common shock arrival time is
exponentially distributed with parameter λ. As a consequence, the singularity mass
is

SREMO = P (X1 = X2) = p1p2SEMO,

where SEMO = λ
∫ +∞
0

ST1,T2(t, t)e
−λtdt is the singularity mass in the EMO case.

For a pre-specified joint distribution of vector (T1, T2), one can obtain a joint
survival function of the REMO model, generated by stochastic relation (6).

Example 3.1. Let us assume that (T1, T2) has bivariate exponential type I distribu-
tion introduced by Gumbel (1960), that is,

ST1,T2(x1, x2) = exp{−λ1x1 − λ2x2 − θλ1λ2x1x2} for λ1, λ2 > 0, θ ∈ [0, 1].

Hence, using (13) the resulting REMO joint survival function is given by

SREMO(x1, x2) = exp{−λ1x1 − λ2x2 − θλ1λ2x1x2 − λmax(x1, x2)}A(x1, x2),

where A(x1, x2) is specified by (12). Thus, we got a singular version of the absolutely
continuous Gumbel’s bivariate exponential distribution.

Observe that, when θ = 0 and p1 = p2 = 0, we recover the model considered in
Ryu (1993), while if p1 = p2 = 1 we obtain the classical MO bivariate exponential
distribution (3).

Since REMO model incorporates the EMO model (see (13)), we are interested
in analyzing the function A(x1, x2) specified by (12) when pi < 1 for at least one
i = 1, 2.

Proposition 3.2. The lower and upper bounds of the function A(x1, x2) from (12)
are given by

min
(x1,x2)∈[0,+∞)2

A(x1, x2) = A(0, 0) = 1 (14)

and

sup
(x1,x2)∈[0,+∞)2

A(x1, x2) = max[ lim
x1→∞

A(x1, 0), lim
x2→∞

A(0, x2)]

= max

[
p1 + p̄1 exp

(
λ

w1

)
, p2 + p̄2 exp

(
λ

w2

)]
.

(15)

Proof. Let x1 > x2 and set B(x1, x2) = exp{−w1(x1 − x2)} and D(x1, x2) =
exp{−w1x1 − w2x2}. Then, (12) can be rewritten as

A(x1, x2) = p1 + p̄1e
λ
w1

[1−B(x1,x2)]
{
p2 + p̄2e

λ
w1+w2

[B(x1,x2)−D(x1,x2)]
}
.

13



Since B(x1, x2) > D(x1, x2), then e
λ

w1+w2
[B(x1,x2)−D(x1,x2)] ≥ 1. Moreover, B(x1, x2) ≤

1 implying e
λ
w1

[1−B(x1,x2)] ≥ 1, so the relation (14) is established.
The case x1 < x2 leads to the same conclusion.
In order to obtain the upper bound (15), we analyze the partial derivatives of

A(x1, x2). When x1 > x2, we have

∂

∂x1
A(x1, x2) = p̄1e

λ
w1

(1−B(x1,x2))λB(x1, x2)
[
p2 + p̄2e

λ
w1+w2

(B(x1,x2)−D(x1,x2))
]

+ p̄1e
λ
w1

(1−B(x1,x2))p̄2e
λ

w1+w2
(B(x1,x2)−D(x1,x2)) λ

w1 + w2

[−w1B(x1, x2) + w1D(x1, x2)]

= λp̄1e
λ
w1

(1−B(x1,x2))
[
B(x1, x2)p2 + p̄2e

λ
w1+w2

(B(x1,x2)−D(x1,x2))

×
{

w2

w1 + w2

B(x1, x2) +
w1

w1 + w2

D(x1, x2)

}]
≥ 0.

By analogy,

∂

∂x2
A(x1, x2) = −p̄1e

λ
w1

(1−B(x1,x2))λB(x1, x2)
[
p2 + p̄2e

λ
w1+w2

(B(x1,x2)−D(x1,x2))
]

+ p̄1e
λ
w1

(1−B(x1,x2))p̄2e
λ

w1+w2
(B(x1,x2)−D(x1,x2)) λ

w1 + w2

[w1B(x1, x2) + w2D(x1, x2)]

= λp̄1e
λ
w1

(1−B(x1,x2))

[
−B(x1, x2)p2 − p̄2e

λ
w1+w2

(B(x1,x2)−D(x1,x2)) w2

w1 + w2

(B(x1, x2)−D(x1, x2))

]
Since B(x1, x2) > D(x1, x2), then ∂

∂x2
A(x1, x2) ≤ 0.

Similarly, for x2 > x1 we have ∂
∂x1
A(x1, x2) ≤ 0 and ∂

∂x2
A(x1, x2) ≥ 0.

From the signs of the partial derivatives we conclude that the upper bound is
reached on the axes. Since

A(x1, 0) = p1 + p̄1 exp
{ λ

w1

[1− exp(−w1x1)]
}

and

A(0, x2) = p2 + p̄2 exp
{ λ

w2

[1− exp(−w2x2)]
}

are both increasing in their argument functions, we arrive to relation (15).

Graphs of the function A(x1, x2) are shown in Figure 1 (varying p1 and p2) and
Figure 2 (varying w1 and w2), confirming the lower and upper bounds (14) and (15).
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Figure 1: Shapes of the function A(x1, x2) for various values of (p1, p2) for fixed
w1 = w2 = 0.5 and λ = 0.1.

Figure 2: Shapes of the function A(x1, x2) for various values of (w1, w2) for fixed
p1 = p2 = 0.5 and λ = 0.1.
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Remark 3.3. Many joint life actuarial products depend on the residual lifetimes
joint survival distribution values on the straight line x1 = x2. For instance, the
continuous n-years joint life annuity net premium is defined by

āy1y2;ne =

∫ n

0

e−ruSX1,X2(u, u) du,

where r > 0 is the instantaneous interest rate and y1 and y2 are the entry ages of
the two individuals. Let us denote by āREMO

y1y2;ne and āEMO
y1y2;ne the net premium in REMO

and EMO models correspondingly. Applying (13), one concludes that the cost of the
possible delayed effect of the shock is given by

āREMO
y1y2;ne − ā

EMO
y1y2;ne =

∫ n

0

e−ruSEMO
X1,X2

(u, u) [A(u, u)− 1] du.

The last difference is positive since (14) is valid.
Clearly, the opposite result holds with respect to the first death policy.

3.2 Associated copula function

Here we will obtain the copula function CREMO(u, v) corresponding to the joint
survival function of the REMO model specified by (13). First, using the Sklar’s
theorem we rewrite SEMO(x1, x2) = ST1,T2(x1, x2) exp{−λmax(x1, x2)} as

SEMO(x1, x2) = C(ST1(x1), ST1(x2)) exp{−λmax(x1, x2)},

where C(u, v) is a given copula function associated to the vector (T1, T2) with
marginal survival functions ST1(x1) and ST1(x2). The marginals of SEMO(x1, x2)
are given by SEMO,i(xi) = STi(xi)exp{−λxi} and their inverse functions S−1EMO,i(.)
can be computed for i = 1, 2. Therefore the associated copula CEMO(u, v) can be
obtained via relation

CEMO(u, v) = SEMO(S−1EMO,1(u), S−1EMO,2(u)), (u, v) ∈ [0, 1]2.

The reader can find its properties and examples in Gobbi et al. (2019).
Using (13), the marginal survival functions of the REMO model can be written

as

SREMO,1(x1) = SEMO,1(x1)A(x1, 0) and SREMO,2(x2) = SEMO,2(x2)A(0, x2).

Hence, for i = 1, 2, we get

SREMO,i(xi) = STi(xi) exp (−λxi)
[
pi + p̄i exp

(
λ

wi
(1− exp (−wixi))

)]
. (16)

16



Applying again Sklar’s theorem in (13) one can obtain the associated copula
function

CREMO(u, v) = CEMO

(
u

A
(
S−1REMO,1(u), 0

) , v

A
(
0, S−1REMO,2(v)

))A (S−1REMO,1(u), S−1REMO,2(v)
)

where CEMO(u, v) is the copula function associated to the EMO model with S−1REMO,1(u)

and S−1REMO,2(v) being the inverse functions of the marginal survival functions given
above.

Notice that the copula CREMO(u, v) is not absolutely continuous and it admits
a singularity along the curve{

(u, v) ∈ [0, 1]2 : v = SREMO,2 ◦ S−1REMO,1(u)
}
.

3.3 Mortality intensities

A multivariate hazard (mortality) rate concept has been introduced in a classical
paper by Cox (1972). In the bivariate case we have the following four components
(conditional hazard functions) of the hazard vector:

λi0(x) = lim
h→0+

P (x < Xi ≤ x+ h|X1 > x,X2 > x)

h
, i = 1, 2,

λ1|2(x1|X1 > x1, X2 = x2) = lim
h→0+

P (x1 < X1 ≤ x1 + h|X1 > x1, X2 = x2)

h
for x2 < x1

and

λ2|1(x2|X1 = x1, X2 > x2) = lim
h→0+

P (x2 < X2 ≤ x2 + h|X1 = x1, X2 > x2)

h
for x2 > x1.

A reliability interpretation of these quantities is as follows: an expert can specify
the functions λi0(x) for i = 1, 2, based on aging characteristic on an item, while the
functions λ1|2(x1|X1 > x1, X2 = x2) and λ2|1(x2|X1 = x1, X2 > x2) take into account
the aging. The above conditional hazard functions completely specify the joint
distribution of (X1, X2), see Singpurwalla (2006) for the corresponding relations.

In what follows we will use ∂+i f(x1, x2) and ∂if(x1, x2) for the right-partial
derivative and partial derivative of a differentiable function f(x1, x2) with respect
to xi, i = 1, 2, correspondingly.

In terms of joint survival function SX1,X2(x1, x2), it is readily seen that

λi0(x) = −∂
+
i SX1,X2(x, x)

SX1,X2(x, x)
, i = 1, 2,
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λ1|2(x1|X1 > x1, X2 = x2) = −∂1∂2SX1,X2(x1, x2)

∂2SX1,X2(x1, x2)
, if x1 > x2

and

λ2|1(x1|X1 > x1, X2 = x2) = −∂1∂2SX1,X2(x1, x2)

∂1SX1,X2(x1, x2)
, if x2 > x1.

Our aim is to obtain explicit expressions of these conditional mortality rates
associated to the REMO model specified by (13), to compare them with EMO case
and to display their dynamics for different values of parameters involved.

Denote by sREMO(x1, x2) and sEMO(x1, x2) the bivariate densities of the abso-
lutely continuous part of the REMO and EMO models, respectively. After some
algebra using (13), we get the following relations.

Proposition 3.3. For the REMO model we have

λREMO
i0 (x) = λEMO

i0 (x)− ∂+i A(x, x)

A(x, x)
, i = 1, 2

where A(x, x) = 1− p̄1p̄2 + p̄1p̄2 exp
{

λ
w1+w2

[1− e−(w1+w2)x]
}

and

∂+i A(x, x) = p̄iλ

{
p3−i + p̄3−ie

λ
w1+w2

(1−e−(w1+w2)x)
[

w3−i

w1 + w2

+
wi

w1 + w2

e−(w1+w2)x

]}
.

The conditional intensities λ1|2 and λ1|2 are given by

λ1|2(x1|X1 > x1, X2 = x2) = − sREMO(x1, x2)

∂2SREMO(x1, x2)
if x1 > x2,

and

λ2|1(x2|X1 = x1, X2 > x2) = − sREMO(x1, x2)

∂1SREMO(x1, x2)
if x1 > x2,

where

sREMO(x1, x2) = sEMO(x1, x2)A(x1, x2) + ∂2SEMO(x1, x2)∂1A(x1, x2)+

+ ∂1SEMO(x1, x2)∂2A(x1, x2) + SEMO(x1, x2)∂1∂2A(x1, x2),

with

∂iSREMO(x1, x2) = ∂iSEMO(x1, x2)A(x1, x2) + SEMO(x1, x2)∂iA(x1, x2), i = 1, 2.

Remark 3.4. Notice that, since ∂+i A(x, x) ≥ 0, thus

λREMO
i0 (x) ≤ λEMO

i0 (x), i = 1, 2. (17)
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Remind that if substitute p1 = p2 = 1 in (12), then A(x1, x2) = 1, i.e., we recover
the formulas of the corresponding intensities for the EMO model obtained in Gobbi
et al. (2019). In this case we have

λREMO
i0 (x) = λEMO

i0 (x) = −∂iST1,T2(x, x)

ST1,T2(x, x)
+ λ

λ1|2(x1|X1 > x1, X2 = x2) = − sEMO(x1, x2)

∂2SEMO(x1, x2)
= − sT1,T2(x1, x2)

∂2ST1,T2(x1, x2)
+ λ

and

λ2|1(x2|X1 = x1, X2 > x2) = − sEMO(x1, x2)

∂1SEMO(x1, x2)
= − sT1,T2(x1, x2)

∂1ST1,T2(x1, x2)
+ λ.

Unlike inequality (17), there is no dominance relationship between the EMO and
REMO based conditional hazard rates λ1|2 and λ2|1. For example, Figures 3 and 4
show that under different values of the parameters one can observe different shapes
of the conditional intensity λ1|2. In both cases we assume that the dependence
structure between T1 and T2 is given by the Frank copula with parameter α = 2.6.
The marginal distributions of T1 and T2 are exponential with parameter 0.01 and
the intensity of the common shock is λ = 0.0012.
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Figure 3: Dynamics of mortality intensity λ1|2 when x1 > x2 = 1. Different curves
refer to different pairs of values of p1 and p2, whereas w1 = w2 = 0.2.
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Figure 4: Dynamics of mortality intensity λ1|2 when x1 > x2 = 1. Different curves
refer to different pairs of values of w1 and w2 when p1 = p2 = 0.9.

4 Empirical applications

In this section we will fit the REMO model specified by (13) to a sample of cen-
sored residual lifetimes of couples of insureds extracted from a data set of annuities
contracts of a Canadian life insurance company, registered in the period from De-
cember 29, 1988 to December 31, 1993. The data set is both left and right truncated.
The available information provides the entry ages y1 and y2 of the two spouses and
the corresponding censored residual lifetimes x1 and x2.

The Canadian data set has already been analysed in Frees et al. (1996), Car-
riere (2000), Shemyakin and Youn (2006), Ji et al. (2011), Dufrense et al. (2018),
among the others. In Gobbi et al. (2019) the same data has been considered (where
contracts involving insureds with the same sex and multiple contracts on the same
couple have been removed and only entry ages greater than 60 considered, for a total
number of observations equal to 9535) to fit the EMO model. We find convenient
to apply the REMO model since it additionally includes a possibility of common
external shocks with after-effects, see assumption B2. Following the same approach
as in Gobbi et al. (2019), we apply the two-stage maximum likelihood technique
of Shih and Louis (1995): we first compute the maximum likelihood estimates of
the parameters of the marginal distributions, separately, and then we compute the
maximum likelihood estimates of the remaining parameters assuming those already
estimated as given. We will assume marginal distributions of Gompertz type (fre-
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quently used in actuarial practice) and we will compare the goodness of fit with that
of the EMO one through the Bayesian Information Criteria (BIC).

Hereafter, treating data or random variables, we will assign index 1 or 2 referring
to the male or to the female in the couple, correspondingly.

4.1 Model specification

Taking into account the analysis conducted on Canadian data set in Frees et al.
(1996) and in Carriere (2000), we will assume that marginal residual lifetimes X1

and X2 of the REMO model are distributed according to the Gompertz law.
Specifically, we suppose that residual lifetime survival distributions from ages y1

and y2 are given by

SXi(xi) = exp
{
ai(yi)

(
1− e

xi
σi

)}
, i = 1, 2, (18)

with ai(yi) = exp
(
yi−Mi

σi

)
, where Mi and σi are the corresponding mode and dis-

persion parameters.
In order to simplify notations, we will drop in the sequel the dependence on the

initial entry ages y1 and y2, that is, we will set a1 = a1(y1) and a2 = a2(y2).
Given the adopted Gompertz marginal distributions in (18), using (16) we obtain

that

STi(xi) =
exp

{
ai

(
1− e

xi
σi

)
+ λxi

}
pi + p̄i exp

{
λ
wi

(1− e−wixi)
} , i = 1, 2. (19)

The REMO model is well defined if expressions (19) are proper survival functions.
The corresponding restrictions on parameters λ, pi, wi, Mi and σi, i = 1, 2, are
summarized below.

Proposition 4.1. For the REMO model with marginal Gompertz distributions the
following constraints hold:

C1. If STi(xi) in (19) is a valid survival function, then

λ ≤ ai
piσi

; (20)

C2. If pi < 1 and

λ ≤ ai
σi

min

(
1

pi
, 1 +

1

σiwi

)
, (21)

then STi(xi) in (19) is a proper survival function, i = 1,2.

21



Proof. First notice, that the first derivative S ′Ti(xi) of the expression in (19) can be
represented as

S ′Ti(xi) = gi(xi)
{(

λ− ai
σi
e
xi
σi

)
[pi + p̄ihi(xi)]− p̄ihi(xi)λe−wixi

}
, i = 1, 2, (22)

where gi(xi) = exp
{
ai

(
1− e

xi
σi

)
+ λxi

}
and hi(xi) = exp

{
λ
wi

(1− e−wixi)
}

.

Moreover, STi(0) = 1 and limxi→∞ STi(xi) = 0, for i = 1, 2.

C1. Using (22) we obtain that S ′Ti(0) = λ− ai
σi
− p̄iλ = piλ− ai

σi
. Since STi(xi) is a

survival function, then necessarily S ′Ti(0) ≤ 0 and inequality (20) is established.

C2. In fact, we want to show that when pi < 1 and (21) holds, then S ′Ti(xi) ≤ 0
for all xi ∈ [0,+∞), i = 1, 2. If (22) is fulfilled, the condition S ′Ti(xi) ≤ 0 is
equivalent to

ewixi − ai
λσi

exp
{ 1

σi
+ wixi

}
≤ p̄i

hi(x)

pi + p̄ihi(x)
, i = 1, 2. (23)

After careful analysis of the last inequality, one can conclude that STi(xi) is a
proper survival function indeed.

Remark 4.1. Unfortunately, Proposition 4.1 shows that we are unable to establish
necessary and sufficient conditions on the parameters of the REMO model, such that
S ′Ti(xi) ≤ 0 on [0,+∞), i = 1, 2.

However, if pi = 1 in REMO model, then we recover the corresponding marginal
distributions in the EMO case and the restriction (20) is a necessary and sufficient
condition for STi(xi) to be a valid survival function. Note that (23) is satisfied for
all xi ≥ 0 in EMO model, when (20) holds with pi = 1 for i = 1, 2.

4.2 Estimation methodology and results

As we established, the REMO joint distribution is not absolutely continuous
with respect to the Lebesgue measure on R2. We will use the maximum likelihood
estimation technique considering the REMO distribution density with respect to
the dominating measure µ on R2 given by the sum of the Lebesgue measure on the
plane and of the Lebesgue measure on the straight line {(x1, x2) ∈ R2 : x1 = x2}.
We refer the reader to Gobbi et al. (2019) for details, where the same procedure
has been applied to the EMO model.

We will model the dependence structure between random variables T1 and T2 in
(6) using Frank and Clayton copulas with parameter α, defined as

C(u, v) = − 1

α
ln

[
1 +

(e−αu − 1)(e−αv − 1)

e−α − 1

]
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and
C(u, v) =

(
u−α + v−α − 1

)− 1
α .

Thanks to Theorem 3.1 and expressions in the proof of Proposition 3.2, the
REMO density with respect to the dominating measure µ on R2 is given by

sREMO(x1, x2) =


e−λx2 [H(x1, x2)− λK1(x1, x2)] , 0 ≤ x1 < x2;
e−λx1 [H(x1, x2)− λK2(x1, x2)] , x1 > x2 ≥ 0;
λp1p2e

−λxC (ST1(x), ST2(x)) , x1 = x2 = x ≥ 0,

where

H(x1, x2) = sT1,T2(x1, x2)A(x1, x2) + ∂1ST1,T2(x1, x2)∂2A(x1, x2)+

+ ∂2ST1,T2(x1, x2)∂1A(x1, x2) + ST1,T2(x1, x2)∂1∂2A(x1, x2)

and

Ki(x1, x2) = ∂iST1,T2(x1, x2)A(x1, x2) + ST1,T2(x1, x2)∂iA(x1, x2), i = 1, 2.

Let θi = (Mi, σi) be the vector of parameters of the marginal Gompertz survival
functions SXi(xi), i = 1, 2. The joint survival distribution of the residual lifetimes
from entry ages y1 and y2 can be written as

SREMO(x1, x2|y1, y2) = C

(
ST1(x1|y1;θ1)

e−λx1A(x1, 0;η)
,
ST2(x2|y2;θ2)

e−λx2A(0, x2;η)
;α

)
e−λmax(x1,x2)A(x1, x2;η)

where α is the parameter of the considered copula function C and η = (λ, p1, p2, w1, w2)
are the parameters of the function A(x1, x2). Denote by γ = (α,η) the vector of
REMO model parameters that are not involved in the marginal distributions. We
will assume that the parameter vector γ is independent of the entry ages y1 and y2.

Let (x̂1, x̂2) = {(x̂1i, x̂2i) : i = 1, . . . , n} be a sample of n censored observed resid-
ual lifetimes pairs from ages {(y1i, y2i) : i = 1, . . . , n}. If (C1i, C2i) denote indepen-
dent random censoring times for the male and the female individuals in the couple
i then the i-th observation (x̂1i, x̂2i) is defined as

x̂1i = min(x1i, C1i) and x̂2i = min(x2i, C2i), i = 1, . . . , n,

where x1i and x2i are the corresponding residual lifetimes. If δji = 1{x̂ji=xji} for i =
1, . . . , n and j = 1, 2, the likelihood function of the vector of parameters (θ1,θ2,γ)
is given by

L ((x̂1, x̂2) ;θ1,θ2,γ) =
n∏
i=1

{
[sREMO(x1i, x2i|y1i, y2i;θ1,θ2,γ)]δ1iδ2i

× [−∂1SREMO (x1i, C2i|y1i, y2i;θ1,θ2,γ)]δ1i(1−δ2i)

× [−∂2SREMO(C1i, x2i|y1i, y2i;θ1,θ2,γ)](1−δ1i)δ2i

[SREMO(C1i, C2i|y1i, y2i;θ1,θ2,γ)](1−δ1i)(1−δ2i)
}
.

(24)
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M̂1 σ̂1 M̂2 σ̂2
86.1144 9.5642 92.0369 7.8195

Table 1: Estimators of the parameters of marginal Gompertz distributions.

We apply the two-stage parametric method for censored data introduced in Shih
and Louis (1995). More precisely, the procedure consists in

Step 1: Compute the maximum likelihood estimators of θj = (Mj, σj) with j = 1, 2,
of the Gompertz type marginal distributions (this can be achieved assuming
independence in the likelihood (24));

Step 2: Given
(
θ̂1, θ̂2

)
obtained in the previous step, compute the maximum likeli-

hood estimator γ̂ of the remaining parameters γ = (α, λ, p1, p2, w1, w2) as a
solution of the following constrained maximization problem{

max
γ

L
(

(x̂1, x̂2) ; θ̂1, θ̂2,γ
)

under restrictions: λp1 ≤ λ̄1, λp2 ≤ λ̄2,
(25)

where λ̄j = min
{
âji
σ̂j

: i = 1, . . . , n
}

with âji = exp
(
yji−M̂j

σ̂j

)
for j = 1, 2, due

to (20) in Proposition 4.1.

It remains to check if the estimator γ̂ fulfills restriction (21):

1. If γ̂ is such that inequality (21) is satisfied, then γ̂ is the maximum likelihood
estimator we are looking for;

2. If γ̂ doesn’t satisfy (21) for some i = 1, 2, then further investigation is needed
to ensure that the expressions in (19) are proper survival functions.

In order to take into account a delay in reporting the exact date of death, we
consider as simultaneous deaths those occurring by a 5 days lag as in Ji et al. (2011).

The output of the first step for parameter estimates of Gompertz marginal dis-
tributions are listed in Table 1. We use them to obtain the following upper bounds
in (25):

λ̄1 = 0.00681618 and λ̄2 = 0.00212564. (26)

Then, we apply the second step of the estimation procedure, maximizing the
likelihood in (25). The estimates of the REMO model parameters and relative
standard errors are displayed in the first panel of Table 2.
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Frank copula

α̂REMO λ̂REMO p̂1 ŵ1 p̂2 ŵ2 BIC
1.7551 0.001476 0.9999 0.0000 0.3128 1.0453 3008.09

(0.3887) (0.0002) (0.0000) (0.0000) (0.1448) (0.2269)
REMO Clayton copula

α̂REMO λ̂REMO p̂1 ŵ1 p̂2 ŵ2 BIC
1.2793 0.001347 0.9999 0.0000 0.5199 0.9474 3022.36

(0.3006) (0.0002) (0.0000) (0.0000) (0.2775) (0.2958)
Frank copula

α̂EMO λ̂EMO BIC
2.2518 0.001096 3035.478

(0.0107) (0.0000)
EMO Clayton copula

α̂EMO λ̂EMO BIC
1.1678 0.001178 3039.03

(0.0047) (0.0000)

Table 2: Maximum likelihood estimates and relative standard errors of the EMO
and REMO models.

Remark 4.2. Since the obtained log-likelihood is a strongly non-linear of six vari-
ables, the estimation has been conducted applying a procedure composed by several
steps, in each of which, on the basis of a grid of initial values of the parameters, we
have identified the solution that minimized the BIC. The importance of the choice
of several initial values in the optimization procedure is discussed in Greene (2000).

We used the maximum likelihood estimators θj = (Mj, σj) with j = 1, 2 already
obtained in of Gobbi et al. (2019) for the EMO model (Step 1). In Step 2 we got
the minimum BIC within a grid of initial values relating to the four parameters
of the REMO model p1, w1, p2 and w2. We have thus obtained a first significant
evidence. The value of p1 which minimized the BIC was very close to 1, which
made the parameter w1 irrelevant for the estimation. In consequence, a grid of
initial values for the remaining parameters (p2, w2) relating to females has been built,
obtaining the minimum BIC corresponding to the estimates reported in Table 2. The
determination of the standard errors took place by calculating the hessian matrix
numerically by approximating the partial derivatives and the second-order partial
derivatives through finite differences.

In the second panel of Table 2 we give the maximum-likelihood estimators for
parameters of the EMO model, reported by Gobbi et al. (2019).

The estimated values 0.001476 and 0.001347 of intensity parameter λ using Frank
and Clayton copulas correspondingly, are smaller than the upper bounds given in
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(26). Thus, condition (21) is satisfied in the whole data set, since pi ≤ 1 for i = 1, 2,
ensuring that relations (19) represent proper survival functions.

In order to compare different models we have used the BIC expression for cen-
sored data as suggested in Volinsky and Raftery (2000). In this case, BIC =
−2LL + k logm, where LL is the maximum value of the log-likelihood, k is the
number of parameters and m is the number of non-censored observations.

Let us analyze the the estimators listed in Table 2.

1. Comparing the estimators of common parameters in REMO and EMO models
we have

λ̂REMO > λ̂EMO and α̂REMO < α̂EMO.

These relations are quite reasonable, because REMO and EMO models are
fitted to the same data set. Really, all external shocks in EMO model are
assumed to be fatal, while the REMO model additionally incorporates the
possibility of implicit common shocks. Therefore, it is natural that the es-
timated intensity λ̂REMO of the common shock in REMO model dominates
the corresponding one in EMO model. However, an inverse relation holds for
associated copula parameters measuring the degree of dependence between in-
dividual shocks represented by the random vector (T1, T2), being common for
both models. Since the EMO model is more conservative, then the associated
copula parameter α̂EMO should dominate those estimated in REMO case;

2. It was a real surprise for us, that for the REMO model we got p̂1 = 0.9999 ≈ 1
in Frank and Clayton cases, implying that the corresponding magnitudes ŵ1 ≈
0. This simply means that the common shock can be treated as a fatal for the
man in a couple of considered data set. However, for women, the corresponding
estimates using the Frank copula are p̂2 = 0.3128 and ŵ2 = 1.0453. In other
words, the chances of women to survive a fatal shock are about tree times
higher than the men in a couple.

This conclusion can be confirmed screening again the Canadian data set. One
can observe that roughly three times more males as females died during the
study period. It also suggests higher mortality rates for males than for females,
see Dufresne at al. (2018) and Shemyakin and Youn (2006);

3. The best performance is achieved by the REMO model with the Frank copula
connecting random variables T1 and T2 in (6), with BIC = 3008.09. A possible
reason is that the Clayton copula exhibits a lower tail dependence, which is
probably not appropriate for modeling the bivariate lifetimes of Canadian data
set. Dufrense at al. (2018) arrived to the same conclusion.
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5 Conclusions

In this paper, we introduce a Ryu-type Extended Marshall-Olkin model consid-
ering a delayed effect of the common shocks affecting the elements of the system. A
general expression for the joint survival function of the model is given in Theorem
2.1. We examined in detail its particular version specified by (6) under assumptions
B1-B5, called REMO model, when the common shocks are governed by a homoge-
neous Poisson process, causing different impact on components considering a ”fatal”
threshold level.

Using real insurance data, we develop an appropriate estimator of the joint dis-
tribution of the lifetimes of spouses with copula models. A goodness of fit procedure
clearly shows that the REMO model outperform the models assuming explicit com-
mon shocks. The results of our illustrations, focusing on valuation of joint life
insurance products, suggest that lifetimes dependence factors should be taken into
account.

Finally, let us note that another versions of the Extended Marshall-Olkin model
can be investigated. For example, following the methodology proposed by Marshall
and Olkin (1988), one might consider a scenario where the duration variables Zi
in stochastic relation (6) are defined by Zi = V0 + Vi, i = 1, 2 where V0, V1 and
V2 are independent non-negative random variables. In this case, Z1 and Z2 are
correlated since they contain the common element V0. We left this problem for a
future research.
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2018/23185-0 and 2013/07375-0.
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