

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Describing backfat and Semimembranosus muscle fatty acid variability in heavy pigs: Analysis of non-genetic factors

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Zappaterra M., Catillo G., Lo Fiego D.P., Belmonte A.M., Padalino B., Davoli R. (2022). Describing backfat and Semimembranosus muscle fatty acid variability in heavy pigs: Analysis of non-genetic factors. MEAT SCIENCE, 183(January 2022), 1-9 [10.1016/j.meatsci.2021.108645].

Availability: This version is available at: https://hdl.handle.net/11585/834040 since: 2022-07-11

Published:

DOI: http://doi.org/10.1016/j.meatsci.2021.108645

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

1	Describing backfat and Semimembranosus muscle fatty acid
2	variability in heavy pigs: analysis of non–genetic factors
3	Martina Zappaterra ^{a,*} martina.zappaterra2@unibo.it, Gennaro Catillo ^b , Domenico Pietro Lo Fiego ^{cd} ,
4 5	Anna Maria Belmonte ^c , Barbara Padalino ^a , Roberta Davoli ^{a,*} roberta.davoli@unibo.it
6	^a Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin
7	46, I-40127, Bologna, Italy.
8	^b Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) - Centro di ricerca
9	Zootecnia e Acquacoltura (Research Centre for Animal Production and Aquaculture), Via Salaria
10	31, I-00015, Monterotondo, Italy.
11	^c Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Amendola
12	2, I-42122, Reggio Emilia, Italy.
13	^d Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and
14	Valorization (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa 1, I-
15	42124 Reggio Emilia, Italy.
16 17	*Corresponding authors.
18 19 20	Abstract
20	This study aimed to describe the multivariate structure of Semimembranosus muscle and backfat
22	fatty acid (FA) composition in 798 Italian Large White heavy pigs and to investigate the effects of
23	environmental factors and carcass characteristics on FA variations. The total FA variability in
24	muscle and backfat was characterized by a negative correlation between saturated and
25	polyunsaturated FAs, which strongly depended on the carcass adiposity. Slaughtering season was
26	also relevant, with pigs slaughtered in autumn having more <i>n</i> -6 FAs and eicosadienoic acid in
27	backfat, while pigs slaughtered in winter displayed more saturated FAs.

Regarding *Semimembranosus* muscle, pigs with heavier belly cuts and slaughtered in autumn had higher proportions of *cis*-vaccenic and palmitoleic acids, while those slaughtered in summer had more saturated FAs. Slaughtering season emerged as a relevant factor shaping both backfat and muscle FA composition, indicating that more studies and attention should be paid to environmental factors, which may have effects on FA metabolism and deposition in finishing pigs.

33 34

Keywords: fatty acid composition; subcutaneous fat quality; *Semimembranosus* muscle; swine;
 Principal Component Analysis.

37 38

40

39 **1 Introduction**

41 Global meat demand is expected to be 16% higher in 2025 over the 2013-2015 period, with poultry and pork production and demand leading the trend in developing countries (OECD, 2016). The 42 demand for both fresh and processed meat products is expected to increase. Italy is a top producer 43 of processed meat products, particularly of Protected Designation of Origin (PDO) products, 44 45 contributing to about one-third of the European heritage meat product (Dalle Zotte, Brugiapaglia, & 46 Cullere, 2017). Parma and San Daniele PDO hams accounted for more than half of the total turnover generated by the Italian PDO pork products in Italy in 2017 (ISMEA, 2019). These high-47 48 quality dry-cured hams are obtained from heavy pig hind legs, just salted, and ripened for a period that is generally not shorter than 13 months. Most of the Italian heavy pig production relies on 49 50 animals slaughtered at a minimum age of 9 months and an average live weight of 160-170 kg. These pigs come from a specific selection scheme by the national herdbook, or from selection 51 52 schemes with comparable selection goals (Consorzio del Prosciutto di Parma, 1992; Lo Fiego, 53 Santoro, Macchioni, & De Leonibus, 2005; MIPAAF, 2007; Lo Fiego, Macchioni, Minelli, & Santoro, 2010). 54

The amount and quality of covering adipose tissue and intramuscular fat (IMF) are relevant for pigs
used to produce seasoned meat products. The amount of subcutaneous, as well as IMF, strongly

57 affects the technological yield of green hams limiting excessive seasoning losses (Bosi & Russo, 2004). Indeed, adipose tissue represents a barrier to water diffusion and salt penetration. Because of 58 the inverse relationship of fat thickness with seasoning losses and salt content, leaner hams are 59 expected to have a higher salt content (Čandek-Potokar, Monin, & Zlender, 2002), which is 60 generally deemed negative for a human healthy diet. Furthermore, it has been reported that a 61 suitable IMF content has a beneficial effect on juiciness (Ventanas, Ruiz, García, & Ventanas, 62 2007) and texture of dry-cured hams (Ruiz Carrascal et al., 2000). On the contrary, because of its 63 64 influence on water loss and salt penetration dynamics, a high level of fat infiltration in the muscles was found to be associated with excessive softness and pastiness (Parolari, Rivaldi, Leonelli, 65 Bellatti, & Bovis, 1988; Gou, Guerrero, & Arnau, 1995). Pigs with greater fat deposition tend to 66 have a higher proportion of saturated fatty acids (SFAs; Tibau et al., 2002), which has positive 67 effects on fat firmness and oxidative stability during the long maturation process of green hams 68 (Virgili & Schivazappa, 2002; Bosi & Russo, 2004). A lower fat level in hams is associated with 69 70 more polyunsaturated fatty acids (PUFAs; Bosi & Russo, 2004), mainly confined to phospholipids. Among PUFAs, *n*-3 are preferred by consumers for their positive effects on human health. 71 72 However, PUFAs are also more prone to incur in lipolytic and oxidative processes causing 73 rancidity, abnormal flavors, fat softness, and altered organoleptic properties of dry-cured hams (Wood et al., 2003; Juárez et al., 2011). On the other hand, meat fat content is important for the 74 75 technological and sensory quality of dry-cured hams, because lipolysis and subsequent fat oxidation 76 cause the development of volatile organic compounds determining the ham aroma (López et al., 77 1992; Pinna, Simoncini, Toscani, & Virgili, 2012). Different environmental, physiological, and 78 molecular factors affect fat deposition and composition, contributing to the variability in the 79 technological and sensory features of dry-cured hams and other meat products. For that reason, factors affecting fatty acid (FA) composition of different tissues have been under investigation for 80 many years. FA composition showed in general high-to-moderate heritability estimates in pigs 81 82 slaughtered at about 100 kg live weight, which were intended for fresh meat products (Suzuki et al.,

83	2006; Sellier, Maignel, & Bidanel, 2010), and in Duroc pigs slaughtered at about 125 kg live weight
84	(Ros-Freixedes, Reixach, Bosch, Tor, & Estany, 2014). Recent studies carried out on Italian Large
85	White (ILW) heavy pigs (slaughtered at about 155 kg live weight) found that the FA composition of
86	fat stored in muscle and backfat (BF) are the result of moderately heritable traits (Davoli et al.,
87	2019; Zappaterra et al., 2020) and associated with genetic markers (Zappaterra, Ros-Freixedes,
88	Estany & Davoli, 2018; Catillo et al., 2020). Diet has also a major role in the variability noticed in
89	pork FA composition, as proved by the considerable literature produced over the years (Morgan,
90	Noble, Cocchi, & McCartney, 1992; Leskanich, Matthews, Warkup, Noble, & Hazzledine, 1997;
91	Carrapiso, Tejeda, Noguera, Ibáñez-Escriche, & González, 2020). However, except for the studies
92	concerning the effects of genetics and diet on the FA metabolism and deposition, very few
93	researchers have noted the role other factors play in determining FA composition in heavy pigs
94	(Catillo, Zappaterra, Lo Fiego, Steri, & Davoli, 2021).
95	The purpose of this research was to describe and investigate the possible effects of environmental
96	factors and carcass characteristics on the FA composition of Semimembranosus muscle (SM) and
97	BF tissues in a population of ILW heavy pigs selected for the production of dry-cured hams. A
98	multivariate approach was used to identify possible metabolic patterns explaining concentrations of
99	individual FAs in different tissues and relate these patterns with environmental factors and carcass
100	characteristics.

2. Material and methods

2.1 Animals and tissue samplings

A sample of 798 purebred ILW pigs was used in the present study. These samples were included in
a previous work (Davoli et al., 2019). Briefly, the experimental pigs came from the sib-testing
station of the Italian Pig Breeder National Association (Associazione Nazionale Allevatori Suini,
ANAS, http://www.anas.it). Their sib-testing program is based on the performances of triplets of
full sibs (two gilts and one barrow) reared in the same environmental conditions in a unique testing

112 station. The experimental population came from 323 litters by 87 boars and 371 sows. Each group of siblings entered the sib-testing station located near Reggio Emilia (Italy) at the age of 30-45 days 113 114 and the testing period lasted a maximum of 145 days, with an average final live weight of about 155 115 kg. During the testing period, siblings were allotted in a natural-ventilated facility and fed the same diets. The finishing diet (Supplementary Table S1) was fed from about 90-100 kg live weight until 116 117 slaughter weight was reached at *a quasi ad libitum* feeding level (i.e. 60% of the pigs were able to ingest the whole ration). Pigs were slaughtered on 26 different dates between 2011 and 2012 at the 118 119 same commercial abattoir. Each litter was slaughtered on at least two different dates. Handling and slaughtering of the animals used in this study were performed in compliance with European rules on 120 121 the protection of animals during transport and at slaughtering (Council Regulation (EC) No. 1/2005 122 and Council Regulation (EC) No. 1099/2009). Sampling occurred with ANAS permission. 123 BF and SM tissues were sampled on the trimming line from the carcass left sides. BF samples were collected approximately between the fifth and the sixth lumbar vertebra, close to the point where the 124 125 hind leg is separated from the rest of the carcass, at the level of BF maximum thickness. BF and SM

126 samples were wrapped in aluminum foil, immediately put in vacuum-sealed bags, frozen in liquid
127 nitrogen, and kept at -80°C for further use.

128 129

131

130 **2.2 Phenotyping**

At slaughtering, hot carcass weight (kg) and optical measures (expressed in mm) of loin and BF thicknesses were taken by Fat-O-Meat'er (FOM - CrometecGmbh, Lünen, Germany) between the third and fourth last ribs, 8 cm off the carcass midline. These measures were used to estimate the percentage of carcass lean meat, which was then used for EUROP carcass grading following EU Decision 2001/468/CE of June 8th, 2001 (European Commission, 2001). BF thickness (BFT; expressed in mm) was also measured at the level of the *Gluteus medius* muscle by a caliper. Furthermore, on the left side, the weights (in kg) of belly and jowl cuts were also recorded.

139	Intramuscular fat content (IMF) was determined in the SM by extraction with petroleum ether from
140	1 g fresh sample using an XT15 Ankom apparatus (Macedon, NY, USA), according to Official
141	procedure AOCS Am 5-04 (AOAC, 2005). IMF was determined in % as g of IMF per 100 g of
142	tissue.
143	BF FA composition was determined as described in Catillo, Zappaterra, Lo Fiego, Steri, & Davoli
144	(2021) and Serra et al. (2014), and was expressed as g FA per 100 g of total FA (i.e. percent FA
145	composition). SM FA determination was described in Catillo et al. (2020). Briefly, the total muscle
146	lipids destined for the gas-chromatographic analysis were extracted from SM using a mixture of
147	chloroform: methanol (2:1, v/v) (Carlo Erba Reagents, MI, Italy) according to Folch, Lees, and
148	Sloane Stanley (1957). Methylation was performed with a 2N solution of potassium hydroxide
149	(KOH) in methanol (CH3OH) (Carlo Erba Reagents, Milan, Italy) according to Ficarra, Lo Fiego,
150	Minelli, & Antonelli (2010). Tridecanoic acid (C13:0) (Larodan Fine Chemicals AB, Solna,
151	Sweden) was used as an internal standard in SM FA determination. Intramuscular fatty acid methyl
152	esters (FAMEs) were then submitted to gas-chromatographic analysis using TRACE TM GC Ultra
153	(Thermo Electron Corporation, Rodano, MI, Italy) equipped with a Flame Ionization Detector, a
154	PVT injector, and a TR-FAME Column 30 m \times 0.25 mm i.d., 0.2 μm film thickness (Thermo
155	Scientific, Rodano, MI, Italy). The Chrom-Card software (vers.2.3.3, Thermo Electron Corporation,
156	Rodano, MI, Italy) was used to record and integrate the peaks of FAMEs. Individual FAME were
157	identified by comparing their retention times with the retention times of a standard FAME mixture
158	prepared in-house with known quantities of each methyl ester (Larodan Fine Chemicals AB, Solna,
159	Sweden). In order to present data in the same way as BF, the amount of each FA determined in SM
160	was reported as g FA per 100 g of total FA (i.e. percent FA composition).
161	
162	
163	2.3 Statistical analysis
164	

2.3.1 Data handling

166

168 169

171

170 **2.3.2 Multivariate analysis of the two tissues**

172 In order to identify underlying structures in the dataset and patterns linking individual FAs, a Principal Component Analysis (PCA) was applied to the FA composition of BF and SM. Each 173 174 tissue was independently analyzed with the aim of investigating the main non-genetic factors that could shape the variability of BF and SM FA composition. A PCA was run for each tissue including 175 all the individual FAs. First, the projection of the samples in the Principal Components (PC) space 176 (scores) was calculated. Samples with a high value for at least one of the distances within and 177 orthogonal to the projection plane (Hubert, Rousseeuw, & Vanden Branden, 2005) were considered 178 179 as outliers and not further included in the PCA analysis. A total of four and one outliers were 180 removed for BF and SM tissues, respectively. After outlier removal, a PCA was run again for each of the considered tissues and PC scores were obtained. Each PC was determined by a specific 181 combination of the original variables, which, based on their weight in each PC, contribute to explain 182 183 total variance. The weights of individual FAs within each PC were then used to discuss possible 184 metabolic pathways capable to explain the combinations found. To test whether the distribution of samples in the PCA scoreplot may have been influenced by major factors of variability, the 185 distribution of samples on the projection plane was evaluated by plotting the variables of 186 slaughtering season, sex, and EUROP carcass grading. 187

The 26 slaughtering dates were grouped into a new variable with four levels corresponding to the

four slaughtering seasons (i.e. six dates in spring; six in summer; nine in autumn; five in winter).

PCAs were performed using the *ropls* package (Thévenot, Roux, Xu, Ezan, & Junot, 2015) in the R
environment (R Core Team, 2020).

190 191

- 192 **2.3.3 Univariate models for the FA composition of the two tissues**
- 194 **2.3.3.1** Stepwise multiple regression model of the PC scores

196aimed to evaluate the effects of the categorical variables on the phenotypic variability noticed for197each FA or FA class. The scores of the first two PCs obtained for each PCA were then included as198dependent variables in backward stepwise multiple linear regression models. The initial model199evaluated with the backward stepwise automatic elimination was the following:200 $y_{ijk} = \mu Ss_i + Sex_j + b_1(Age_k) + b_2(hot carcass weight_k) + b_3(Carcass lean_k) + b_4(BFT_k) + b_5(IMF_k)$ 201 $+b_6(belly weight_k) + b_7(jowl weight_k) + e_{ijk}$ 203where: y_{ijk} was the vector of the scores of the first PCs identified with the PCAs; μ was the overall205mean; Ss_i is the fixed effects of the i th slaughter season (i=1 to 4) and Sex_j is the fixed effect of the206sex (j=1,2); age at slaughtering, hot carcass weight, carcass lean %, BFT measured with a caliper,
198dependent variables in backward stepwise multiple linear regression models. The initial model199evaluated with the backward stepwise automatic elimination was the following:200 $y_{ijk} = \mu Ss_i + Sex_j + b_1(Age_k) + b_2(hot carcass weight_k) + b_3(Carcass lean_k) + b_4(BFT_k) + b_5(IMF_k)$ 201 201 202 $+b_6(belly weight_k) + b_7(jowl weight_k) + e_{ijk}$ 203 204 204where: y_{ijk} was the vector of the scores of the first PCs identified with the PCAs; μ was the overall205mean; Ss_i is the fixed effects of the i th slaughter season (i=1 to 4) and Sex_j is the fixed effect of the
199 evaluated with the backward stepwise automatic elimination was the following: 200 $y_{ijk} = \mu Ss_i + Sex_j + b_1(Age_k) + b_2(hot carcass weight_k) + b_3(Carcass lean_k) + b_4(BFT_k) + b_5(IMF_k)$ 201 $+b_6(belly weight_k) + b_7(jowl weight_k) + e_{ijk}$ 203 where: y_{ijk} was the vector of the scores of the first PCs identified with the PCAs; μ was the overall 205 mean; Ss _i is the fixed effects of the i th slaughter season (i=1 to 4) and Sex _j is the fixed effect of the
$y_{ijk} = \mu Ss_i + Sex_j + b_1(Age_k) + b_2(hot carcass weight_k) + b_3(Carcass lean_k) + b_4(BFT_k) + b_5(IMF_k)$ $+b_6(belly weight_k) + b_7(jowl weight_k) + e_{ijk}$ where: y_{ijk} was the vector of the scores of the first PCs identified with the PCAs; μ was the overall mean; Ss_i is the fixed effects of the i th slaughter season (i=1 to 4) and Sex_j is the fixed effect of the
201 202 $+b_6(belly weight_k) + b_7(jowl weight_k) + e_{ijk}$ 203 204 where: y_{ijk} was the vector of the scores of the first PCs identified with the PCAs; μ was the overall 205 mean; Ss _i is the fixed effects of the i th slaughter season (i=1 to 4) and Sex _j is the fixed effect of the
$\begin{array}{l} 202 \\ +b_{6}(belly\ weight_{k}) + b_{7}(jowl\ weight_{k}) + e_{ijk} \\ 203 \\ 204 \\ where:\ y_{ijk}\ was\ the\ vector\ of\ the\ scores\ of\ the\ first\ PCs\ identified\ with\ the\ PCAs;\ \mu\ was\ the\ overall \\ 205 \\ mean;\ Ss_{i}\ is\ the\ fixed\ effects\ of\ the\ i^{th}\ slaughter\ season\ (i=1\ to\ 4)\ and\ Sex_{j}\ is\ the\ fixed\ effect\ of\ the \\ \end{array}$
where: y_{ijk} was the vector of the scores of the first PCs identified with the PCAs; μ was the overall mean; Ss _i is the fixed effects of the i th slaughter season (i=1 to 4) and Sex _j is the fixed effect of the
sex (j=1,2); age at slaughtering, hot carcass weight, carcass lean %, BFT measured with a caliper,
207 IMF percentage in SM, and the weights of belly and jowl were considered as covariates; b1, b2, b3,
b4, b5, b6, b7 were the regression coefficients; e_{ijk} random residual effect for the k th pigs.
209
210 Generalized Linear Models (GLMs) were performed with the <i>glm</i> function of the <i>stats</i> package (R
211 Core Team, 2020) in the R environment. Backward stepwise multiple linear regression models were
212 performed using the <i>step</i> function of the <i>stats</i> package (R Core Team, 2020) in the R environment.
213 Anova function of car package in R environment (R Core Team, 2020) was used to adjust the
results of the stepwise multiple linear regression models for the type III errors.
To complete the obtained results, the effect of the covariates for slaughtering season (4 levels) and
sex of the animals (2 levels) were also tested on BFT, carcass lean % and IMF % with the <i>glm</i>
function of the <i>stats</i> package, and <i>Anova</i> function of <i>car</i> package in the R environment (R Core
Team, 2020). The results of the GLM for slaughtering season effects are reported as Least Squares
219 Means (L.S.M.) and Standard Errors (S.E.), obtained with <i>lsmeans</i> function of <i>lsmeans</i> package in
the R environment.
221 <i>P</i> -values < 0.05 were considered significant and the trend towards significance was set for <i>P</i> -values

comprised between 0.10 and 0.05.

225

2.3.3.2 Multiple regression models for the individual FAs and FA classes

In order to highlight the effects of the independent categorical variables on each FA or FA category, the FA compositions of BF and SM were analyzed with a linear model in R environment (R Core Team, 2020). The linear models used for BF and SM FA composition were based on the results of the backward stepwise multiple linear regression models performed for the relative PCs. For each tissue, variables displaying a *P*-value less than or equal to 0.05 in at least one of the stepwise models were considered as independent variables in the linear model.

232 233

234 **3. Results**

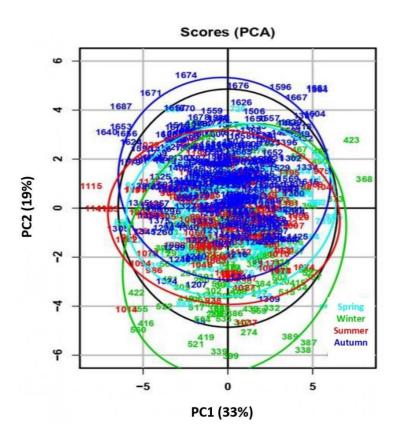
235 236

237

3.1 BF FA composition

The PCA for BF FA composition identified two PCs, jointly explaining 52% of the total variance. 238 Weights of individual FAs entering each PC are reported in Table 1 and the PCA scoreplot is 239 displayed in Supplementary Figure 1. FAs showing the highest and lowest weights contributed the 240 241 most in determining the variability of the PC they belonged to. The first PC (PC1), explaining 33% 242 of the total variance, was mainly determined by the saturated FAs (SFA) stearic, arachidic and palmitic, while arachidonic, linoleic, dihomo- γ -linolenic, docosapentaenoic (DPA), heptadecenoic 243 244 unsaturated FAs (UFAs), and lauric acid had negative loadings in PC1. Most of the total variance 245 was thus determined by the antagonism shown by the animals located in the right side of the PCA 246 scoreplot (characterized by more stearic, arachidic, and palmitic acids in BF) against those placed on the left side of Supplementary Figure S1 (with BF having greater proportions of arachidonic, 247 248 linoleic, dihomo- γ -linolenic, DPA, heptadecenoic and lauric acids). The second PC (PC2), 249 explaining 18% of the total variance, was mainly determined by the opposition between pigs having 250 BF with greater proportions of palmitoleic acid and of the myristic, capric, palmitic, and lauric 251 SFAs (pigs on the upper side of the PCA scoreplot), and animals displaying more eicosadienoic, 252 gadoleic, and erucic acids in their BF tissue (on the bottom side of Supplementary Figure S1).

1	,	4	2	4
4			,	•


Table 1. Backfat (BF) individual fatty acids (FAs), identified by their shorthand notation and their 256 257 common nomenclature between brackets, and the relative Principal Component (PC) loadings. The total variance explained by each PC is between brackets. Bold PC loadings indicate the lowest and 258 highest PC loadings.

BF FAs (%)	PC1 (33%)	PC2 (18%)
C10:0 (capric acid)	-0.059	-0.375
C12:0 (lauric acid)	-0.210	-0.285
C14:0 (myristic acid)	-0.119	-0.409
C16:0 (palmitic acid)	0.216	-0.335
C16:1 cis-9 (palmitoleic acid)	-0.184	-0.285
C17:0 (margaric acid)	-0.215	0.071
C17:1 cis-9 (heptadecenoic acid)	-0.277	0.000
C18:0 (stearic acid)	0.292	0.066
C18:1 cis-9 (oleic acid)	0.021	0.180
C18:1 cis-11 (cis-vaccenic acid)	-0.205	0.036
C18:2 cis-9, cis-12 (linoleic acid)	-0.317	0.019
C18:3 <i>n</i> -3 (α -linolenic acid)	-0.152	-0.027
C20:0 (arachidic acid)	0.269	0.168
C20:1 cis-11 (gadoleic acid)	0.134	0.259
C20:2 <i>n</i> -6 (eicosadienoic acid)	-0.071	0.404
C20:3 <i>n</i> -6 (dihomo-γ-linolenic acid)	-0.296	0.105
C22:1 (erucic acid)	-0.157	0.238
C20:4 <i>n</i> -6 (arachidonic acid)	-0.327	0.023

	C22:4 <i>n</i> -6 (adrenic acid)	-0.235	0.173
	C22:5 n-3 (docosapentaenoic acid-DPA)	-0.282	0.120
259	C22:6 n-3 (docosahexaenoic acid-DHA)	-0.184	0.054

The samples in the scoreplot were then labeled with their levels for the independent variables of 262 263 slaughtering season, sex, and EUROP carcass grading, in order to test whether these factors had a major role in the dataset variability. Samples in the scoreplot showed to be clustered based on 264 265 slaughtering seasons, as pigs slaughtered in autumn showed positive PC2 loadings and those slaughtered in winter negative PC2 loadings (Figure 1). Therefore, the animals slaughtered in 266 autumn had the highest contents of eicosadienoic, gadoleic, and erucic acids, while those 267 slaughtered in winter had more myristic, capric, palmitic, palmitoleic, and lauric acids in BF. 268 269 270 271 Figure 1. Principal Component Analysis (PCA) scoreplot for backfat (BF) fatty acids (FAs) with 272 the samples (plotted with their ID number) identified by different colors based on their slaughtering

season.

277
278
279
280
281
282
283
284
1 05

but its *P*-value was above the threshold of 0.10. As can be noticed from Table 2, animals with
negative PC1 scores have a thinner BF, are older, and have leaner carcasses. **Table 2**. The covariates retained in the backward stepwise multiple linear regression model for PC1
scores obtained from the Principal Component Analysis (PCA) of backfat (BF) fatty acids (FAs).

No clear cluster in the scoreplot was observed for sex and EUROP carcass grading.

PC scores of the samples were then submitted to backward stepwise multiple linear regression and

the results are reported in Table 2 and Table 3. For PC1 scores, the stepwise selection process

retained BFT, the % of carcass lean meat content, and age in the final multiple linear regression

model. Slaughtering season showed a trend towards significance and animal sex was also retained,

289 The estimate, *F*-value, and *P*-value are reported for each covariate.

Covariates		Estimated effect on PC1 scores		
Name	Classes	Estimate	<i>F</i> -value	<i>P</i> -value (F

Sex	Barrows	Ref	2.260	0.133
	Gilts	0.324	2.200	0.155
Age (days)	-	-0.026	4.514	0.034
BFT (mm)	-	0.121	23.354	< 0.001
Carcass lean meat (%)	-	-0.129	8.020	0.005
Slaughtering season	Spring	Ref		
	Summer	-0.099	2.260	0.061
	Autumn	0.404	2.200	0.001
	Winter	0.630		

296 Ref: reference class. The effect size of the other classes is expressed using the Ref class as a reference. 297 298 - indicates covariates with continuous values. 299 300 301 Table 3 shows the results of the stepwise selection process with the final multiple linear regression 302 model obtained for PC2 scores. The strongest effect was found for slaughtering season, in 303 agreement with the results reported in Figure 1. The estimate for slaughtering season confirmed that 304 pigs slaughtered in autumn have positive PC2 scores and those slaughtered in winter tend to have negative PC2 scores. IMF, carcass lean meat %, jowl and belly weights were also significant, and a 305 trend towards significance was observed for BFT. Pigs having higher contents of IMF in SM, leaner 306 307 carcasses, and heavier jowl cuts are significantly associated with positive scores for PC2, while 308 animals with heavier belly cuts are associated with negative PC2 scores. 309 310 311
Table 3. The covariates retained in the backward stepwise multiple linear regression model for PC2

312 scores obtained from the Principal Component Analysis (PCA) of backfat (BF) fatty acids (FAs).

313 The estimate, *F*-value, and *P*-value are reported for each covariate.

295

315 316	Covariates		Estimated effect on PC2 scores		
317 318	Name	Classes	Estimate <i>F</i> -value <i>P</i> -value (F)		

Slaughtering season	Spring	Ref		
	Summer	-0.339	15.005	0.001
	Autumn	0.877	45.827	<0.001
	Winter	-1.383		
IMF (%)	-	0.162	7.306	0.007
Carcass lean meat (%)	-	0.070	5.778	0.016
BFT (mm)	-	-0.031	3.443	0.064
Jowl weight (kg)	-	0.394	6.725	0.010
Belly weight (kg)	-	-0.167	4.086	0.044

Ref: reference class. The effect size of the other classes is expressed using the Ref class as a reference.

- indicates covariates with continuous values.

322 323 324

319

325

The results of the multivariate approach (PCs) were further integrated by the univariate approach 326 aimed to evaluate the effects of the categorical variables on the phenotypic variability noticed for 327 each FA or FA class. Supplementary Table S2 displays the effects of slaughtering season, age, BFT, 328 carcass lean meat %, belly weight, jowl weight, and IMF% on the individual FAs and FA categories 329 in BF. The L.S.M. of individual FAs and FA categories estimated for the slaughtering seasons are 330 331 reported in Supplementary Table S3. In accordance with the results identified by the multivariate 332 approach, slaughtering season showed to affect the majority of the individual FAs and FA classes, followed by BFT, carcass lean meat %, and jowl weight. Belly weight was associated with changes 333 334 in lauric, myristic, palmitoleic, margaric and *cis*-vaccenic acids, and age was significantly related to 335 palmitic, stearic, linoleic, α -linolenic, gadoleic acids and the classes of SFAs and PUFAs.

336 337

339

338 **3.2 Muscle FA composition**

The PCA for the muscle FA composition identified two PCs, jointly explaining 53% of the total
variance. Weights of individual FAs entering each PC are reported in Table 4 and the PCA

342	scoreplot is reported in Supplementary Figure S2. The first PC (PC1) explained 39% of the total
343	variance noticed for SM: animals located in the right side of the PCA scoreplot were characterized
344	by more oleic and myristic acids in SM, while those placed on the left side of Supplementary Figure
345	2 had SM with greater proportions of erucic, DPA, adrenic, dihomo-γ-linolenic, arachidonic,
346	docosahexaenoic (DHA), and eicosadienoic acids. The second PC (PC2), explaining 14% of the
347	total variance, was mainly determined by the opposition between pigs with greater proportions of
348	cis-vaccenic and palmitoleic acids on one hand (pigs on the upper side of the PCA scoreplot), and
349	animals displaying more stearic, palmitic, lauric, arachidic, and myristic acids in their SM tissue (on
350	the bottom side of Supplementary Figure S2).

353 Table 4. Muscle individual fatty acids (FAs) in *Semimembranosus*, identified by their shorthand
354 notation and their common nomenclature between brackets, and their Principal Component (PC)
355 loadings. In brackets, the fraction of total variance explained by each PC. Bold PC loadings indicate the lowest and highest PC loadings.

Muscle FAs (%)	PC1 (39%)	PC2 (14%)
C10:0 (capric acid)	0.140	0.023
C12:0 (lauric acid)	0.113	-0.256
C14:0 (myristic acid)	0.220	-0.210
C16:0 (palmitic acid)	0.181	-0.281
C16:1 cis-9 (palmitoleic acid)	0.171	0.387
C17:0 (margaric acid)	-0.220	-0.175
C17:1 cis-9 (heptadecenoic acid)	-0.169	0.082
C18:0 (stearic acid)	-0.071	-0.415
C18:1 cis-9 (oleic acid)	0.265	0.204
C18:1 cis-11 (cis-vaccenic acid)	0.037	0.509

C18:2 cis-9, cis-12 (linoleic acid)	-0.298	-0.113
C18:3 <i>n</i> -3 (α -linolenic acid)	-0.131	-0.139
C20:0 (arachidic acid)	0.001	-0.247
C20:1 cis-11 (gadoleic acid)	0.143	0.026
C20:2 <i>n</i> -6 (eicosadienoic acid)	-0.224	-0.112
C20:3 <i>n</i> -6 (dihomo-γ-linolenic acid)	-0.283	0.075
C22:1 (erucic acid)	-0.318	0.107
C20:4 <i>n</i> -6 (arachidonic acid)	-0.279	0.104
C22:4 <i>n</i> -6 (adrenic acid)	-0.312	0.076
C22:5 n-3 (docosapentaenoic acid-DPA)	-0.317	0.079
C22:6 <i>n</i> -3 (docosahexaenoic acid-DHA)	-0.265	0.067

When plotting sample labels of IMF FA composition for the independent variables of slaughtering seasons, animal sex, and EUROP carcass grading, no cluster was observed in the muscle FA PCA scoreplot.

PC scores of the samples were then submitted to backward stepwise selection analysis. Table 5 362 reports the final multiple regression model for PC1 scores. The independent variables of 363 slaughtering season, sex, age, EUROP carcass grading, BFT, hot carcass weight, belly weight, jowl 364 weight, and IMF% were retained. In particular, IMF% was the covariate showing the strongest 365 association with PC1 scores, as pigs with higher IMF deposited in SM were associated with positive 366 367 PC1 scores. Animals with lower percentages of lean meat (i.e. U, R, and O carcasses vs. E carcasses) were also associated with positive PC1 scores. Animals with lower hot carcass weights, 368 369 heavier jowl and belly weights, older, and with a thicker BF tend to have positive scores for the PC1. Also, winter and autumn as slaughtering seasons showed opposed effects, with autumn being 370 371 associated with negative and winter with positive PC1 scores.

372 **Table 5**. The covariates retained in the backward stepwise multiple linear regression model for PC1

373 scores obtained from the Principal Component Analysis (PCA) of *Semimembranosus* muscle (SM)

fatty acids (FAs). The estimate, *F*-value, and *P*-value are reported for each covariate.

Covariates		Estimated effect on PC1 scores		
Name	Classes	Estimate	<i>F</i> -value	<i>P</i> -value (F)
Slaughtering season	Spring	Ref		
	Summer	0.550	2.24	0.010
	Autumn	-0.267	3.34	0.018
	Winter	0.381		
Sex	Barrows	Ref	10.50	0.001
	Gilts	-0.724	10.59	0.001
Age (days)	-	0.027	4.64	0.031
EUROP carcass grading	E	Ref		
	U	1.330	2.95	0.000
	R	1.907	3.85	0.009
	0	2.464		
BFT (mm)	-	0.050	3.85	0.050
Hot carcass weight (kg)	-	-0.052	8.75	0.003
Belly weight (kg)	-	0.399	6.03	0.014
Jowl weight (kg)	-	0.663	6.25	0.012
IMF (%)	-	0.718	58.06	< 0.001

Ref: reference class. The effect size of the other classes is expressed using the Ref class as reference.

- indicates covariates with continuous values.

383 384

Table 6 shows the results of the backward stepwise selection process for the PC2 scores estimated

386 for the samples. Two variables entered with strong significant effects in the model: slaughtering

season, and belly weight. Pigs with heavier belly cuts and slaughtered in autumn had higher PC2
scores, while summer as slaughtering season was associated with negative scores for PC2.

389 390

394 395 396

Table 6. The covariates retained in the backward stepwise multiple linear regression model for PC2
 scores obtained from the Principal Component Analysis (PCA) of *Semimembranosus* muscle (SM)
 fatty acids (FAs). The estimate, *F*-value, and *P*-value are reported for each covariate.

Covariates		Estimated effect on PC2 scores		
Classes	Estimate	<i>F</i> -value	<i>P</i> -value (F)	
Spring	Ref			
Summer	-0.114	7 69	-0.001	
Autumn	0.625	/.08	<0.001	
Winter	0.213			
-	0.246	11.42	< 0.001	
_	Spring Summer Autumn Winter	ClassesEstimateSpringRefSummer-0.114Autumn0.625Winter0.213	ClassesEstimateF-valueSpringRefSummer-0.114Autumn0.625Winter0.213	

397 398

399 The results of the multivariate approach were further integrated with the univariate approach. Supplementary Table S4 displays the effects of slaughtering season, age, sex, EUROP carcass 400 401 grading, hot carcass weight, belly weight, jowl weight, and IMF % on the individual FAs and FA 402 categories in SM. The L.S.M. of individual FAs and FA categories estimated for the slaughtering seasons are reported in Supplementary Table S5. In accordance with the results of the multivariate 403 404 approach, slaughtering season, IMF content, sex, carcass weight and conformation (i.e. EUROP 405 carcass grading, belly weight, and jowl weight) showed to affect the majority of the individual FAs and FA classes. Age was significantly related to palmitic, margaric, heptadecenoic, stearic, oleic, 406 eicosadienoic, erucic, arachidonic, adrenic, DHA acids, and with the classes of SFAs and MUFAs. 407 To gain a more complete view of the relationships occurring between the covariates considered, the 408 effects of the slaughtering season and animals' sex were also tested on BFT, SM IMF%, and carcass 409 lean %. Gilts had significantly lower contents of IMF in SM (P = 0.003), thinner BFT (P = 0.002), 410

411	and realier carcasses ($I < 0.001$) when compared with barrows. Figs staughtered in spring had
412	thicker BFT (L.S.M. \pm S.E; 29.00 \pm 0.36 mm), and lower carcass lean % (47.10 \pm 0.20 %) compared
413	with those slaughtered in autumn (25.40 \pm 0.29 mm and 49.60 \pm 0.16 %, respectively). The animals
414	slaughtered in winter and spring had BFT and carcass lean % displaying values of L.S.M.
415	intermediate between those observed in spring and autumn (27.90 \pm 0.47 mm for BFT and 48.90 \pm
416 417	0.26 % for carcass lean % in winter; 27.30 \pm 0.37 mm for BFT and 48.50 \pm 0.21 % for carcass lean
418 419	% in summer). The slaughtering season did not affect IMF% in SM.

(R < 0.001) when compared with horrows. Bigs sloughtered in apping had

422 **4 Discussion**

111

420 421

423

424 The results obtained in the present study allowed the characterization of the environmental factors and carcass features associated with changes in BF and SM FA composition in ILW heavy pigs fed 425 426 the same diet. To the best of our knowledge, this is the first study that has used a multivariate 427 approach (PCA) to reach this objective. PCA is a dimensionality reduction technique that is used to uncover hidden structures in multidimensional data (Simmons et al., 2015), and provide key 428 insights on the relationships linking the variables. For these reasons, PCA has been used in the 429 430 present study to characterize the patterns linking the proportions of FAs in the BF and SM tissues. The characterization of the metabolic profile of a tissue produces high-dimensional data, where 431 432 variables are often interconnected in metabolic patterns and share portions of their variances. Similarly, the FA composition of a tissue is determined by a complex of metabolic processes 433 434 regulating the fluxes of *de novo* FA biosynthesis, lipolysis, and FA deposition. Previous studies 435 have used PCA or other multivariate statistics to investigate changes in the multidimensional 436 structure of FA composition in porcine tissues in relation to breed (Aboagye et al., 2020), divergent levels of boar taint compounds (Mörlein & Tholen, 2015; Liu et al., 2017), and different diets 437 438 (Bermúdez, Franco, Franco, Carballo, & Lorenzo, 2012). PCA has also been used in this work, but with a different purpose. This statistical analysis has indeed been selected to highlight possible 439 metabolic patterns linking FAs in BF and SM of ILW purebred heavy pigs. The obtained new 440

variables (PCs) have been investigated to test which factors may influence the variability of the
linearly dependent FAs included in each PC; the identification of these factors may be useful to
better understand whether some environmental factors can affect the organoleptic and nutritional
qualities of the final pork products.

The PCA for BF FAs was able to capture the negative relation linking SFAs and PUFAs, which had 445 opposite loadings in the first two PCs. The variability of the first PC for BF was determined on one 446 hand by the SFAs stearic, arachidic, and palmitic, with positive PC loadings, and on the other hand 447 448 by arachidonic, linoleic, adrenic, and DPA, having negative loadings in PC1. These latter FAs are mainly PUFAs participating in the endogenous synthesis of *n*-6 FAs. Linoleic acid is, indeed, one 449 450 of the essential FAs, and is used as a substrate for further elongation and desaturation steps. The 451 proportion of *n*-6 PUFAs in tissues is dependent on diet and complex enzymatic systems, consisting 452 of desaturases and elongases, responsible for the conversion of linoleic acid into longer chain n-6 PUFAs (Brenner, 1989; Raes, De Smet & Demeyer, 2004). Linoleic acid may undergo subsequent 453 454 desaturation and elongation steps to produce dihomo- γ -linolenic, arachidonic, and adrenic acids (Brenner, 1989; Raes, De Smet & Demeyer, 2004), which in this study were all related by negative 455 PC1 loadings. These negative weights in PC1 may thus be linked to the fact that linoleic, 456 457 arachidonic, adrenic, and DPA share a large covariance amount, as they are all linked to the 458 endogenous synthesis of *n*-6 PUFAs. Hence, PC1 possibly captured this shared variability linking 459 the amounts of these *n*-6 PUFAs in BF. Together with those FAs, DPA showed also a negative 460 loading in PC1, indicating that also the variation of this metabolite is partly determined by the same sources of variability of the *n*-6 PUFAs synthesized from linoleic acid. This result may be related to 461 the fact that DPA can be synthesized from α -linolenic acid (C18:3 *n*-3) through desaturation and 462 elongation steps controlled by the same enzymes catalyzing the elongation/desaturation steps 463 required for the transformation of linoleic acid into longer n-6 PUFAs (Brenner, 1989; Raes, De 464 465 Smet & Demeyer, 2004). In humans and several other animal species, these steps are controlled by the enzymes encoded by the genes Fatty acid desaturase 1 (FADS1), FADS2, ELOVL elongase 2 466

(ELOVL2), and ELOVL5 (Castro, Tocher & Monroig, 2016; Gol, Pena, Rothshild, Tor & Estany, 467 2018). In particular, as reported in the literature, FADS1 and FADS2 display markers associated 468 with the amounts of MUFAs and PUFAs in porcine BF tissue of crossbred pigs (Crespo-Piazuelo et 469 al., 2020) and in IMF and BF of Duroc pigs (Gol, Pena, Rothshild, Tor & Estany, 2018). 470 471 Furthermore, some studies conducted in different pig breeds indicated that arachidonic acid contents in BF and muscle were positively correlated with carcass lean mass (Gol, Pena, Rothshild, 472 Tor & Estany, 2018; Davoli et al., 2019; Zappaterra et al., 2020). In agreement with those studies, 473 474 the present research indicated that pigs with leaner carcasses tended to have negative PC1 scores for BF, and thus were characterized by higher contents of arachidonic, linoleic, adrenic, and DPA FAs. 475 The linoleic acid percentage in BF is of great importance for ham quality and covering fat stability 476 during ham processing, as a percentage of linoleic acid above 15% of total FA is associated with a 477 content of PUFAs that can increase the oxidability of ham fat (Bosi & Russo, 2004). Hence, PDO 478 ham production rules set threshold values for the linoleic acid percentage that must not exceed 15% 479 480 (Consorzio del Prosciutto di Parma, 1992; MIPAAF, 2007). Leaner carcasses may therefore have an amount of linoleic acid above the permitted amount, making those thighs unsuitable for PDO ham 481 482 production. On the other hand, individuals displaying high BFT were significantly associated with 483 positive PC1 scores. These animals had, thus, higher contents of palmitic, stearic, and arachidic 484 acids. These three FAs originate from subsequent elongation steps in the endogenous biosynthesis 485 of the SFAs: in mammals, palmitic acid may, indeed, undergo elongation steps and can be 486 transformed into stearic and arachidic acids (Miyazaki & Ntambi, 2008). The first PC for BF FAs thus captured the negative correlation linking SFAs and PUFAs, and their association with carcass 487 488 composition; higher fat depots are mainly determined by triacylglycerols, the main neutral lipids 489 used to store energy, which mainly consists of SFAs and MUFAs (De Smet, Raes & Demeyer, 490 2004). Fatter animals are therefore characterized by increased proportions of SFAs and MUFAs deposited in tissues, causing a decrease in the relative amount of PUFAs on the total FAs (De Smet, 491 492 Raes & Demeyer, 2004; Lo Fiego, Santoro, Macchioni, & De Leonibus, 2005; Matthews, 2011). On 493 the other hand, it is well known that lower amounts of stored fat are associated with lower 494 depositions of SFAs and total FAs, which in turn cause an increase in the relative amount of PUFAs (Monziols, Bonneau, Davenel, & Kouba, 2007; Matthews, 2011). As suggested in the literature, this 495 increased proportion of PUFAs stored in tissues of leaner animals is not due to a rise in PUFA 496 synthesis, but rather in a higher percentage of PUFAs on the reduced amount of total FAs 497 (Matthews, 2011). While SFAs are, indeed, quite fluctuating in tissues as they depend on the 498 nutritional state of the animal, the amount of PUFAs deposited in tissues tends to be highly 499 500 dependent on dietary n-6 and n-3 PUFAs contents. Therefore, in individuals fed the same diet, 501 PUFA content tends to remain more stable than SFAs, as UFAs play essential roles in membrane flexibility, inflammation control, eicosanoid production, plasma triacylglycerol synthesis, and gene 502 expression (reviewed in Fernandez & West, 2005). Because the pigs used in the present study were 503 504 fed the same diets, it is possible to hypothesize that the higher proportion of PUFAs characterizing some of the studied pigs might be due to their lower adiposity and thus lower amount of total FAs 505 506 stored in their BF.

The variability noticed for BF PC2 scores was strongly associated with the slaughtering season, 507 with pigs slaughtered in winter being characterized by greater proportions of capric, lauric, myristic, 508 509 palmitic, and palmitoleic acids, and those slaughtered in autumn showing higher contents of 510 eicosadienoic, gadoleic, and erucic acids. BF is one of the first fat depots to develop in pigs, while 511 IMF develops later, particularly in the muscles of the hind leg (Kouba & Bonneau, 2009). In heavy 512 pigs, BFT and FA composition are mainly determined by the diet and environmental conditions applied during the finishing period, which lasts from 110-120 kg live weight to slaughtering at 513 514 about 160 kg. The finishing period takes about three months in Italian heavy pigs and has the main 515 objective to improve meat quality. FA composition of IMF and subcutaneous fat depots are thought to take a long time to vary, so that different fattening period lengths did not affect BF and IMF FA 516 517 composition in extensively reared Iberian pigs (Ayuso, González, Peña, Hernández-García & 518 Izquierdo, 2020). Given that changes in the FA composition of tissues occur slowly, it is reasonable

519 to assume that the association found in the present study between PC2 scores and slaughtering season may reflect the consequence of the whole finishing period on the BF FA composition found 520 at slaughter. The studied animals were fed the same diets and were reared in the same genetic 521 station located in Po Valley (Italy), a geographical region characterized by a hot and highly humid 522 weather during the late spring and summer. Prolonged periods with high temperature humidity 523 524 indices cause heat stress in pigs, which lack functional sweat glands and poorly dissipate heat (White et al., 2008). Increasing temperatures and humidity have been indicated as factors affecting 525 526 the performance of growing-finishing pigs as heat stress was proved to affect growth, feed intake, and caloric and feed efficiency (Renaudeau, Gourdine, & St-Pierre, 2011; Kellner, Baumgard, 527 Prusa, Gabler, & Patience, 2016). In the present study, pigs slaughtered in autumn (and particularly 528 in early autumn) spent their finishing period in the hottest months. These environmental conditions 529 530 may have led pigs slaughtered in early autumn to have thinner BFT when compared to those slaughtered in winter and spring. In those animals, a reduction in BFT and therefore in SFAs may 531 532 explain why their BF was characterized by higher proportions of eicosadienoic acid, an n-6 PUFA. On the other hand, pigs slaughtered in winter (and in particular in late winter) may have not 533 534 experienced a hot and muggy environment during the finishing period, which may have caused higher BFT and thus greater proportions of SFAs being stored in subcutaneous fat. Therefore, 535 536 taking into account these suggestions, it might not be so surprising that the two most different 537 seasons were autumn and winter. Stearic acid, instead, did not follow the same pattern evidenced in 538 PC2 for the other SFAs. This FA entered with a high weight in PC1, and its content in BF tissue was higher in pigs slaughtered in summer and autumn. Several studies suggest the role of stearic 539 540 acid and its monounsaturated counterpart (i.e. oleic acid) in the regulation of cellular membrane 541 fluidity in animals living at different environmental temperatures (Roy, Das & Ghosh, 1997; Malekar et al., 2018). Changes in oleic and stearic acid contents are particularly visible in 542 poikilothermic animals, such as fish (Roy, Das & Ghosh, 1997; Malekar et al., 2018), with 543 544 increased stearic acid incorporation in membranes as environmental temperatures rise (Malekar et

al., 2018). Accordingly, the enzyme catalyzing the unsaturation of stearic to oleic acid (i.e. Stearoyl 545 Co-A desaturase, SCD) has been suggested as an important regulator of cellular endoplasmic 546 reticulum membrane fluidity in mammals and fat globule fluidity in cow milk (Timmen & Patton, 547 1988). Stearic acid has a melting point higher than the body temperature of animal species (69.6°C), 548 and its increased incorporation permits the maintenance of cellular membrane characteristics also 549 550 during high-temperature seasons. The higher content of stearic acid in the BF of pigs slaughtered in summer and autumn may therefore reflect the attempt of the adipocyte membranes to maintain 551 552 membrane integrity by incorporating higher contents of this SFA, and consequently increasing their resistance to high-temperature environments. 553

Similar to what was observed for BF, the first PC for SM FAs was able to capture the negative 554 relation linking SFAs and MUFAs with PUFAs. Unlike BF, however, the results of the multiple 555 regression models for the PCs of SM indicated that the effect of slaughtering season (and thus of the 556 finishing period season) on muscle FA composition was mediated by other factors, which strongly 557 influenced the muscle FA patterns. Together with slaughtering season, SM IMF% and animals' sex 558 were highly significant for PC1 variability. Pigs displaying higher IMF % had indeed increased 559 contents of oleic and myristic acids, and lower amounts of erucic, DPA, adrenic, dihomo-y-560 561 linolenic, arachidonic, DHA, and eicosadienoic acids. This observation is in agreement with the positive relation linking IMF deposition, and the amounts of SFAs and MUFAs found in muscle fat 562 563 depots (Bosch, Tor, Reixach, & Estany, 2012). In particular, oleic acid has been found to share a 564 consistent proportion of genetic variance with IMF deposition in different muscles of Duroc pigs (Ros-Freixedes, Reixach, Bosch, Tor, & Estany, 2014), and a moderate positive genetic correlation 565 with SM IMF% in ILW pigs (Zappaterra et al., 2020). An association was also identified between 566 pigs' age and muscle PC1 scores, with older animals having higher contents of oleic and myristic 567 acids in SM. This is consistent with the fact that IMF increases with age and IMF saturation level is 568 569 enhanced by greater IMF deposition (Bosch, Tor, Reixach, & Estany, 2012). Pigs slaughtered at 570 later ages are therefore expected to have more IMF, SFAs and MUFAs in muscles, as SFA and

MUFA amounts increase with lipid deposition in porcine muscles (Bosch, Tor, Reixach, & Estany,
2012; Ros-Freixedes, Reixach, Bosch, Tor, & Estany, 2014).

The variability noticed in SM PC2 scores was mainly determined by the antagonism shown by *cis*-573 vaccenic and palmitoleic MUFAs against major SFAs (i.e. lauric, myristic, palmitic, stearic, and 574 arachidic). Pigs slaughtered in summer showed higher proportions of SFAs in SM IMF. This 575 576 positive association between the summer as slaughtering season and SFAs may originate from the attempt of the muscle-interspersed adipocytes to maintain membrane integrity by incorporating 577 578 higher contents of SFAs, which increase membrane resistance to a high-temperature environment. However, unlike BF, slaughter season did not determine changes in IMF%, suggesting that different 579 580 environmental conditions may affect FA metabolism and deposition, but they do not change the amount of fat deposited in muscle. Based on these results, further studies proving the effects of 581 582 different environmental temperatures on lipid and energy metabolism in heavy pigs may be of 583 interest.

584 585

587

586 **Conclusions**

The multivariate approach applied to the FA composition of porcine BF and SM allowed the 588 identification of patterns in the FA deposition shaping the variability in the FA composition of the 589 two studied tissues. An inverse relationship of the deposition of SFAs with PUFAs resulted to be 590 among the major patterns characterizing both BF and SM. The overall variability in the FAs 591 592 deposited in subcutaneous fat and muscle showed to be strongly related to the slaughtering season and carcass features. In agreement with the literature, leaner carcasses were associated with higher 593 594 proportions of PUFAs, confirming that carcasses with high lean mass deposition may have FA composition unsuitable for the processing into PDO dry-cured hams. Remarkably, slaughtering 595 596 seasons emerged as relevant factors shaping both BF and muscle FA composition. More efforts should be applied to understand the effect that high environmental temperatures may have on FA 597 metabolism and deposition in finishing heavy pigs. 598

5	o	0	
J	7	2	

600 Acknowledgements

602 The authors thank Dr. Maurizio Gallo from ANAS for providing the muscle samples and the data

- 603 concerning the studied animals and Dr. Luca Buttazzoni for the invaluable help in the drafting
- 604 process. The authors also acknowledge Andrea Serra and Marcello Mele from Pisa University for
- assessing the backfat fatty acid composition of the samples. Last, we would like to pay our gratitude
- and our respects to Prof. Vincenzo Russo. After helping to initiate this study, Prof. Vincenzo Russo
- 607 recently passed away.
- 608 Funding: This work was supported by PRIN 2015 national project (Grant N. 201549TZXB001) and
- 609 by AGER Hepiget project (Grant N. 2011- 0279).
- 610 611
- 612 Declarations of interest: Roberta Davoli declares to be a member of Meat Science journal Editorial
- 613 board. The other co-authors declare that they have no competing interests.
- 614
- 615
- 616 Author statement

Martina Zappaterra: Conceptualization, Methodology, Formal analysis, Investigation, Data 617 curation, Visualization, Writing - Original draft, Writing - Review and Editing. Gennaro Catillo: 618 Methodology, Formal analysis, Writing - Original draft, Writing - Review and Editing. Domenico 619 Pietro Lo Fiego: Data curation, Writing - Original draft, Writing - Review and Editing, 620 Supervision. Anna Maria Belmonte: Formal analysis, Investigation. Barbara Padalino: Writing -621 Original draft, Writing – Review and Editing, Supervision. Roberta Davoli: Conceptualization, 622 Investigation, Writing - Original draft, Writing – Review and Editing, Supervision, Project 623 administration, Funding acquisition. 624 625

- 625 626
- 627 Supplementary data
- 628 Supplementary material
- 629
- 630
- 631 **References**

632	Aboagye, G., Zappaterra, M., Pasini, F., Dall'Olio, S., Davoli, R., Nanni Costa, L. (2020). Fatty acid
633	composition of the intramuscular fat in the longissimus thoracis muscle of Apulo-Calabrese and
634	crossbreed pigs. Livestock Science, 232, 103878. https://doi.org/10.1016/j.livsci.2019.103878
635	Association of Official Analytical Chemists (AOAC). (2005). Official methods of analysis, method
636	920.39, fat (crude) or ether extract in animal feed, 18th edition. AOAC, Gaithersburg, MD, USA.
637	Ayuso, D., González, A., Peña, F., Hernández-García, F. I., & Izquierdo, M. (2020). Effect of
638	Fattening Period Length on Intramuscular and Subcutaneous Fatty Acid Profiles in Iberian Pigs
639	Finished in the Montanera Sustainable System. Sustainability, 12, Article 7937.
640	https://doi.org/10.3390/su12197937
641	Bermúdez, R., Franco, I., Franco, D., Carballo, J., Lorenzo, J. M. (2012). Influence of inclusion of
642	chestnut in the finishing diet on fatty acid profile of dry-cured ham from Celta pig breed. Meat
643	Science, 92, 394-399. https://doi.org/10.1016/j.meatsci.2012.05.001
644	Bosch, L., Tor, M., Reixach, J., & Estany, J. (2012). Age-related changes in intramuscular and
645	subcutaneous fat content and fatty acid composition in growing pigs using longitudinal data.
646	Meat Science, 91, 358-363. https://doi.org/10.1016/j.meatsci.2012.02.019
647 648	Bosi, P., & Russo, V. (2004). The production of the heavy pig for high quality processed products.
649	Italian Journal of Animal Science, 4, 309-321. https://doi.org/10.4081/ijas.2004.309
650	Brenner, R.R. (1989). Factors influencing fatty acid chain elongation and desaturation. In:
651	Vergroesen, A.J., Crawford, M. (Eds.), The Role of Fats in Human Nutrition. Academic Press,
652	California, USA, pp. 45–80.
653	Čandek-Potokar, M., Monin, G., & Zlender, B. (2002). Pork quality, processing, and sensory
654	characteristics of dry-cured hams as influenced by Duroc crossing and sex. Journal of Animal
655	Science, 80, 988–996. https://doi.org/10.2527/2002.804988x
656	Carrapiso, A. I., Tejeda, J. F., Noguera, J. L., Ibáñez-Escriche, N., & González, E. (2020). Effect of
657	the genetic line and oleic acid-enriched mixed diets on the subcutaneous fatty acid composition

- and sensory characteristics of dry-cured shoulders from Iberian pig. *Meat Science*, 159, 107933.
- 659 https://doi.org/10.1016/j.meatsci.2019.107933
- 660 Castro, L. F. C., Tocher, D. R., & Monroig, O. (2016). Long-chain polyunsaturated fatty acid
- biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. *Progress*
- 662 *in Lipid Research*, 62, 25-40. https://doi.org/10.1016/j.plipres.2016.01.001
- 663 Catillo, G., Zappaterra, M., Lo Fiego, D.P., Steri, R., & Davoli, R. (2021). Relationships between
- 664 EUROP carcass grading and backfat fatty acid composition in Italian Large White heavy pigs.
- 665 *Meat Science*, 171, 108291. https://doi.org/10.1016/j.meatsci.2020.108291
- 666 Catillo, G., Zappaterra, M., Zambonelli, P., Buttazzoni, L., Steri, R., Minelli, G., & Davoli, R.
- 667 (2020). Genome-wide association study identifies quantitative trait loci regions involved in
- muscle acidic profile in Large White heavy pigs. *Animal*, *14*, 1342-1350.
- 669 https://doi.org/10.1017/S1751731120000099
- 670 Consorzio del Prosciutto di Parma, 1992. Prosciutto di Parma Denominazione di Origine Protetta -
- 671 Disciplinare Generale e Dossier di cui all'articolo 4 del Regolamento (CEE) n°2081/92 del
- 672 *Consiglio del 14 luglio 1992*, Consorzio del Prosciutto di Parma (Ed.), Parma, Italy.
- 673 Crespo-Piazuelo, D., Criado-Mesas, L., Revilla, M., Castelló, A., Noguera, J. L., Fernández, A. I.,
- Ballester, M., & Folch, J. M. (2020). Identification of strong candidate genes for backfat and
- 675 intramuscular fatty acid composition in three crosses based on the Iberian pig. Scientific Reports,
- 676 *10*, Article 13962. https://doi.org/10.1038/s41598-020-70894-2
- Dalle Zotte, A., Brugiapaglia, A., & Cullere, M. (2017). What is meat in Italy? *Animal Frontiers*, 7,
 63–70. https://doi.org/10.2527/af.2017.0448
- Davoli, R., Catillo, G., Serra, A., Zappaterra, M., Zambonelli, P., Meo Zilio, D., Steri, R., Mele, M.,
- 680 Buttazzoni, L., & Russo, V. (2019). Genetic parameters of backfat fatty acids and carcass traits
- 681 in Large White pigs. *Animal*, *13*(5), 924-932. https://doi.org/10.1017/S1751731118002082

- De Smet, S., Raes, K., & Demeyer, D. (2004). Meat fatty acid composition as affected by fatness
- and genetic factors: A review. *Animal Research*, 53, 81-98.
- 684 https://doi.org/10.1051/animres:2004003
- European Commission (2001). Commission Decision of 8 June 2001 authorising methods for
- grading pig carcasses in Italy. *Official Journal of the European Communities*, 163, 31-33.
- 687 Available on https://eur-lex.europa.eu/legal-
- 688 content/EN/TXT/PDF/?uri=CELEX:32001D0468&from=it
- 689 Fernandez, M. L., West, K. L. (2005). Mechanisms by which dietary fatty acids modulate plasma
- 690 lipids. *The Journal of Nutrition*, *135*, 2075-2078. https://doi.org/10.1093/jn/135.9.2075
- Ficarra, A., Lo Fiego, D. P., Minelli, G., & Antonelli, A. (2010). Ultra fast analysis of subcutaneous
 pork fat. *Food Chemistry*, *121*, 809-814. https://doi.org/10.1016/j.foodchem.2010.01.003
- Folch, J. M., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and
- purification of total lipids from animal tissues. *Journal of Biological Chemistry*, 226, 497-509.
 https://doi.org/10.1016/S0021-9258(18)64849-5
- Gol, S., Pena, R. N., Rothschild, M. F., Tor, M., & Estany, J. (2018). A polymorphism in the fatty
- 697 acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. *Scientific*
- 698 Reports, 8, 14336. https://doi.org/10.1038/s41598-018-32710-w
- 699 Gou, P., Guerrero, L., & Arnau, J. (1995). Sex and crossbreed effects on the characteristics of dry-
- 700 cured ham. *Meat Science*, 40, 21-31. https://doi.org/10.1016/0309-1740(94)00021-X
- Hubert, M., Rousseeuw, P.J., & Vanden Branden, K. (2005). ROBPCA: A New Approach to
- Robust Principal Component Analysis. *Technometrics*, 47(1), 64-79.
- 703 https://doi.org/10.1198/004017004000000563

- ISMEA (2019). Settore suinicolo. Scheda di settore. http://www.ismeamercati.it/carni/carne-suinasalumi
- Juárez, M., Dugan, M. E. R., Aldai, N., Aalhus, J. L., Patience, J. F., Zijlstra, R. T., & Beaulieu, A.
- D. (2011). Increasing omega-3 levels through dietary co-extruded flaxseed supplementation

- negatively affects pork palatability. *Food Chemistry*, *126*, 1716-1723.
- 710 https://doi.org/10.1016/j.foodchem.2010.12.065
- 711 Kellner, T. A., Baumgard, L. H., Prusa, K. J., Gabler, N. K., & Patience, J. F. (2016). Does heat
- stress alter the pig's response to dietary fat? *Journal of Animal Science*, *94*, 4688-4703.
- 713 https://doi.org/10.2527/jas.2016-0756
- Kouba, M., & Bonneau, M. (2009). Compared development of intermuscular and subcutaneous fat
- in carcass and primal cuts of growing pigs from 30 to 140kg body weight. *Meat Science*, 81,
- 716 270-274. https://doi.org/10.1016/j.meatsci.2008.08.001
- Leskanich, C. O., Matthews, K. R., Warkup, C. C., Noble, R. C., & Hazzledine, M. (1997). The
- effect of dietary oil containing (n-3) fatty acids on the fatty acid, physicochemical, and
- 719 organoleptic characteristics of pig meat and fat. *Journal of Animal Science*, 75, 673–683.
- 720 https://doi.org/10.2527/1997.753673x
- Liu, X., Trautmann, J., Wigger, R., Zhou, G., Mörlein, D. (2017). Fatty acid composition and its
- association with chemical and sensory analysis of boar taint. *Food Chemistry*, 231, 301-308.
- 723 https://doi.org/10.1016/j.foodchem.2017.03.112
- Lo Fiego, D. P., Macchioni, P., Minelli G., & Santoro, P. (2010). Lipid composition of covering
- and intramuscular fat in pigs at different slaughtering age. *Italian Journal of Animal Science*, 9,
- 726 200-205. https://doi.org/10.4081/ijas.2010.e39
- Lo Fiego, D. P., Santoro, P., Macchioni, P., & De Leonibus, E. (2005). Influence of genetic type,
- 128 live weight at slaughtering and carcass fatness on fatty acid composition of subcutaneous adipose
- tissue of raw ham in the heavy pig. *Meat Science* 69, 107-114.
- 730 https://doi.org/10.1016/j.meatsci.2004.06.010

- 731 López, M. O., de la Hoz, L., Cambero, M. I., Gallardo, E., Reglero, G., Ordóñez, J. A. (1992).
- 733 Volatile compounds of dry hams from Iberian pigs. *Meat Science*, *31*, 267-277.
- 734 https://doi.org/10.1016/0309-1740(92)90057-B

735 736	Malekar, V. C., Morton, J. D., Hider, R. N., Cruickshank, R. H., Hodge, S., & Metcalf, V. J. (2018).
737	Effect of elevated temperature on membrane lipid saturation in Antarctic notothenioid fish.
738 739	PeerJ, 6, Article e4765. https://doi.org/10.7717/peerj.4765
740 741	Matthews, K. R. (2011). Saturated fat reduction in butchered meat, In: Reducing saturated fats in
742	food, (Ed.) G. Talbot, Woodhead Publishing Limited, Cambridge, pp. 195-209.
743	MIPAAF (2007). Disciplinare di produzione della denominazione d'origine protetta -Prosciutto di
744	San Danielel. Gazzetta Ufficiale della Repubblica Italiana, supplemento ordinario alla Gazzetta
745	Ufficiale N. 77 del 2 aprile 2007. Istituto Poligrafico e Zecca dello Stato, Roma.
746	Miyazaki, M., Ntambi, J. M. (2008). CHAPTER 7 - Fatty acid desaturation and chain elongation in
747	mammals, In: Biochemistry of Lipids, Lipoproteins and Membranes. Editor(s): Dennis E. Vance,
748	Jean E. Vance, Fifth Edition, Elsevier, 191-211.
749	Monziols, M., Bonneau, M., Davenel, A., & Kouba, M. (2007). Comparison of the lipid content and
750	fatty acid composition of intermuscular and subcutaneous adipose tissues in pig carcasses. Meat
751	Science, 76, 54-60. https://doi.org/10.1016/j.meatsci.2006.10.013
752	Mörlein, D., & Tholen, E. (2015). Fatty acid composition of subcutaneous adipose tissue from
753	entire male pigs with extremely divergent levels of boar taint compounds — An exploratory
754	study. Meat Science, 99, 1-7. https://doi.org/10.1016/j.meatsci.2014.08.002
755	Morgan, C. A., Noble, R. C., Cocchi, M. & McCartney, R. (1992). Manipulation of the fatty acid
756	composition of pig meat lipids by dietary means. Journal of the Science of Food and Agriculture,
757	58, 357-368. https://doi.org/10.1002/jsfa.2740580310
758	OECD (2016). "Meat", in OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing, Paris,
759	https://doi.org/10.1787/agr_outlook-2016-10-en.
760	Parolari, G., Rivaldi, R., Leonelli, C., Bellatti, M., & Bovis, N. (1988). Colore e consistenza del
761	prosciutto crudo in rapporto alla material prima e alla tecnica di stagionatura. Industria
762	Conserve, 63, 45-49.

763	Pinna, A., Simoncini, N., Toscani, T., Virgili, R. (2012). Volatile organic compounds of Parma dry-
764	cured ham as markers of ageing time and aged ham aroma. Italian Journal of Food Science:
765	<i>IJFS</i> , <i>24</i> , 321-331.
766	R Core Team (2020). R: A language and environment for statistical computing. R Foundation for
767	Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
768	Renaudeau, D., Gourdine, J. L., & St-Pierre, N. R. (2011). A meta-analysis of the effects of high
769	ambient temperature on growth performance of growing-finishing pigs. Journal of Animal
770	Science, 89, 2220–2230. https://doi.org/10.2527/jas.2010-3329
771	Roy, R., Das, A. B., Ghosh, D. (1997). Regulation of membrane lipid bilayer structure during
772	seasonal variation: a study on the brain membranes of Clarias batrachus. Biochimica et
773	Biophysica Acta (BBA) - Biomembranes, 1323, 65-74. https://doi.org/10.1016/S0005-
774	2736(96)00176-9
775	Ros-Freixedes, R., Reixach, J., Bosch, L., Tor, M., & Estany, J. (2014). Genetic correlations of
776	intramuscular fat content and fatty acid composition among muscles and with subcutaneous fat
777	in Duroc pigs. Journal of Animal Science, 92, 5417-5425. https://doi.org/10.2527/jas.2014-8202
778	Ruiz Carrascal, J., Ventanas, J., Cava, R., Andres, A. I., & Garcia, C. (2000). Texture and
779	appearance of dry cured ham as affected by fat content and fatty acid composition. Food
780	Research International, 33, 91-95. https://doi.org/10.1016/S0963-9969(99)00153-2
781	Sellier, P., Maignel, L., & Bidanel, J. (2010). Genetic parameters for tissue and fatty acid
782	composition of backfat, perirenal fat and longissimus muscle in Large White and Landrace pigs.
783	Animal, 4, 497-504. https://doi.org/10.1017/S1751731109991261
784	Serra, A., Buccioni, A., Rodriguez-Estrada, M. T., Conte, G., Cappucci, A., & Mele, M. (2014).
785	Fatty acid composition, oxidation status and volatile organic compounds in -Colonnata lard
786	from Large White or Cinta Senese pigs as affected by curing time. Meat Science, 97, 504–512.
787	https://doi.org/10.1016/j.meatsci.2014.03.002

- Simmons, S., Peng, J., Bienkowska, J., Berger, B. (2015). Discovering what dimensionality
- reduction really tells us about RNA-Seq data. *Journal of Computational Biology*, 22, 715-28.
 https://doi.org/10.1089/cmb.2015.0085
- 791 Suzuki, K., Ishida, M., Kadowaki, H., Shibata, T., Uchida, H., & Nishida, A. (2006). Genetic
- correlations among fatty acid compositions in different sites of fat tissues, meat production, and
- meat quality traits in Duroc pigs. *Journal of Animal Science*, 84, 2026–2034.
- 794 https://doi.org/10.2527/jas.2005-660
- Thévenot, E. A., Roux, A., Xu, Y., Ezan, E., & Junot, C. (2015). Analysis of the human adult
- ⁷⁹⁶ urinary metabolome variations with age, body mass index and gender by implementing a
- comprehensive workflow for univariate and OPLS statistical analyses. *Journal of Proteome*
- 798 *Research*, *14*, 3322-3335. https://doi.org/10.1021/acs.jproteome.5b00354
- Tibau, J., González, J., Soler, J., Gispert, M., Lizardo, R., & Mourot, J. (2002). Influence du poids a
- 800 l'abattage du porc entre 25 et 140 kg de poids vif sur la composition chimique de la carcasse:
- 801 effets du genotype et du sexe. *Journées de la Recherche Porcine en France*, *34*, 121-127.
- 802 http://journees-recherche-porcine.com/texte/2002/02txtAlim/a0210.pdf
- Timmen, H., & Patton, S. (1988). Milk fat globules: Fatty acid composition, size and in vivo
- regulation of fat liquidity. *Lipids*, 23, 685-689. https://doi.org/10.1007/BF02535669
- 805 Virgili, R., & Schivazappa, C. (2002). Muscle traits for long matured dried meats. *Meat Science*, 62,
 806 331–343. https://doi.org/10.1016/S0309-1740(02)00118-3
- 807 Ventanas, S., Ruiz, J., García, C., & Ventanas, J. (2007). Preference and juiciness of Iberian dry-
- 808 cured loin as affected by intramuscular fat content, crossbreeding and rearing system. *Meat*
- 809 *Science*, 77, 324-330. https://doi.org/10.1016/j.meatsci.2007.04.001.
- 810 White, H. M., Richert, B. T., Schinckel, A. P., Burgess, J. R., Donkin, S. S., & Latour, M. A.
- 811 (2008). Effects of temperature stress on growth performance and bacon quality in grow-finish
- pigs housed at two densities. *Journal of Animal Science*, 86, 1789–1798.
- 813 https://doi.org/10.2527/jas.2007-0801

- 814 Wood, J.D., Richardson, R.I., Nute, G.R., Fisher, A.V., Campo, M.M., Kasapidou, E., Sheard, P.R.,
- & Enser, M. (2003). Effects of fatty acids on meat quality: a review. *Meat Science*, 66, 21-32.

816 https://doi.org/10.1016/S0309-1740(03)00022-6

- 817 Raes, K., De Smet, S., & Demeyer, D. (2004). Effect of dietary fatty acids on incorporation of long
- 818 chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a
- 819 review. Animal Feed Science and Technology, 113, 199–221.
- 820 https://doi.org/10.1016/j.anifeedsci.2003.09.001
- Zappaterra, M., Catillo, G., Belmonte, A. M., Lo Fiego, D. P., Zambonelli, P., Steri, R., Buttazzoni,
- L., & Davoli, R. (2020). Genetic parameters of muscle fatty acid profile in a purebred Large
- 823 White heavy pig population. *Meat Science*, *163*, Article 108057.
- 824 https://doi.org/10.1016/j.meatsci.2020.108057
- 825 Zappaterra, M., Ros-Freixedes, R., Estany, J., & Davoli, R. (2018). Association study highlights the
- influence of ELOVL fatty acid elongase 6 gene region on backfat fatty acid composition in
- Large White pig breed. *Animal*, *12*, 2443-2452. https://doi.org/10.1017/S1751731118000484
- 828

829 Highlights

- 830 831
- Various intrinsic and extrinsic factors affect muscle and backfat fatty acids.
- The multivariate structure of pig muscle and backfat fatty acids was investigated.
- The antagonism of saturated vs. *n*-6 fatty acids was the main relation identified.
- The dataset structure was associated with slaughtering season and carcass traits.
- Pigs had more vaccenic and palmitoleic acids in muscle when slaughtered in autumn.