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Abstract
The Belt and Road Initiative is a collaboration project launched by the Chinese Government to connect more than 65 coun-
tries all over the word by developing infrastructures, facilities, and support collaborations among involved Countries. The 
Silk Road Disaster Risk Reduction is a sub-project of the Belt and Road Initiative focused on mitigation and prevention of 
natural risks in the involved countries. In this context, this work presents a method to approach landslide susceptibility zoning 
on a continental scale that takes into account the limitations due to the completeness of landslide inventories and the scale 
and data quality of causal factors. A first attempt to produce a pixel-based statistical susceptibility map is described. All the 
data and software used in this work are open and open source. The landslide susceptibility zoning has been carried out in 
south-Asia using the NASA-COOLR landslide dataset through the Weight of Evidence method and it has been evaluated 
and validated by means of the ROC analysis. The results reveal a good prediction capacity and highlights that slope, relative 
relief and annual precipitation are the causative factors that play a major role in predisposing slope instability in the study 
area. Based on them, the method will be applied to the rest of the Belt and Road Countries.
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Introduction

The Belt and Road Initiative (BRI) is a collaboration project 
launched by the Chinese Government to connect more than 
65 countries all over the word by developing infrastructures, 
facilities and support among the involved Countries and to 

encourage innovation in less developed Countries (Cui et al. 
2017; Liu and Dunford, 2016).

The Silk Road Disaster Risk Reduction (SiDRR) project 
(Lei et al. 2018) is one of the prioritized sub-projects of the 
BRI . The purpose of the SiDRR is to carry out a long-term 
research project dealing with natural hazard assessment and 
risk mitigation in the Belt and Road Countries. A group of 
experts, with the role of scientific coordination of the activi-
ties carried out by the involved Countries, as well as the 
dissemination of the results, has been created. The expected 
outcomes of the research activities of the group are the 
assessment of geo-hydrological hazards in the Belt and Road 
Countries and the definition of risk mitigation measures.

Risk, hazard and susceptibility zoning are three comple-
mentary approaches to support land planning. They impli-
cate a decreasing complexity in method and in data types, 
respectively. Considering the small scale of the SiDRR anal-
ysis and the available data, a landslide susceptibility zoning 
has been proposed to build a map which should give a gen-
eral overview of the landslide-prone areas in the Belt and 
Road Countries. The goal is to individuate the most suscep-
tible areas where to focus further and more detailed assess-
ments. “In mathematical form, landslide susceptibility, is the 
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probability of spatial occurrence of known slope failures, 
given a set of geoenvironmental conditions” (Guzzetti et al. 
2006). Otherwise, landslide susceptibility can be defined 
as the spatial component of the hazard (Reichenbach et al. 
2018) which, in turn, is the combination of the frequency of 
landslide occurrence and the susceptibility map (Fell et al. 
2008). Thus, landslide susceptibility can be considered a 
fundamental part of the process to reach landslide hazard 
and risk assessment. At the same time, it can be used in land 
use planning for large areas or in analyses characterized by 
scarcity of data (Corominas et al. 2014).

This work will support the development of landslide haz-
ard prevention and mitigation measures proposing a multi-
scale approach for landslide susceptibility zoning and dis-
cussing its first application in a test area.

The used scale classification has been derived by Glade 
and Crozier (2012) and introduced by Soeters and Van Westen 
(1996). One class has been added to the original ranges: large 
scales (> 1:10,000), medium scales (1:15,000–1:100,000), 
regional scales (1:125,000–1:500,000), national 
scales (1:750,000–1:2,000,000) and continental scales 
(< 1:5,000,000).

An approach to landslide susceptibility assessment based 
on the analysis of the state-of-the-art is presented, where the 
terms “large area” and “small scale” are used as synonyms 
and they refer to continental scale. To show the feasibil-
ity and the robustness of the suggested approach, the case 
study of south-Asia has been analyzed. The results have been 
evaluated and validated by means of ROC analysis.

State of the art

Landsliding is a complex process driven by several possible 
predisposing and triggering factors. Numerous causative fac-
tors (geo-environmental factors) may predispose slope to 
failure, such as: geology, topography, tectonics, land cover 
and use, hydrology, and others (Eckelmann et al. 2006). On 
the other hand, the processes which trigger a landslide can 
be different and include: intense or prolonged rainfall, earth-
quakes, rapid snow melting, volcanic activity, human actions 
and others (Guzzetti et al. 2012).

The goal of landslide susceptibility zoning is to analyze 
the probability of landslide occurrence under the influ-
ence of a combination of factors, not including landslide 
frequency. Therefore, the temporal factor is not taken into 
consideration (Chacón et al. 2006).

Many different methods have been proposed for landslide 
susceptibility zoning in the scientific literature. The choice 
of a susceptibility mapping method significantly influ-
ences the prediction capacity of the analysis. According to 
Corominas et al. (2014), the methods can be categorized 
as qualitative (knowledge-driven methods) and quantitative 

(data-driven methods). The former take advantage of the 
theoretical and empirical knowledge of the researchers to 
make scientific analysis and judgment (Axing et al. 2010; 
Ayalew et al. 2004; Barredo et al. 2000; Günther et al. 2014; 
Saaty 1990). The latter recreates the relation between land-
slides and their controlling factors using a mathematical 
model: physically (Chung and Fabbri 2003; Goetz et al. 
2011; Gorsevski et al. 2006) or statistics-based (Agterberg 
et al. 1989; Bonham-Carter et al. 1988; Bui et al. 2016; Car-
rara et al. 2008; Catani et al. 2013; Chen et al. 2016, 2017; 
Constantin et al. 2011; Eeckhaut et al. 2012; Gorsevski et al. 
2000; Pham et al. 2016; Yao et al. 2008).

Reichenbach et  al. (2018) pointed out that Logistic 
Regression is one of the most diffuse statistics-based models 
for landslide susceptibility on both large and small scales. 
Concerning landslide susceptibility assessment at conti-
nental, or similar scale, several different methodologies 
have been used so far. Most of them are knowledge-driven 
methods and statistic-based methods. In addition, physically 
based methods are excluded in small scale analyses, because 
they require a detailed knowledge of the landslide dynamics, 
which is not feasible for large areas.

The scarcity of data, which is very common in small-
scale analyses, may be a driven factor in model selection. In 
particular, the lack of landslide inventories may affect the 
robustness and quality of the results. However, as stated by 
Hong et al. (2007) this is not always true: “more information 
does not necessarily lead to better results, depending on the 
quality of the data”.

Due to the lack of a global landslide data set at that time, 
Hong et al. (2007) have produced a global landslide sus-
ceptibility map without landslide inventories. They have 
weighted the causative factors on the base of reference 
studies and information available combined through a lin-
ear combination method. Following a similar idea, Eeckhaut 
et al. (2012) proposed a statistical model application with 
limited landslide inventory data. They evaluated the land-
slide susceptibility over Europe with the Logistic Regression 
model.

The recent development of global landslide inventories 
has supported new analyses at global scale (e.g., Kirsch-
baum and Stanley 2018; Stanley and Kirschbaum, 2017) 
which have produced a global landslide susceptibility map 
for rainfall-triggered landslides based on the fuzzy overlay 
method. This approach combines landslide inventories with 
expert opinions to develop a heuristic model.

At the continental scale, Günther et al. (2014) and then 
Wilde et al. (2018) presented the landslide susceptibility 
maps of Europe, named ELSUSv1 and ELSUSv2, respec-
tively. Despite that, they had numerous national landslide 
inventories heterogeneously distributed, they have proposed 
a qualitative model (Spatial Multi Criteria Evaluation) using 
Analytical Hierarchy Process.
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A different approach at continental scale has been 
used by (Broeckx et al. 2018) who analyzed the landslide 
susceptibility all over Africa based on a well-distributed 
inventory applying Logistic Regression model.

As a concern, the study area here considered (South-
Asia) numerous landslide susceptibility maps at national 
or smaller scale have been produced in recent years. Some 
of those, based on the Neural Network method with about 
1300 landslides all over China are reported in Liu et al. 
(2013). Recently, Saponaro et al. (2015) have covered 
Uzbekistan, Tajikistan and Kyrgistan, using the Weight 
of Evidence method.

In the context of the European Union’s Thematic Strat-
egy for Soil Protection (EC, 2006), the Soil Information 
Working Group (SIWG) of the European Soil Bureau 
Network (ESBN) has promoted a project for the identifi-
cation of landslide hazard priority areas. The European 
Landslide Expert Group (Günther et al. 2013a) has then 
put forward a multi-Tier susceptibility analysis in the 
Guidelines for Mapping Areas at Risk of Landslides in 
Europe (Hervás 2007). Taking inspiration from the latter, 
and considering, the extension of the study area and the 
geomorphological, geological, cultural, scientific hetero-
geneity of the context, the Weight of Evidence (WoE) 
method has been selected. Therefore, the application of 
the selected method and the Tier 1 approach at the south-
Asia region is presented here.

Case study

The Belt and Road Initiative involves 3 continents (63% of 
the world), and more than 65 countries (Cui et al. 2017). 
The study area selected includes a relevant part of the 
Belt and Road Countries (Fig. 1), namely: China, Paki-
stan, India, Tajikistan, Bangladesh, Nepal, Afghanistan, 
Bhutan, Myanmar, Cambodia, Kyrgyzstan, Laos, Thailand, 
Viet Nam. The study area comprises a high density of 
landslides mainly triggered by heavy rainfall (more than 
1600 mm/y) (Fig. 7) as well as some of the most disastrous 
earthquakes that have recently occurred in the world (i.e., 
Nepal 2015 and Wenchuan 2008). The diversity of climate, 
topography, geological features and land cover result in an 
extremely complex environment on which to assess land-
slide susceptibility.

Materials and methods

The Tiers-based workflow produced consequential suscep-
tibility zoning of the same study area by growing scales 
(Fig. 2). The smallest scale provides an overview of the 
object of study and it delineates the priorities, i.e., the 
most susceptible regions. Therefore, Tier 1 assessment 

Fig. 1  Study area of the south-
Asia
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exploits low-resolution data and incomplete spatial infor-
mation. With the increase of the scale of analysis, the Tier 
2 approach is intended to detail the landslide susceptibility 
analysis conducted by the Tier 1 (Günther et al. 2013b). 
The scale of Tiers cannot be defined a priori, since it 
depends on the available data resolution and the spatial 
extent of the study area. This means that the results should 
reflect, at least, the minimum resolution of the data input.

The landslide prediction model represents the core of the 
entire analysis. The model proposed here is: (i) temporally/
geographically reproducible; (ii) simple and thus clear to the 
people involved; (iii) as realistic as possible. A qualitative 
assessment for Tier 1 level has been proposed by Günther 
et al. (2007). It was based on the expertise of the researchers 
responsible for the analysis, thus the reproducibility depends 
on the investigator. To make the results reproducible in time 
and in all areas, the assessment technique should be quan-
titative and as objective as possible. The use of physical 
predictors and of the validation procedure define the physi-
cal relevance of the model in accordance with the geological 
and geomorphological features of the study area. Therefore, 
to create a reproducible, simple, realistic landslide suscep-
tibility map not affected by subjectivity, misunderstanding 
and abstraction, a limited number of causative factors related 
to all types of landslides and a quantitative susceptibility 
modeling technique, suitable to the specific Tier, have been 
assumed.

The landslide susceptibility concept is based on the sim-
ple principle that landsliding will occur more frequently in 
the most susceptible areas characterized by similar geo-envi-
ronmental factors which predispose towards slope failures. 
A landslide inventory and selected causative factors are the 
preliminary requirements for susceptibility analysis (Van 
Westen et al. 2008), especially if a statistic-based correla-
tion analysis is applied (Bui et al. 2016) in accordance with 
the scale of mapping, the required usage, and the quality of 
the data available (Fell et al. 2008).

A landslide inventory is an essential part of the input 
dataset in landslide susceptibility mapping. It generally 
records the location, the date of occurrence and type of mass 
movements (Margottini et al. 2013). In this analysis, three 
different alternatives have been taken into consideration: (i) 
aggregation and homogenization of all local landslide data-
sets available in the Countries involved in the project; (ii) 
development of a new landslide dataset; and (iii) collection 
of global landslide datasets. The latter solution has been 
selected due to the complexity of the aggregation processes 
and the lack of information. Indeed, the regional slope fail-
ure database is sometimes not complete or, more often, it is 
absent completely. The few data available locally are often 
limited to recent years and, therefore, not representative of 
the instability condition as it is.

The NASA-COOLR dataset (Juang et al. 2019) has been 
selected for the purpose of this work. It is an open database 
for landslide events launched in 2018 which collects differ-
ent inventories from different sources: Landslide Reporter 
Catalog (LRC) (Juang et al. 2019), NASA Global Land-
slide Catalog (GLC) (Kirschbaum et al. 2010, 2015) and 
collated inventories from external local sources. The LRC 
includes landslide reports by citizen scientists through the 
Landslide Reporter and checked by NASA. The GLC is a 
global inventory of rainfall-triggered landslides compiled 
by NASA since 2007 and is based on online media reports, 
disaster databases, scientific reports and more (Kirschbaum 
et al. 2015). The rest of the landslides are added into the 
COOLR by the LRC and other sources such as the SERVIR-
Mekong team for Myanmar landslides (SMMML). The team 
collected landslides based on Google Earth imagery (Juang 
et al. 2019).

The landslide inventory of COOLR used for the analy-
sis was downloaded in June 2020. Each point in the inven-
tory has been assigned a radius of confidence between 1 
and 75 km. In accordance with the spatial resolution of the 
analysis the landslide locations with 1 km of accuracy have 
been selected (1549 landslides). The landslide attributes 
are shown in Fig. 3 and Table 1. The heterogeneity of data 
sources implicates the variability of information. As a con-
sequence, some information such as the exact location of the 
landslides have been collected but others remain unknown 
(e.g., landslide category and trigger).

Fig. 2  Workflow of the Tiers-based approach
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Fig. 3  Landslide frequencies classified by attributes of 1 km location 
accuracy dataset (1549). The attributes include ‘unknown’, ‘others’ 
and empty records which are not reported into the graphs. They are 

1142 of ‘landslide category’, 1053 of ‘landslide size’, 1109 of ‘land-
slide trigger’, 1040 of ‘date of the event’ and 880 of ‘landslide set-
ting’
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Considering the limited information available on each 
event, a cross-check has been conducted to evaluate the 
reliability of the inventory for the purposes of this analy-
sis. DEM and satellite images, along with a number of 
pictures, available for 118 landslides have been analyzed. 
The 250 m DEM has been downloaded from CIAT website 
(Reuter et al. 2007) which is the result of a resampling 
process from the 30 m SRTM data.

The sample is not properly representative of the inven-
tory, but, it allows some possible incompatibilities with 
the goal of the analysis to be highlighted. As a result, 
some features have been removed from the inventory. 
For example: 3 events are classified as snow avalanches, 
whereas 47 landslides appear to be related with human 
alterations of the natural landscape (mining, engineered 
slopes and retaining walls) which are strictly site-specific. 
In particular, for 6 of the latter a photo link is available. 
They show that slope instability events occurred during 
mining activities and construction works which are dif-
ferent from slope cutting, these are probably triggered by 
anthropic activities. It could be argued that all the 47 land-
slides have been probably triggered by antrophic activi-
ties as well and caused by the same conditions. Therefore, 
they have been deleted from the inventory. Then, given a 
radius of confidence of approximately 1 km around each 
feature (9 × 9 cells of 250 m-side pixel), some features 
have been removed, since the slope of the terrain is lower 
than 3°, thus, they may be considered excavation collapses 
(38 events). At the end of this cross-check activity, 1461 
landslides have been selected for the susceptibility zoning 
(Fig. 4).

The analysis focuses on the development of future scenar-
ios based on the prediction of landslides spatial distribution. 

It reproduces spatially the combination of factors responsi-
ble for previous events.

The selection of the causative factors for the multi-scale 
analysis depends on the Tier. In the context of the Tier 1 
analysis, the considered causative factors are: slope degree, 
plan curvature, profile curvature, relative relief, lithology, 
land cover, Peak Ground Acceleration (PGA) and annual 
rainfall (Table 2).

As stated by (Fell et al. 2008), “areas with similar topog-
raphy, geology and geomorphology as the areas which have 
experienced landsliding in the past are also likely to experi-
ence landsliding in the future”. To identify the causes of 
past landslides and predict future scenarios, the statistical 
approach proposed in this work requires the classification of 
the causative factors. The classification significantly affects 
the prediction skill of the analysis. Therefore, classifications 
previously proposed in papers and technical reports have 
been assigned to the causative factors considered here. The 
diagram in Fig. 5 shows how the causative factors have been 
pre-processed.

The morphological factors for Tier 1 assessment have 
been classified according to the slope angle, plan curvature 
(curvature tangent to the contour line), profile curvature 
(curvature tangent to the slope line) and relative relief (the 
maximum range of elevation in a neighborhood of 1 km of 
radius).

The morphological factors have been derived from the 
30 m Shuttle Radar Topography Mission (SRTM) DEM 
(Farr et al. 2007; Florinsky et al. 2019). The morphological 
factors have been calculated in Google Earth Engine (GEE) 
(Gorelick et al. 2017) using Terrain Analysis in Google 
Earth Engine (TAGEE) a GEE package for terrain analysis 
(Safanelli et al. 2020). GEE allowed us to calculate slope 
angle, plan and profile curvature and relative relief with 
a pixel size of 30 m then resampled into a square grid of 
3 × 3 km by average calculation. To reduce the computa-
tional cost and balance the amount of stable and unstable 
cells of the dataset, the 30 m cells with slope degree lower 
than 8° have been masked for all the causative factors. This 
value has been selected considering the average slope of the 
debris flow fans which represent the steepest terrain in which 
landslides are not expected but accumulation landforms. 
Therefore, the valley bottoms along with all the depositional 
forms that couldn’t be affected by instability processes in the 
mountain areas have been excluded from the analysis. The 
relief has been calculated as the range between the maxi-
mum and the minimum elevation in a buffer radius of 1 km 
around each 30 m pixel.

The slope angle (terrain gradient) classification reflects 
the classes used for the ELSUSv1 (Günther et al. 2014): 
0°, 1–3°, 4–6°, 7–10°, 11–15°, 16–20°, 21–30°, > 30°. The 
curvatures have been classified in quartiles. Therefore, pro-
file curvature has been classified in: < − 2.6  10–4, -2.6  10–4 

Table 1  Number of COOLR 
landslides per country with 
location accuracy ‘exact’ or 
equal to 1 km

Country Number of 
COOLR land-
slides

China 44
Afghanistan 1
Burma 1038
Cambodia 1
Bangladesh 14
Viet Nam 2
Thailand 4
Tajikistan 7
Nepal 51
Pakistan 27
Kyrgyzstan 6
Laos 2
Bhutan 1
India 351
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to − 1.4  10–4, − 1.4  10–4 to − 5.4  10–5, − 5.4  10–5 to 4.2 
 10–5, > 4.2  10–5. Plan curvature has been classified in: < 1.3 
 10–7, 1.3  10–7–1.2  10–4, 1.2  10–4–2.2  10–4, 2.2  10–4–3.8 

 10–4, > 3.8  10–4. Relative relief has been divided in deciles: 
0–9 m, 9–18 m, 18–34 m, 34–65 m, 65–120 m, 120–194 m, 
194–288 m, 288–424 m, 424–625 m, > 625 m (Fig. 6).

The geological factor has been proposed by Hartmann 
and Moosdorf (2012). They have mapped the lithology of 
the globe into 16 classes, all of them present in South-Asia. 
They have been grouped into 7 classes: (1) ice, glaciers and 
water bodies; (2) siliciclastic sedimentary rocks, mixed sedi-
mentary rocks, carbonate sedimentary rocks and pyroclas-
tics; (3) mixed sedimentary rocks; (4) evaporites; (5) acid 
volcanic rocks, intermediate volcanic rocks, basic volcanic 
rocks; (6) acid plutonic rocks, intermediate plutonic rocks, 
basic plutonic rocks; and (7) metamorphic rocks (Fig. 7e).

In regards to the land cover classification, the ESA Glob-
Cover 2009 Project has classified the land cover informa-
tion into 22 classes (Bontemps et al. 2011) which have been 

Fig. 4  Landslide dataset used for the analysis and the features removed after the cross-check

Table 2  Causative factors

Class factor Factor

Tier 1
 Morphological Slope angle

Plan curvature
Profile curvature
Relative relief

 Geological Lithology
 Environmental Land cover

PGA
Annual rainfall
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Fig. 5  Pre-processing of the causative factors

Fig. 6  Causative factors selected for the Tier 1 landslide susceptibility: a slope, b profile curvature c plan curvature and d relief
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grouped into 8 categories (Table 3) according to the United 
Nations (FAO) Land Cover Classification System (LCCS) 
(Di Gregorio 2016). Therefore, the 8 LCCS classes have 
been suggested for Tier 1 land cover factor subdivision 
(Table 3) (Fig. 7f).

Since most of the landslides in Asia are mainly triggered 
by rainfall and earthquakes, two factors have been included: 
annual rainfall and PGA.

The annual rainfall factor has been calculated from the 
annual sum of the daily precipitation measured by the 
Multi-satellitE Retrievals for Global Precipitation Meas-
ure (IMERG) (Huffman et al. 2019) with a cell size of 
10 × 10 km. The final result is the average of the annual 
precipitation over 11 years (2009–2019) resampled to a 3 km 
square grid using the bilinear resampling method of SAGA 
GIS. The map has been classified into deciles: 0–111 mm/y, 
111–217  mm/y, 217–339  mm/y, 339–478  mm/y, 
478–605  mm/y, 605–769  mm/y, 769–1003  mm/y, 
1003–1340  mm/y, 1340–1731  mm/y, > 1731  mm/y 
(Fig. 7 h).

The PGA map has been developed from a collaboration 
among the Columbia University Center for Hazards and 
Risk Research (CHRR) and Columbia University Center 

for International Earth Science Information Network 
(CIESIN) using Global Seismic Hazard Program (GSHAP) 
data. It includes areas with a probability to exceed at least 
10% the PGA in a time span of 50 years (> 2 m/s2). The 
PGA have been classified into deciles from the 1th to the 
10th (CHRR-Columbia University, CIESIN-Columbia 
University 2005, Dilley et al. 2005). The zero class has 
been added (Fig. 7g).

The details about the data type, source and quality are 
reported in Table 4. All the data used for the analysis are 
freely available from different global databases (Table 4) 
(Figs. 6, 7).

The WoE technique has been proposed for the math-
ematical evaluation of the Landslide Susceptibility Index 
(LSI). The WoE model introduced by Agterberg et al. 
(1989) and then by Bonham-Carter et al. (1988) is a bivari-
ate statistical analysis, which compares dependent (land-
slide inventory) and independent variables (causative fac-
tors), it is used to evaluate landslide susceptibility (Pasuto 
and Tagliavini 2007). It assigns two weights (W+, W−) to 
the classes of each causative factor. The weights W+ and 
W− mean that the presence of the factor is favorable to 
slope instability and the presence of the factor is favorable 

Fig. 7  Causative factors selected for the Tier 1 landslide susceptibility: e lithology, f land cover, g PGA and h. precipitation
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Table 3  Land cover classification conversion from GlobCover classification to LCCS (Bontemps et al. 2011; Di Gregorio 2016)

GlobCover legend LCCS

Post-flooding or irrigated croplands A11 Managed Lands Cultivated Terrestrial Areas
Rainfed croplands
Mosaic Cropland (50–70%) / Vegetation (grassland, shrubland, forest) 

(20–50%)
Mosaic Vegetation (grassland, shrubland, forest) (50–70%) / Cropland 

(20–50%)
Closed to open (> 15%) broadleaved evergreen and/or semi-deciduous 

forest (> 5 m)
A12 Natural and Semi-Natural Terrestrial Vegetation:Woody—Trees

Closed (> 40%) broadleaved deciduous forest (> 5 m)
Open (15–40%) broadleaved deciduous forest (> 5 m)
Closed (> 40%) needleleaved evergreen forest (> 5 m)
Open (15–40%) needleleaved deciduous or evergreen forest (> 5 m)
Closed to open (> 15%) mixed broadleaved and needleleaved forest 

(> 5 m)
Mosaic Forest/Shrubland (50–70%) / Grassland (20–50%)
Mosaic Grassland (50–70%) / Forest/Shrubland (20–50%)
Closed to open (> 15%) shrubland (< 5 m) A12 Natural and Semi-Natural Terrestrial Vegetation:Shrub
Closed to open (> 15%) grassland A12 Natural and Semi-Natural Terrestrial Vegetation:Herbaceous
Sparse (> 15%) vegetation (woody vegetation, shrubs, grassland)
Closed (> 40%) broadleaved forest regularly flooded—Fresh water A24 Natural and Seminatural Aquatic Vegetation
Closed (> 40%) broadleaved semi-deciduous and/or evergreen forest 

regularly flooded—Saline water
Closed to open (> 15%) vegetation (grassland, shrubland, woody vegeta-

tion) on regularly flooded or waterlogged soil—Fresh, brackish or saline 
water

Artificial surfaces and associated areas (urban areas > 50%) B15 Artificial surfaces
Bare areas B16 Bare areas
Water bodies B28 Inland waterbodies, snow and ice
Permanent snow and ice

Table 4  Data freely available from published databases for Tier 1 application

a http:// www. epsg- regis try. org/, last accessed 2021–04-15
b https:// cmr. earth data. nasa. gov/ search/ conce pts/ C1000 000240- LPDAAC_ ECS. html, last accessed 2021–04-01
c https:// doi. panga ea. de/ 10. 1594/ PANGA EA. 788537, last accessed 2021–04-15
d http:// due. esrin. esa. int/ page_ globc over. php, last accessed 2021–04-15
e https:// sedac. ciesin. colum bia. edu/ data/ set/ ndh- earth quake- distr ibuti on- peak- ground- accel erati on last accessed 2021–04-15
f https:// disc. gsfc. nasa. gov/ datas ets/ GPM_ 3IMER GDF_ 06/ summa ry? keywo rds=% 22IME RG% 20fin al% 22 last accessed 2021–04-15
g https:// maps. nccs. nasa. gov/ arcgis/ apps/ MapAn dAppG allery/ index. html? appid= 574f2 64086 83485 799d0 2e857 e5d95 21, last accessed 2021–04-
15

Data type Data set Extent Data extension Pixels size EPSGa Data source

Morphological DEM global GEOTIFF 30 × 30 m 4326 SRTMb

Geological Vector global WFS – 4326 GLIMc (Hartmann and Moosdorf 2012)
Environmental Raster global GEOTIFF 300 × 300 m 4326 © ESA 2010 and  UCLouvaind

PGA Raster global GEOTIFF 90 × 90 m 4326 CHRR-CIESINe (CHRR-Columbia Uni-
versity, CIESIN-Columbia University 
2005)

Precipitation Raster global txt 10 × 10 km 4326 IMRGf (Huffman et al. 2019)
Landslide inventory Vector global shp – 4326 NASA-COOLRg (Kirschbaum et al. 2010)

http://www.epsg-registry.org/
https://cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html
https://doi.pangaea.de/10.1594/PANGAEA.788537
http://due.esrin.esa.int/page_globcover.php
https://sedac.ciesin.columbia.edu/data/set/ndh-earthquake-distribution-peak-ground-acceleration
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary?keywords=%22IMERG%20final%22
https://maps.nccs.nasa.gov/arcgis/apps/MapAndAppGallery/index.html?appid=574f26408683485799d02e857e5d9521
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to slope stability, respectively. The general formulations 
of Agterberg et al. (1989) are the following:

 where P is the probability, B is the presence of a potential 
landslide causative factor, B1 is the absence of a potential 
landslide causative factor, D is the presence of a landslide 
and D1 represents the absence of a landslide. Wf is called 
weight contrast: the magnitude of the contrast reflects the 
overall spatial relation between causative factors and land-
slides (Dahal et al. 2008).

The landslide susceptibility is mapped by the sum of ith 
weights contrast of the classified maps for the n causative 
factors:

The result is the Landslide Susceptibility Index (LSI). Once 
standardized, it represents a measure of the landslide likeli-
hood of occurrence or a measure of the potential spatial dis-
tribution of future landslides.

To evaluate the ability of the susceptibility model to pre-
dict the spatial distribution of the landslides and to evaluate 
the robustness of the model fitting capacity, the Area Under 
the Curve (AUC), calculated from the Receiving Operating 
Characteristic (ROC) curve (Chung and Fabbri 2003; Fawcett 
2006), has been proposed. The ROC curve explores the rela-
tion between the True Positive Rate and the False Positive Rate 
by consecutive cutoffs of the LSI. Formally, each map-unit of 
the susceptibility map is labeled with True Positive (tp), False 
Positive (fp), True Negative (tn) and False Negative (fn) tags. 
In the susceptibility map, a map-unit is True or False accord-
ing to the presence or the absence of landslides, respectively. 
Moreover, the unit is considered Positive or Negative if the 
relative susceptibility value is higher (stable unit) or lower 
(unstable unit) than the cutoff. The ROC curves are graphed 
coupling tprate (y-axis) and fprate (x-axis):

(1)W+ = ln
P(B|D)
P(B||D1

)

(2)W− = ln
P(B

1
|D)

P(B
1
||D1

)

(3)Wf = W+ −W−

(4)LSI =

n∑

i=1

Wfi

(5)tp
rate

=
tp

tp + fn

(6)fp
rate

=
fp

fp + tn

The area underlying the ROC curve (AUC) can be used as 
a metric to assess the overall quality of a model: the larger 
the area, the better the performance of the model over the 
whole range of possible cutoffs. Therefore, if the AUC is 
equal to 1 it means that the results are perfect, whereas if it 
is equal to 0.5 the scenario predicted is unlikely.

Considering the accuracy of the landslide inventory, the 
analysis has been conducted with the pixel size of 3 km x 
3 km. Thus, the causative factors have been resampled to 
the same size before the statistical analysis. The categorical 
factors have been resampled taking into account the pre-
dominant class, while for the continuous factors, the average 
of the included values have been calculated. The landslide 
inventory has been divided randomly in two datasets: 70% 
and 30%, to train and validate the model. The software used 
for the analysis are QGIS, SAGA-GIS. The simulation based 
on the WoE and the validation have been processed with the 
SZ-plugin (Titti and Sarretta 2020) developed for QGIS. The 
ROC analysis has been carried out using the Scikit-learn 
module (Pedregosa et al. 2011).

Results and discussion

The landslide susceptibility map, resulting from the analy-
sis, is shown in Fig. 8a and the class weights are reported 
in Table 5.

The WoE is a bivariate approach which evaluates the 
single predisposing factor in relation with the dependent 
variable, Table 5 reports the W+, W−, Wf values and the per-
centage of landslide cells and area of each class factor. The 
weight contrasts of slope factor show an almost constant 
increase in instability from 0° to > 30°, with a peak around 
21°−30° and a negative value between slope angle of 7° and 
15°. Noticeably, the mask until 7° of slope adopted for the 
factors has excluded the first three classes of the slope factor, 
since their cell value is equal to the average of 30 m slope. 
Even though the pixel size of the analysis cannot perfectly 
describe the land surface morphology, the trend of the Wf 
is realistic. Moreover, the highest number of landslides is 
present in the class 21°−30°, which includes the 52% of the 
landslide cells, revealing the highest Wf of the slope factor. 
The slope factor also includes the most stable class of all 
factors which is the class 7°–10° with Wf equal to − 6.

Plan and profile curvatures represent the convexity and 
concavity of the surface tangent to the contour line and to 
the slope line, respectively. The former is related to the lat-
eral flow convergence or divergence, while the second to 
the acceleration and deceleration of a flow along the gravity 
direction. Based on the Wf values of these factors, there is 
not a relevant difference between them. The landslides per-
centage per class and the area percentage are very balanced. 
(Table 5).
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The relative relief presents an increasing trend from 18 m 
to > 625 m. Since the classes represent deciles, the area of 
each class is almost 10% of the total. Therefore, the trend 
of the Wf is dependent on the landslide included. The most 
unstable classes are the 424–625 m and > 625 which include 
the 58% of the total landslide cells (Table 5).

As regards the lithology factor, the results confirm that 
Wf parameters must be analyzed in relation to the other 
classes and with reference to the specific study area. Indeed, 
depending on the geological context, some unconsolidated 
lithologies might have lower strengths compared to meta-
morphic ones. Here, “unconsolidated sediment” is the most 
stable class, while “metamorphic rocks” is the least stable. 
In particular, the stability of the former comes from the high 
extension of the area (31% of the total area), although it 
includes the 10% of the landslide cells, while the instability 
of the latter is due to the balance between the number of 
landslides included (15% of the total landslide cells) and the 
area covered by the class (7% of the total). The second high-
est Wf is the “sedimentary rocks” which covers about 42% 
of the total area and the 60% of the landslide cells (Table 5).

Regarding the land cover, it contains one of the most sta-
ble classes and the most unstable class of all considered 
factors. Indeed, the land covered by “shrub” reflects a Wf 
value equal to 2.35, while “bare areas” display the lowest 
value, equal to −3.77 (Table 5).

The Wf values of the PGA and precipitation classes 
reveal that the landslides included in the inventory are 

mainly triggered by precipitation (Fig. 3). The PGA Wf are 
variable between − 1.57 and 2.01 without a precise trend. 
The precipitation classes have an increasing trend similar 
to relief and slope. The higher the annual precipitation, the 
higher the instability up to a Wf value of 2.55.

The standardized LSI (0–1) has been divided into 5 
classes (Fig. 9) to fit the success curve as best as possible: 
0–0.54 “very low”, 0.54–0.64 “low”, 0.64–0.74 “moder-
ate”, 0.74–0.80 “high”, 0.80–1 “very high”. Statistically, 
in the 5-classes susceptibility map (Fig. 9a), the highly 
susceptible terrain covers 5% (Fig. 9b) of the total mapped 
area, more than the 93% of that is steeper than 15° and the 
92% has a relief higher than 194 m. On the contrary, the 
68% of the “very low” susceptibility areas, which cover the 
68% (Fig. 9b) of the study area, respectively, has a relief 
lower than 120 m (87% lower than 288 m).

The weights W+ and W− are calculated from the relation 
between the number of landslides included or excluded 
into the class factor and the size area of the class factor. 
The result of the difference between W+ and W− plays a 
significant role to determine if the specific class is favora-
ble to the instability of the slope. In particular, the areas 
represented by negative Wf values can be considered stable 
and the areas represented by positive Wf values, unsta-
ble with respect to a specific predisposing factor. There-
fore, the LSI resulting from the sum of the Wf may range 

Fig. 8  a 3 × 3 km landslide susceptibility map of south-Asia. b Spatial distribution of the LSI. c Prediction rate curve and Success rate curve of 
the landslide susceptibility map
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Table 5  Positive weights, 
negative weights and contrast 
weights of the classified 
causative factors resulting from 
the WoE analysis of the study 
area

Causative factors Classes W+ W− Wf Landslides (%) Area (%)

Slope (°) 0 – – – – –
1–3 – – – – –
4–6 – – – – –
7–10 − 5.55 0.46 − 6.01 0.14 36.78
11–15 − 1.10 0.14 − 1.24 6.27 18.74
16–20 0.08 − 0.01 0.09 13.96 12.90
21–30 0.94 − 0.51 1.44 52.14 20.43
 > 30 0.90 − 0.20 1.11 27.49 11.15

Plan curvature  < 1.3  10–7 − 0.28 0.06 − 0.33 15.10 19.93
1.3  10–7–1.2  10–4 0.30 − 0.09 0.39 27.07 20.09
1.2  10–4–2.2  10–4 0.16 − 0.04 0.20 23.50 20.05
2.2  10–4–3.8  10–4 0.10 − 0.03 0.13 22.22 20.02
 > 3.8  10–4 − 0.50 0.09 − 0.59 12.11 19.92

Profile curvature  < − 2.6  10–4 0.16 − 0.04 0.20 23.50 20.01
− 2.6  10–4 to − 1.4  10–4 0.18 − 0.05 0.24 24.07 20.02
− 1.4  10–4 to − 5.4  10–5 − 0.11 0.03 − 0.14 17.95 20.04
− 5.4  10–5 to 4.2  10–5 − 0.09 0.02 − 0.01 18.38 20.04
 > 4.2  10–5 − 0.21 0.05 − 0.25 16.10 19.89

Relief (m) 0–9 0.00 0.11 − 0.11 0.00 10.50
9–18 0.00 0.10 − 0.10 0.00 9.46
18–34 − 4.22 0.10 − 4.33 0.14 9.74
34–65 − 1.95 0.09 − 2.04 1.42 10.05
65–120 − 0.86 0.06 − 0.92 4.27 10.10
120–194 − 0.29 0.03 − 0.32 7.41 9.92
194–288 0.08 − 0.01 0.09 10.83 10.00
288–424 0.50 − 0.07 0.57 16.52 10.05
424–625 1.17 − 0.29 1.46 32.48 10.07
 > 625 0.98 − 0.21 1.18 26.92 10.12

Lithology Unconsolidated sediment − 1.10 0.27 −1.37 10.40 31.40
Volcanic rocks − 0.89 0.05 − 0.94 3.42 8.31
Sedimentary rocks 0.35 − 0.37 0.72 60.54 42.64
Plutonic rocks 0.02 − 0.00 0.02 10.11 9.88
Metamorphic rocks 0.78 − 0.09 0.87 15.53 7.17
Ice, Glaciers and Water 0.00 0.00 0.00 0.00 0.40
Evaporites 0.00 0.00 0.00 0.00 0.20

Land cover Cultivated areas − 0.56 0.25 − 0.81 22.79 39.81
Woody/trees 0.69 − 0.21 0.90 31.77 15.87
Shrub 1.92 − 0.42 2.35 38.32 5.62
Herbaceous − 1.69 0.11 − 1.79 2.28 12.30
Aquatic vegetation 0.00 0.00 0.00 0.00 0.07
Artificial surfaces 2.08 − 0.03 2.11 3.42 0.43
Bare areas − 3.51 0.26 − 3.77 0.71 23.77
Water/snow/ice − 1.10 0.01 − 1.11 0.71 2.13
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Table 5  (continued) Causative factors Classes W+ W− Wf Landslides (%) Area (%)

PGA (deciles) 0th − 0.54 1.03 − 1.57 47.29 81.21

1th − 0.60 0.01 − 0.61 1.00 1.83

2th − 0.24 0.0035 − 0.25 1.28 1.63

3th 0.53 − 0.01 0.54 3.13 1.84

4th 1.66 − 0.07 1.74 8.69 1.65

5th 1.18 − 0.04 1.23 5.70 1.74

6th 1.00 − 0.023 1.03 4.56 1.68

7th 1.47 − 0.06 1.54 7.98 1.83

8th 1.90 − 0.11 2.01 12..25 1.84

9th 1.01 − 0.04 1.05 5.56 2.02

10th − 0.06 0.001 − 0.06 2.56 2.71
Precipitation (mm/y) 0—111 0 0.10 − 0.10 0.00 9.96

111—217 − 3.55 0.10 − 3.65 0.28 9.95
217—339 − 3.55 0.10 − 3.65 0.28 9.94
339—478 − 1.84 0.09 − 1.93 1.57 9.85
478—605 − 2.06 0.09 − 2.15 1.28 10.02
605—769 − 2.86 0.1 − 2.96 0.57 9.93
769—1003 − 0.81 0.06 − 0.87 4.42 9.94
1003—1340 0.22 − 0.03 0.24 12.68 10.21
1340—1731 0.67 − 0.11 0.79 19.80 10.08
 > 1731 1.77 − 0.79 2.55 59.12 10.11

Fig. 9  a Classified 3 × 3 km landslide susceptibility map of south-Asia. b Spatial distribution of the LSI and the area covered by the relative 
classes. c Prediction rate curve and Success rate curve of the landslide susceptibility map
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between negative and positive values which allow for 
evaluating the stability or instability of the area.

To select the most susceptible area to analyze in detail 
in the Tier 2 assessment, a susceptibility class has been 
assigned to each administration unit of the study area. Dif-
ferent levels of administration units are available in GADM 
website.1 Since different levels are available for different 
countries, a specific level has been assigned to each country 
to homogenize the dimension of the administration units all 
over the study area. Taking inspiration from Arup (2020) the 
relative landslide susceptibility of the single administrative 
unit has been evaluated as the 80th percentile of the LSI 
pixel-based map (Fig. 8) and then classified from very low 
to very high to optimize the ROC curve weighted over the 
extension area of the administrative units area. The result is 
shown in Fig. 10.

The prediction performance and the success of the Tier 
1 analysis have been evaluated by the ROC curves (Fawc-
ett, 2006), which are reported in Fig. 9c. The curves have 
been plotted using the validation dataset and the training 
data set, respectively. The resulting AUC is equal to 0.91 for 
the prediction curve and equal to 0.90 for the success curve. 
Overall, the model applied to the selected study area has 
demonstrated good reliability to evaluate potential instabil-
ity areas.

An additional way to evaluate the prediction capac-
ity of the model is presented in Fig. 11. It compares the 
ROC curve of the single causative factor with the curve 
of the landslide susceptibility map. The significant dif-
ferences among the ROC curve of the susceptibility map 
(AUC = 0.91) and the curve of the slope (AUC = 0.77), 
relief (AUC = 0.77), precipitation (AUC = 0.90) along with 
the lower values of the AUC of the other causative factors, 
confirm the goodness of the prediction performance based 
on the combination of multiple factors (slope, curvatures, 

Fig. 10  Landslide susceptibility 
map based on administrative 
units

Fig. 11  ROC curves and relative prediction performances (AUC) of 
the causative factors and of the susceptible map1 https:// gadm. org/ data. html last access, 2021–04-18.

https://gadm.org/data.html
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relief, land cover, lithology, PGA and precipitation) in 
comparison with the use of single factor alone (Günther 
et al. 2013b; Remondo et al. 2003). The factors that appear 
to play a major role in predisposing slope instability phe-
nomena with respect to the landslide inventory used are 
slope, relief and precipitation.

Conclusions

The work is aimed to map the landslide susceptibility in 
the Belt and Road Countries. In this framework, the land-
slide susceptibility zoning through the multi-Tier approach 
has been carried out.

The landslide susceptibility map of south-Asia has 
been modeled using a quantitative, statistical method. 
Eight independent variables, i.e., Slope, Plan curvature, 
Profile curvature, Relative relief, Lithology, Land cover, 
PGA, Precipitation, have been classified and then weighted 
by the WoE. The analysis has been based on the NASA-
COOLR landslides inventory. It is a global landslides cata-
log that collects data from online media reports, disaster 
databases, scientific reports, citizen reports, and others. 
All the data and software used in this work are open and 
open-source.

The result is a 5 classes landslide susceptibility map. 
The ability of the susceptibility model to predict the spa-
tial distribution of the landslides and the goodness of the 
model fitting have been evaluated by the comparison of the 
ROC curves calculated from the validating and training 
datasets. The prediction and success performance are 0.91 
and 0.90, respectively. Among the causal factors slope, 
relief and precipitation play a major role. The administra-
tive units, displaying moderate to very high susceptibility 
class, have been selected for further analysis to be carried 
out at a national scale (Tier 2).
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