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Abstract
The Ellis model describes the apparent viscosity of a shear–thinning fluid with no singu-
larity in the limit of a vanishingly small shear stress. In particular, this model matches the 
Newtonian behaviour when the shear stresses are very small. The emergence of the Ray-
leigh–Bénard instability is studied when a horizontal pressure gradient, yielding a basic 
throughflow, is prescribed in a horizontal porous layer. The threshold conditions for the 
linear instability of this system are obtained both analytically and numerically. In the case 
of a negligible flow rate, the onset of the instability occurs for the same parametric condi-
tions reported in the literature for a Newtonian fluid saturating a porous medium. On the 
other hand, when high flow rates are considered, a negligibly small temperature difference 
imposed across the horizontal boundaries is sufficient to trigger the convective instability.

Keywords Ellis model · Non–Newtonian fluid · Convective instability · Linear stability · 
Porous media

1 Introduction

The investigation of the threshold conditions for the onset of buoyancy–driven convec-
tion of non–Newtonian fluids is a research topic that displayed a significant development 
in the last decades (Shenoy 1994; Nield and Bejan 2017). The analysis of thermal insta-
bility in porous media saturated by viscous non–Newtonian fluids is of great importance 
for its applications in several engineering, biomedical and geophysical areas. Examples 
are the extraction of crude oils either onshore or offshore, blood perfusion in biological 
tissues, as well as the design of food industry processes. Among non–Newtonian flu-
ids, the shear–thinning also well–known as pseudoplastic fluids are extremely common. 
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Pseudoplastic fluids are important for different research areas. For instance, polymer 
solutions display shear–thinning behaviour. The same happens for some biological flu-
ids like blood and a significant number of liquid foods (Shenoy 1994).

The viscosity of pseudoplastic fluids is often described by employing the Ostwald–De 
Weale (power–law) model. The drawback of this model is in its singular behaviour for 
negligibly small shear stresses. In fact, for this particular case, the power–law model 
predicts that pseudoplastic fluids display an infinite apparent viscosity (Bird 1965). 
The Ellis model is employed to overcome this issue. This rheological model yields the 
Newtonian viscosity when the shear stresses applied to the shear–thinning fluid are 
extremely small (Bird et  al. 1987). The Ellis model is a three–parameter rheological 
model where the law establishing the relationship between stress and strain depends on 
the power–law index n, on the reference apparent viscosity �0 and reference shear stress 
�0 . The latter parameter is the shear stress value corresponding to a halved apparent vis-
cosity � = �0∕2.

A version of the Rayleigh–Bénard problem for a Newtonian fluid saturating a porous 
medium has been widely studied over the last fifty years starting from the pioneering 
papers by Horton and Rogers (1945), and by Lapwood (1948). Prats (1966) extended such 
studies by including a horizontal throughflow across the porous medium. In recent years, 
the analysis of the Rayleigh–Bénard instability in a porous medium has been further devel-
oped to the case where a power–law fluid saturates the solid matrix (Barletta and Nield 
2011; Alves and Barletta 2013).

The analysis presented in this paper is aimed to study the threshold conditions for the 
onset of buoyancy–driven convection in shear–thinning fluids saturating a porous medium. 
Since the stresses involved at onset of thermal instability may be negligibly small, the Ellis 
model will be employed. More precisely, the Rayleigh–Bénard instability will be analysed 
when an Ellis fluid saturates a horizontal porous layer. Isothermal impermeable boundaries 
kept at different temperatures are envisaged providing a heating–from–below condition. In 
perspective, the results of this study are important as they can be suitable for an experimen-
tal validation by using, for instance, a Hele–Shaw cell system (Celli et al. 2017). In fact, 
the most unstable rolls for shear–thinning fluids were predicted to be transverse (Barletta 
and Nield 2011; Celli and Barletta 2018), by employing a power–law model.

2  Mathematical Modelling

The height of the horizontal porous layer is H, and the boundaries of the layer are imper-
meable and isothermal such that a heating–from–below configuration is present. The 
lower boundary is held at temperature T0 + �T  (with 𝛥T > 0 ), while the upper boundary 
is held at temperature T0 , as displayed in Fig. 1. A basic throughflow is imposed by pre-
scribing a horizontal pressure gradient. Since a non–Newtonian extension of Darcy’s law is 
employed, a flat basic velocity profile (plug flow) is obtained.

2.1  The Ellis Model

The rheological Ellis model defines the apparent viscosity � of the non–Newtonian 
shear–thinning fluid as reported in Savins (1969), namely
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where n is a positive parameter such that 0 < n < 1 , �0 represents the value of � at which 
the apparent viscosity drops by half its reference value �0 , � is the scalar quantity

Here � is the shear stress tensor and � ∶ � = �ij�ij , where the Einstein notation for the sum 
over repeated indices is implied. The behaviour of the viscosity ratio �∕�0 versus the shear 
stress ratio �∕�0 for different values of n is reported in Fig. 2 together with the behaviour 
of �∕�0 versus n for different values of �∕�0 . The apparent viscosity obtained by employ-
ing the Ellis model for the limiting cases �0 → 0 , �0 → ∞ , n → 0 , n → 1 is presented in 
Table 1.

On the other hand, when the fluid undergoes intense shear stresses, 𝜏 ≫ 𝜏0 , Eq. (1) simpli-
fies to

(1)
� =

�0

1 +

(
�

�0

) 1−n

n

,

(2)� =

√
� ∶ �

2
.

(3)� = �0

(
�

�0

) n−1

n

.

Fig. 1  Sketch of the porous layer heated from below with horizontal throughflow

Table 1  Apparent viscosity for 
some limiting cases

�0 → 0 �0 → ∞ n → 0 n → 1

𝜏 < 𝜏0 𝜏 > 𝜏0

� 0 �
0

�
0

0 �
0
∕2



 M. Celli et al.

1 3

2.1.1  Ellis Model and Power–Law Model

The power–law fluid model prescribes that the apparent viscosity of the fluid be the following 
function of the shear stress:

where � is the consistency factor and n is the power–law index. The limiting case described 
in Eq. (3) thus coincides with the power–law model Eq. (4) if one defines � = �n

0
�1−n
0

.

2.2  Modified Darcy’s Law for an Ellis Fluid

The momentum balance equation for a Newtonian fluid saturating a porous medium is Darcy’s 
law, namely

where � is the filtration velocity vector of components (u, v), K is the permeability of the 
porous medium, and �d is the drag force defined as follows:

In Eq. (6), the Oberbeck–Boussinesq approximation is invoked, p is the pressure head, �0 
is the fluid density evaluated at the reference temperature T0 , � is the gravity acceleration 
vector, and � is the thermal expansion coefficient of the fluid. A modified Darcy’s law that 
describes a porous medium saturated by an Ellis fluid has been proposed by Sadowski and 
Bird (1965), as well as by Sadowski (1965), namely

(4)� = �
1

n �
n−1

n ,

(5)� =
K

�
�d,

(6)�d = −�p − �0 � � (T − T0).

(7)� =
K

�0

(
1 + A |�d|

1−n

n

)
�d,

Fig. 2  Values of �∕�0 versus �∕�0 for different values of n, left–hand frame. Values of �∕�0 versus n for dif-
ferent values of �∕�0 , right–hand frame
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where A is a fluid property [(Pa/m)1−1∕n] . Sadowski and Bird (1965) propose, for a porous 
bed with average pore diameter Dp , the relationship

 In the limiting case of A|�d|1∕n−1 ≪ 1 , that is when negligible drag forces are acting on the 
fluid, Eq. (7) matches Darcy’s law (5). It is worth noting that at the onset of natural convec-
tion the intensity of the drag forces may be negligibly small.

2.3  Governing Equations

The governing equations describing the problem here presented are

where the bars over the quantities identify dimensional fields, coordinates and time, � is 
the ratio between the average volumetric heat capacity of the porous medium and the volu-
metric heat capacity of the fluid, and � is the average thermal diffusivity of the saturated 
porous medium. The following scaling allows us to express Eq.  (9) in a dimensionless 
formulation:

where � is the Cartesian position vector of components (x, y, z). By substituting Eq. (10) 
into Eqs. (9) one may write 

(8)A =
4 n

3 n + 1

(
Dp

�0

) 1−n

n

.

(9)

� ⋅ � = 0,

�0

K
� =

(
1 + A |�d|

1−n

n

)
�d,

�d = −�p − �0 � � (T − T0),

�
�T

�t
+ � ⋅ �T = �∇

2

T ,

y = 0 ∶ v = 0, T = T0 + �T ,

y = H ∶ v = 0, T = T0,

(10)� =
�

H
, � =

H

�
�, p =

K

�0 �
p, t =

�

�H2
t, T =

T − T0

�T
,

(11a)� ⋅ � = 0,

(11b)� =
(
1 + El |�d|

1−n

n

)
�d,

(11c)
�T

�t
+ � ⋅ �T = ∇2T ,

(11d)y = 0 ∶ v = 0, T = 1,

(11e)y = 1 ∶ v = 0, T = 0,
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 where

The parameter El is the Darcy–Ellis number and the parameter R is the Darcy–Rayleigh 
number. They are defined as follows:

2.4  Basic State

The stationary solution of Eqs. (11) employed for the stability analysis is composed by a fully 
developed basic flow along the horizontal direction and a purely vertical constant temperature 
gradient. The horizontal flow is assumed to be generated by a prescribed pressure gradient, 
which is independent of the x and z coordinates, such that

where the subscript b denotes the basic state fields. It is not restrictive to assume that 
�pb∕�x ⩽ 0 so that ub ⩾ 0 . By taking the average value of the velocity profile, one obtains 
the definition of the Péclet number, namely

For El → 0 with |�pb∕�x| ≠ 0 one may simplify Eqs. (11) and (14) to obtain the basic state 
employed by Prats (1966). For El → 0 with |�pb∕�x| = 0 Eqs.  (11)  and  (14) yields the 
basic state employed by Horton and Rogers (1945) and Lapwood (1948).

2.5  Linear Stability Analysis

By employing Eq. (11a) and by applying the divergence operator to Eq. (11b), we can express 
Eqs. (11) according to a pressure–temperature formulation, 

(12)�d = −�p + RT �y.

(13)El = A
( � �0
H K

) 1−n

n

, R =
� g � H K �T

� �0
.

(14)
ub = −

�pb

�x

(
1 + El

||||
�pb

�x

||||

1−n

n

)
, vb = 0,

wb = 0,
�pb

�y
= R Tb,

�pb

�z
= 0, Tb = 1 − y,

(15)Pe = ∫
1

0

ub dy ⟶ Pe =
||||
�pb

�x

||||

(
1 + El

||||
�pb

�x

||||

1−n

n

)
.

(16a)� ⋅

[(
1 + El |�d|

1−n

n

)
�d

]
= 0,

(16b)
�T

�t
+
[(

1 + El |�d|
1−n

n

)
�d

]
⋅ �T = ∇2T ,

(16c)�d = −�p + R T �y,
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where the impermeability conditions in Eqs. (11d) and (11e) result into pressure con-
ditions, Eqs.  (16d)  and  (16e). The system  (16) is perturbed by defining the pressure 
and temperature fields as composed by a basic state plus small–amplitude disturbances 
expressed in terms of normal modes, namely

Here, f and h are, in general, complex functions, � is the growth rate, � = (kx, 0, kz) is the 
wave vector, � is the angular frequency. By assuming that the disturbance amplitude is 
small, 𝜀 ≪ 1 , we perform a linear stability analysis where we consider only terms O(�) . 
The aim of the forthcoming investigation is finding the threshold for the onset of ther-
mal convection. This threshold is obtained when the neutrally stable modes are considered. 
These modes are characterised by null growth rate. Thus, from now on, � is set equal to 
zero. By substituting Eq. (17) into Eqs. (16), and by employing

one obtains 

 where � is the inclination angle between the wave vector and the x–axis. For � = 0 the 
wave vector is parallel to the x–axis so that the rolls axes are perpendicular to the basic 
flow (transverse rolls). For � = �∕2 the wave vector is parallel to the z–axis. In this case, 
the rolls axes are parallel to the basic flow (longitudinal rolls). In Appendix A, we prove 
analytically that �̃� = 0 and, hence, we conclude that the eigenvalue problem (19) features 
real eigenfunctions and eigenvalues. It is worth noting that the Péclet number is not pre-
sent, at least explicitly, in Eqs.  (19). The definition of the rescaled angular frequency is 
a classical practice (Barletta et al. 2009a, b) for this kind of problems proposed by Prats 
(1966). This procedure is equivalent to performing the stability analysis in the comoving 
reference frame.

On account of Eqs. (15) and (18), one may obtain Pe as a function of El , Ẽl and n, 
namely

(16d)y = 0 ∶
�p

�y
= R, T = 1,

(16e)y = 1 ∶
�p

�y
= 0, T = 0,

(17)
p(x, y, z, t) = pb(y) + � f (y) e� tei(kx x+kz z−� t),

T(x, y, z, t) = Tb(y) + � h(y) e� tei(kx x+kz z−� t).

(18)

f̃ = (1 + Ẽl) f , R̃ = (1 + Ẽl)R, �̃� = 𝜔 − k Pe,

Ẽl = El
||||
𝜕pb

𝜕x

||||

1−n

n

, kx = k cos𝜙, kz = k sin𝜙,

ñ =
Ẽl + n (Ẽl + 2) + Ẽl (1 − n) cos(2𝜙)

2 n (Ẽl + 1)
,

(19a)f̃ �� − ñ k2 f̃ − R̃ h� = 0,

(19b)h�� −
(
k2 − R̃ − i �̃�

)
h − f̃ � = 0,

(19c)y = 0, 1 ∶ f̃ � = 0, h = 0,
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3  Results

The eigenvalue problem (19) is solved both numerically and analytically. The numerical pro-
cedure, reported in Appendix B, is employed for comparison with the results obtained analyti-
cally. We assume that f̃  and h are trigonometric functions satisfying the boundary conditions 
in Eq. (19c), namely

where � is a positive integer and B
�
 is the constant. By employing Eqs.  (18)–(21), one 

obtains the dispersion relation

The most relevant parametric configuration for the stability analysis is the one character-
ised by the lowest values of R . It is worth noting that, in order to minimise the value of R , 
the integer and positive parameter � must be minimum, i.e. � = 1 . Moreover, by recalling 
that 0 ⩽ � ⩽ �∕2 , the minimum values of R are obtained for transverse rolls, � = 0 , since 
this angle minimises the contribution of the second term in the right–hand side of Eq. (22). 
Thus, at the onset of instability, Eq. (22) can be simplified to

Equation (23) allows one to draw the neutral stability curves presented in Fig. 3. This fig-
ure is obtained for the sample n = 0.2 and different values of Ẽl.

(20)Pe =
(
1 + Ẽl

)( Ẽl

El

) n

1−n

.

(21)f̃ = cos(� 𝜋 y), h = B
�
sin(� 𝜋 y),

(22)R =
k2 + 𝜋2

�
2

(Ẽl + 1)
+

2𝜋2
�
2 n

(
k2 + 𝜋2

�
2
)

k2[Ẽl (1 − n) cos(2𝜙) + Ẽl (n + 1) + 2 n]
.

(23)R =

(
k2 + 𝜋2

)[
k2(Ẽl + n) + n𝜋2 (Ẽl + 1)

]

k2 (Ẽl + 1)(Ẽl + n)
.

Fig. 3  Neutral stability curves 
R(k) for n = 0.2 and different 
values of Ẽl
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The absolute minimum of each neutral stability curve defines the parametric threshold 
for the onset of convective instability. The term “critical values” is employed to denote 
these threshold values of the governing parameters R and k. In order to obtain the critical 
values, we calculate through Eq. (23) the derivative of R with respect to k. Hence, the criti-
cal values are given by

The values of Rc and kc given by Eq.  (24) are reported versus n in Fig.  4, for different 
values of Ẽl . These critical values are shown to be monotonic decreasing functions of the 
parameter Ẽl , while they are monotonic increasing functions of n. The four limiting cases 
Ẽl → 0 , Ẽl → ∞ and n → 1 deserve some particular attention.

3.1  Limiting Cases

On account of Eq.  (18), the limit Ẽl → 0 can be obtained either for El → 0 with a finite 
nonzero |�pb∕�x| , or by letting |�pb∕�x| → 0 with a finite nonzero El . The limit El → 0 
can be approximated by assuming a fluid with extremely small thermal diffusivity and/
or apparent reference viscosity. The limiting case |�pb∕�x| → 0 describes the classical 
Darcy–Bénard system. For a given value of n such that 0 < n < 1 , in the limiting case 
Ẽl → 0 , Eq. (24) simplifies to

The critical values given by Eq.  (25) coincide, as anticipated in Sect.  2.4,with those 
obtained by Prats (1966), by Horton and Rogers (1945), as well as by Lapwood (1948).

By employing Eq. (18), the limit Ẽl → ∞ yields either El → ∞ with a nonzero |�pb∕�x| , 
or |�pb∕�x| → ∞ with a nonzero El . The limit El → ∞ can be approximately obtained 
with an extremely viscous fluid having a large thermal diffusivity. The limiting case 
|�pb∕�x| → ∞ describes a condition of infinite flow rate. For 0 < n < 1 , in the limiting case 
Ẽl → ∞ , Eq. (24) yields

(24)Rc =
𝜋2

1 + Ẽl

{[
n (1 + Ẽl)

n + Ẽl

]1∕2
+ 1

}2

, kc = 𝜋

[
n (1 + Ẽl)

n + Ẽl

]1∕4
.

(25)Rc = 4�2, kc = �.

Fig. 4  Critical values of R and k versus n for different values of Ẽl
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These results coincide with those reported in Barletta and Nield (2011) for the limiting 
case |�pb∕�x| → ∞.

For the limiting case n → 1 , Eq. (24) simplifies to

In fact, the definition of R, given by Eq. (13), involves the reference apparent viscosity �0 , 
while the viscosity of a Newtonian fluid in the limit n → 1 is �0∕2 (see Eq. (1)). As a con-
sequence, instead of obtaining the classical results Rc = 4�2 , Eq. (24) yields Rc = 2�2 . We 
also point out that, from Eqs. (8), (13) and (18), Ẽl → 1 when n → 1.

Figure 6 displays plots of Rc∕�
2 and kc∕� versus the dimensional pressure drop [Pa m] 

of the basic flow for a sample case involving a porous layer 10−1 m thick having perme-
ability 10−9 m2 and an average pore diameter of 10−5 m . We devise a situation where the 
porous layer is saturated by a polyacrylamide solution at room temperature. The values of 
the thermophysical properties of the polyacrylamide solution are taken from Park (1972) 
and Hirata et al. (1993). This figure illustrates very clearly the asymptotic cases where the 
pressure drop tends to zero (Newtonian behaviour, Eq. (25)) or the pressure drop tends to 
infinity (power–law behaviour, Eq. (26)).

3.2  Shape of the Disturbances

Figure 5 displays the shape of the disturbances defined in Eq. (17). This figure is obtained 
by employing the critical wavenumber calculated for n = 0.2 and Ẽl = 10 by means of 
Eq.  (24), namely kc = �(11∕51)1∕4 . The lines defined by p(x, y, z, 0) = constant and the 
lines defined by �(x, y, z, 0) = constant are plotted for a single period 2�∕k . Since the 
shape of the disturbances does not depend on the values of n and Ẽl , as one may infer from 

(26)Rc = 0, kc = � n1∕4.

(27)Rc = 2�2, kc = �.

Fig. 5  Lines p(x, y, z, 0) = constant (left frame) and lines �(x, y, z, 0) = constant (right frame). The figure is 
obtained for n = 0.2 and Ẽl = 10
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Eqs.  (17)  and  (21), only one case has been reported. Figure  5 refers to transverse rolls, 
� = 0 , and thus it is plotted on the plane (x, y).

4  Conclusions

The onset of convective instability inside a horizontal porous layer saturated by a non-
Newtonian fluid has been investigated. The fluid is shear–thinning and its apparent vis-
cosity is defined by the Ellis model. The layer is heated from below and a basic horizon-
tal pressure gradient is assumed. A linear stability analysis has been performed by means 
of the normal mode method. The governing parameters are the Darcy–Rayleigh number, 
R , the modified Darcy–Ellis number, Ẽl , and the Ellis power–law index, n. The modified 
Darcy–Ellis number is a function of the Péclet number associated with the basic flow rate, 
of the Ellis number and of the Ellis power–law index. The main conclusions drawn from 
the stability analysis are the following:

– The critical values of the governing parameters can be expressed analytically as func-
tions of n and Ẽl.

– The most unstable rolls are transverse, having their axes perpendicular to the direction 
of the basic throughflow.

– The angular frequency of the transverse rolls is equal to the product between the wave-
number and the Péclet number. Such rolls are non–travelling in the reference frame 
comoving with the basic throughflow.

– For Ẽl → 0 , the critical value of the Darcy–Rayleigh number tends to 4�2 while the 
wavenumber approaches � . This limiting case identifies those configurations where the 
basic pressure gradient is absent and/or the fluid is Newtonian. The critical values of 
the governing parameters match those found in the literature for either the Prats prob-
lem or the Horton–Rogers–Lapwood problem.

Fig. 6  Plots of Rc∕�
2 and kc∕� versus the dimensional basic pressure drop �p∕L [Pa/m] . We consider a 

porous layer with thickness H = 10−1 m , permeability K = 10−9m2 and average pore diameter Dp = 10−5 m 
saturated by a polyacrylamide solution at room temperature (data taken from Park 1972 and Hirata et al. 
1993)
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– For Ẽl → ∞ , the critical value of the Darcy–Rayleigh number tends to zero and the 
wavenumber tends to � n1∕4 . This limiting case identifies those configurations where 
the basic pressure gradient is extremely intense and/or the fluid is strongly shear–thin-
ning. In other words, for this parametric configurations, a fluid characterised by an 
extremely low apparent viscosity is considered and thus a negligibly small temperature 
gap between the horizontal boundaries is sufficient to trigger the onset of convection.

– The parameters Ẽl and n play different roles: as Ẽl increases we have a destabilising 
effect on the basic state, while as n increases we have a stabilising effect.

We finally point out that our study has been based on the Ellis model for the fluid rheology 
in order to encompass the singular behaviour of the simpler power–law model. In particu-
lar, as pointed out in Barletta and Nield (2011), the use of the power–law model leads to 
the prediction of an either zero or infinite critical value of the Darcy–Rayleigh number 
when the flow rate in the basic state is zero. On the other hand, when the basic flow rate 
tends to zero, the use of the Ellis model leads to a non–singular behaviour where the same 
critical value of the Darcy–Rayleigh number as predicted for the case of a Newtonian fluid, 
namely 4�2 , is attained.

Appendix A. Proof that !̃ = 0

One can multiply Eq.  (19a) by f̃ ∗ , that is the complex conjugate of the eigenfunction f̃  , 
and integrate by parts over the domain y ∈ (0, 1) to obtain

From Eq. (28), one may conclude that the last integral on the left hand side is real. By tak-
ing the complex conjugate of this integral and, on integrating it by parts, one concludes 
that

is real. This result will be invoked later on. One can now multiply Eq.  (19b) by h∗ , that 
is the complex conjugate of the eigenfunction h, and integrate by parts over the domain 
y ∈ (0, 1) to obtain

By employing Eq. (29), one may infer that the imaginary part of Eq. (30) is

Equation (31) implies either �̃� = 0 or h = f̃ = 0 . Since the trivial solution h = f̃ = 0 is not 
acceptable, one may conclude that �̃� = 0.

(28)∫
1

0

|f̃ �|2 dy + k2 ñ ∫
1

0

|f̃ |2 dy + R̃∫
1

0

h� f̃ ∗ dy = 0.

(29)∫
1

0

f̃ �h∗ dy

(30)∫
1

0

|h�|2 dy +
(
k2 − R̃ − i �̃�

)
∫

1

0

|h|2 dy + ∫
1

0

f̃ �h∗ dy = 0.

(31)�̃�∫
1

0

|h|2 dy = 0.
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Appendix B. Numerical Method

The numerical method employed to solve the stability eigenvalue problem is the shooting 
method. The first step consists in defining (and solving) the initial value problem obtained 
from Eqs. (19) simplified as a consequence of the results reported in Appendix A, namely

Here, the condition f̃ (0) = 1 can be imposed because the governing equations in Eq. (32) 
are homogeneous, while � is an unknown real parameter. The problem  (32) is solved 
numerically by means of the Runge–Kutta method. The obtained eigenfunctions f̃  and h 
depend on four governing parameters, (k, ñ, R̃, 𝜉).

The second step of the shooting method is based on the target conditions

Such conditions serve to obtain numerically, by employing a root–finding algorithm, two 
out of the four governing parameters (k, ñ, R̃, 𝜉) . Thus, for every given ñ , one obtains the 
neutral stability curve R̃(k).

The critical values are obtained by solving the initial value problem given by Eq. (32) 
and the derivative with respect to k of Eq. (32). The conditions employed in the root–find-
ing algorithm are the two conditions given by Eq. (33) together with their derivatives with 
respect to k.

A comparison between the results obtained analytically and those obtained numerically 
is reported in Table 2. The critical values of the wavenumber k and the critical values of R , 
both evaluated for n = 0.2 , � = 0 and different values of Ẽl , are provided in this table. The 
subscript a refers to the data obtained analytically, while the subscript n is relative to the 
numerical data. The results obtained by employing these two different approaches coincide 
within 12 significant figures.
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(32)

f̃ �� − ñ k2 f̃ − R̃h� = 0,

h�� −
(
k2 − R̃

)
h − f̃ � = 0,

f̃ (0) = 1, f̃ �(0) = 0, h(0) = 0, h�(0) = 𝜉.

(33)f̃ �(1) = 0, h(1) = 0.

Table 2  Critical values of R and k for n = 0.2 , � = 0 , and different values of Ẽl . The subscript a identifies 
those solutions obtained analytically while subscript n identifies those solutions obtained numerically

Ẽl k
c,a k

c,n R
c,a R

c,n

0.01 3.11123554149690 3.11123554149643 38.3394030316440 38.3394030316322
0.1 2.90720213712325 2.90720213712280 30.9190571158268 30.9190571158173
1 2.38709420797841 2.38709420797804 12.2779550251570 12.2779550251532
10 2.14094494759125 2.14094494759095 1.92414846749808 1.92414846749755
100 2.10509056463515 2.10509056463491 0.205169284151348 0.205169284151301
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