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Abstract 19 

 20 

This study aimed to describe the multivariate structure of Semimembranosus muscle and backfat 21 

fatty acid (FA) composition in 798 Italian Large White heavy pigs and to investigate the effects of 22 

environmental factors and carcass characteristics on FA variations. The total FA variability in 23 

muscle and backfat was characterized by a negative correlation between saturated and 24 

polyunsaturated FAs, which strongly depended on the carcass adiposity. Slaughtering season was 25 

also relevant, with pigs slaughtered in autumn having more n-6 FAs and eicosadienoic acid in 26 

backfat, while pigs slaughtered in winter displayed more saturated FAs. 27 
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Regarding Semimembranosus muscle, pigs with heavier belly cuts and slaughtered in autumn had 28 

higher proportions of cis-vaccenic and palmitoleic acids, while those slaughtered in summer had 29 

more saturated FAs. Slaughtering season emerged as a relevant factor shaping both backfat and 30 

muscle FA composition, indicating that more studies and attention should be paid to environmental 31 

factors, which may have effects on FA metabolism and deposition in finishing pigs. 32 

 33 

 34 

Keywords: fatty acid composition; subcutaneous fat quality; Semimembranosus muscle; swine; 35 

Principal Component Analysis. 36 

 37 

 38 

1 Introduction 39 

 40 

Global meat demand is expected to be 16% higher in 2025 over the 2013-2015 period, with poultry 41 

and pork production and demand leading the trend in developing countries (OECD, 2016). The 42 

demand for both fresh and processed meat products is expected to increase. Italy is a top producer 43 

of processed meat products, particularly of Protected Designation of Origin (PDO) products, 44 

contributing to about one-third of the European heritage meat product (Dalle Zotte, Brugiapaglia, & 45 

Cullere, 2017). Parma and San Daniele PDO hams accounted for more than half of the total 46 

turnover generated by the Italian PDO pork products in Italy in 2017 (ISMEA, 2019). These high- 47 

quality dry-cured hams are obtained from heavy pig hind legs, just salted, and ripened for a period 48 

that is generally not shorter than 13 months. Most of the Italian heavy pig production relies on 49 

animals slaughtered at a minimum age of 9 months and an average live weight of 160-170 kg. 50 

These pigs come from a specific selection scheme by the national herdbook, or from selection 51 

schemes with comparable selection goals (Consorzio del Prosciutto di Parma, 1992; Lo Fiego, 52 

Santoro, Macchioni, & De Leonibus, 2005; MIPAAF, 2007; Lo Fiego, Macchioni, Minelli, & 53 

Santoro, 2010). 54 

The amount and quality of covering adipose tissue and intramuscular fat (IMF) are relevant for pigs 55 

used to produce seasoned meat products. The amount of subcutaneous, as well as IMF, strongly 56 



affects the technological yield of green hams limiting excessive seasoning losses (Bosi & Russo, 57 

2004). Indeed, adipose tissue represents a barrier to water diffusion and salt penetration. Because of 58 

the inverse relationship of fat thickness with seasoning losses and salt content, leaner hams are 59 

expected to have a higher salt content (Čandek-Potokar, Monin, & Zlender, 2002), which is 60 

generally deemed negative for a human healthy diet. Furthermore, it has been reported that a 61 

suitable IMF content has a beneficial effect on juiciness (Ventanas, Ruiz, García, & Ventanas, 62 

2007) and texture of dry-cured hams (Ruiz Carrascal et al., 2000). On the contrary, because of its 63 

influence on water loss and salt penetration dynamics, a high level of fat infiltration in the muscles 64 

was found to be associated with excessive softness and pastiness (Parolari, Rivaldi, Leonelli, 65 

Bellatti, & Bovis, 1988; Gou, Guerrero, & Arnau, 1995). Pigs with greater fat deposition tend to 66 

have a higher proportion of saturated fatty acids (SFAs; Tibau et al., 2002), which has positive 67 

effects on fat firmness and oxidative stability during the long maturation process of green hams 68 

(Virgili & Schivazappa, 2002; Bosi & Russo, 2004). A lower fat level in hams is associated with 69 

more polyunsaturated fatty acids (PUFAs; Bosi & Russo, 2004), mainly confined to phospholipids. 70 

Among PUFAs, n-3 are preferred by consumers for their positive effects on human health. 71 

However, PUFAs are also more prone to incur in lipolytic and oxidative processes causing 72 

rancidity, abnormal flavors, fat softness, and altered organoleptic properties of dry-cured hams 73 

(Wood et al., 2003; Juárez et al., 2011). On the other hand, meat fat content is important for the 74 

technological and sensory quality of dry-cured hams, because lipolysis and subsequent fat oxidation 75 

cause the development of volatile organic compounds determining the ham aroma (López et al., 76 

1992; Pinna, Simoncini, Toscani, & Virgili, 2012). Different environmental, physiological, and 77 

molecular factors affect fat deposition and composition, contributing to the variability in the 78 

technological and sensory features of dry-cured hams and other meat products. For that reason, 79 

factors affecting fatty acid (FA) composition of different tissues have been under investigation for 80 

many years. FA composition showed in general high-to-moderate heritability estimates in pigs 81 

slaughtered at about 100 kg live weight, which were intended for fresh meat products (Suzuki et al., 82 



2006; Sellier, Maignel, & Bidanel, 2010), and in Duroc pigs slaughtered at about 125 kg live weight 83 

(Ros-Freixedes, Reixach, Bosch, Tor, & Estany, 2014). Recent studies carried out on Italian Large 84 

White (ILW) heavy pigs (slaughtered at about 155 kg live weight) found that the FA composition of 85 

fat stored in muscle and backfat (BF) are the result of moderately heritable traits (Davoli et al., 86 

2019; Zappaterra et al., 2020) and associated with genetic markers (Zappaterra, Ros-Freixedes, 87 

Estany & Davoli, 2018; Catillo et al., 2020). Diet has also a major role in the variability noticed in 88 

pork FA composition, as proved by the considerable literature produced over the years (Morgan, 89 

Noble, Cocchi, & McCartney, 1992; Leskanich, Matthews, Warkup, Noble, & Hazzledine, 1997; 90 

Carrapiso, Tejeda, Noguera, Ibáñez-Escriche, & González, 2020). However, except for the studies 91 

concerning the effects of genetics and diet on the FA metabolism and deposition, very few 92 

researchers have noted the role other factors play in determining FA composition in heavy pigs 93 

(Catillo, Zappaterra, Lo Fiego, Steri, & Davoli, 2021). 94 

The purpose of this research was to describe and investigate the possible effects of environmental 95 

factors and carcass characteristics on the FA composition of Semimembranosus muscle (SM) and 96 

BF tissues in a population of ILW heavy pigs selected for the production of dry-cured hams. A 97 

multivariate approach was used to identify possible metabolic patterns explaining concentrations of 98 

individual FAs in different tissues and relate these patterns with environmental factors and carcass 99 

characteristics. 100 

 101 

 102 

2. Material and methods 103 

 104 

2.1 Animals and tissue samplings 105 

 106 

A sample of 798 purebred ILW pigs was used in the present study. These samples were included in 107 

a previous work (Davoli et al., 2019). Briefly, the experimental pigs came from the sib-testing 108 

station of the Italian Pig Breeder National Association (Associazione Nazionale Allevatori Suini, 109 

ANAS, http://www.anas.it). Their sib-testing program is based on the performances of triplets of 110 

full sibs (two gilts and one barrow) reared in the same environmental conditions in a unique testing 111 



station. The experimental population came from 323 litters by 87 boars and 371 sows. Each group 112 

of siblings entered the sib-testing station located near Reggio Emilia (Italy) at the age of 30-45 days 113 

and the testing period lasted a maximum of 145 days, with an average final live weight of about 155 114 

kg. During the testing period, siblings were allotted in a natural-ventilated facility and fed the same 115 

diets. The finishing diet (Supplementary Table S1) was fed from about 90-100 kg live weight until 116 

slaughter weight was reached at a quasi ad libitum feeding level (i.e. 60% of the pigs were able to 117 

ingest the whole ration). Pigs were slaughtered on 26 different dates between 2011 and 2012 at the 118 

same commercial abattoir. Each litter was slaughtered on at least two different dates. Handling and 119 

slaughtering of the animals used in this study were performed in compliance with European rules on 120 

the protection of animals during transport and at slaughtering (Council Regulation (EC) No. 1/2005 121 

and Council Regulation (EC) No. 1099/2009). Sampling occurred with ANAS permission. 122 

BF and SM tissues were sampled on the trimming line from the carcass left sides. BF samples were 123 

collected approximately between the fifth and the sixth lumbar vertebra, close to the point where the 124 

hind leg is separated from the rest of the carcass, at the level of BF maximum thickness. BF and SM 125 

samples were wrapped in aluminum foil, immediately put in vacuum-sealed bags, frozen in liquid 126 

nitrogen, and kept at -80°C for further use. 127 

 128 

 129 

2.2 Phenotyping 130 

 131 

At slaughtering, hot carcass weight (kg) and optical measures (expressed in mm) of loin and BF 132 

thicknesses were taken by Fat-O-Meat’er (FOM - CrometecGmbh, Lünen, Germany) between the 133 

third and fourth last ribs, 8 cm off the carcass midline. These measures were used to estimate the 134 

percentage of carcass lean meat, which was then used for EUROP carcass grading following EU 135 

Decision 2001/468/CE of June 8th, 2001 (European Commission, 2001). BF thickness (BFT; 136 

expressed in mm) was also measured at the level of the Gluteus medius muscle by a caliper. 137 

Furthermore, on the left side, the weights (in kg) of belly and jowl cuts were also recorded. 138 



Intramuscular fat content (IMF) was determined in the SM by extraction with petroleum ether from 139 

1 g fresh sample using an XT15 Ankom apparatus (Macedon, NY, USA), according to Official 140 

procedure AOCS Am 5-04 (AOAC, 2005). IMF was determined in % as g of IMF per 100 g of 141 

tissue. 142 

BF FA composition was determined as described in Catillo, Zappaterra, Lo Fiego, Steri, & Davoli 143 

(2021) and Serra et al. (2014), and was expressed as g FA per 100 g of total FA (i.e. percent FA 144 

composition). SM FA determination was described in Catillo et al. (2020). Briefly, the total muscle 145 

lipids destined for the gas-chromatographic analysis were extracted from SM using a mixture of 146 

chloroform: methanol (2:1, v/v) (Carlo Erba Reagents, MI, Italy) according to Folch, Lees, and 147 

Sloane Stanley (1957). Methylation was performed with a 2N solution of potassium hydroxide 148 

(KOH) in methanol (CH3OH) (Carlo Erba Reagents, Milan, Italy) according to Ficarra, Lo Fiego, 149 

Minelli, & Antonelli (2010). Tridecanoic acid (C13:0) (Larodan Fine Chemicals AB, Solna, 150 

Sweden) was used as an internal standard in SM FA determination. Intramuscular fatty acid methyl 151 

esters (FAMEs) were then submitted to gas-chromatographic analysis using TRACE™GC Ultra 152 

(Thermo Electron Corporation, Rodano, MI, Italy) equipped with a Flame Ionization Detector, a 153 

PVT injector, and a TR-FAME Column 30 m × 0.25 mm i.d., 0.2 μm film thickness (Thermo 154 

Scientific, Rodano, MI, Italy). The Chrom-Card software (vers.2.3.3, Thermo Electron Corporation, 155 

Rodano, MI, Italy) was used to record and integrate the peaks of FAMEs. Individual FAME were 156 

identified by comparing their retention times with the retention times of a standard FAME mixture 157 

prepared in-house with known quantities of each methyl ester (Larodan Fine Chemicals AB, Solna, 158 

Sweden). In order to present data in the same way as BF, the amount of each FA determined in SM 159 

was reported as g FA per 100 g of total FA (i.e. percent FA composition). 160 

 161 

 162 

2.3 Statistical analysis 163 

 164 

2.3.1 Data handling 165 



The 26 slaughtering dates were grouped into a new variable with four levels corresponding to the 166 

four slaughtering seasons (i.e. six dates in spring; six in summer; nine in autumn; five in winter). 167 

 168 

 169 

2.3.2 Multivariate analysis of the two tissues 170 

 171 

In order to identify underlying structures in the dataset and patterns linking individual FAs, a 172 

Principal Component Analysis (PCA) was applied to the FA composition of BF and SM. Each 173 

tissue was independently analyzed with the aim of investigating the main non-genetic factors that 174 

could shape the variability of BF and SM FA composition. A PCA was run for each tissue including 175 

all the individual FAs. First, the projection of the samples in the Principal Components (PC) space 176 

(scores) was calculated. Samples with a high value for at least one of the distances within and 177 

orthogonal to the projection plane (Hubert, Rousseeuw, & Vanden Branden, 2005) were considered 178 

as outliers and not further included in the PCA analysis. A total of four and one outliers were 179 

removed for BF and SM tissues, respectively. After outlier removal, a PCA was run again for each 180 

of the considered tissues and PC scores were obtained. Each PC was determined by a specific 181 

combination of the original variables, which, based on their weight in each PC, contribute to explain 182 

total variance. The weights of individual FAs within each PC were then used to discuss possible 183 

metabolic pathways capable to explain the combinations found. To test whether the distribution of 184 

samples in the PCA scoreplot may have been influenced by major factors of variability, the 185 

distribution of samples on the projection plane was evaluated by plotting the variables of 186 

slaughtering season, sex, and EUROP carcass grading. 187 

PCAs were performed using the ropls package (Thévenot, Roux, Xu, Ezan, & Junot, 2015) in the R 188 

environment (R Core Team, 2020). 189 

 190 

 191 

2.3.3 Univariate models for the FA composition of the two tissues 192 

 193 

2.3.3.1 Stepwise multiple regression model of the PC scores 194 



The results of the multivariate approach (PCs) were further integrated by a univariate approach 195 

aimed to evaluate the effects of the categorical variables on the phenotypic variability noticed for 196 

each FA or FA class. The scores of the first two PCs obtained for each PCA were then included as 197 

dependent variables in backward stepwise multiple linear regression models. The initial model 198 

evaluated with the backward stepwise automatic elimination was the following: 199 

yijk = µ Ssi + Sexj + b1(Agek) + b2(hot carcass weightk) + b3(Carcass leank) + b4(BFTk) + b5(IMFk) 200 

 201 

+b6(belly weightk) + b7(jowl weightk) + eijk 202 

 203 

where: yijk was the vector of the scores of the first PCs identified with the PCAs; µ was the overall 204 

mean; Ssi is the fixed effects of the ith slaughter season (i=1 to 4) and Sexj is the fixed effect of the 205 

sex (j=1,2 ); age at slaughtering, hot carcass weight, carcass lean %, BFT measured with a caliper, 206 

IMF percentage in SM, and the weights of belly and jowl were considered as covariates; b1, b2, b3, 207 

b4, b5, b6, b7 were the regression coefficients; eijk random residual effect for the kth pigs. 208 

 209 

Generalized Linear Models (GLMs) were performed with the glm function of the stats package (R 210 

Core Team, 2020) in the R environment. Backward stepwise multiple linear regression models were 211 

performed using the step function of the stats package (R Core Team, 2020) in the R environment. 212 

Anova function of car package in R environment (R Core Team, 2020) was used to adjust the 213 

results of the stepwise multiple linear regression models for the type III errors. 214 

To complete the obtained results, the effect of the covariates for slaughtering season (4 levels) and 215 

sex of the animals (2 levels) were also tested on BFT, carcass lean % and IMF % with the glm 216 

function of the stats package, and Anova function of car package in the R environment (R Core 217 

Team, 2020). The results of the GLM for slaughtering season effects are reported as Least Squares 218 

Means (L.S.M.) and Standard Errors (S.E.), obtained with lsmeans function of lsmeans package in 219 

the R environment. 220 

P-values < 0.05 were considered significant and the trend towards significance was set for P-values 221 

comprised between 0.10 and 0.05. 222 



 223 

2.3.3.2 Multiple regression models for the individual FAs and FA classes 224 

 225 

In order to highlight the effects of the independent categorical variables on each FA or FA category, 226 

the FA compositions of BF and SM were analyzed with a linear model in R environment (R Core 227 

Team, 2020). The linear models used for BF and SM FA composition were based on the results of 228 

the backward stepwise multiple linear regression models performed for the relative PCs. For each 229 

tissue, variables displaying a P-value less than or equal to 0.05 in at least one of the stepwise 230 

models were considered as independent variables in the linear model. 231 

 232 

 233 

3. Results 234 

 235 

3.1 BF FA composition 236 

 237 

The PCA for BF FA composition identified two PCs, jointly explaining 52% of the total variance. 238 

Weights of individual FAs entering each PC are reported in Table 1 and the PCA scoreplot is 239 

displayed in Supplementary Figure 1. FAs showing the highest and lowest weights contributed the 240 

most in determining the variability of the PC they belonged to. The first PC (PC1), explaining 33% 241 

of the total variance, was mainly determined by the saturated FAs (SFA) stearic, arachidic and 242 

palmitic, while arachidonic, linoleic, dihomo-γ-linolenic, docosapentaenoic (DPA), heptadecenoic 243 

unsaturated FAs (UFAs), and lauric acid had negative loadings in PC1. Most of the total variance 244 

was thus determined by the antagonism shown by the animals located in the right side of the PCA 245 

scoreplot (characterized by more stearic, arachidic, and palmitic acids in BF) against those placed 246 

on the left side of Supplementary Figure S1 (with BF having greater proportions of arachidonic, 247 

linoleic, dihomo-γ-linolenic, DPA, heptadecenoic and lauric acids). The second PC (PC2), 248 

explaining 18% of the total variance, was mainly determined by the opposition between pigs having 249 

BF with greater proportions of palmitoleic acid and of the myristic, capric, palmitic, and lauric 250 

SFAs (pigs on the upper side of the PCA scoreplot), and animals displaying more eicosadienoic, 251 

gadoleic, and erucic acids in their BF tissue (on the bottom side of Supplementary Figure S1). 252 



 253 
 254 
 255 

Table 1. Backfat (BF) individual fatty acids (FAs), identified by their shorthand notation and their 256 

common nomenclature between brackets, and the relative Principal Component (PC) loadings. The 257 

total variance explained by each PC is between brackets. Bold PC loadings indicate the lowest and 258 

highest PC loadings.  

BF FAs (%) PC1 (33%) PC2 (18%) 

C10:0 (capric acid) -0.059 -0.375 

C12:0 (lauric acid) -0.210 -0.285 

C14:0 (myristic acid) -0.119 -0.409 

C16:0 (palmitic acid) 0.216 -0.335 

C16:1 cis-9 (palmitoleic acid) -0.184 -0.285 

C17:0 (margaric acid) -0.215 0.071 

C17:1 cis-9 (heptadecenoic acid) -0.277 0.000 

C18:0 (stearic acid) 0.292 0.066 

C18:1 cis-9 (oleic acid) 0.021 0.180 

C18:1 cis-11 (cis-vaccenic acid) -0.205 0.036 

C18:2 cis-9, cis-12 (linoleic acid) -0.317 0.019 

C18:3 n-3 (α-linolenic acid) -0.152 -0.027 

C20:0 (arachidic acid) 0.269 0.168 

C20:1 cis-11 (gadoleic acid) 0.134 0.259 

C20:2 n-6 (eicosadienoic acid) -0.071 0.404 

C20:3 n-6 (dihomo-γ-linolenic acid) -0.296 0.105 

C22:1 (erucic acid) -0.157 0.238 

C20:4 n-6 (arachidonic acid) -0.327 0.023 



C22:4 n-6 (adrenic acid) -0.235 0.173 

C22:5 n-3 (docosapentaenoic acid-DPA) -0.282 0.120 

C22:6 n-3 (docosahexaenoic acid-DHA) -0.184 0.054 
 259 

 260 
 261 

The samples in the scoreplot were then labeled with their levels for the independent variables of 262 

slaughtering season, sex, and EUROP carcass grading, in order to test whether these factors had a 263 

major role in the dataset variability. Samples in the scoreplot showed to be clustered based on 264 

slaughtering seasons, as pigs slaughtered in autumn showed positive PC2 loadings and those 265 

slaughtered in winter negative PC2 loadings (Figure 1). Therefore, the animals slaughtered in 266 

autumn had the highest contents of eicosadienoic, gadoleic, and erucic acids, while those 267 

slaughtered in winter had more myristic, capric, palmitic, palmitoleic, and lauric acids in BF. 268 

 269 

 270 

Figure 1. Principal Component Analysis (PCA) scoreplot for backfat (BF) fatty acids (FAs) with 271 

the samples (plotted with their ID number) identified by different colors based on their slaughtering 272 

season. 273 



 274 

 275 
 276 

No clear cluster in the scoreplot was observed for sex and EUROP carcass grading. 277 

 278 

PC scores of the samples were then submitted to backward stepwise multiple linear regression and 279 

the results are reported in Table 2 and Table 3. For PC1 scores, the stepwise selection process 280 

retained BFT, the % of carcass lean meat content, and age in the final multiple linear regression 281 

model. Slaughtering season showed a trend towards significance and animal sex was also retained, 282 

but its P-value was above the threshold of 0.10. As can be noticed from Table 2, animals with 283 

negative PC1 scores have a thinner BF, are older, and have leaner carcasses. 284 

 285 

 286 

Table 2. The covariates retained in the backward stepwise multiple linear regression model for PC1 287 

scores obtained from the Principal Component Analysis (PCA) of backfat (BF) fatty acids (FAs). 288 

The estimate, F-value, and P-value are reported for each covariate. 289 

 290 

Covariates Estimated effect on PC1 scores 291 
 292 

Name Classes Estimate F-value P-value (F) 293 
 294 



Sex Barrows 

 

Gilts 

Ref 

 

0.324 

 

2.260 

 

0.133 

Age (days) - -0.026 4.514 0.034 

BFT (mm) - 0.121 23.354 <0.001 

Carcass lean meat (%) - -0.129 8.020 0.005 

Slaughtering season Spring Ref 
  

 
Summer 

 

Autumn 

-0.099 

 

0.404 

 
2.260 

 
0.061 

 
Winter 0.630 

  

 295 
Ref: reference class. The effect size of the other classes is expressed using the Ref class as a reference. 296 

 297 
- indicates covariates with continuous values. 298 

 299 

 300 

Table 3 shows the results of the stepwise selection process with the final multiple linear regression 301 

model obtained for PC2 scores. The strongest effect was found for slaughtering season, in 302 

agreement with the results reported in Figure 1. The estimate for slaughtering season confirmed that 303 

pigs slaughtered in autumn have positive PC2 scores and those slaughtered in winter tend to have 304 

negative PC2 scores. IMF, carcass lean meat %, jowl and belly weights were also significant, and a 305 

trend towards significance was observed for BFT. Pigs having higher contents of IMF in SM, leaner 306 

carcasses, and heavier jowl cuts are significantly associated with positive scores for PC2, while 307 

animals with heavier belly cuts are associated with negative PC2 scores. 308 

 309 

 310 

Table 3. The covariates retained in the backward stepwise multiple linear regression model for PC2 311 

scores obtained from the Principal Component Analysis (PCA) of backfat (BF) fatty acids (FAs). 312 

The estimate, F-value, and P-value are reported for each covariate. 313 

 314 

Covariates Estimated effect on PC2 scores 315 
 316 

Name Classes Estimate F-value P-value (F) 317 
 318 



Slaughtering season Spring Ref  

 
Summer 

 

Autumn 

-0.339 

 

0.877 

 
45.827 

 
<0.001 

 
Winter -1.383 

  

IMF (%) - 0.162 7.306 0.007 

Carcass lean meat (%) - 0.070 5.778 0.016 

BFT (mm) - -0.031 3.443 0.064 

Jowl weight (kg) - 0.394 6.725 0.010 

Belly weight (kg) - -0.167 4.086 0.044 

 319 
Ref: reference class. The effect size of the other classes is expressed using the Ref class as a reference. 320 

 321 
- indicates covariates with continuous values. 322 

 323 

 324 

 325 

The results of the multivariate approach (PCs) were further integrated by the univariate approach 326 

aimed to evaluate the effects of the categorical variables on the phenotypic variability noticed for 327 

each FA or FA class. Supplementary Table S2 displays the effects of slaughtering season, age, BFT, 328 

carcass lean meat %, belly weight, jowl weight, and IMF% on the individual FAs and FA categories 329 

in BF. The L.S.M. of individual FAs and FA categories estimated for the slaughtering seasons are 330 

reported in Supplementary Table S3. In accordance with the results identified by the multivariate 331 

approach, slaughtering season showed to affect the majority of the individual FAs and FA classes, 332 

followed by BFT, carcass lean meat %, and jowl weight. Belly weight was associated with changes 333 

in lauric, myristic, palmitoleic, margaric and cis-vaccenic acids, and age was significantly related to 334 

palmitic, stearic, linoleic, α-linolenic, gadoleic acids and the classes of SFAs and PUFAs. 335 

 336 

 337 

3.2 Muscle FA composition 338 

 339 

The PCA for the muscle FA composition identified two PCs, jointly explaining 53% of the total 340 

variance. Weights of individual FAs entering each PC are reported in Table 4 and the PCA 341 



scoreplot is reported in Supplementary Figure S2. The first PC (PC1) explained 39% of the total 342 

variance noticed for SM: animals located in the right side of the PCA scoreplot were characterized 343 

by more oleic and myristic acids in SM, while those placed on the left side of Supplementary Figure 344 

2 had SM with greater proportions of erucic, DPA, adrenic, dihomo-γ-linolenic, arachidonic, 345 

docosahexaenoic (DHA), and eicosadienoic acids. The second PC (PC2), explaining 14% of the 346 

total variance, was mainly determined by the opposition between pigs with greater proportions of 347 

cis-vaccenic and palmitoleic acids on one hand (pigs on the upper side of the PCA scoreplot), and 348 

animals displaying more stearic, palmitic, lauric, arachidic, and myristic acids in their SM tissue (on 349 

the bottom side of Supplementary Figure S2). 350 

 351 

 352 

Table 4. Muscle individual fatty acids (FAs) in Semimembranosus, identified by their shorthand 353 

notation and their common nomenclature between brackets, and their Principal Component (PC) 354 

loadings. In brackets, the fraction of total variance explained by each PC. Bold PC loadings indicate 355 

the lowest and highest PC loadings.  

Muscle FAs (%) PC1 (39%) PC2 (14%) 

C10:0 (capric acid) 0.140 0.023 

C12:0 (lauric acid) 0.113 -0.256 

C14:0 (myristic acid) 0.220 -0.210 

C16:0 (palmitic acid) 0.181 -0.281 

C16:1 cis-9 (palmitoleic acid) 0.171 0.387 

C17:0 (margaric acid) -0.220 -0.175 

C17:1 cis-9 (heptadecenoic acid) -0.169 0.082 

C18:0 (stearic acid) -0.071 -0.415 

C18:1 cis-9 (oleic acid) 0.265 0.204 

C18:1 cis-11 (cis-vaccenic acid) 0.037 0.509 



C18:2 cis-9, cis-12 (linoleic acid) -0.298 -0.113 

C18:3 n-3 (α-linolenic acid) -0.131 -0.139 

C20:0 (arachidic acid) 0.001 -0.247 

C20:1 cis-11 (gadoleic acid) 0.143 0.026 

C20:2 n-6 (eicosadienoic acid) -0.224 -0.112 

C20:3 n-6 (dihomo-γ-linolenic acid) -0.283 0.075 

C22:1 (erucic acid) -0.318 0.107 

C20:4 n-6 (arachidonic acid) -0.279 0.104 

C22:4 n-6 (adrenic acid) -0.312 0.076 

C22:5 n-3 (docosapentaenoic acid-DPA) -0.317 0.079 

C22:6 n-3 (docosahexaenoic acid-DHA) -0.265 0.067 
 356 

 357 
 358 

When plotting sample labels of IMF FA composition for the independent variables of slaughtering 359 

seasons, animal sex, and EUROP carcass grading, no cluster was observed in the muscle FA PCA 360 

scoreplot. 361 

PC scores of the samples were then submitted to backward stepwise selection analysis. Table 5 362 

reports the final multiple regression model for PC1 scores. The independent variables of 363 

slaughtering season, sex, age, EUROP carcass grading, BFT, hot carcass weight, belly weight, jowl 364 

weight, and IMF% were retained. In particular, IMF% was the covariate showing the strongest 365 

association with PC1 scores, as pigs with higher IMF deposited in SM were associated with positive 366 

PC1 scores. Animals with lower percentages of lean meat (i.e. U, R, and O carcasses vs. E 367 

carcasses) were also associated with positive PC1 scores. Animals with lower hot carcass weights, 368 

heavier jowl and belly weights, older, and with a thicker BF tend to have positive scores for the 369 

PC1. Also, winter and autumn as slaughtering seasons showed opposed effects, with autumn being 370 

associated with negative and winter with positive PC1 scores. 371 



Table 5. The covariates retained in the backward stepwise multiple linear regression model for PC1 372 

scores obtained from the Principal Component Analysis (PCA) of Semimembranosus muscle (SM) 373 

fatty acids (FAs). The estimate, F-value, and P-value are reported for each covariate. 374 

 375 
Covariates Estimated effect on PC1 scores 376 

 377 

Name Classes  Estimate F-value P-value (F) 

Slaughtering season Spring  Ref   

 
Summer 

 

Autumn 

 
0.550 

 

-0.267 

 
3.34 

 
0.018 

 
Winter 

 
0.381 

  

Sex Barrows 

 

Gilts 

 
Ref 

 

-0.724 

 
10.59 

 
0.001 

Age (days) - 
 

0.027 4.64 0.031 

EUROP carcass grading E 
 

Ref 
  

 
U 

 

R 

 
1.330 

 

1.907 

 
3.85 

 
0.009 

 
O 

 
2.464 

  

BFT (mm) - 
 

0.050 3.85 0.050 

Hot carcass weight (kg) - 
 

-0.052 8.75 0.003 

Belly weight (kg) - 
 

0.399 6.03 0.014 

Jowl weight (kg) - 
 

0.663 6.25 0.012 

IMF (%) - 
 

0.718 58.06 <0.001 
 378 

Ref: reference class. The effect size of the other classes is expressed using the Ref class as reference. 379 
 380 

- indicates covariates with continuous values. 381 
 382 

 383 

 384 

Table 6 shows the results of the backward stepwise selection process for the PC2 scores estimated 385 

for the samples. Two variables entered with strong significant effects in the model: slaughtering 386 



season, and belly weight. Pigs with heavier belly cuts and slaughtered in autumn had higher PC2 387 

scores, while summer as slaughtering season was associated with negative scores for PC2. 388 

 389 

 390 

Table 6. The covariates retained in the backward stepwise multiple linear regression model for PC2 391 

scores obtained from the Principal Component Analysis (PCA) of Semimembranosus muscle (SM) 392 

fatty acids (FAs). The estimate, F-value, and P-value are reported for each covariate. 393 

 394 
Covariates Estimated effect on PC2 scores 395 

 396 

Name Classes  Estimate F-value P-value (F) 

Slaughtering season Spring  Ref   

 
Summer 

 

Autumn 

 
-0.114 

 

0.625 

 
7.68 

 
<0.001 

 
Winter 

 
0.213 

  

Belly weight (kg) - 
 

0.246 11.42 <0.001 
 397 

 398 

The results of the multivariate approach were further integrated with the univariate approach. 399 

Supplementary Table S4 displays the effects of slaughtering season, age, sex, EUROP carcass 400 

grading, hot carcass weight, belly weight, jowl weight, and IMF % on the individual FAs and FA 401 

categories in SM. The L.S.M. of individual FAs and FA categories estimated for the slaughtering 402 

seasons are reported in Supplementary Table S5. In accordance with the results of the multivariate 403 

approach, slaughtering season, IMF content, sex, carcass weight and conformation (i.e. EUROP 404 

carcass grading, belly weight, and jowl weight) showed to affect the majority of the individual FAs 405 

and FA classes. Age was significantly related to palmitic, margaric, heptadecenoic, stearic, oleic, 406 

eicosadienoic, erucic, arachidonic, adrenic, DHA acids, and with the classes of SFAs and MUFAs. 407 

To gain a more complete view of the relationships occurring between the covariates considered, the 408 

effects of the slaughtering season and animals’ sex were also tested on BFT, SM IMF%, and carcass 409 

lean %. Gilts had significantly lower contents of IMF in SM (P = 0.003), thinner BFT (P = 0.002), 410 



and leaner carcasses (P < 0.001) when compared with barrows. Pigs slaughtered in spring had 411 

thicker BFT (L.S.M. ± S.E; 29.00 ± 0.36 mm), and lower carcass lean % (47.10 ± 0.20 %) compared 412 

with those slaughtered in autumn (25.40 ± 0.29 mm and 49.60 ± 0.16 %, respectively). The animals 413 

slaughtered in winter and spring had BFT and carcass lean % displaying values of L.S.M. 414 

intermediate between those observed in spring and autumn (27.90 ± 0.47 mm for BFT and 48.90 ± 415 

0.26 % for carcass lean % in winter; 27.30 ± 0.37 mm for BFT and 48.50 ± 0.21 % for carcass lean 416 

 417 

% in summer). The slaughtering season did not affect IMF% in SM. 418 

 419 

 420 
 421 

4 Discussion 422 

 423 

The results obtained in the present study allowed the characterization of the environmental factors 424 

and carcass features associated with changes in BF and SM FA composition in ILW heavy pigs fed 425 

the same diet. To the best of our knowledge, this is the first study that has used a multivariate 426 

approach (PCA) to reach this objective. PCA is a dimensionality reduction technique that is used to 427 

uncover hidden structures in multidimensional data (Simmons et al., 2015), and provide key 428 

insights on the relationships linking the variables. For these reasons, PCA has been used in the 429 

present study to characterize the patterns linking the proportions of FAs in the BF and SM tissues. 430 

The characterization of the metabolic profile of a tissue produces high-dimensional data, where 431 

variables are often interconnected in metabolic patterns and share portions of their variances. 432 

Similarly, the FA composition of a tissue is determined by a complex of metabolic processes 433 

regulating the fluxes of de novo FA biosynthesis, lipolysis, and FA deposition. Previous studies 434 

have used PCA or other multivariate statistics to investigate changes in the multidimensional 435 

structure of FA composition in porcine tissues in relation to breed (Aboagye et al., 2020), divergent 436 

levels of boar taint compounds (Mörlein & Tholen, 2015; Liu et al., 2017), and different diets 437 

(Bermúdez, Franco, Franco, Carballo, & Lorenzo, 2012). PCA has also been used in this work, but 438 

with a different purpose. This statistical analysis has indeed been selected to highlight possible 439 

metabolic patterns linking FAs in BF and SM of ILW purebred heavy pigs. The obtained new 440 



variables (PCs) have been investigated to test which factors may influence the variability of the 441 

linearly dependent FAs included in each PC; the identification of these factors may be useful to 442 

better understand whether some environmental factors can affect the organoleptic and nutritional 443 

qualities of the final pork products. 444 

The PCA for BF FAs was able to capture the negative relation linking SFAs and PUFAs, which had 445 

opposite loadings in the first two PCs. The variability of the first PC for BF was determined on one 446 

hand by the SFAs stearic, arachidic, and palmitic, with positive PC loadings, and on the other hand 447 

by arachidonic, linoleic, adrenic, and DPA, having negative loadings in PC1. These latter FAs are 448 

mainly PUFAs participating in the endogenous synthesis of n-6 FAs. Linoleic acid is, indeed, one 449 

of the essential FAs, and is used as a substrate for further elongation and desaturation steps. The 450 

proportion of n-6 PUFAs in tissues is dependent on diet and complex enzymatic systems, consisting 451 

of desaturases and elongases, responsible for the conversion of linoleic acid into longer chain n-6 452 

PUFAs (Brenner, 1989; Raes, De Smet & Demeyer, 2004). Linoleic acid may undergo subsequent 453 

desaturation and elongation steps to produce dihomo-γ-linolenic, arachidonic, and adrenic acids 454 

(Brenner, 1989; Raes, De Smet & Demeyer, 2004), which in this study were all related by negative 455 

PC1 loadings. These negative weights in PC1 may thus be linked to the fact that linoleic, 456 

arachidonic, adrenic, and DPA share a large covariance amount, as they are all linked to the 457 

endogenous synthesis of n-6 PUFAs. Hence, PC1 possibly captured this shared variability linking 458 

the amounts of these n-6 PUFAs in BF. Together with those FAs, DPA showed also a negative 459 

loading in PC1, indicating that also the variation of this metabolite is partly determined by the same 460 

sources of variability of the n-6 PUFAs synthesized from linoleic acid. This result may be related to 461 

the fact that DPA can be synthesized from α-linolenic acid (C18:3 n-3) through desaturation and 462 

elongation steps controlled by the same enzymes catalyzing the elongation/desaturation steps 463 

required for the transformation of linoleic acid into longer n-6 PUFAs (Brenner, 1989; Raes, De 464 

Smet & Demeyer, 2004). In humans and several other animal species, these steps are controlled by 465 

the enzymes encoded by the genes Fatty acid desaturase 1 (FADS1), FADS2, ELOVL elongase 2 466 



(ELOVL2), and ELOVL5 (Castro, Tocher & Monroig, 2016; Gol, Pena, Rothshild, Tor & Estany, 467 

2018). In particular, as reported in the literature, FADS1 and FADS2 display markers associated 468 

with the amounts of MUFAs and PUFAs in porcine BF tissue of crossbred pigs (Crespo-Piazuelo et 469 

al., 2020) and in IMF and BF of Duroc pigs (Gol, Pena, Rothshild, Tor & Estany, 2018). 470 

Furthermore, some studies conducted in different pig breeds indicated that arachidonic acid 471 

contents in BF and muscle were positively correlated with carcass lean mass (Gol, Pena, Rothshild, 472 

Tor & Estany, 2018; Davoli et al., 2019; Zappaterra et al., 2020). In agreement with those studies, 473 

the present research indicated that pigs with leaner carcasses tended to have negative PC1 scores for 474 

BF, and thus were characterized by higher contents of arachidonic, linoleic, adrenic, and DPA FAs. 475 

The linoleic acid percentage in BF is of great importance for ham quality and covering fat stability 476 

during ham processing, as a percentage of linoleic acid above 15% of total FA is associated with a 477 

content of PUFAs that can increase the oxidability of ham fat (Bosi & Russo, 2004). Hence, PDO 478 

ham production rules set threshold values for the linoleic acid percentage that must not exceed 15% 479 

(Consorzio del Prosciutto di Parma, 1992; MIPAAF, 2007). Leaner carcasses may therefore have an 480 

amount of linoleic acid above the permitted amount, making those thighs unsuitable for PDO ham 481 

production. On the other hand, individuals displaying high BFT were significantly associated with 482 

positive PC1 scores. These animals had, thus, higher contents of palmitic, stearic, and arachidic 483 

acids. These three FAs originate from subsequent elongation steps in the endogenous biosynthesis 484 

of the SFAs: in mammals, palmitic acid may, indeed, undergo elongation steps and can be 485 

transformed into stearic and arachidic acids (Miyazaki & Ntambi, 2008). The first PC for BF FAs 486 

thus captured the negative correlation linking SFAs and PUFAs, and their association with carcass 487 

composition; higher fat depots are mainly determined by triacylglycerols, the main neutral lipids 488 

used to store energy, which mainly consists of SFAs and MUFAs (De Smet, Raes & Demeyer, 489 

2004). Fatter animals are therefore characterized by increased proportions of SFAs and MUFAs 490 

deposited in tissues, causing a decrease in the relative amount of PUFAs on the total FAs (De Smet, 491 

Raes & Demeyer, 2004; Lo Fiego, Santoro, Macchioni, & De Leonibus, 2005; Matthews, 2011). On 492 



the other hand, it is well known that lower amounts of stored fat are associated with lower 493 

depositions of SFAs and total FAs, which in turn cause an increase in the relative amount of PUFAs 494 

(Monziols, Bonneau, Davenel, & Kouba, 2007; Matthews, 2011). As suggested in the literature, this 495 

increased proportion of PUFAs stored in tissues of leaner animals is not due to a rise in PUFA 496 

synthesis, but rather in a higher percentage of PUFAs on the reduced amount of total FAs 497 

(Matthews, 2011). While SFAs are, indeed, quite fluctuating in tissues as they depend on the 498 

nutritional state of the animal, the amount of PUFAs deposited in tissues tends to be highly 499 

dependent on dietary n-6 and n-3 PUFAs contents. Therefore, in individuals fed the same diet, 500 

PUFA content tends to remain more stable than SFAs, as UFAs play essential roles in membrane 501 

flexibility, inflammation control, eicosanoid production, plasma triacylglycerol synthesis, and gene 502 

expression (reviewed in Fernandez & West, 2005). Because the pigs used in the present study were 503 

fed the same diets, it is possible to hypothesize that the higher proportion of PUFAs characterizing 504 

some of the studied pigs might be due to their lower adiposity and thus lower amount of total FAs 505 

stored in their BF. 506 

The variability noticed for BF PC2 scores was strongly associated with the slaughtering season, 507 

with pigs slaughtered in winter being characterized by greater proportions of capric, lauric, myristic, 508 

palmitic, and palmitoleic acids, and those slaughtered in autumn showing higher contents of 509 

eicosadienoic, gadoleic, and erucic acids. BF is one of the first fat depots to develop in pigs, while 510 

IMF develops later, particularly in the muscles of the hind leg (Kouba & Bonneau, 2009). In heavy 511 

pigs, BFT and FA composition are mainly determined by the diet and environmental conditions 512 

applied during the finishing period, which lasts from 110-120 kg live weight to slaughtering at 513 

about 160 kg. The finishing period takes about three months in Italian heavy pigs and has the main 514 

objective to improve meat quality. FA composition of IMF and subcutaneous fat depots are thought 515 

to take a long time to vary, so that different fattening period lengths did not affect BF and IMF FA 516 

composition in extensively reared Iberian pigs (Ayuso, González, Peña, Hernández-García & 517 

Izquierdo, 2020). Given that changes in the FA composition of tissues occur slowly, it is reasonable 518 



to assume that the association found in the present study between PC2 scores and slaughtering 519 

season may reflect the consequence of the whole finishing period on the BF FA composition found 520 

at slaughter. The studied animals were fed the same diets and were reared in the same genetic 521 

station located in Po Valley (Italy), a geographical region characterized by a hot and highly humid 522 

weather during the late spring and summer. Prolonged periods with high temperature humidity 523 

indices cause heat stress in pigs, which lack functional sweat glands and poorly dissipate heat 524 

(White et al., 2008). Increasing temperatures and humidity have been indicated as factors affecting 525 

the performance of growing-finishing pigs as heat stress was proved to affect growth, feed intake, 526 

and caloric and feed efficiency (Renaudeau, Gourdine, & St-Pierre, 2011; Kellner, Baumgard, 527 

Prusa, Gabler, & Patience, 2016). In the present study, pigs slaughtered in autumn (and particularly 528 

in early autumn) spent their finishing period in the hottest months. These environmental conditions 529 

may have led pigs slaughtered in early autumn to have thinner BFT when compared to those 530 

slaughtered in winter and spring. In those animals, a reduction in BFT and therefore in SFAs may 531 

explain why their BF was characterized by higher proportions of eicosadienoic acid, an n-6 PUFA. 532 

On the other hand, pigs slaughtered in winter (and in particular in late winter) may have not 533 

experienced a hot and muggy environment during the finishing period, which may have caused 534 

higher BFT and thus greater proportions of SFAs being stored in subcutaneous fat. Therefore, 535 

taking into account these suggestions, it might not be so surprising that the two most different 536 

seasons were autumn and winter. Stearic acid, instead, did not follow the same pattern evidenced in 537 

PC2 for the other SFAs. This FA entered with a high weight in PC1, and its content in BF tissue 538 

was higher in pigs slaughtered in summer and autumn. Several studies suggest the role of stearic 539 

acid and its monounsaturated counterpart (i.e. oleic acid) in the regulation of cellular membrane 540 

fluidity in animals living at different environmental temperatures (Roy, Das & Ghosh, 1997; 541 

Malekar et al., 2018). Changes in oleic and stearic acid contents are particularly visible in 542 

poikilothermic animals, such as fish (Roy, Das & Ghosh, 1997; Malekar et al., 2018), with 543 

increased stearic acid incorporation in membranes as environmental temperatures rise (Malekar et 544 



al., 2018). Accordingly, the enzyme catalyzing the unsaturation of stearic to oleic acid (i.e. Stearoyl 545 

Co-A desaturase, SCD) has been suggested as an important regulator of cellular endoplasmic 546 

reticulum membrane fluidity in mammals and fat globule fluidity in cow milk (Timmen & Patton, 547 

1988). Stearic acid has a melting point higher than the body temperature of animal species (69.6°C), 548 

and its increased incorporation permits the maintenance of cellular membrane characteristics also 549 

during high-temperature seasons. The higher content of stearic acid in the BF of pigs slaughtered in 550 

summer and autumn may therefore reflect the attempt of the adipocyte membranes to maintain 551 

membrane integrity by incorporating higher contents of this SFA, and consequently increasing their 552 

resistance to high-temperature environments. 553 

Similar to what was observed for BF, the first PC for SM FAs was able to capture the negative 554 

relation linking SFAs and MUFAs with PUFAs. Unlike BF, however, the results of the multiple 555 

regression models for the PCs of SM indicated that the effect of slaughtering season (and thus of the 556 

finishing period season) on muscle FA composition was mediated by other factors, which strongly 557 

influenced the muscle FA patterns. Together with slaughtering season, SM IMF% and animals’ sex 558 

were highly significant for PC1 variability. Pigs displaying higher IMF % had indeed increased 559 

contents of oleic and myristic acids, and lower amounts of erucic, DPA, adrenic, dihomo-γ- 560 

linolenic, arachidonic, DHA, and eicosadienoic acids. This observation is in agreement with the 561 

positive relation linking IMF deposition, and the amounts of SFAs and MUFAs found in muscle fat 562 

depots (Bosch, Tor, Reixach, & Estany, 2012). In particular, oleic acid has been found to share a 563 

consistent proportion of genetic variance with IMF deposition in different muscles of Duroc pigs 564 

(Ros-Freixedes, Reixach, Bosch, Tor, & Estany, 2014), and a moderate positive genetic correlation 565 

with SM IMF% in ILW pigs (Zappaterra et al., 2020). An association was also identified between 566 

pigs’ age and muscle PC1 scores, with older animals having higher contents of oleic and myristic 567 

acids in SM. This is consistent with the fact that IMF increases with age and IMF saturation level is 568 

enhanced by greater IMF deposition (Bosch, Tor, Reixach, & Estany, 2012). Pigs slaughtered at 569 

later ages are therefore expected to have more IMF, SFAs and MUFAs in muscles, as SFA and 570 



MUFA amounts increase with lipid deposition in porcine muscles (Bosch, Tor, Reixach, & Estany, 571 

2012; Ros-Freixedes, Reixach, Bosch, Tor, & Estany, 2014). 572 

The variability noticed in SM PC2 scores was mainly determined by the antagonism shown by cis- 573 

vaccenic and palmitoleic MUFAs against major SFAs (i.e. lauric, myristic, palmitic, stearic, and 574 

arachidic). Pigs slaughtered in summer showed higher proportions of SFAs in SM IMF. This 575 

positive association between the summer as slaughtering season and SFAs may originate from the 576 

attempt of the muscle-interspersed adipocytes to maintain membrane integrity by incorporating 577 

higher contents of SFAs, which increase membrane resistance to a high-temperature environment. 578 

However, unlike BF, slaughter season did not determine changes in IMF%, suggesting that different 579 

environmental conditions may affect FA metabolism and deposition, but they do not change the 580 

amount of fat deposited in muscle. Based on these results, further studies proving the effects of 581 

different environmental temperatures on lipid and energy metabolism in heavy pigs may be of 582 

interest. 583 

 584 

 585 

Conclusions 586 

 587 

The multivariate approach applied to the FA composition of porcine BF and SM allowed the 588 

identification of patterns in the FA deposition shaping the variability in the FA composition of the 589 

two studied tissues. An inverse relationship of the deposition of SFAs with PUFAs resulted to be 590 

among the major patterns characterizing both BF and SM. The overall variability in the FAs 591 

deposited in subcutaneous fat and muscle showed to be strongly related to the slaughtering season 592 

and carcass features. In agreement with the literature, leaner carcasses were associated with higher 593 

proportions of PUFAs, confirming that carcasses with high lean mass deposition may have FA 594 

composition unsuitable for the processing into PDO dry-cured hams. Remarkably, slaughtering 595 

seasons emerged as relevant factors shaping both BF and muscle FA composition. More efforts 596 

should be applied to understand the effect that high environmental temperatures may have on FA 597 

metabolism and deposition in finishing heavy pigs. 598 
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 830 

• Various intrinsic and extrinsic factors affect muscle and backfat fatty acids. 831 

• The multivariate structure of pig muscle and backfat fatty acids was investigated. 832 

• The antagonism of saturated vs. n-6 fatty acids was the main relation identified. 833 

• The dataset structure was associated with slaughtering season and carcass traits. 834 

• Pigs had more vaccenic and palmitoleic acids in muscle when slaughtered in autumn. 835 


