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Chapter 2
Automatic Design for Matheuristics

2.1 Introduction

To organize a matheuristic, we can use a large variety of techniques. These or-
ganize the search intensification and diversification and they guide in their way
the problem-specific components. Traditionally, matheuristics design and develop-
ment is involved in a manual, experimental approach that is mostly guided by the
experience of the algorithm designers. This way the process is guided by over-
generalizations from the designers previous experience and by implicit indepen-
dence assumptions between parameters and algorithm components. In addition to
these, the manual process has a number of other disadvantages. Some are that it
limits the number of designs that would be involved, it hides the efforts that have
been dedicated to their developement, it loses the number of design alternatives that
are involved, or it simply makes the design process irreproducible.

The implementation effort that is associated with the design of matheuristic algo-
rithms is very variable. Basic versions that consist of few numerical parameters can
be, in principle, designed conventially with little effort and reach good performance.
However, when very high performance is required, the design of matheuristics prof-
its strongly from the exploitation of problem-specific knowledge, the time invested
in designing and tuning the algorithms and the use of insights into algorithm behav-
ior and the interplay with problem characteristics. With this they go along, at least in
tendency, with the importance of the parameters. The matheuristics can be seen as
a rather general technique, varying their parameters as categorial or ordinal param-
eters (more on it in Section 2.2.1) together with specialized algorithm components
usually in the form of numerical parameters.

There have been a number of methods that have adopted numerical and also cate-
gorical and ordinal techniques. A first one is the determination of numerical param-
eters. For a few parameters it is the fractional design or variants of it, but it has the
disadvantages that it is related to the chosen parameter settings. A different approach
is to configure numerical parameters with numerical optimization algorithms. One
can use fractional design techniques also if one has categorical or ordinal param-

38



2.2 Parameter configuration 39

eters, yet they turn infeasible if the parameters are many. Then, instead, there are
several methods one can choose from, be it heuristics search techniques, statistical
methods or model-based techniques. Here we can cite ParamILS and gender-based
genetic algorithm as heuristics search methods, F-race and iterated F-race as statisti-
cal racing techniques, and sequential model-based configuration. These techniques
deal with the stochasticity of the algorithms and have successfully dealt with tens or
sometimes hundreds of parameters.

A first approach to these automatic algorithm configuration techniques consists
in the use of numerical techniques for the configuration of the parameter setting of
matheuristics algorithms. This includes algorithms that are fully specified according
to their numerical distributions and alternative algorithm components, and a numer-
ical parameter may be substituted if its value is zero. Yet, although the numerical
results may already improve significantly the performance of the algorithm, the ef-
fective importance of the automatic algorithm configuration techniques is in their
essential role of making the categorical and ordinal choices of a matheuristic. It is
an alternative design method that relies on a design paradigm: defining an appro-
priate design space which encodes alternative algorithm design choices and numer-
ical parameter. Then a computation intensive process explores this design space to
find high-performing algorithm instantiations. In a variety of research efforts, this
method has been shown to be feasible as we may see in a few examples in this
chapter.

The chapter is organized as follows. First, in Section 2.2, we highlight the settings
of parameters that leads to the parameter configuration problem and leads to an
increasing automatization of design. In Section 2.3, we give a number of successful
examples that highlight the potential of an automated design of methods. We then
go through an example with the irace software package in Section 2.4, showing with
a short example with iterated local search for the Generalized Assignment Problem
(GAP), how it works.

2.2 Parameter configuration

In this section, we give an overview of the type of parameter settings that we have in
algorithm deployments and define what the configuration of parameters is. Then we
go through the developments of automatic parameter configurators and show three
examples: ParamILS, SMAC and irace.

2.2.1 Parameters

The available choices for the parameter configuration problem depend on the type
of the parameters. On one side we have discrete options available. These are cat-
egorical parameters if no details are given to allow distinguishing the value of the
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choices. These can be the choice of a simulated annealing or a tabu search as local
search procedure or the choice of different perturbation types in an iterated local
search. Sometimes it may be possible to give to the values an ordering without hav-
ing a clear distance measure available. This gives place to ordinal parameters, with
an example being {small, medium, large}. In the GAP, it could be the size of a
neighbourhood or the value of a lower bound. Finally, there are parameters which
are numerical in nature. These can be real-valued parameters, such as the temper-
ature in simulated annealing or the evaporation rate in ant colony optimization, or
integer ones, such as the population size in memetic algorithms or the tabu list length
in tabu search. These numerical parameters one can have as algorithm-wide param-
eters if they depend on the search method. For example, this is the case with the
population size for an memetic algorithm. However, a parameter is conditonal, if it
depends on others that are to be set usually as a categorical or an ordinal one. For
example, whether having a temperature parameter depends on whether one has a
simulated annealing as local search or a tabu search.

Another issue is the size of the parameter settings. For many cases like the cate-
gorical and the ordinal parameters these will be not addressed, as it is commonly the
same for each of them. However, for the numerical parameters need a range whose
size and precision impacts the search. In case of doubt, one may opt for ranges than
are maybe too wide. They require more experiments than smaller ranges, but they
can give better results. Only if the experiments are too few, it could be problematic
and one would be too demanding with the size or the precision.

2.2.2 Parameter configuration problem

We can now describe the parameters of an algorithm in more detail. The performance-
optimizing algorithm configuration can be described by the set of variables of
any type, that is, they can be numerical, ordinal, and categorical. Every parame-

ter 6;,1,...,N,, is given an associated type #; and a domain D;, so that we have a
parameter vector 8 = (6,...,6y,) € @, where @ is the space of possible parameters
settings.

The goal in the design of algorithms then is to optimize for some problem I
the performance of an algorithm for a specific instance distribution .# of problem
I1. In formal ways, when applied to a problem instance ;, the performance of the
algorithm is the cost measure € (0,7;): © x .# — R. Usually, this will be a random
variable with a typically unknown distribution, if during the search the algorithm
involves stochastic decisions. Yet by executing an algorithm on a specific instance,
one can measure realizations of the random variable. Another element of stochastic-
ity is the fact that each instance 7; can be seen as being obtained from some random
instance distribution .#. The performance F,(6): ® — R of a configuration is then
defined as function for an instance distribution .#.

The usual approach is to define F 5 (8) with respect to the expected cost E[%(0, ;)]
of 6 if applied to a instance distibution. The definition of F »(6) determines how to
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compare configurations over a set of instances. If cost values across different in-
stances are not comparable on a same scale, rank-based measures such as the me-
dian or the sum of ranks may be more meaningful. The precise value of F4(0) can
generally not be computed in an analytic way but it can be estimated by sampling.
This means that one obtains realizations c(0, 7;) of the random variable € (0, ;) by
running an algorithm configuration 6 on instances that have been sampled according
to 7.

We can then say that the algorithm configuration problem is to identify an algo-
rithm configuration 0* where it holds

0" = argminF (). 2.1
argmin Fy (6) 2.1

In summary, the algorithm configuration problem is a stochastic optimization
problem where the types of variables are numerical, categorical, ordinal or of any
other type. Each of these variables has a specific domain of distribution and a spe-
cific type of constraints. The stochasticity of the configuration task is determined by
the types of the stochasticity of the algorithm and the stochasticity that stems from
the sampling of the problem instances.

Due to the stochastic nature of the configuration process, it is of importance
to let this process to generalize to unseen instances. As a result, this process is
done in two phases. In a first training phase, a high-performing configuration is
searched ideally by a large training size. Clearly, it is important that this training
set it also in shape and in size similar to the test phase. This is also ensured by a
specific application context that has, for example, the available computation times in
which the algorithms is employed. In a second fest phase, this configuration is then
evualated as the true configuration on an independent test set. This generalization
to the test instances is the real setting. This also reflects the nature of the setting. In
a first phase, the training phase, an algorithm is designed and trained for a specific
target application and in a second phase, the test phase, the algorithm is deployed to
solve new, previously unseen instances.

2.2.3 Automatic algorithm configuration

While in the old matheuristics literature the design of parameters is pre-set and
mainly presented as a manual trial-and-error process, in the current literature the
automatic algorithm processing is given a distinctive place and gives rise to a com-
putationally intensive processes. A configurator gets as input the name of the vari-
ables, the type of the variables, and the values of the parameters. For the categor-
ical and ordinal parameters it gets the discrete sets of values, such as {x,y,z} and
{small,medium,large}, and for the numerical parameters the real-valued variables,
for example [0, 1], or the integers, for example {0,1,2,...,10}. Additionally, the
configuration tools may receive information about which parameters depend on cach
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Fig. 2.1 Generic view on the main interaction of an automatic configuration technique with the
configuration scenario.

other, that is, the conditional parameters, and which parameters have forbidden val-
ues, and any other detailed information that may be helpful.

The configurator sets these parameter values to one or several configurations,
depending on whether it is a population-based algorithm or a single search-based
configurator. These configurations are evaluated on training instances and the evalu-
ations of the candidate configurations are returned to the configurator. This process
of returning the configurations and solving them by the software is repeated until
some measure of interest is achieved. The most common measures are the amount
of computational experiments or a measure of the computation time. The first is
commonly a measure that is used for metaheuristics and consists in the number of
experiments executed. The second, the computation time, be it CPU or wall-clock
time, is usually the time that is allowed for a specific computation. Independent of
the specific termination, the best configuration is returned at the end of the process.
Usually, also some other information on the configurations process is returned such
as other high-quality configurations or statistics of the configuration.

A general overview of these interaction between the configurator, the parameter
definition, the calls of the software and the return of the solution costs is given in
Figure 2.1.

We can now come to highlight some of the main approaches. We can clas-
sify them as experimental design techniques, continuous optimization techniques,
heuristic search techniques, surrogate-model based configurators, and non-iterated
and iterated racing approaches.

Experimental design techniques. To avoid the immediate pitfalls of trial-and-
error processes, various researchers have adopted statistical techniques, such as hy-
pothesis testing for evaluating the statistical significance of performance differences,
or experimental design techniques such as factorial or fractional factorial designs
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and response surface methodologies. While often experimental design techniques
such as ANOVA have been applied using manual intervention, several efforts have
been made to exploit such techniques to make them more automated. An example
in this direction is the CALIBRA approach, which applies Taguchi designs and a
refinement local search to tune five parameters. A different approach is based on
the exploitation of response surface methodologies. Yet, a common disadvantage of
these methods is that many of these are limited to few variables and that many of
these have the variables fixed.

Continuous optimization techniques. A different approach is numerical opti-
mization in the form of continuous optimization. It first has to be mentioned that in
this case it is often feasible to integrate integer and continuous function optimization
by a continuous relaxation approach in form of truncation and rounding. Indepen-
dent of this, such things are often feasible if the algorithm either has only numerical
parameters or if the algorithm has already been fine-tuned by setting all the right
value of categorical or ordinal parameters. One of the first is the mesh-adaptive
direct search (MADS) mechanism, which features a mathematical program for the
search and a large set of functions for the heuristic evaluations. About the same time,
Nannen and Eiben have done some work on the REVAC algorithm. In a computa-
tional study of various instances among which were BOBYQA, CMAES, Iterated
F-race, and MADS, they found that for small instances with two to four parame-
ters the best performance was obtained by BOBYQA, while beyond that parameters
the best performances were obtained by a modified version of CMAES. This per-
formance was further improved by post-selection in automated configuration, where
first a subsets of configurations is defined and afterwards it undergoes a more careful
evaluations.

Heuristic search techniques. If instead one has to make also categorical or ordi-
nal parameters choices, one has a number of heuristic choices available. One of the
first choices was the meta-genetic algorithms that was proposed by Grefenstette in
the year 1986; but there the performance was too weak to be impressive. It was in the
first and in the second decades of this century that these methods became promis-
ing. One of the first ones was the ParamILS algorithms; we will go in more detail in
Section 2.2.4. More recent is the gender-based genetic algorithm that is rather good
for exact algorithms and which has also been adapted in recent years to make use
of surrogate models. Other approaches are linear genetic programming algorithms
that evolve evolutionary algorithms, the OPAL system that extends MADS to in-
clude categorial and binary parameters, the EVOCA evolutionary algorithm, and
the heuristic oriented racing algorithm (HORA).

Surrogate model-based configurators. The evaluation of configurations is typ-
ically the most computationally demanding part of an automatic configuration
method, since it requires actually executing the target algorithm being tuned. Sev-
eral methods aim to reduce this computational effort by using surrogate models to
predict the cost value of applying a specific configuration to one or several instances.
Based on the predictions, one or a subset of the most promising configurations are
then actually executed and the prediction model is updated according to these evalu-
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ations. Among the first surrogate based configuration methods is sequential parame-
ter optimization (SPOT). A more general method also using surrogate models is the
sequential model-based algorithm configuration (SMAC). In fact, this is currently
one of best configurators and we will revise it in some more details in Section 2.2.5.

(Iterated) racing approaches. Finally, other systems investigate racing meth-
ods for selecting one or various configurations among a (huge) sets of candidate
configurations. They use F-race or other sequential statistical testing methods to do
the racing. A race can be organized based on design of experiments techniques,
randomly generated configurations or based on problem-specific information. If the
race is iterated, this iterations can be based on problem-instance based methods. For
example, iteration i is based on the best configuration of the previous race i — 1. In
Section 2.2.6 we will see an example of a configurator based on the iterated racing
approach.

Independent of the automated algorithm configuration, the usage of such a sys-
tem has some advantages. A first is that one has the parameters for the system.
Here it is important that one needs not only the “usual” parameters, but one can
extend those parameters beyond those that are in use. We further may distinguish
between categorical and ordinal parameters on the one side, and between numerical
parameters on the other. The categorical and ordinal ones are the normal param-
eters, which discriminate major parts of the algorithm that before where in many
designs pre-given. The numerical parameters are those that are available such as the
temperature parameter in simulated annealing. However, when one has a automatic
configuration system available, one can also deal with numerical parameter that oth-
erwise would be preset. One can also distinguish between conditional parameters,
which only may play an essential role for some parameters of a system.

Apart from the parameters, one has the further advantage that there is a clear sep-
aration between the training instances and test instances. Ideally, there is only the
distinction between training and test instances in the sense that there are differences
only in, say, random seeds. A further advantage is the clear role of the configurator
and the algorithms that are configured. This comprises the budget, special features
of the configurator and so on. Last but not least, a final advantage is that with im-
provements of the configurators we may also improve performance of the configured
algorithm.

2.2.4 ParamILS

We are now able to present in more details some popular configurators. We start
with ParamILS, which is an ILS algorithm in the search space of the parameters. A
first difference from the other parameter configurators is that it is a fully categorical
parameter system. In other words, real and integer parameters have to be converted
into discrete values. This can be done by either introducing a grid or, if there is
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some knowledge available, by introducing a specific parameter space, or simply at
random, which is often better than grid-based.

As initialization of ParamlILS, it is required a default configuration. In addition
to this,  random inital configuration are determined and the best of this r + 1 con-
figurations builds the initial solutions. This is done as random configurations may
be better than the default configuration.

The local search in ParamlILS is a first-improvement local search with a random-
improvement basis. Each time this random-improvement scheme finds a new im-
provement, it takes it and continues with the random-improvements scheme which
is randomly initialized. This is continued until all the neighborhood is examined or
the budget is exhausted.

When a local search is terminated, the better of the two local minima is kept and
a perturbation is done. With a probabilty of 1 — pp this is done by actually taking the
better of the two and introducing a k randomly chosen parameter to obtain a new 6’
as the solution. By default, kK = 3 random parameters are set. Yet with a probability
of pg, the perturbation consists in a random contribution that is generated from
which the next ILS iteration is started. By default, pg is set to 0.01.

Of course, deciding which configuration is better is not trivial. ParamILS offers
two variants: BasicILS and FocusedILS. BasicILS chooses the best of two config-
urations after having them evaluated them on n, instances, where n, is a given set
on instances. Such setting can be approximately right or rather be very wrong. In
other words, it is simply not a trivial task to set n,: too low it will risk not to provide
enough estimates; too high, it will risk to waste enough candidates to be seen. The
FocusedILS version compares two configurations increasingly, until one configura-
tion dominates the other. Dominance between two configurations is established as
follows. Let the two configuration 0; and 8, be evaluated on n; > n; instances. Then
configuration 6 dominates 6, if we have that F'(0;,n;) < F(62,n), where F/(6,n)
gives the cost estimate of a configuration 6 on n instances. Hence, a configuration
dominates another one if it has been used on as many instances as the other and it
has a lower cost estimate. If 0; is not dominating the other one, the number of in-
stances on which the second one will be evaluated is redone. When a new instance
improves over the old one, the number of instances will also be increased.

Often, ParamILS is used to configure for run-time. For example, this is very often
the case when configuring exact algorithms such as CPLEX, Gurobi or FICO Xpress
for specific tasks. Therefore, ParamILS implements a procedure that is called adap-
tive capping which prunes search early for the evaluation of potentially poor per-
forming configurations. When it is combined with the above dominance criterion,
adaptive capping can strongly reduce the computing time.

ParamlLS is publically available at http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/,
the version at the time of writing is 2.3.8. It has been shown to excel in a number of
configuration tasks and, in particular, it led to speed-ups of several orders of magni-
tude for mixed-integer programming or propositional satisfiability problem.
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2.2.5 SMAC

Sequential model-based algorithm configuration (SMAC) is another configurator
proposed by some of the same authors of ParamILS. It is a configurator, which
uses a surrogate-model search of the parameter space and, as opposed to ParamILS,
handles both real and integer parameters and categorical parameters. This means
that it does not need only discrete numerical parameters as ParamILS.

SMAC starts from an initial configuration, which is typically the algorithm de-
fault. When no algorithm default is available, a random one can be given. With this
input, the procedure loops through the followin steps. First, a random forest model is
learned. Following this, a set of candidate configurations is determined by following
nrs elite configurations. Each of them is the candidate of the nzg elite configurations,
which are determined as the best-improvement local searches on the configuration
space; each time an algorithm is selected according to the expected improvement cri-
terion. In addition, n, randomly generated configurations are generated, where each
one is evaluated according to the expected improvement criterion. Then, SMAC
sorts the nyg 4 ng configurations according the their expected improvement and ex-
ecutes them in thi order. The process of evaluating the instances is the same as for
FocusedILS. It uses the dominance criterion, the adaptive capping, and increases
the number of instances on which the incumbent is evaluated. This evaluation pro-
cess is terminated after a specific termination time. Then the next overall iteration
of SMAC is invoked which starts first with the learning of the new random forest.

While the high-level search process that is implemented by SMAC follows these
stages, there are a number of rather intricate steps which make the process much
more involved. Some of these are special treatments of censored data, which can
improve the predictions of SMAC. Another one is the inclusion of instance features
for improving the predictions. All in all they make SMAC currently one of the top-
performing configurators.

SMAC is available online. The SMAC v2.08 in Java and the version SMAC v3 is
written in Python3 and is continuously tested in Python3.5 and Python3.6. The ver-
sions of SMAC v2.08 and SMAC v3 are virtually the same, but the version SMAC
v2.08 gives slightly better performance. The SMAC v3 is free software, which one
can redistribute or modify it under the terms of the 3-clause BSD license.

2.2.6 irace

Last but not least is the irace system that implements an iterated racing for the deter-
mination of the best configuration. It is based on three subsequent iterations. First,
it generates candidate configurations from a statistical model. Second, it selects the
best algorithm candidate configurations by a statistical racing method that is either
F-race or paired Student t-test. Third, it updates the probabilistical model of the
system to give the most promising candidates a higher probability of being used.



2.2 Parameter configuration 47

In the first step, irace has to sample new configurations. In the first iterations,
when no results are available, it has various possibilities. If nothing is known the first
generation may be generated by random sampling, that is, all the first generation is
random. Of course, one or also various candidates may be given as default configu-
rations. From the second iteration, each of the surviving configurations, called elites,
forms a (partial) model. Each of these elites will have numerical, ordinal and cate-
gorical parameters. If it is numerical and ordinal, then the probabilistic parameters

are drawn from a truncated normal distribution (1!, 6;) where y! is the mean value

of the i-th parameter of the j-th elite configuration and G,/ is the standard deviation.
The truncation is happening because the parameter is in a range [x;,x, |, where x; and
x, are the lower and the upper boundries of the parameter. If this is an integer or an
ordinal parameter, then it is rounded as round(x —0.5). If instead with X; we have a
categorical parameter with levels X; € {x1,x2,..., Xy, }, then a new value is sampled
from £2/%. This distribution is set to the uniform distribution at the beginning and
then at each iteration is set to the sampling as follows:

. - j—1
PV Xy =xj) = P Xy = x)) - <1_ Niter)+Ay 22
where
j—1
Az = Nier X% (2.3)
0 otherwise

where N¢" is the estimated number of iteration, Jj is the current iteration, and x,
is the current elite. This way, the entries of the elite probability for a categorical
parameter is always the one with highest probability.

After the configurations are generated, they undergo a race. In a race, all the con-
figurations are evaluated on a first instance, then on a second one and so on. As soon
as the configurations are deemed to be poor, they are eliminated. There are different
criteria how this is managed, which in part depends on the objective function, which
can be quality-wise or time-wise. If it is quality-wise then the usual thing is to take a
test. This is done in irace for this case. In fact, one has either the iterated F-race, that
is based on the non-parametric Friedman’s two-way analysis of variance by ranks
or the paired Student’s t-test with or without p-value corrections. The first one, the
F-race, can be used especially if the non-parameteric test is wortwhile, such as when
the quality-wise setting is very different. For the second choice, we would recom-
mend to do the test without the p-value corrections, since it eliminates much more
quickly the poor candidates. If the test is time-wise, then in the version irace 3.0 one
has an extension that better handles run-time minimization. In particular, it handles a
dominance criterion among configurations. A configuration 8; dominates 6, if it has
more instances N; than N, and it holds that cost ¢(60;,1,...,N2) < ¢(62,1,...,N2).
This maintains the trajectory and it works very well together with the Student’s
t-test.

After a race is terminated, either because the minimum elite number of config-
urations is reached or the computational budget is reached, one makes the update
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step of the elite configurations. This is done by numerical and ordinal parameters
centering these at the point of their mean and diminishing their standard deviations
as it is foreseen in the irace software. For categorical parameters the elite probability
and the other probabilities are set as indicated above.

The irace software is publicly available at http://iridia.ulb.ac.be/irace/ or at
https://cran.r-project.org/web/packages/irace. Currently, it is available as version
irace 3.4.

2.3 Design of algorithms

In what follows, we claim that advantages of automatic configuration go from an
automatic configuration of existing algorithm, to integration of an algorithm engi-
neering process and advanced uses of the automated configuration software. It is
especially this last one where the systematic use of automated configuration soft-
ware has real advantages.

2.3.1 Automated configuration of existing algorithms

One of the first uses of automated configuration software is to determine parame-
ter settings that would improve performance. This is feasible with relatively minor
efforts. The reason is that the default setting can always be used if no advanced
parameter setting is found. Yet, this is only rarely the case and often one can find
parameter settings that substantially improve over it. There are various reasons for
this. One is that the default values are for a very different instance distribution and,
hence, the new parameters are very different from the old ones. Another reason is
that running times of the new applications scenarios are very different from the one
that had been assumed. Yet another reason may be that the default parameter settings
are not well attached with the available instances.

There has been a number of papers about this, especially in the initial steps of
the automated configuring methods. One of the first papers in this direction is the
paper of Hutter et al. on the boosting of a verifications procedure in which they ob-
served speedups of up to 500 time the default. Similar examples were obtained when
employing them in the parametric case study on mixed-integer programming meth-
ods such as CPLEX. Other examples include the REVAC method, which reached
improvements on the solution quality or the irace methods which found solutions
quality improvements for various methods.

When we want to compare algorithms, we have to do the same thing: all of them
should ideally be run on the same parameters setting for each algorithm. For this
task the automatic configuration methods make good performance available for all
algorithms. In particular, they make the parameter setting, if they are equally good
of course, less an issue of the particular system designer than intrinsic to the system.
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That is, the features of the system designer is not or, at least, less critical. All the
algorithm parameters then have the same advantages as the single algorithms: the
tuned versus the default parameters, the very different time or solution quality pa-
rameters, or the poor integration with the instances. Another advantage may be that
an old algorithm may be surprisingly good when offering new parameters.

2.3.2 Integration into an algorithm (re-)engineering process

One way to use automatic configuration methods is to apply them only at the end of
the development. But it may be much better to use automatic configuration methods
already in each step of the engineering or re-engineering of the algorithms. It is in
the steps where a major change is examined when it is most useful to see whether
it actually improves the algorithm or not. A first approach in this direction was the
design of an existing particle swarm optimization algorithm for a large-scale func-
tion optimisation competition. This approach went through a six steps engineering
set which included a local search, call and control strategy of the local search, the
particle swarm optimisation rules which were set to the original ones, the bound
constraint handling when calling the particle swarm optimisation, the stagnation
handling and finally the restarts. Here iterated F-race was used at each step to con-
figure up to ten parameters of the algorithm. Although the configuration was done
on only 19 function of dimension ten, it was found that the scaling was valid up to
function dimension 1000. In a similar undertaking, Hartung and Hoos did an engi-
neering of a parameterized algorithm used for clustered editing and Balaparash et
al. developed some high-performing algorithm for the probabilistic traveling sales-
man problem and a single vehicle routing problem with stochastic demands and
customers.

2.3.3 Advanced uses of configurators

A major research area is how to design new algorithms. This can be done at least in
two ways: top-down approaches or bottom-up approaches. Both approaches use the
same set of algorithm components and follow rules how to combine these compo-
nents. Yet they differ in how they deal with the problem.

In the top-down approaches there is always one single basic algorithm template
but different algorithm components are used. One of the first top-down approaches
is the SATenstein approach. This approach could initialize five algorithmic blocks
which go from a perform diversification, over walksat-based algorithms, dynamic
local search algortithms, over G*WSAT variants to updates of the data structures.
While with SATenstein a new state-of-the-art solver for SAT local search algorithms
could be generated, it is also clear that the local search is heavily optimised. The
group of IRIDIA has explored several metaheuristics. These include several meta-
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Fig. 2.2 General approach for deriving configurable algorithm frameworks.

heuristics which are single objective ones such as a framework for continuous op-
timization for ACO. In this case, they have shown that the numerical optimizer is
outperforming the best previously known ACO. The same was obtained for the gen-
eralized artificial bee colony framework. Another research area is multi-objective
optimization, which originated in 2010 with the help of multi-objective ant colony
optimization and then went on with the TP+PLS framework and with an automatic
design of multi-objective evolutionary algorithms. The most recent works explore
an automated multi-objective evolutionary algorithm (AutoMOEA) that could in-
stantiate a Pareto-based, an indicator-based or a weight-based MOEA. This was
possible through a preference-relation which was set-partitioning, quality, and di-
versity based. In its latest setting, AutoMOEA could generate algorithms to solve
problems with two, three, five and ten objectives that outperformed the best of the
self-tuned algorithms.

A second method is the bottom-up approach, that tries to make it potentially more
complex algorithms based on low-level rules frequently in the form of grammars.
A first bottom-up approach is again for the SAT problem, based on a grammar-
based approach. In fact, this is the approach that is commonly followed in the hyper-
heuristic setting. In principle, it is a methodolgy that wants to generate constructive
and perturbation heuristics and often these method are based on grammatical evolu-
tion and gene expression programming. A different approach was followed by the
group of Stiitzle and followed by few others. They noticed that with standard soft-
ware like irace they could replace grammatical evolution, a well established variant
of grammar-based genetic programming. In fact, they noticed that this could be re-
placed by irace in a much more directed way. They first made a version that was
based on Paradiseo. Later this system was designed from scratch and so far the
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results are very promising, producing state-of-the-art algorithms for a number of
permutation flow-shop problems.

2.4 An example: irace

Let us continue this chapter with an example on irace configuring a simple iterated
local search (ILS), which you can see also in section 3.4 of this book, for the gener-
alized assignment problem (GAP). For this we assume that we have installed irace
in R and we have a first ILS algorithm for the GAP. Now it is the time to improve
this simple algorithm by configuring some of the parameters.

First, we have to notice that we do have infeasible and feasible solutions. Here
we deal with it by generating all feasible solutions by counting infeasible ones with
a penalty of 100 per integer infeasibility step. In other words, if we have say 27
infeasibilties, then we count them as 27 - 100 = 2700 in addition to the feasible part
that is as usual in the GAP.

We have a few parameters of the ILS that we can change. The first part is the
initial solution. Here we assume that the initial solution is a random one.

Next, we can address the acceptance criterion of our ILS. In the first place we
have a better criterion, where we only accept improving solutions. As a slight change
we may also accept the same solution quality as the best one. This may be better
if we have many solutions in the neighbourhood that are of the same quality. A
rather different acceptance criterion would be one that accepts every new solution
as the current one. An intermediate to this may be a temperature-based one. One
common choice is to use the simulating annealing one; see Section 3.2 for details of
simulated annealing. It always accepts a solution if it is better or equal to the current
one. It instead accepts with a probability exp(—08/Trcurrens) @ Worsening solution,
depending on the worsening & and the temperature T7 .y rens. Here the temperature is
kept constant throughout the run of the algorithm. Hence, we have two parameters of
the acceptance options. The first, is a categorical acceptance criterion with 4 criteria.
The second is a conditional parameter for the temperature T7cyrrens, set only if the
simulated annealing acceptance criterion is chosen as the first acceptance parameter.

As the next item we have the perturbation. Here we implement two types of
perturbation. In the first case, we do a fixed setting that is kept constant independent
of problem size, that is, perturbation is equal to p, with p € (2,98). In the second
case, we do a variable size perturbation in the style of variable neighborhood search
(VNS); see Section 3.5 on it. We use a value 2, which is the smallest possible value
larger than the local search step, and configure the upper limit p, bounded to be at
most 98. Hence, we have also two parameters for the perturbation: the first is the
type of perturbation, fixed or variable, and the second is the value p.

As the last one we can choose the way we use the local search. As first, we
can choose no local search at all. This is fast, but we cannot assume it to be good
enough. Hence, we use three more instances with local search. The first is a kind of
first-improvement local search. It first examines the local search improvements that
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can be done for a specific server and if it is an improvement it applies it. Otherwise
it goes to the next server. Once it has searched the server for each client, it stops
the local search. In addition, it does a local search only if the initial solution is
found to be feasible. However, notice that if a solution is found infeasible but better
than the previous best one, it anyway replaces it. The two other local searches also
perform a local search iteration when they are in a infeasible solution. The first is the
very basic version of the second one and it does one time the local search for each
server when the infeasibility counts as one if present. In the second one an infeasible
solution gets an alpha penalty, where alpha is an integer. In the case of the second
implementation a true local minima is identified, that is, a server is visited more than
once except if the solution is already a local optima. We know that we could identify
more local searches as, for example, we could apply a two-opt one neighborhood.
With this, also the final solution would probably improve. Yet, we leave this for
further work and we have two parameters as the local search: one is the type of local
search, which is a categorical one with four parameters; the second is the value of
alpha if the second local search is chosen.

With this, we can define the parameter file. This file has several inputs for each
parameter, which are listed as

<name> <switch> <type> <range> [ | <condition>].

Each entry then has the following meaning.

name This is the name of the parameter as an alphanumeric string.

switch A label for the parameter, which is a string that is used in the
target runner of the system. In the default provided in the package
it would be “-1 “ or similar. Note that here the user has to take care
of giving the right size. Especially, the separator is important here
and has to be how the code expects it.

type This is the type of the parameter. It can be either real, integer,
ordinal, or categorical by r, i, o, and c¢. Numerical parameter can
be also sampled as r,log or as i,log for real and integer.

values This is the range or the set of values. It is given as (0,1) or as (a,
b, c, d).

condition  If the condition is false, then no value is assigned to the parameter.
If the condition is true, then the condition must be in the same
syntax as the valid R logical expression. The condition may use
the same name or also use different one as long as it does not have
any cycles.

An example of the parameter file for the ILS can be seen in Figure 2.3. We have
six parameters, of which four are independent (two parameters for the perturbation,
one for the choice of the acceptance criterion, and one for the choice of the local
search). In addition there are two conditional parameter, one for the temperature
parameter and one for the alpha parameter. Recall that the temperature is a real
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parameter, which is as default 4 digits after the comma, and that the alpha is an
integer.

# name switch type values [conditions (using R syntax)]
p_paramater "-p " i (2, 98)

p_fixed_variable "-z " c (0, 1)

acceptance "y " l¢] (0, 1, 2, 3)

temperature_value "-f " r (0.0, 100.) | Acceptance %in% c(3)
local_search "—1" c (0, 1, 2, 3)

alpha "-m " i (1, 100) | Local_search %in% c(3)

Fig. 2.3 Parameter file (parameters.txt) for configuring ILS-GAP.

The targetRunner is the auxiliary program that actually runs the algorithm.
The targetRunner is by default a minimization program. In the case of the GAP,
where the default can be either a minimization or a maximization, it would have, if it
is a maximization, returned to irace the result multiplied by —1. Yet, here we assume
it is minimization. Then the targetRunner is made out this

<id.configuration> <id.instance> <seed>
<instance> [bound] <configuration>

The information is given as follows.

id.configuration unique identifier of the configuration.

id.instance unique identifier of the instance.

seed seed for the random number generation; ignore it for a de-
terministic algorithm.

instance instance to be used.

bound optional execution time bound.

configuration the pairs of the label and values of the parameters that de-
scribe the configuration.

So, for example, for us the program to run is ./ilsgap and then comes the fixed
parameters of the candidate configuration, the instance ID, the seed of the parame-
ter setting, the instance that is run. Next, there would be a bound if it was an exact
algorithm; but in this case it is not provided by irace as the target algorithm is a
metaheuristic. Then comes the part of the parameters. An important part is that the
program (./ilsgap in our case) has to put a real number as the output, which corre-
sponds to the real cost measure in our case. The working directory of the targetRun-
ner then is the running directory set by the option execDir, which allows to run
different runs of irace if necessary. The target runner is in Figure 2.4 here in terms
of a shell script.

Once we have the algorithm running, we need some training instances and some
test instances. First, we have the training instances. The two options for irace
are trainInstancesDir and trainInstancesFile, which is, however,
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#!/bin/sh
CONFIG_ID=S51
INSTANCE_ID=$2
SEED=$3
INSTANCE=S$4
CONFIG_PARAMS=Sx*

FIXED_PARAMS=" -t 3 "

STDOUT="cS$CONFIG_ID-$INSTANCE_ID.stdout"

/home/stuetzle/Algorithms/GAP/GAP_new/ilsgap S$FIXED_PARAMS \
-1 SINSTANCE S$CONFIG_PARAMS > $STDOUT

COST=$ (tail -n 1 $STDOUT)

echo "$COST"

exit 0

Fig. 2.4 Target runner that configures the GAP for the ILS-GAP.

empty as a default. In our case, we take the trainInstancesDir which is
./GAP_instances/GAP_training. We have generated instances of type C
and D from Chu and Beasley, each of the instance classes with 100 and 200 clients
for I with servers for 5, 10, and 20 for J. These are considered not too trivial for our
purposes. For the C instances, we have generated the r;; as integers from U (5,25)
and the ¢;; as integer from U(10,50) and as the bound have been generated as
b;=0.8-Y% jesTij /m. For the D instances, we have generated instances of r;; as
integers from U(1,100) and ¢;; are integers from 111 — r;; + e, where the e are in-
tegers from U(—10,10). We again use b; = 0.8 - ¥ ;¢ r;;/m. For each size we have
generated 5 instances so that we have 60 instances. We verified that all instances
were feasible for the best of our training elements. As test instances, we have used
the instances of type A, B, C, and type D that are available. We have not taken the
instances A and B as training instances since they are known to be rather easy. As
such, it is the 100 and 200 for I and the 5, 10, 20 for J. Note, that the size of the
instances is the same; this could have also been made different for the training set
but we leave this for later.

The irace has a number of further options. One is to have a text file that contains
one or several initial configurations. In the case of the ILS on the GAP we can do
so with starting from a random solution, iteration-best candidate with the better ac-
ceptance criterion, do a perturbation with 5 random moves, and a first-improvement
local search with an alpha. Hence, we would have the following ILS-GAP scenario
as in Figure 2.5.

## Initial candidate configuration for irace
initial 1local search perturbation acceptance alpha
random 3 5 0 10

Fig. 2.5 Parameter file for specifying an initial configuration for ILS-GAP.
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Other options would be to forbid configurations or the repair of configurations,
which are however not needed in our case. Something that should be useful is to run
irace in parallel, which we do here by imposing 30 runs in parallel. Another thing
that is useful in irace is the testing of the configuration. Here it may be the final best
configuration testNbElites = 1, which is also the default that is returned. An
alternative maybe is the first best configuration of every iteration of irace, which is
done by testIterationElites = 1. With this we can now run irace.

In the end, Figure 2.6 gives the outcome of the execution of irace. The figure
presents the first part of the output file up to the end of the first iteration and the last
part comprising the last iteration and the final result. We note that the parameters and
the details are both understandable. In the lower part of the figure, it is given the best
configuration found, which is configuration 692 with the perturbation parameter 3
with variable perturbation which varies between 2 to 3 perturbations, an acceptance
criterion that is better or equal and a local search that is doing the first improvement
local search. The two parameters temperature and alpha are not used. If one wants
to do more analysis with irace, this can be done by the analysis of the results.

2.5 Related literature

In this chapter we have seean how to perform parameter configuration for a matheuris-
tics. We first argue that many people have been aware that categorical and numerical
parameters are important (Birattari et al., 2002; Hutter et al., 2009, 2011; Lépez-
Ibénez et al., 2016) in addition to only the numerical ones (Audet and Orban, 2006;
Nannen and Eiben, 2006; Yuan et al., 2012). We then have seen the parameter con-
figuration problem in a first version as it was done by Birattari in his PhD thesis
(Birattari, 2004). We have classified the field in five classes. First of all, we used
experimental design techniques which have used by Coy et al. (2001); Montgomery
(2012); Ridge and Kudenko (2010); Ruiz and Maroto (2005) among others. Out of
these, the CALIBRA approach (Adenso-Diaz and Laguna , 2006) and the Coy et al.
(2001) are well known and next we highlighted the MADS (Audet and Orban, 2006)
and the REVAC ones as exemplary continuous techniques (Nannen and Eiben, 2006,
2007; Smit and Eiben, 2010). In our own work we have found CMAES to be among
the best (Yuan et al., 2012, 2013). The majority of the systems fall in what we call
heuristic search techniques. The first we know is that of Grefenstette from 1986.
However, the mayority belongs to the first and second decade from this century and
we may highlight ParamILS (Hutter et al., 2007b, 2009), gender-based genetic al-
gorithms (Ansétegui et al. , 2009), linear genetic programming (Oltean, 2005), the
OPAL system (Audet et al. , 2010), or the EVOCA evolutionary algorithm (Riff
and Montero, 2013). In addition to these, we differentiate two final classes. The
first are the surrogate-model based configurators of which we detail the SPOT sys-
tem (Bartz-Beielstein et al., 2005) and the currently best performing SMAC system
(Hutter et al., 2011). The second are methods that use some racing methods. The
first is the F-race approach (Birattari et al., 2002), which is then developed into the
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irace: An implementation in R of (Elitist) Iterated Racing
Version: 3.4.1.9fcaeaf

Copyright (C) 2010-2020

Manuel Lopez-Ibanez <manuel.lopez-ibanez@manchester.ac.uk>
Jeremie Dubois-Lacoste

Leslie Perez Caceres <leslie.perez.caceres@ulb.ac.be>

conditions. See the GNU General Public License for details. There is NO
WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

irace builds upon previous code from the race package:
race: Racing methods for the selection of the best
Copyright (C) 2003 Mauro Birattari

installed at: /home/stuetzle/R/x86_64-redhat-linux-gnu-library/3.5/irace
called with: --exec-dir=execdir6 --parallel 32 --mpi 1 --seed 1

Warning: A default scenario file ’./scenario.txt’ has been found and will be read

2020-09-03 11:33:14 CEST: Initialization

Elitist race

Elitist new instances: 1

Elitist limit: 2

nbIterations: 4

minNbSurvival: 4

nbParameters: 6

seed: 1

confidence level: 0.95

budget: 5000

mu: 5

deterministic: FALSE

#
#
#
#
#
#
#
#
# This is free software, and you are welcome to redistribute it under certain
#
#
#
#
#
#
#
#
#

B A

2020-09-03 11:33:14 CEST: Iteration 1 of 4
experimentsUsedSoFar: 0
remainingBudget: 5000
currentBudget: 1250
nbConfigurations: 208
Markers:
x No test is performed.
c Configurations are discarded only due to capping.
- The test is performed and some configurations are discarded.
= The test is performed but no configuration is discarded.
! The test is performed and configurations could be discarded but elite configurations are preserved.
All alive configqurations are elite and nothing is discarded

= A s oW

| |  Instance] Alive| Best | Mean best| Exp so far| W time| rho|KenW| Qvar]|
x| 1 208]| 180] 3667.000000] 208|00:06:40] NA| NA| NA|
x| 2] 208| 169 3224.000000] 416100:13:00(+40.9310.9710.0399]
x| 31 208 2] 4428.333333]| 624100:03:16|+0.78(0.85/0.5011
x| 4] 208]| 180] 6688.000000| 832100:12:45(+40.7810.84]0.4350]
-1 51 123] 180] 5596.800000] 1040100:13:09(+0.7310.78/0.4833]
=1 6] 103] 180] 6929.500000] 1163100:03:41(+0.69(0.7410.4941|
Best-so-far configuration: 180 mean value: 6929.500000

Description of the best-so-far configuration:
.ID. perturbation_paramater perturbation_fixed variable acceptance local_search temperatur_value alpha .PARENT.

180 180 8 1 0 1 NA NA NA
[ 23] 4] 5371 6033.607143] 12100:00:001-0.0210.0110.7727|

.1 16| 4] 537 5923.172414| 12100:00:001-0.0210.0210.7678]

.1 61 4] 537 6172.466667| 12100:00:001-0.0210.0110.7712]

Best-so-far configuration: 692 mean value: 6171.900000

Description of the best-so-far configuration:
.ID. perturbation_paramater perturbation_fixed_ variable acceptance local_search temperatur_value alpha .PARENT.
692 692 3 1 1 1 NA NA 605

# 2020-09-03 17:46:39 CEST: Elite configurations (first number is the configuration ID; listed from best to worst
according to the mean value):
perturbation_paramater perturbation_fixed_variable acceptance local_search temperatur_value alpha

692 3 1 1 1 NA NA
709 3 1 1 1 NA NA
537 2 1 0 1 NA NA
605 3 1 1 1 NA NA

# 2020-09-03 17:46:39 CEST: Stopped because there is not enough budget left to race more than the minimum (4)
You may either increase the budget or set ‘minNbSurvival’ to a lower value
Iteration: 13
nbIterations: 13
experimentsUsedSoFar: 4972
timeUsed:
remainingBudget: 28
currentBudget: 28
number of elites: 4
nbConfigurations: 4
Best configurations (first number is the configuration ID; listed
rom best to worst according to the mean value):
perturbation_paramater perturbation_fixed_variable acceptance local_search temperatur_value alpha

FhodE ot S SR % 3 % % W

692 3 1 1 1 NA NA
709 3 1 1 1 NA NA
537 2 1 0 1 NA NA
605 3 1 1 1 NA NA

# Best configurations as commandlines (first number is the configuration ID; same order as above):
692 —p 3 -z1-y1-11
709 -p 3 -z 1-y1-11
537 -p2 -z 1 -y 0 -11
605 -p 3 -z 1-y1-11

Fig. 2.6 Parameter file (parameters.txt) for configuring ILS-GAP.
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irace systems (Lopez-Ibéafez et al., 2016; Pérez Caceres et al., 2017). Of these meth-
ods we give some details of ParamILS (Hutter et al., 2009), SMAC (Hutter et al.,
2011) and of irace (L6pez-Ibafiez et al., 2016).

In section 2.3, we have classified the advantages of the automatic algorithm con-
figuration. We first have shown that (Hutter et al., 2007a) have excellent perfor-
mance for a verifications procedure and the same for mixed-integer programming
procedures (Hutter et al., 2010). Similar results were obtained by F-race (Birattari
etal., 2002), REVAC (Nannen and Eiben, 2007; Smit and Eiben, 2010), or with irace
(Balaprakash et al., 2010; Liao et al., 2013, 2011; Pérez Céceres et al., 2015). Other
advantages are that sometimes old algorithms are getting surprisingly good results
(Franzin and Stiitzle, 2016). When doing algorithm (re-)engineering, automatic al-
gorithm configurations software can also be very useful (Montes de Oca et al., 2011;
Hartung and Hoos, 2015; Balaprakash et al., 2010, 2015). The last effort is also the
most used one. We divide this into top-down and bottom-up approaches. One of
the first is the SATenstein approach (KhudaBukhsh et al., 2009, 2016). There is
a lot also done with single objective algorithms like in Liao et al. (2014); Aydin
et al. (2017); Franzin and Stiitzle (2019) or also multi-objective approaches (Lopez-
Ibafiez and Stiitzle, 2010, 2012; Dubois-Lacoste et al., 2011; Bezerra et al., 2016,
2018, 2020). This top-down approach is feasible, if the algorithm to be used is rather
straight-forward. As an alternative, one can use the bottom-up approach. This was
done again with the SAT approach first (Fukunaga, 2004, 2008). In general, it is
common if following the hyper-heuristic settings (Burke et al., 2013, 2019) as can
be seen with a few settings (Burke et al., 2012; Sabar et al., 2015). In a different
approach, we used irace to do this grammar-settings. In a first approach, we used
Paradiseo as algorithmic framework (Lopez-Ibéiiez et al., 2017). This system was
redesigned and currently it has the best results for a number of flowshop problems
(Pagnozzi and Stiitzle, 2019; Alfaro-Fernandez et al. , 2020).

Finally, we used irace to configure a small example for an ILS for the GAP. For
more details on the irace package, we refer to the irace user guide.
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