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Chapter 10
Fore-and-Back

10.1 Introduction

Fore-and-Back has been presented in the literature as Forward&Backward and also
as F&B, but the algorithm presented in this chapter differs in some details from
the previously published ones. It is an extension of Beam Search (BS) that can im-
prove its effectiveness. Fore-and-Back, when run with no limits on computational
resources, becomes an exact solution method. However, by design, it is mainly con-
cerned with heuristic solving, trying to quickly get high quality solutions with little
attention paid to optimality proofs.

A significant characteristic of this method is that, despite being a primal only
method, it is able to compute bounds to the cost of completing partial solutions,
therefore to discard partial solutions from expansion and ultimately to reduce the
search space.

Beam search (BS) is a variant of standard tree search that limits the number of
offsprings that are expanded at each iteration. BS core ideas were originally intro-
duced in artificial intelligence contexts, and only later transposed to optimization.
The first problems for which BS was used were scheduling problems, but BS has
since proved successful also on many other different combinatorial optimization
problems.

BS does not complete the search that would normally be carried out by branch
and bound algorithms, therefore it is an approximate method and a matheuristic of
its own. BS has, in fact, been proposed as an effective heuristic methodology, and
as such it has been enhanced and hybridized with other heuristics, for example, ant
colony optimization. Other matheuristics closely related to BS have been proposed.
One is the Pilot Method, which consists of a partial enumeration strategy, where the
possible expansions of each partial solution are evaluated by means of a pilot heuris-
tic. Another one is the Filter&Fan method, which starts with a feasible solution and
builds a search tree, where branches correspond to submoves in the neighborhood
of the solution and where each node corresponds to a solution obtained as a result of
the sequence of submoves associated with the root-node path. In this algorithm, the
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initial candidate list of moves is filtered at each tree level by evaluating each move
in the list with respect to all the solutions at that level. The best moves at each level
are included in the candidate list of the next level and the corresponding solutions
are the nodes of the successive level.

The characterizing idea of BS is to allow the extension of partial solutions into
a limited number of offsprings. This is similar to what we have already seen for
diving (Chapter 5), for VLSNS (Chapter 6) and for the Corridor Method (Chapter
8), but here the focus is on the result, the number of offspring, and not on the method
to limit their number. At each BS iteration, the algorithm extends a partial solution
from a set T, the beam, generating a possibly limited number of offspring. Each
offspring is either a complete solution, or it is inserted into the set T itself, in case it
is a partial solution worth of further analysis.

At the end of the expansions, BS selects from T up to § (a parameter called
the beam width) solutions. The selection is based on some criterion for ranking the
expected usefulness of an expansion, for example, on the basis of bounds to the cost
of the completions.

More in detail, BS proceeds as follows. At the first step, the beam T is initialized
with an empty solution. Then, the algorithm iterates a basic procedure in which a
set of promising nodes at a given level of the search tree are expanded to generate
their & offspring, which all become members of the set of the unexpanded nodes
of a subsequent tree level. A node can be considered to be promising in accordance
with its completion bound cost. When a level has been expanded, two strategies
are possible: either expand the subsequent level or expand the nodes of lowest cost
completion bound. Intermediate strategies are possible, where expansions proceed
depth-first in order to quickly complete good solutions but, when the last level is
expanded, it is possible to backtrack to the nodes with the lowest completion bound,
which can be high in the tree hierarchy. This process is iterated until a termination
condition is met (heuristic) or until all unexpanded nodes have a completion bound
cost that is not smaller than the current upper bound, which is, therefore, the optimal
cost (exact).

10.2 Fore-and-Back

Algorithm Fore-and-Back builds on this general BS approach, alternating searches
following opposite expansion directions, and storing in memory previous partial
results that can be used as a lookahead to complete partial solutions when search is
performed in the opposite direction. The algorithm works therefore best when the
problem suggests a natural direction of partial solution expansions, which can also
be reversed.

Actually, there is a vast class of combinatorial optimization problems that fit this
schema. These are problems that exhibit a regular substructure that can be decom-
posed into n subproblems that are linked together by a set of coupling constraints.
These problems can often be modeled by defining, for each k-th subproblem, a set Sy
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containing all the feasible solutions for the k-th subproblem. The resulting problem
consists of choosing, from each set Sy, a single component in such a way that the
set of selected components satisfies all constraints. This is, for example, the case for
the GAP, where subproblems could refer to the assignments of single clients and the
capacity constraints act as linking constraints, or vice-versa (subproblems defined
on capacities and linking constraints on assignments).

Fore-and-Back exploits this structure, molding around it an iterative heuristic al-
gorithm, that adopts a memory-based look-ahead strategy exploiting the knowledge
gained in its past search history. Algorithm Fore-and-Back iterates a partial explo-
ration of the solution space by generating a sequence of beam search-like search
trees of two types, called forward and backward trees. Each node at level & of the
trees represents a partial solution containing 4 components. At each iteration #, the
algorithm generates a forward tree F’ if 7 is odd, or a backward tree B’ if 7 is even. In
generating a tree, each partial solution X is extended to a feasible solution using the
partial solutions generated at the previous iteration in the complementary tree, and
the cost of the resulting solution is used to bound the quality of the best complete
solution that can be obtained from X.

10.2.1 Search trees

During search, Fore-and-Back alternatively builds forward trees and backward
trees.

A forward tree is an n-level tree, if the number of subproblems is n, where each
level h=1,...,nis associated with a component set Sj, and each node at level & corre-
sponds to a partial solution containing one component from each set Sy, S2,...,5s.
Components are considered to be solution elements, for example, one component
could be the assignment of a client to a server in the case of the GAP, or an arc to
be included in the route in the case of the TSP.

Conversely, in a backward tree, each level 4 is associated with a set S, 1, in
case these labels were numbered according to the forward exploration, so that a
node at level A, represents a partial solution containing one component of each set
SnySn1y- -y Sneht1-

A list, denoted by L! , is associated with each level £ of the tree built at iteration .
The list contains 0 nodes generated but not expanded at level &, where § is an input
control parameter equivalent to the likewise denoted parameter of Beam Search.
All nodes so far expanded at level / in all trees at odd iterations are kept in set E”
for forward trees, while those expanded at level % in all trees at even iterations are

kept in Fh for backward trees. The nodes in the lists le, h=1,...,n, represent the
memory of iteration #, that will be used to guide the exploration of the current tree
and of the tree that will be explored in the following iteration 7 + 1.

The core idea of Fore-and-Back is to evaluate the completion cost of partial so-
lutions stored at level % of the tree by means of the partial solutions stored in L;’_lh
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in case of forward trees, or, analogously, the completion of partial solutions in L! ,

by means of solutions in le_l in case of backward trees.
As an example, suppose we are building the forward tree associated with an odd

iteration ¢. Consider two partial solutions, X € L;l and X € L;;ll. Since ¢ is odd, X

contains one component of each set S1,S5, ...,S;,, while X contains one component
of each set S, Sy—1,-..,5n+1. These two solutions can be combined to obtain a (not
necessarily feasible) complete solution X UX of cost ¢ (X ux ) Clearly, if the re-
sulting solution X U X satisfies all constraints, the associated cost represents a valid
upper bound to the optimal problem solution cost (assuming, here and in the rest of
the chapter, to deal with a minimization problem).

In general, at each iteration ¢, algorithm Fore-and-Back builds the associated tree
and computes the cost ¢(X) of each node X. The cost of an inner node is derived
from the cost of completing the partial solution X and from the penalty assigned to
the level of infeasibility that the completion shows. Algebraically:

c(X)= min {c(XUX)+cins (XUX)}, (10.1)

Yort—1
XeL,

where ¢;,r(X UX) is an arbitrary function whose value is related to the degree of
infeasibility of X UX and that is equal to 0 if X UX is a feasible solution. It is im-
portant to effectively balance the push toward feasibility against the quest for good
solutions, a balance that is problem-dependent when not even instance-dependent.

During the first iteration, there is no backward tree to match partial solutions
against. The lists L2 are empty at each level, therefore expression (10.1) gives the
cost of the partial solution X.

10.2.2 Fore-and-Back pseudocode

To simplify the code and avoid all duplications needed to account for forward or
backward directions, we will denote by T alternatively the forward tree F or the
backward tree B, depending on the parity of the iteration counter. Consequently, 7},
denotes the level & of the tree T, be it forward or backward.

The algorithm is controlled by three user-defined parameters: &, the number of
nodes expanded at each level of both forward and backward trees; maxn, the maxi-
mum total number of nodes to expand; maxtnodes, the limit of the number of nodes
of each tree.

In order to expand level % of a tree at iteration #, the algorithm computes the value
¢(X) for each node X € T}, and builds the set Lj, C Tj,. The list is defined ordering
Tj, by increasing cost values and keeping in L) only its § nodes having the smallest
cost, which will be further expanded.

A distinguishing feature of Fore-and-Back is that at each level 4 of the tree built
at iteration ¢, we store also the cost é;l, which is the least cost of nodes in 7} but
not in Lj. This is the least cost we are expected to pay in case we want to com-
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Fig. 10.1 Forward tree, initial (t=1)

plete a complementary partial solution without using the partial solutions that led to
defining L}

In case a feasible solution is found, we possibly update a variable zj.y, which
keeps the cost of the best solution achieved so far: it is initialized to oo at the begin-
ning of the algorithm and takes on progressively lower values during search.

In forward trees, each node X included in Lj is expanded to create a new node
X U{s} for each component s of the set Sy, of the subproblem associated with level
h+1, provided that the following conditions hold:

1) X U{s} does not violate any constraint.
2) c(XU{s})+ 62;12 < Zpest» in case X U {s} cannot be feasibly completed with a

. L . —=ht2 .
partial solution in L;l +12 orinE"" (pruning).

These conditions hold, with opportune indices update, also for backward trees.
In the pseudocode, e make use of two dummy levels, L{ for forward trees and L/, |
for backward trees, in order to initialize their computation.

Node expansions continue in this fashion until the last level is reached (h = n) or
until a maximum number of nodes have been expended in the current tree. This last
condition is typically met in problems, like the GAP, where partial solutions cannot
be feasibly expanded in any way, therefore backtracks are in order. Backtracking
can be made either in a depth-first way, expanding the last generated unexpanded
nodes, or jumping to the stored node of least expected cost ¢(X).

Algorithm Fore-and-Back terminates after the expansion of maxn nodes, or after
two consecutive iterations where the value of z;., does not improve. This last is
a condition that no further improvements would be possible if infeasibilities are
properly accounted for.

Figures 10.1 and 10.2 show an example of possible forward and backward trees
for the first iteration of the algorithm, expanding & = 2 nodes per level.
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Algorithm 41: Algorithm Fore-and-Back

1 function Fore-and-Back(8, maxn, maxtnodes);

Input : J, beam width, maxn, max total num of nodes, maxtnodes, max num of nodes

per tree

Output: A feasible solution x* of value zp,s
2 initialize t = 0, noimpr = 0, nNodes = 0, Zpess = oo}
3 while nNodes < maxn do // Alternate forward and backward trees

27
28
29
30
31
32
33
34
35
36
37
38
39 end

t =t+ 1; noimpr = noimpr+1;
let L =L! | = {0}, ntNodes=0;
foreach level h=1,...,n do
set T, = {0}; // generate the node set T,
if 1 is odd then
| setk=hkl=h—1;
else
| setk=n—h+1;kl =n—h+2;
end
foreach node X € Lj_| do
foreach component s € Sy do
let X' =X U{s};
if X' meets conditions i) and ii) then
set Ty =T, UX';
ntNodes = ntNodes+ 1;
nNodes = nNodes + 1,

if h=nand c(X') < zpes then // feasible solution
| set Zpesr = ¢(X'), noimpr =0 and x* = X’;
end
end
end
set EK=EfUX; // node expanded

end

// extract the subset L} €T
foreach node X € T; do

if |7;| < 6 then

| set Lj = Tj;
else
| let Lj contain only the & least cost partial solutions of 7j;
end
end
if ntNodes > maxtnodes then break;
end
if noimpr =2 then // best sol. not improved for two iterations
| stop;
end
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Fig. 10.2 Backward tree (t=2)

10.3 Fore-and-Back for the GAP

Algorithm 41 can be directly applied to the GAP, as this problem enjoys the struc-
tural property required in Section 10.2. In the following run, in fact, we assumed the
GAP to be composed of subproblems defined by client assignments, one subprob-
lem for each client. The linking constraints are given by the capacity constraints,
much alike the decomposition used in the example of Section 7.4. Algorithm 41
is applied to instance example8x3 of Section 1.1 and run with parameters & = 2,
maxn = 5000 and maxtnodes = maxn/10.

Initially, step 2, variables and structures are initialized, and a standard Beam
Search is run. We saw in Chapter 1 that GAP is strongly NP-hard and that the
number of infeasible solutions that can be expressed by the decision variables of
formulation GAP (see section 1.1) exceeds by far the number of feasible solutions
(Table 1.1). This implies that unguided search is likely to produce partial solutions
that cannot be feasibly expanded. Figure 10.3 shows the complete forward tree that
was explored during the first forward run. The figure shows all generated nodes and
the resulting tree topology, except that nodes corresponding to complete solutions
are not stored in the code, being immediately pruned if dominated, and are conse-
quently not shown in the figure. The root node is the dummy empty node.

The condition that actively terminated the first search was on the number of tree
nodes, maxtnodes and search went through 41 backtrackings. No feasible solution
could be found. The bounds for unmatched completions were é% = 88, éé =172,
&l =252,¢1 =282, ¢k =221, ¢l =229, ¢1 =257.1

The stored partial solutions, along with the bounds, proved extremely useful to
guide search for the backward tree. Figure 10.4 shows the first backward tree. This
time the active terminating condition was the completion of the loop at step 6, as a
complete feasible solution could be constructed (of the two longer paths of figure
10.4 one could not be expanded including the last client). However, feasible solu-

! We remind that in the computational traces the decision variables are indexed from 0
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Fig. 10.3 Initial forward tree for instance example8x3

tions could be found before that, upon matching partial backward solutions with
partial solutions stored by the forward search.

The first feasible matching, thus the first feasible solution, was found at level 4
of the backward tree, where the partial solution X = (_,_, _,_,2,2,2,1) of cost 276
could be matched with the forward partial solution X = (0,0,0,1,_,_,,_) of cost
61, thus producing a feasible solution of cost 337.

This upper bound was repeatedly improved during the backward search. Af-
ter obtaining higher cost matchings, at level 4 the forward partial solution X =
(0,0,0,2,_,_,_,) of cost 105 could eventually be matched against the backward
partial solution X = (_,_,_,_,1,2,2,1) of cost 230, thus producing a feasible solu-
tion of cost 335.

Then, an improved matching of cost 334 was found, then one of cost 330, un-
til the forward partial solution X = (1,0,0,2,_, _,_, ) of cost 117 could be matched
with the backward partial solution X = (_,_,_,_,1,2,2,0) of cost 211, thus produc-
ing a feasible solution of cost 328. At the end of the backward run, the algorithm
expanded 29 nodes, which permitted to identify 36 feasible solutions (one by con-
structions, the other ones by matching unexpanded offspring with stored partial so-
lutions).

The best found solution of cost 328 is still not optimal. An optimal solution could
be found in the subsequent forward run, with ¢ =2, where first an improving solution
of cost 327 was found, then one of cost 326, and finally, after backtracking at level 1,
the forward partial solution X = (1,_,_,_,_,_,_, ) of cost 22 could be matched with
the backward partial solution X = (_,1,0,2,0,2,2,0) of cost 303, thus producing a
feasible solution of cost 325, which is optimal.
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Fig. 10.4 First backward tree for instance example8x3

Having no awareness of the reached optimality, search goes on until a termination
condition is met. In this case, the condition refers to the number of iterations without
best solution improvements, and lets search terminate after 3 main loop iterations.

Figures 10.5 and 10.6 report about the number of nodes explored during search.
The left figure shows the number of node expansions at each iteration, along with
the number of nodes that were actually stored into memory. It is possible that the
number of stored nodes is higher than the number of expansions, as at iteration
1, because when expanding a node more than an offspring is generated. It is also
possible that the number of expansions is higher than the number of stored nodes,
as at iteration 2, because many infeasible offspring get generated, and these are not
stored into memory.

Data is presented separately for forward and for backward trees. It is apparent
how the first forward tree, that cannot use completion bounds for pruning, generates
a number of nodes much higher than the following ones, that can make use of search
memory.

Figure 10.6 presents aggregate data on the total number of stored nodes and on
the total number of open nodes per iteration. Again, one can see how most nodes
are generated during the first two iterations, mainly during the first, and that the
termination condition stops the search when there would still be open nodes to ex-
pand, which could however not lead to improving solutions (though the algorithm
is unaware of this).

Coming to feasible solutions obtained by matching partial solutions, Figure 10.7
shows, at each level of the search tree, the number of feasible solutions that could
be obtained. The distribution is heavily skewed to the right, as a result of the much
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higher number of nodes produced by forward search, which permitted the early
pruning of backward solutions, when they were generated. No matchings were
achieved at level 7.

o matched partial solutions per level
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Fig. 10.7 Number of matched solutions

Finally, Figure 10.8 shows, separately for forward and for backward trees, the
profile of the completion bounds at cach level £ of the trees. These are the éﬁ and 62
bounds that could be read at the end of the run, h =1,...,n.

The blue forward bound profile increases monotonically up to level n — 1 (the last
level has no bound as it corresponds to complete solutions), thanks to the sufficient
number of nodes that were generated.

The orange backward bound is counter-intuitively non monotonic and very low
for the middle levels. This comes from the fact that comparatively few nodes were
generated for backward trees, therefore data refers only to the best solutions, which
were produced in a depth-first fashion. For example, nodes at level 4 derived from
the expansion of the best nodes at level 5, and the node that caused a comparatively
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high bound at level 5 was not yet expanded, therefore did not cause a monotonic
increase of the backward completion bound.
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Fig. 10.8 Completion bound cost per level

10.4 Related literature

Fore-and-Back was initially presented in Bartolini et al (2008) and Bartolini and
Mingozzi (2009).

Al introduction on beam search context can be found in Lowerre (1976); Reddy
(1977). Scheduling applications of beam search are described in Ow and Morton
(1988) and Pinedo (1995). Extensions and hybrids can be found for example in
Della Croce et al (2004), Blum (2005), Blum (2008), and Maniezzo (1999).

The pilot method was proposed in Duin and Vof (1999), the Filter&Fan in Glover
(1998), and Greistorfer and Rego (2006).

References

Bartolini E, Mingozzi A (2009) Algorithms for the non-bifurcated network design
problem. Joutnal of Heuristics 15(3):259-281

Bartolini E, Maniezzo V, Mingozzi A (2008) An adaptive memory-based approach
based on partial enumeration. In: Maniezzo V, Battiti R, Watson JP (eds) LION
2, LNCS 5313, Springer, pp 12-24

Blum C (2005) Beam-ACO - Hybridizing ant colony optimization with beam
search: an application to open shop scheduling. Computers and Operations Re-
search 32(6):1565-1591



210 REFERENCES

Blum C (2008) Beam-ACO for simple assembly line balancing. INFORMS Journal
on Computing 20(4):618-627

Della Croce F, Ghirardi M, Tadei R (2004) Recovering beam search: Enhancing
the beam search approach for combinatorial optimization problems. Journal of
Heuristics 10(1):89-104

Duin C, Vo83 S (1999) The pilot method: A strategy for heurisic repetition with
application problem in graphs. Networks 34:181-191

Glover F (1998) A template for scatter search and path relinking. In: Ronald E,
Schoenauer M, Snyers D, Hao JK, Lutton E (eds) Artificial Evolution, Lecture
Notes in Computer Science, Vol.1363, pp 3-51

Greistorfer P, Rego C (2006) A simple filter-and-fan approach to the facility location
problem. Computers & Operations Research 33:2590-2601

Lowerre B (1976) The HARPY speech recognition system. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA

Maniezzo V (1999) Exact and approximate nondeterministic tree-search proce-
dures for the quadratic assignment problem. INFORMS Journal on Computing
11(4):358-69

Ow P, Morton T (1988) Filtered beam search in scheduling. International Journal of
Production Research 26:297-307

Pinedo M (1995) Scheduling: Theory algorithms, and systems. Prentice-Hall

Reddy D (1977) Speech understanding systems: A summary of results of the five-
year research effort. Tech. rep., Department of Computer Science, Carnegie-
Mellon University



	Copertina_postprint_IRIS_UNIBO (2)
	Chapter - Fore and Back - Maniezzo Boschetti Stuzle.pdf

