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Optimal control of infinite-dimensional

Piecewise Deterministic Markov Processes: a BSDE approach.

Application to the control of an excitable cell membrane.

Elena BANDINI∗ Michèle THIEULLEN †

Abstract

In this paper we consider the optimal control of Hilbert space-valued infinite-dimensional
Piecewise Deterministic Markov Processes (PDMP) and we prove that the corresponding value
function can be represented via a Feynman-Kac type formula through the solution of a con-
strained Backward Stochastic Differential Equation. A fundamental step consists in showing
that the corresponding integro-differential Hamilton-Jacobi-Bellman equation has a unique vis-
cosity solution, by proving a suitable comparison theorem. We apply our results to the control
of a PDMP Hodgkin-Huxley model with spatial component, previously studied in [23], [22] and
inspired by optogenetics.

Keywords: infinite-dimensional PDMPs, constrained backward stochastic differential equations, integro-

differential Hamilton-Jacobi-Bellman equation, viscosity solutions in infinite dimensions, spatio-temporal

Hodgkin-Huxley models.

MSC 2010: 93E20, 60H10, 60J25.

1 Introduction

In this paper we consider optimal control problems for Hilbert space-valued infinite-dimensional
Piecewise Deterministic Markov Processes, and we prove that the corresponding value function
can be represented through a Feynman-Kac formula by means of the solution of a constrained
Backward Stochastic Differential Equation (BSDE). As an intermediate step, we also show that
the corresponding Hamilton-Jacobi-Bellmann (HJB) has a unique viscosity solution by providing a
comparison theorem for suitable Integro Partial Differential Equations (IPDE). We apply our theo-
retical results to the control of a PDMP Hodgkin-Huxley model with spatial component, previously
considered in [23], [22] and inspired by optogenetics.

The Feynman-Kac type representation for the value function is obtained by implementing the
randomization procedure introduced in [20] for jump-diffusions, later extended in [5] and [4] re-
spectively to the case of finite-dimensional pure jump Markov processes and of finite-dimensional
PDMPs. The control randomization method is particularly useful to probabilistically represent the
value function associated to stochastic control problems, where the laws of the family of controlled
processes are not dominated by a common measure. Roughly speaking, the randomization principle
consists in enlarging the state space by an additional independent piecewise constant component
corresponding to the control, and in subsequently generating a family of dominated laws and an
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Pierre et Marie Curie, Boite 158, 4 Place Jussieu, 75252 Paris Cedex 05, France; e-mail: michele.thieullen@upmc.fr

1



auxiliary control problem, where the cost is optimized with respect to the intensity of the extended
pure jump component. The value function of this latter (randomized) control problem can be rep-
resented by means of the solution of a constrained BSDE, namely a backward equation driven by
a random measure with a sign constraint on its martingale part. In order to be able to relate this
backward equation to the HJB equation associated to the primal problem, one has to show that
the randomized value function does not depend on the additional component, and that it provides
a solution to the above-mentioned HJB equation. Afterwards, the Feynman-Kac representation
formula for the original value function comes from the uniqueness of the viscosity solution to the
corresponding HJB equation. We refer the reader to the introduction of [20] for an extended expo-
sition of the issues involved. Note that the randomization procedure is a very general methodology
which applies even if the laws of the controlled processes are dominated. The Feynman-Kac rep-
resentation formula can be used to design algorithms based on the numerical approximation of
the solution to the corresponding constrained BSDE, and therefore to get probabilistic numerical
approximations for the value function of the addressed optimal control problem, see e.g. [21].

In our infinite-dimensional setting, we provide existence and uniqueness (in a suitable sense) of
the solution of such a constrained BSDE and its independence with respect to the additional com-
ponent. We also prove a randomized dynamic principle which enables us to establish that the value
function of the randomized problem is a viscosity solution of the HJB-IPDE on the Hilbert space.
Viscosity solutions for partial differential equations in infinite dimension with unbounded linear
terms have been first studied in [10] and[11], where the notions of B-upper/lower-semicontinuity
are introduced, and subsequently considered by many other authors, see e.g. [14] for a modern and
detailed exposition on this topic. Recently the papers [27] and [28] have addressed respectively
existence and uniqueness for an HJB-IPDE resulting from the control of an Hilbert space-valued
SDE driven by a Lévy process. Notice that in our framework we do not ask that our PDMP is a
strong solution to some SDE. Our approach is instead based on the study of the local characteristics
of the PDMP in the spirit of the theory developed in [12]. We prove a comparison theorem which
implies the uniqueness of the viscosity solution of our HJB-IPDE. The appropriate definition of
viscosity solution, on which the comparison theorem relies, is derived suitably extending the one
provided in [28].

Our theoretical results are applied to the control of a PDMP Hodgkin-Huxley model with
spatial component. Hilbert space-valued PDMP models describing the spatio-temporal evolution
of a neuron with a finite number of ion channels (or more general excitable membranes) have been
rigorously settled in [7]. In particular it was proved in [24] that such PDMP converge to the spatio-
temporal Hodgkin-Huxley model proposed in [15] when the number of channels goes to infinity,
see also [2]. Inspired by optogenetics, optimal control of general infinite-dimensional PDMP has
been previously considered in [23], [22]. In particular the results in [23] were applied to a tracking
problem for a Hilbert space-valued Hodgkin-Huxley type PDMP. In that paper, as in the present
one, piecewise open loop controls (see e.g. [29]) were considered, and the control acted on the
three characteristics of the PDMP. However, the main tools were relaxed controls and the optimal
control theory of Markov Decision Processes, see [6]. Moreover, even if an HJB-IPDE were written
down in that paper, no study was conducted about existence or uniqueness of its solutions. We also
mention the more recent paper [8], which exploits Markov Decision Processes in infinite dimension
in the framework of stochastic filtering.

Many generalizations of the present work may be possible. For instance, it would be interesting
to treat the general case with infinite-dimensional PDMPs on a state space with boundary, from
which additional instantaneous jumps into the interior of the domain may occur (in the finite-
dimensional case, this feature has been recently considered in [3]). Moreover, in our application
section we have considered the classical case of a Laplacian operator, but other operators could be
addressed as well. Finally, a challenging future development would consists in applying our results
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to the infinite-dimensional PDMP that naturally arise in filtering problems.
The paper is organized as follows. In Section 2 we construct our infinite-dimensional controlled

PDMP and we define the related optimal control problem. In particular, inspired by [18], we provide
a canonical construction of the PDMP state process in infinite dimension, by suitably extending the
finite-dimensional construction implemented in [4], [5]. We then set the associated control problem,
and we establish in Theorem 2.11 that the corresponding value function is a viscosity solution of
the HJB equation (2.19)-(2.20). In Section 3 we describe the control randomization method in
our setting, and we introduce the randomized optimal control problem. Then in Section 4 we
define and study the related constrained BSDE, and we address the Feynman-Kac representation.
As described above, the first step of the randomization approach consists in proving that the
randomized value function does not depend on the additional component, and that satisfies a
suitable randomized dynamic programming principle, see respectively Proposition 4.2 and Theorem
4.3. Then in Theorem 4.4 we show that also the randomized value function is a viscosity solution
to the HJB equation. The last step towards the Feynman-Kac representation consists in the
comparison Theorem 4.5, which provides uniqueness of the viscosity solutions to our HJB-IPDE
equation. Section 5 is devoted to the application of our results to the control of a spatio-temporal
Hodgkin-Huxley type model. Finally, Sections 6 and 7 are devoted to the proofs of the results
provided respectively in Sections 2 and 4.

2 Optimal control of infinite-dimensional PDMPs

In the present section we are going to formulate an optimal control problem for infinite-dimensional
piecewise deterministic Markov processes, and to discuss its solvability. The PDMP state space E
is a real separable Hilbert space, equipped with the norm || · || and the inner product 〈·, ·〉, with
corresponding Borel σ-field E . In addition, we introduce a compact Polish space A, endowed with
its Borel σ-field A, called the space of control actions. The other data of the problem consist in
four functions f , b, λ on E × A, g on E, a probability transition kernel Q from (E × A, E ⊗ A) to
(E, E), and an operator L satisfying the following conditions.

(HL)

(i) L is a linear, densely defined, maximal monotone operator in E. Moreover, there exists an
operator B on E bounded, linear, positive (i.e., 〈Bx, x〉 > 0 for every x ∈ E, x 6= 0) and self-
adjoint, such that L∗B is bounded on E, and, for some c0 ≥ 0,

〈(L∗B + c0B)x, x〉 ≥ 0 ∀x ∈ E. (2.1)

We define the space E−1 to be the completion of E under the norm ||x||−1 = ||B1/2x||. E−1 is an
Hilbert space equipped with the inner product 〈x, x〉−1 = 〈B1/2x,B1/2x〉. Moreover,

||x||−1 ≤ ||B1/2|| ||x||, x ∈ E. (2.2)

(ii) −L generates a strongly continuous semigroup (S(u))u≥0 such that, for any u > 0, S(u) is a
contraction on E with respect to || · ||−1.

Remark 2.1. −L is the generator of a strongly continuous semigroup of contractions (S(u))u≥0

on E, see e.g. Theorem B.45 in [14].

Definition 2.2. We say that a function u : W → R is B-upper-semicontinuous (resp., B-lower-
semicontinuous) on W ⊂ [0, T ] × E if, whenever tn → t, xn ⇀ x, B xn → B x, (t, x) ∈ W ,
then lim supn→∞ u(tn, xn) ≤ u(t, x) (resp. lim infn→∞ u(tn, xn) ≥ u(t, x)). The function u is B-
continuous on W if it is B-upper-semicontinuous and B-lower-semicontinuous on W .
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In the assumptions below C is a generic constant which may vary from line to line.

(HbλQ)

(i) b : E ×A 7→ E, λ : E ×A 7→ R+ are bounded continuous functions such that{
||b(x, a)− b(x′, a)|| 6 C ||x− x′||−1, x, x′ ∈ E, a ∈ A
|λ(x, a)− λ(x′, a)| 6 C ||x− x′||−1, x, x′ ∈ E, a ∈ A.

(ii)Qmaps E×A into the set of probability measures on (E, E), and is a continuous stochastic kernel
(see e.g. Proposition 7.30 in [6]). Moreover, for any real function ϕ continuous on (ε, T − ε) × E
for any ε > 0 and bounded, and for every R > 0, we have, for all s, s′ ∈ (ε, T − ε),∣∣∣∣∫

E
ϕ(s, y)Q(z, a, dy)−

∫
E
ϕ(s, y)Q(z′, a, dy)

∣∣∣∣ ≤ C ω(||z − z′||−1), z, z′ ∈ E, a ∈ A, (2.3)∣∣∣∣∫
E

[ϕ(s, y)− ϕ(s′, y)]Q(z, a, dy)

∣∣∣∣ ≤ CσR(|s− s′|), z ∈ E : ||z|| ≤ R, a ∈ A. (2.4)

where ω is a modulus of continuity, and σR(·) is a modulus of continuity depending on R.

(Hfg) f : E ×A 7→ R+, g : E 7→ R+ are continuous and bounded functions, such that

|f(x, a)− f(x′, a)|+ |g(x)− g(x′)| 6 C ω(||x− x′||−1), a ∈ A,

for all x, x′ ∈ E, where ω is a modulus of continuity.

2.1 The optimal control problem

We construct the controlled process X in a canonical way. We start by fixing (t, x) ∈ [0, T ] × E,
and we set Ωt = [0, T ]×E × Ω̄t, where ω = (t, x, ω̄), Ω̄t being the set of sequences ω̄ = (tn, en)n≥1

contained in ((t,∞) × E ∪ {(∞,∆)}), where ∆ /∈ E is an isolated point adjoined to E, such that
tn ≤ tn+1, and tn < tn+1 if tn < ∞. On the sample space Ωt we define the canonical functions
T0 : Ωt → [0, ∞), E0 : Ωt → E and, for n ≥ 1, T tn : Ωt → (t, ∞], En : Ωt → E ∪ {∆}, as
follows: T0(ω) = t, E0(ω) = x, T tn(ω) = tn, En(ω) = en, with T t∞(ω) = limn→∞ tn. We also
introduce the associated integer-valued counting measure on (t, ∞) × E given by p(t; ds dy) =∑

n∈N δ(T tn,En)(ds, dy).
The class of admissible control laws Atad is the set of all predictable processes α with values in

A of the form

αs(ω) = α0(s− t, x) 1(t, T t1(ω)](s) +
∞∑
n=1

αn(s− T tn(ω), En(ω)) 1(T tn(ω), T tn+1(ω)](s), s ∈ [t, T ], (2.5)

where (αn)n, αn : R+ × E → A, is a sequence of Borel-measurable functions, see for instance [12],
[9], [1]. In other words, at each jump time T tn, we choose an open loop control αn depending on the
initial condition En and on the time elapsed up to T tn, to be used until the next jump time. We
define the controlled process X : Ωt × [t, ∞)→ E ∪ {∆} setting

Xs =


φα0(s− t, x) if s ∈ [t, T t1),
φαn(s− T tn, En) if s ∈ [T tn, T

t
n+1), n ∈ N,

∆ if s ≥ T t∞,
(2.6)

where φβ(s, x) is the unique mild solution to the parabolic partial differential equation

ẋ(s) = −Lx(s) + b(x(s), β(s)), x(0) = x ∈ E, (2.7)

4



with β(s) an A-measurable function, namely

φβ(s, x) = S(s)x+

∫ s

0
S(s− r)b(φβ(r, x), β(r))dr. (2.8)

One can easily prove the following result, see e.g. Lemma 3.5 in [23].

Proposition 2.3. Let (HL) and (HbλQ) hold. Then, for every R > 0, t ∈ [0, T ], t < s′ < s,
α ∈ Atad, there exists a constant C, only depending on T , such that

||φα(s− t, x)− φα(s− t, x′)|| ≤ C ω(||x− x′||), x, x′ ∈ E, (2.9)

||φα(s− t, x)− φα(s′ − t, x)|| ≤ C σR(s− s′), x ∈ E : ||x|| ≤ R, (2.10)

||φα(s− t, x)|| ≤ C(1 + ||x||), x ∈ E, (2.11)

||φα(s− t, x)− φα(s− t, x′)||−1 ≤ C ω(||x− x′||−1) x, x′ ∈ E, (2.12)

||φα(s− t, x)− φα(s′ − t, x)||−1 ≤ C σR(s− s′), x ∈ E : ||x|| ≤ R. (2.13)

where ω is a modulus of continuity, and σR is a modulus of continuity depending on R.

Set F0 = B([0, T ]) ⊗ E ⊗ {∅,Ω′} and, for all s ≥ t, Gts = σ(p((t, r] × B) : r ∈ (t, s], B ∈ E).
For all s ≥ t, let F ts be the σ-algebra generated by F0 and Gts. In the following all the concepts
of measurability for stochastic processes will refer to the right-continuous, natural filtration Ft =
(F ts)s≥t. By the symbol Pt we will denote the σ algebra of Ft-predictable subsets of [t, ∞)× Ω.

For every initial time and starting point (t, x) ∈ [0, T ]× E and for each α ∈ Atad, by Theorem
3.6 in [18] there exists a unique probability measure on (Ωt,F t∞), denoted by Pt,xα , such that its
restriction to F tt is δx, and the Ft-compensator under Pt,xα of the measure p(t; ds dy) is

p̃α(t; ds dy) =

∞∑
n=1

1[T tn, T
t
n+1)(s)λ(Xs, αn(s− T tn, En))Q(Xs, αn(s− T tn, En), dy) ds.

We will denote by Et,xα the expectation under Pt,xα . The following proposition can be obtained by
suitably extending the analogous finite-dimensional result, see Theorem 1.2 in [23].

Proposition 2.4. Assume that Hypotheses (HL) and (HbλQ) hold. For any (t, x) ∈ [0, T ]× E
and α ∈ Atad, let s 7→ φα(s, x) be the unique mild solution to (2.7) with β = α, and X be the process
in (2.6) with law Pt,xα . Then X is an homogeneous strong Markov process.

Moreover, let D be the set of all measurable functions ψ : R+ × E → R which are absolutely
continuous on R+ as maps s 7→ ψ(s, φα(s− t, x)), for all x ∈ E, and such that the map (x, s, ω) 7→
ψ(s, y)− ψ(s,Xs−) is a valid integrand for the random measure Q, and set

D̄ := {ψ ∈ D, ψ ∈ C1(R× E) :

Dψ(s, x) ∈ E if x ∈ E,Dψ(s, x),
∂ψ

∂s
(s, x) bounded if x bounded},

where Dψ is the unique element of E such that dψ
dx [s, x](y) = 〈y,Dψ(s, x)〉, y ∈ E, where dψ

dx [s, x]
denotes the Fréchet-derivative of ψ w.r.t. x ∈ E evaluated at (s, x) ∈ [0, T ] × E. Let t < T̄ < T ,
τ̂ be a stopping time such that τ̂ ∈ [t, T̄ ], let τR be the exit time of X from {y : ||y|| ≤ R}, R > 0,
and set τ = τ̂ ∧ τR. Then, for every ψ ∈ D̄,

Et,xα [ψ(τ,Xτ )] = ψ(t, x) + Et,xα
[∫ τ

t

(
∂ψ

∂t
(r,Xr) + 〈b(Xr, αr), Dψ(r,Xr)〉

)
dr

]
(2.14)

− Et,xα
[∫ τ

t
〈LXr, Dψ(r,Xr)〉 dr

]
+ Et,xα

[∫ τ

t

∫
E

(ψ(r, y)− ψ(r,Xr))λ(Xr, αr)Q(Xr, αr, dy) dr

]
.
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At this point, we define for any (t, x) ∈ [0, T ]× E and α ∈ Atad, the cost functional

J(t, x, α) = Et,xα
[∫ T

t
f(Xs, αs) ds+ g(XT )

]
(2.15)

and the value function of the control problem

V (t, x) = inf
α∈Atad

J(t, x, α). (2.16)

Proposition 2.5. Assume that Hypotheses (HL), (HbλQ) and (Hfg) hold. Then the value
function V in (2.16) is bounded and uniformly continuous in the | · | × || · ||−1 norm. Moreover, V
satisfies the following dynamic programming principle (DPP):

V (t, x) = inf
α∈Atad

Et,xα

[∫ T t1∧T

t
f(Xs, αs) ds+ V (T t1 ∧ T,XT t1∧T )

]
t ∈ [0, T ], x ∈ E. (2.17)

Proof. See Section 6.1.

One can prove that formula (2.17) also holds with h∧ T ∧ T t1, for any deterministic time h > t,
in place of T ∧ T t1. More generally, the previous result can be extended as follows.

Proposition 2.6. Under the same hypotheses of Proposition 2.5, the (DPP) (2.17) can be extended
to the form

V (t, x) = inf
α∈Atad

Et,xα
[∫ θ

t
f(Xs, αs) ds+ V (θ,Xθ)

]
t ∈ [0, T ], x ∈ E, (2.18)

with
θ := τ ∧ T t1 ∧ T, τ := inf {s > t : (s,Xs) /∈ B ((t, x); ρ)} ,

where B((t, x); ρ) := {(s, y) ∈ (t, T )× E : ||y − x|| < ρ, |s− t| < ρ}, (t, x) ∈ [0, T ]× E, ρ > 0.

Proof. See Section 6.2.

2.2 The related HJB equation

Let us now consider the HJB-IPDE associated to the optimal control problem: this is the following
parabolic nonlinear equation on [0, T ]× E:

∂v

∂t
(t, x)− 〈Lx, Dv(t, x)〉+ inf

a∈A
{Lav(t, x) + f(x, a)} = 0, (2.19)

v(T, x) = g(x), (2.20)

where La is the time-homogeneous operator depending on a ∈ A defined as

Laψ(t, x) := 〈b(x, a), Dψ(t, x)〉+ λ(x, a)

∫
E

(ψ(t, y)− ψ(t, x))Q(x, a, dy). (2.21)

Remark 2.7. The HJB equation (2.19)-(2.20) can be rewritten as

Hv(x, v,Dv) = 0 (2.22)

v(T, x) = g(x), (2.23)

where

Hψ(z, v, p) =
∂v

∂t
− 〈Lz, p〉+ inf

a∈A

{
b(z, a) · p+

∫
E

(ψ(y)− ψ(z))λ(z, a)Q(z, a, dy) + f(z, a)

}
.
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Definition 2.8. We say that a function ψ is a test function if ψ(t, x) = ϕ(t, x) + δ(t, x)h(||x||),
where

(i) ψ, ∂ϕ∂t , Dϕ, L∗Dϕ, ∂δ
∂t , Dδ, L

∗Dδ are uniformly continuous on (ε, T − ε)×E for every ε > 0,
δ ≥ 0 is B-continuous and bounded, ϕ is B-lower semicontinuous and bounded.

(ii) h ∈ C2(R) with h′, h′′ uniformly continuous, h is even and bounded, h′(r) ≥ 0 for r ∈ (0, +∞).

Definition 2.9. Viscosity solution to (2.19)-(2.20).

(i) A bounded B-upper-semicontinuous function u : (0, T )×E → R is a viscosity subsolution of
(2.19) if, whenever u− ψ has a global maximum at a point (t, x) for a test function ψ, then

∂ψ

∂t
(t, x)− 〈x, L∗Dϕ(t, x) + h(||x||)L∗Dδ(t, x)〉

+ inf
a∈A

{
〈b(x, a), Dψ(t, x)〉+

∫
E

(ψ(t, y)− ψ(t, x))λ(x, a)Q(x, a, dy) + f(x, a)

}
≥ 0.

(ii) A bounded B-lower-semicontinuous function w : (0, T )×E → R is a viscosity supersolution
of (2.19) if, whenever w + ψ has a global minimum at a point (t, x) for a test function ψ,
then

− ∂ψ

∂t
(t, x) + 〈x, L∗Dϕ(t, x) + h(||x||)L∗Dδ(t, x)〉

+ inf
a∈A

{
〈b(x, a),−Dψ(t, x)〉 −

∫
E

(ψ(t, y)− ψ(t, x))λ(x, a)Q(x, a, dy) + f(x, a)

}
≤ 0.

(iii) A viscosity solution of (2.19)-(2.20) is a function which is both a viscosity subsolution and a
viscosity supersolution.

The following lemma will play a fundamental role in the following.

Lemma 2.10. Let ψ(s, y) = ϕ(s, y) + δ(s, y)h(||x||) be a test function of the type introduced in
Definition 2.8. For any a ∈ A, define

Gψa (s, z) := −∂ψ
∂s

(s, z) + 〈z, L∗Dϕ(s, z) + h(||z||)L∗Dδ(s, z)〉+ f(z, a)− Laψ(s, z) (2.24)

where La is defined in (2.21). Then, for any t ∈ (ε, T − ε), ε > 0, x ∈ E, and any measurable
function α0 : R+ × E → A, the map

r 7→ Gψa (r, φα0(r − t, x))

is continuous on [t, T − ε), ε > 0, uniformly in a and α0. In particular, for any t ∈ (ε, T − ε),
ε > 0, x ∈ E, and any measurable function α0 : R+ × E → A, the map

r 7→ Gα0(r) := inf
a∈A

Gψa (r, φα0(r − t, x))

is continuous on [t, T −ε), ε > 0, uniformly in α0, and uniformly on BR(x) := {x ∈ E : ||x|| ≤ R},
R > 0.

Proof. See Section 6.3.

We end this section with the following important result. We recall that, by Proposition 2.5, the
value function V is bounded and B-continuous.

Theorem 2.11. Let (HL), (HbλQ) and (Hfg) hold. Then the value function V provides a
viscosity solution to (2.19)-(2.20).

Proof. See Section 6.4.
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3 Control randomization

In this section we start to implement the control randomization method. As a first step, for an
initial time t ≥ 0 and a starting point x ∈ E, we construct an (uncontrolled) PDMP (X, I) with
values in E×A by specifying its local characteristics, see (3.3)-(3.4)-(3.5) below. Next we formulate
an auxiliary optimal control problem where, roughly speaking, we optimize a cost functional by
modifying the intensity of the process I over a suitable family of probability measures.

3.1 Construction of randomized state systems

Let E still denote a real separable Hilbert space Borel σ-field E , and A be a Polish space with
corresponding Borel σ-field A. Let moreover b, λ and Q be respectively two real functions on E×A
and a probability transition from (E × A, E ⊗ A), satisfying (HbλQ) as before. We denote by
φ(s, x, a) the unique mild solution to the parabolic partial differential equation

ẋ(s) = −Lx(s) + b(x(s), a), x(0) = x ∈ E, a ∈ A. (3.1)

In particular, φ(s, x, a) corresponds to the function φβ(s, x) introduced in Section 2 when β(s) ≡ a
and, for every x, x′ ∈ E, 0 < s′ < s < T , a ∈ A, satisfies

||φ(s, x, a)− φ(s′, x′, a)||−1 ≤ Cω(||x− x′||−1 + (s− s′)) (3.2)

with C a constant only depending on T , and ω some modulus of continuity by Proposition 2.3.
This fact will be of great use in the sequel.

Let us now introduce another finite measure λ0 on (A,A) satisfying the following assumption:

(Hλ0) λ0 is a finite measure on (A,A) with full topological support.

The existence of such a measure is guaranteed by the fact that A is a separable space with metrizable
topology. We define

φ̃(t, x, a) := (φ(t, x, a), a), (3.3)

λ̃(x, a) := λ(x, a) + λ0(A), (3.4)

Q̃(x, a, dy db) :=
λ(x, a)Q(x, a, dy) δa(db) + λ0(db) δx(dy)

λ̃(x, a)
. (3.5)

We wish to construct a PDMP (X, I) with enlarged state space E × A and local characteristics
(φ̃, λ̃, Q̃). Firstly, we need to introduce a suitable sample space to describe the jump mechanism of
the process (X, I) on E × A. Accordingly, we fix (t, x, a) ∈ [0, T ] × E × A, and, proceeding as in
Section 2.1, we set Ω̄t as the set of sequences ω̄ = (tn, en, an)n≥1 contained in ((t, ∞) × E × A) ∪
{(∞,∆,∆′)}, where ∆ /∈ E (resp. ∆′ /∈ A) is adjoined to E (resp. to A) as an isolated point. In
the sample space Ωt = [0, T ] × E × A × Ω̄t we define the random variables T0(ω) = t, E0(ω) = x,
A0(ω) = a, and, for n ≥ 1, T tn : Ωt → (t, ∞], En : Ωt → E ∪ {∆}, An : Ωt → A ∪ {∆′}, as follows:
writing ω = (t, x, a, ω̄) in the form ω = (t, x, a, t1, e1, a1, t2, e2, a2, ...), we set for n ≥ 1,

T tn(ω) = tn, T t∞(ω) = lim
n→∞

tn, En(ω) = en, An(ω) = an.

We define the process (X, I) on (E ×A) ∪ {∆,∆′} setting

(X, I)s =


(φ(s− t, x, a), a) if s ∈ [t, T t1),
(φ(s− T tn, En, An), An) if s ∈ [T tn, T

t
n+1), for n ∈ N,

(∆,∆′) if s ≥ T t∞.
(3.6)
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In Ωt we introduce for all s ≥ t the σ-algebras Gtr = σ(N(s,G) : s ∈ (t, r], G ∈ E ⊗ A) generated
by the counting processes N(s,G) =

∑
n∈N 1T tn≤s1(En,An)∈G, and the σ-algebra F ts generated by

F0 and Gts, where F0 = B([0, T ]) ⊗ E ⊗ A ⊗ {∅,Ω′}. We still denote by Ft = (F ts)s≥t and Pt
the corresponding filtration and predictable σ-algebra. The random measure p is now defined on
(t, ∞)× E ×A as

p(t; ds dy db) =
∑
n∈N

δ(T tn,En,An)(ds dy db). (3.7)

Given any starting point (t, x, a) ∈ E × A, by Theorem 3.6 in [18], there exists a unique prob-
ability measure on (Ωt,F t∞), denoted by Pt,x,a, such that its restriction to F0 is δ(x,a) and the
Ft-compensator of the measure p(t; ds dy db) under Pt,x,a is the random measure

p̃(t; ds dy db) =
∑
n∈N

1[T tn, T
t
n+1)(s) Λ(φ(s− T tn, En, An), An, dy db) ds, (3.8)

where
Λ(x, a, dy db) = λ(x, a)Q(x, a, dy) δa(db) + λ0(db) δx(dy), ∀(x, a) ∈ E ×A.

We denote by q = p− p̃ the compensated martingale measure associated to p.
The sample path of a process (X, I) with values in E × A, starting from a fixed initial point

(x, a) ∈ E ×A at time t, can be defined iteratively by means of its local characteristics (φ̃, λ̃, Q̃) in
the following way. Set F (t, x, a; s) = e−

∫ s
t (λ(φ(r−t,x,a),a)+λ0(A)) dr. For any B ∈ E , C ∈ A, we have

Pt,x,a(T t1 > s) = F (t, x, a; s), s ≥ t, (3.9)

Pt,x,a(XT t1
∈ B, IT t1 ∈ C|T

t
1) = Q̃(x,B × C), (3.10)

on {T t1 <∞}, and, for every n ≥ 1, on {T tn <∞},

Pt,x,a(T tn+1 > s | FT tn) = exp

(
−
∫ s

T tn

(λ(φ(r − T tn, XT tn
), IT tn) + λ0(A)) dr

)
, s ≥ T tn, (3.11)

Pt,x,a(XT tn+1
∈ B, IT tn+1

∈ C| FT tn , T
t
n+1) = Q̃(φ(T tn+1 − T tn, XT tn

, IT tn), IT tn , B × C). (3.12)

We recall the following result, that is a direct consequence of Theorem 4 in [7].

Proposition 3.1. For any (t, x, a) ∈ [0, T ] × E × A, let φ(t, x, a) be the unique mild solution to
(3.1), and (X, I) be the process defined in (3.6) with law Pt,x,a. Then (X, I) is an homogeneous
strong Markov process.

Moreover, denote by D the set of all measurable functions ϕ : E × A→ R which are absolutely
continuous on R+ as maps s 7→ ϕ(φ(s, x, a), a), for all (x, a) ∈ E × A, and such that the map
(x, a, s, ω) 7→ ϕ(y, b)− ϕ(Xs−, Is−) is a valid integrand for the random measure (3.8), and set

D̄ := {ϕ ∈ D(L), ϕ ∈ C1,0(E ×A), Dϕ(x, a) ∈ E if x ∈ E,Dϕ(x, a) bounded if x bounded},

where Dϕ is the unique element of E such that dϕ
dx [x, a](y) = 〈y,Dϕ(x, a)〉, y ∈ E, where dϕ

dx [x, a]
denotes the Fréchet-derivative of ϕ w.r.t. x ∈ E evaluated at (x, a) ∈ E × A. Then the extended
generator of (X, I) is given by

Lϕ(x, a) :=〈−Lx+ b(x, a), Dϕ(x, a)〉+

∫
E

(ϕ(y, a)− ϕ(x, a))λ(x, a)Q(x, a, dy)

+

∫
A

(ϕ(x, b)− ϕ(x, a))λ0(db), for every ϕ ∈ D̄.
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3.2 The randomized optimal control problem

We now introduce a randomized optimal control problem associated to the process (X, I), and
formulated in a weak form. For fixed (t, x, a), we consider a family of probability measures
{Pt,x,aν , ν ∈ V} in the space (Ωt,F t∞), whose effect is to change the stochastic intensity of the
process (X, I).

Let us proceed with precise definitions. We still assume that (HbλQ), (Hλ0) and (Hfg) hold.
We recall that Ft = (F ts)s>t is the augmentation of the natural filtration generated by p in (3.7),
and that Pt denotes the σ-field of Ft-predictable subsets of [t, ∞)× Ω. We define

V = {ν : Ω× [0, ∞)×A→ (0, ∞) P0 ⊗A-measurable and bounded}.

For every ν ∈ V, we consider the predictable random measure

p̃ν(t; ds dy db) := νs(b)λ0(db) δ{Xs−}(dy) ds+ λ(Xs−, Is−)Q(Xs−, Is−, dy) δ{Is−}(db) ds. (3.13)

In particular, for any t ∈ [0, T ], by the Radon Nikodym theorem one can find two nonnegative
functions d1, d2 defined on Ω× [t, ∞)× E ×A, P ⊗ E ⊗A, such that

λ0(db) δ{Xs−}(dy) ds = d1(s, y, b) p̃(ds dy db)

λ(Xs−, Is−, dy) δ{Is−}(db) ds = d2(s, y, b) p̃(ds dy db),

d1(s, y, b) + d2(s, y, b) = 1, p̃(ds dy db)-a.e.

and we have dp̃ν = (ν d1 + d2) dp̃. For any t ∈ [0, T ], ν ∈ V, consider then the Doléans-Dade
exponential local martingale Lt,ν defined

Lt,νs = exp

(∫ s

t

∫
E×A

log(νr(b) d1(r, y, b) + d2(r, y, b)) p(dr dy db)−
∫ s

t

∫
A

(νr(b)− 1)λ0(db) dr

)
= e

∫ s
t

∫
A(1−νr(b))λ0(db) dr

∏
n>1:t≤T tn≤s

(νT tn(An) d1(T tn, En, An) + d2(T tn, En, An)), (3.14)

for s ≥ t. When (Lt,νs )s≥t is a true martingale on [t, T ], we can define a probability measure Pt,x,aν

equivalent to Pt,x,a on (Ωt, F tT ) by

Pt,x,aν (dω) = Lt,νT (ω)Pt,x,a(dω). (3.15)

By the Girsanov theorem for point processes (see Theorem 4.5 in [18]), the restriction of the
random measure p to (t, T ]×E ×A admits p̃ν = (ν d1 + d2) p̃ as compensator under Pt,x,aν . We set
qν := p− p̃ν , and we denote by Et,x,aν the expectation operator under Pt,x,aν . Previous considerations
are formalized in the following lemma, for a proof see Lemma 3.2 in [5].

Lemma 3.2. Let Hypotheses (HbλQ) and (Hλ0) hold. Then, for every (t, x, a) ∈ [0, T ]×E ×A
and ν ∈ V, under the probability Pt,x,a, the process (Lt,νs )s≥t is a martingale. Moreover, Lt,νT is
square integrable, and, for every PtT ⊗ E ⊗ A-measurable function H : Ω × [0, T ] × E × A → R
such that Et,x,a

[∫ T
t

∫
E×A |Hs(y, b)|2 p̃(ds dy db)

]
<∞, the process

∫ ·
t

∫
E×AHr(y, b) q

ν(dr dy db) is a

Pt,x,aν -martingale on [t, T ].

Finally, for every (t, x) ∈ [0, T ] × E, a ∈ A and ν ∈ V, we introduce the randomized cost
functional

J(t, x, a, ν) := Et,x,aν

[∫ T

t
f(Xs, Is) ds+ g(XT )

]
, (3.16)

and the randomized value function

V ∗(t, x, a) := inf
ν∈V

J(t, x, a, ν). (3.17)
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4 A constrained BSDEs representation for the value function

In the present section we introduce a BSDE with a sign constraint on its martingale part for which
we give existence and uniqueness of a maximal solution in an appropriate sense. This constrained
BSDE will provide a probabilistic representation formula for the dual value function introduced in
(3.17).

Throughout the section we still assume that (HbλQ), (Hλ0) and (Hfg) hold. For any (t, x, a) ∈
[0, T ] × E × A, we consider the random measures p, p̃ and q, as well as the dual control setting
Ωt,Ft, (X, I),Pt,x,a, defined in Section 3.1. We introduce the following notation.

• L2
t,x,a(F tτ ), the set of F tτ -measurable random variables ξ such that Et,x,a

[
|ξ|2
]
< ∞; here

τ > 0 is an Ft-stopping time.

• S∞, the set of real-valued càdlàg adapted processes Y = (Yt)t>0 which are uniformly bounded.

• L2
t,x,a(q), the set of PT ⊗ B(E)⊗A-measurable maps Z : Ω× [0, T ]×E ×A→ R such that

||Z||2
L2
t,x,a(q)

: = Et,x,a
[ ∫ T

t

∫
E
|Zs(y, Is)|2 λ(Xs, Is)Q(Xs, Is, dy) ds

]
+ Et,x,a

[ ∫ T

t

∫
A
|Zs(Xs, b)|2 λ0(db) ds

]
<∞.

• K2
t,x,a, the set of nondecreasing càdlàg predictable processes K = (Ks)t6s6T such that Kt = 0

and Et,x,a
[
|KT |2

]
<∞.

We consider the following family of BSDEs with partially nonnegative jumps over a finite horizon
T , parametrized by (t, x, a): Pt,x,a-a.s.,

Y t,x,a
s = g(XT ) +

∫ T

s
f(Xr, Ir) dr − (Kt,x,a

T −Kt,x,a
s ) (4.1)

−
∫ T

s

∫
A
Zt,x,ar (Xr, b)λ0(db) dr −

∫ T

s

∫
E×A

Zt,x,ar (y, b) q(dr dy db), t 6 s 6 T,

with
Zt,x,as (Xs−, b) > 0, ds⊗ dPt,x,a ⊗ λ0(db) -a.e. on [0, T ]× Ω×A. (4.2)

We are interested in the maximal solution (Y t,x,a, Zt,x,a,Kt,x,a) ∈ S∞×L2
t,x,a(q)×K2

t,x,a to (4.1)-

(4.2), in the sense that for any other solution (Ỹ , Z̃, K̃) ∈ S∞ × L2
t,x,a(q) ×K2

t,x,a to (4.1)-(4.2),

we have Y t,x,a
s > Ỹs, Pt,x,a-a.s., for all s > t.

Let us introduce the following penalized BSDE, associated to (4.1)-(4.2), parametrized by the
integer n ≥ 1:

Y n,t,x,a
s = g(XT ) +

∫ T

s
f(Xr, Ir) dr − (Kn,t,x,a

T −Kn,t,x,a
s ) (4.3)

−
∫ T

s

∫
A
Zn,t,x,ar (Xr, b)λ0(db) dr −

∫ T

s

∫
E×A

Zn,t,x,ar (y, b) q(dr dy db), t 6 s 6 T,

where Kn,t,x,a
s := n

∫ s
0

∫
A[Zn,t,x,ar (Xr, b)]

−λ0(db) dr, s ∈ [t, T ].
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Theorem 4.1. Let Hypotheses (HbλQ), (Hλ0) and (Hfg) hold. Then, for every (t, x, a) ∈
[0, T ]×E×A, there exists a unique maximal solution (Y t,x,a, Zt,x,a,Kt,x,a) ∈ S∞×L2

t,x,a(q)×K2
t,x,a

to the BSDE with partially nonnegative jumps (4.1)-(4.2), where Y t,x,a is the nonincreasing limit
of (Y n,t,x,a)n, Zt,x,a is the weak limit of (Zn,t,x,a)n in L2

t,x,a,loc(q) and Kt,x,a
s is the weak limit of

(Kn,t,x,a
s )n in L2

t,x,a(Fs), for any s > 0. Moreover, Y t,x,a has the explicit representation:

Y t,x,a
s = ess inf

ν∈V
Et,x,aν

[∫ T

s
f(Xr, Ir) dr + g(XT )

∣∣∣Fs] , ∀ s ∈ [t, T ]. (4.4)

In particular, setting s = t in (4.4), we have the following representation formula for the value
function of the randomized control problem:

V ∗(t, x, a) = Y t,x,a
t , (t, x, a) ∈ [0, T ]× E ×A. (4.5)

Proof. The proof of this result is analogous to the one for the BSDE (4.1) with underlying finite-
dimensional process X, see Theorem 4.7 in [4], and we do not report it for sake of brevity.

Our main purpose is to show how maximal solutions to BSDEs with nonnegative jumps of the
form (4.1)-(4.2) provide actually a Feynman-Kac representation to the value function V associated
to our optimal control problem for infinite-dimensional PDMPs. Let us introduce a deterministic
function v : [0, T ]× E ×A→ R as

v(t, x, a) := Y t,x,a
t , (t, x, a) ∈ [0, T ]× E ×A. (4.6)

Proposition 4.2. Assume that Hypotheses (HL), (HbλQ), (Hλ0), and (Hfg) hold. Then the
function v in (4.6) does not depend on the variable a:

v(t, x, a) = v(t, x, a′), t ∈ [0, T ], x ∈ E, a, a′ ∈ A. (4.7)

Defining, by abuse of notation, the function v on [0, T ]×E by v(·, ·) = v(·, ·, a), for any a ∈ A, we
get that v admits the representation formula: Pt,x,a-a.s.

v(s,Xs) = Y t,x,a
s , s > t. (4.8)

Proof. By Lemma 5.3 and Remark 5.5 in [4], we have that for any (t, x, a) ∈ [0, T ] × E × A,
Pt,x,a-a.s.,

v(s,Xs, Is) = Y t,x,a
s , s > 0. (4.9)

Now we recall that, by (4.5) and (4.6), v coincides with the value function V ∗ of the dual control
problem introduced in Section 3.2. Therefore, identity (4.7) corresponds to the fact that V ∗(t, x, a)
does not depend on a. Proceeding as in the finite-dimensional case (see the proof of Proposition
5.6 in [4]), one can prove that:

for any t ∈ [0, T ], x ∈ E, a, a′ ∈ A, ν ∈ V, there exists (νε)ε ∈ V :

lim
ε→0+

J(t, x, a′, νε) = J(t, x, a, ν). (4.10)

Property (4.10) implies that V ∗(t, x, a′) ≤ J(t, x, a, ν) for all t ∈ [0, T ], x ∈ E, a, a′ ∈ A, and by the
arbitrariness of ν we can conclude that V ∗(t, x, a′) ≤ V ∗(t, x, a) for all t ∈ [0, T ], x ∈ E, a, a′ ∈ A.
In other words V ∗(t, x, a) = v(t, x, a) does not depend on a, and (4.7) holds.
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Theorem 4.3. Assume that Hypotheses (HL), (HbλQ), (Hλ0), and (Hfg) hold. Then v is
bounded and uniformly continuous in the | · | × || · ||−1 norm. Moreover, v satisfies the so called
randomized dynamic programming principle:

v(t, x) = inf
ν∈V

Et,x,aν

[∫ T∧T t1

t
f(Xr, Ir) dr + v(T ∧ T t1, XT∧T t1 )

]
. (4.11)

Proof. See Section 7.1.

We can now give the following important result.

Theorem 4.4. Assume that Hypotheses (HL), (HbλQ), (Hλ0) and (Hfg) hold. Then the func-
tion v in (4.6) is a viscosity solution to (2.19)-(2.20).

Proof. See Section 7.2.

Finally, we provide a comparison theorem for viscosity sub and supersolutions to the first order
IPDE of HJB type (2.19)-(2.20) on Hilbert spaces. To this end, we will need the following additional
hypothesis on the transition measure Q:

(HQ’) For any x, xε ∈ E, Sε ⊂ E, such that xε → x and ∩εSε = ∅,

sup
a∈A

Q(xε, a, Sε) →
ε→0

0.

Theorem 4.5. Let (HL), (HbλQ), (Hfg) and (HQ’) hold. Let u : [0, T ] × E → R (resp.
v : [0, T ] × E → R) be a bounded and uniformly continuous function in the | · | × || · ||−1 norm,
providing a viscosity subsolution (resp. viscosity supersolution) to (2.19)-(2.20). Suppose that
u(T, x) ≤ v(T, x) for all x ∈ E. Then u ≤ v.

Proof. See Section 7.3.

By means of Theorems 2.11, 4.3, 4.4, together with the comparison Theorem 4.5, we can finally
obtain the following probabilistic representation formula for the value function V .

Theorem 4.6. Let (HL), (HbλQ), (Hλ0), (Hfg), and (HQ’) hold. Then the function v in
(4.6) coincides with the value function V , and the following Feynman-Kac representation formula
holds:

V (t, x) = Y t,x,a
t , (t, x, a) ∈ [0, T ]× E ×A. (4.12)

5 Application to a Hodgkin-Huxley model of neuronal dynamics

In the present section we apply our theory to an infinite-dimensional stochastic Hodgkin-Huxley
model of neuronal dynamics. The deterministic Hodgkin-Huxley system was first introduced in
[15], while stochastic versions as Hilbert space valued PDMP have been studied in e.g. [2], [7],[16]
and [24], [23].

We focus on the model considered in [23]. The axon is modeled by the interval [0, 1]. We
consider ion channels of type Na (sodium) or K (potassium), and we assume that they are located
along the axon at positions in IN = 1

N (Z ∩N(0, 1)) for some fixed N ∈ N∗, that we will denote i
N

or zi. The set of possible states of K and Na channels are denoted respectively by D1 and D2, and
are given by

D1 := {n0, n1, n2, n3, n4}, D2 := {m0h1,m1h1,m2h1,m3h1,m0h0,m1h0,m2h0,m3h0}.
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In the control problem new (rhodopsin) channels that are sensitive to light are inserted in the neu-
ron. Such a rhodopsin channel (denoted by ChR2) can have the four possible states O1, O2, C1, C2,
among which O1 and O2 are conductive. Experimentally, the channel is illuminated and the effect of
the illumination is to put the channel in one of its conductive states. We set D := D1∪D2∪DChR2

with DChR2 := {O1, O2, C1, C2}, and DN := D
IN .

We consider the Hilbert space E := L2(0, 1) and the operator L := −∆. The controlled PDMP
consists in a set of PDEs written as ODEs in the Hilbert space E indexed by d ∈ D̄N ,

v̇(t) =
1

Cm
∆v(t) + bd(v(t)),

v(0) = v,

v(t)(0) = v(t)(1) = 0, ∀t > 0,

(5.1)

where the membrane capacitance Cm > 0 is constant and, for each (v, d) ∈ E ×DN ,

bd(v) :=
1

N

∑
i∈IN

{
gK1{di=n4}(V K − Φi(v)) + gNa1{di=m3h1}(V Na − Φi(v)) + gl(V l − Φi(v)))

+ gChR2(1{di=O1} + ρ1{di=O2})(V ChR2 − Φi(v))
}
φzi , (5.2)

with
Φi(v) := 〈v, φzi〉, zi ∈ IN , (5.3)

where φzi is a mollifier function supported on a neighborhood of zi. For a channel of type K,
gK > 0 is the normalized conductance and V K ∈ R is the reversal potential; the same notation
holds for Na, l, ChR2 (V l and gl denote respectively the leaky reversal potential and conductance).
The conductance depends on the number of channels in the conductive state: for K (resp. Na)
such a state is unique, and it is n4 (resp. m3h1). The leaky conductance gl remains constant.
Formula (5.3) models the mean value of the membrane potential on a neighborhood of zi.

For any x = (v, d) ∈ E ×DN , we denote by vt = φdt (v) the corresponding unique mild solution
to the PDE (5.1), that models the membrane potential evolution between two successive changes
in the channels configuration. The transitions take place inside the discrete domain D̄N , and
correspond to a continuous-time Markov chain dt. Denoting by (Tn, dTn) the jump times and
post-jump location, the controlled PDMP starting from x = (v, d) ∈ E × D̄N is

Xs = (vs, ds) =

{
(φds−t(v), d) if s ∈ [t, T1),

(φ
dTn
s−Tn(v), dTn) if s ∈ [Tn, Tn+1), n ∈ N \ {0}.

The control process αt is proportional to the intensity of light (which is necessarily bounded),
so that we take as control space A := [0, amax] with amax > 0. Introducing a family of smooth
functions σζ,ξ : R→ R∗+ depending on (ζ, ξ) ∈ D×D for all x = (v, d) ∈ E ×DN , a ∈ A, we define
the jump rate function λ : E ×DN ×A→ R+ by

λ((v, d), a) :=
∑
i∈IN

∑
ξ∈D,
ξ 6=di

σdi,ξ(Φi(v), a). (5.4)

The transition measure Q : E×DN×A→ P(DN ) is such that, for any x = (v, d) ∈ E×DN , a ∈ A,
the measure Q((v, d), a, ·) is supported by the set S of y = (ṽ, d̃) such that ṽ = v (the trajectories
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of (vt) are continuous) and d̃ differs from d only by one component. For y = (ṽ, d̃) ∈ S such that d̃
differs from d only by its component i,

Q((v, d), a, y) :=
∑
ξ∈D,
ξ 6=di

σdi,ξ(Φi(v), a)

λ((v, d), a)
δv(ṽ)δξ(d̃i), (5.5)

if y /∈ S, Q(x, a; dy) := 0. The transition functions σ from C1 to O1 and from C2 to O2 are assumed
to be proportional to the control α while the other ones are uncontrolled functions. More precisely
(see [15], [23]):

σc1,o1(v, a) = ε1a, σo1,c1(v, a) = Kd1, σo1,o2(v, a) = e12, σo2,o1(v, a) = e21,

σo2,c2(v, a) = Kd2, σc2,o2(v, a) = ε2a, σc2,c1(v, a) = Kr,

and

σn0,n1(z) = 4αn(z), σn1,n2(z) = 3αn(z), σn2,n3(z) = 2αn(z), σn3,n4(z) = αn(z),

σn4,n3(z) = 4βn(z), σn3,n2(z) = 3βn(z), σn2,n1(z) = 2βn(z), σn1,n0(z) = βn(z)

σm0h1,m1h1(z) = σm0h0,m1h0(z) = 3αm(z), σm1h1,m2h1(z) = σm1h0,m2h0(z) = 2αm(z),

σm2h1,m3h1(z) = σm2h0,m3h0(z) = αm(z), σm3h1,m2h1(z) = σm3h0,m2h0(z) = 3βm(z),

σm2h1,m1h1(z) = σm2h0,m1h0(z) = 2βm(z), σm1h1,m0h1(z) = σm1h0,m0h0(z) = βm(z),

where

αn(z) =
0.1− 0.01z

e1−0.1z − 1
, βn(z) = 0.125e−

z
80 , αm(z) =

2.5− 0.1z

e2.5−0.1z − 1
, βm(z) = 4e−

z
18 ,

αh(z) = 0.07e−
z
20 , βh(z) =

1

e3−0.1z + 1
.

The optimal control problem consists in mimicking a desired output reference potential Vref ,
that encodes a given biological behavior while minimizing the intensity of the light applied to the
neuron. This corresponds to setting, for any x = (v, d) ∈ E × D̄N ,

f(x, a) = f((v, d), a) = κ||v − Vref ||2 + a, g(x) = 0, (5.6)

so that the cost functional and the value function of the control problem are

J(t, x, α) = Et,xα
[∫ T

t

(
κ||vs − Vref ||2 + α(Xs)

)
ds

]
, V (t, x) = inf

α∈Atad
J(t, x, α).

The reference signal Vref (that we assume not depending on time) may correspond to a healthy
behavior that we want the system to recover thanks to the light stimulation. The intensity of
the light is modeled by the control αs = α(Xs). Getting the intensity minimal is crucial for the
feasability of the experiment in relation to the technical characteristics of the devices that are used.

Remark 5.1. The control of general infinite-dimensional PDMP is considered in [23], [22]. As
in the present paper, in [23] the authors deal with piecewise open loop controls (see [29]), and the
control may act on the three characteristics of the PDMP; however, the main tools were relaxed
controls and the optimal control of Markov Decision Processes, see e.g. [6]. As an application,
other types of models can also be considered: the PDEs in (5.1) may depend on the control variable
corresponding to the case where bd depends on the control, φzi may be replaced by δzi or finally the
set DChR2 may have three elements, in which case a ChR2 channel has a unique conductive state.
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The rest of this section is devoted to check that the Hodgkin-Huxley stochastic model described
above can be put into the framework of the theory developped in the previous sections.

Proposition 5.2. (i) The operator L := −∆ is densely defined, maximal monotone and self-
adjoint. Moreover, B := (I − ∆)−1 satisfies the strong B-condition with c0 = 1, namely
−∆B +B ≥ I which implies the weak B-condition (2.1).

(ii) The semigroup (S(r))r≥0 := (e−rL)r≥0 = (er∆)r≥0 generated by L := −∆ is strongly continu-
ous, and for all r > 0, and S(r) is a contraction with respect to || · || and also with respect to
|| · ||−1.

Proof. (i) From [14], example 3.14 at page 155 (see also [22]) B := (I − ∆)−1 satifies the strong
B-condition with c0 = 1 namely −∆B + B ≥ I, which implies in particular the weak B-condition
(2.1).

(ii) For any k ∈ N, let us define
fk =

√
2 sin(kπ). (5.7)

(fk)k≥1 is an orthonormal basis of E, ∆fk = −k2π2fk, and, for any v ∈ E,

||v||2 =
∑
k≥1

(v, fk)
2, ||v||2−1 = ((I −∆)−1v, v)H =

∑
k≥1

1

(1 + k2π2)
(v, fk)

2.

Moreover S(r) = er∆ is such that S(r)v ∈ D(∆) for all r > 0, v ∈ E, and satisfies

S(r)v =
∑
k≥1

e−rk
2π2

(v, fk) fk, r ≥ 0, v ∈ E,

||S(r)v||2−1 =
∑
k≥1

1

(1 + k2π2)
(S(r)v, fk)

2 =
∑
k≥1

1

(1 + k2π2)
e−2rk2π2

(v, fk)
2, r ≥ 0.

We have ||S(r)v||2 ≤ e−2rπ2 ||v||2. Moreover, ||S(r)v||2−1 ≤ e−2rπ2 ||v||2−1.

Lemma 5.3. For any i ∈ IN , let Φi be the function in (5.3). Then there exists a positive constant
Ci such that, for all v, v′ in E,

|Φi(v
′)− Φi(v)| ≤ Ci ||v′ − v||−1. (5.8)

Proof. We have Φi(v
′)− Φi(v) = (v′ − v, φzi), so taking the basis (fk)k≥1 in (5.7),

(v − v′, φzi) =
∑
k≥1

(v − v′, fk)(φzi , fk) =
∑
k≥1

1√
1 + k2π2

(v − v′, fk)
√

1 + k2π2(φzi , fk).

By the Cauchy-Schwarz inequality,

|(v − v′, φzi)| ≤

∑
k≥1

1

(1 + k2π2)
(v − v′, fk)2

 1
2
∑
k≥1

(1 + k2π2)(φzi , fk)
2

 1
2

= ||v′ − v||−1 [((I −∆)φzi , φzi)]
1
2 .

It remains to prove that ((I−∆)φzi , φzi) < +∞, so that (5.8) holds with Ci = [((I−∆)φzi , φzi)]
1
2 . To

this end, we take φzi(z) := 1
γM( z−ziγ ) withM(z) = 1(−1,1)(z) e

− 1
1−z2 . We have φ′zi(z) := 1

γ2
M ′( z−ziγ )

and φ′′zi(z) := 1
γ3
M ′′( z−ziγ ). Moreover

M ′(ζ) = − 2ζ

(1− ζ2)2
M(ζ), M ′′(ζ) = M(ζ)

[
4ζ2

(1− ζ2)4
− 2

1 + 3ζ2

(1− ζ2)3

]
= M(ζ)

2(3ζ4 − 1)

(1− ζ2)4
.
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Therefore, setting ζ = z−zi
γ ,

(I −∆)φzi(z) =
1

γ
M

(
z − zi
γ

)
− 1

γ3
M ′′

(
z − zi
γ

)
= φzi(z)

(
1− 2

γ2

(3ζ4 − 1)

(1− ζ2)4

)
. (5.9)

Proposition 5.4. Let d ∈ D̄N , v, v′ ∈ E. Then

||b(v, d)− b(v′, d)||−1 6 C||v − v′||−1. (5.10)

Moreover, for all R > 0, there exists a positive constant CR such that, for all a ∈ A,

|λ((v, d), a)− λ((v′, d), a)| 6 CR ||v − v′||−1, v, v′ ∈ E s.t. ||v|| ∨ ||v′|| ≤ R. (5.11)

Proof. Let d ∈ D̄N and v, v′ ∈ E. By (5.2) we have

b(v, d) =
∑
i∈IN

γi φzi −
∑
i∈IN

ci Φi(v)φzi . (5.12)

Therefore
||b(v′, d)− b(v, d)||−1 ≤

∑
i∈IN

ci |Φi(v)− Φi(v
′)| ||φzi ||−1. (5.13)

Since ||φzi ||−1 ≤ Ci||φzi || and IN is a finite set, (5.10) follows from (5.13) and Lemma 5.3.
Let us finally prove (5.11). We assume that ||v|| ∨ ||v′|| ≤ R. By definition (5.4), it is sufficient

to check that, for any i ∈ IN ,

|σdi,ξ(Φi(v), a)− σdi,ξ(Φi(v
′), a)| 6 CR ||v − v′||−1,

which in turn corresponds to prove the same property for the functions αq(Φi(v)), βq(Φi(v)),
q = n,m, h. Recalling (5.3) and applying the Cauchy-Scwartz inequality, we see that Φi(v), Φi(v

′)
belong to a bounded interval JR depending on R. Then, denoting by Kq,R the Lipschitz constant
of αq on JR, from Lemma 5.3

|αq(Φi(v))− αq(Φi(v
′))| ≤ Kq,R |Φi(v)− Φi(v

′)| ≤ Kq,R Ci ||v − v′||−1,

where Ci is the positive constant in (5.8). The conclusion follows recalling that IN is a finite set.

Lemma 5.5. For any d ∈ D̄N , and s, s′ ∈ [t, T ],

(i) ||φds−t(v)|| ≤ C(1 + ||v||), v ∈ E,

(ii) ||φds−t(v)− φds′−t(v)|| ≤ C σR(|s− s′|), v ∈ E : ||v|| ≤ R,

(iii) ||φds−t(v)− φds−t(v′)|| ≤ C ω(||v − v′||), v, v′ ∈ E,

(iv) ||φds−t(v)− φds′−t(v)||−1 ≤ C σR(|s− s′|), v ∈ E : ||v|| ≤ R,

(v) ||φds−t(v)− φds−t(v′)||−1 ≤ C ω(||v − v′||−1), v, v′ ∈ E.
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Proof. We first prove (i) and (iii). Setting S(r) = e−rL, the equation for the mild solution to (5.1)
starting from x = (v, d) ∈ E × D̄N reads

φds−t(v) = S(s− t)v +

∫ s

t
S(s− r)b(φdr−t(v))dr.

Concerning (i), using the contraction property of S(u) with respect to || · || given in Proposition
5.2-(ii), we obtain

||φds−t(v)|| ≤ ||v||+
∫ s

t
||b(φdr−t(v))||dr.

On the other hand, recalling (5.12),

||φds−t(v)|| ≤ ||v||+
∑
i∈IN

∫ s

t
(|γi|+ |ci| |Φi(φ

d
r−t(v))|) dr ||φzi ||.

Using Lemma 5.3 we get

||φds−t(v)|| ≤ (||v||+ CT ) + Γ

∫ s

t
||φdr−t(v))||dr,

and item (i) follows by Gronwall’s Lemma.
Let us now turn to (iii). For any d ∈ D̄N , v, v′ ∈ E, we have

φds−t(v)− φds−t(v′) = S(s− t)(v′ − v) +

∫ s

t
S(s− r)(bd(φdr−t(v))− bd(φdr−t(v′))) dr.

Taking the norm || · ||, and applying Proposition 5.2-(ii) together with (5.10), we obtain

||φds−t(v)− φds−t(v′)||−1 ≤ ||v′ − v||−1 + C

∫ s

0
||φdr−t(v)− φdr−t(v′)||−1 dr.

The conclusion follows again from the Gronwall Lemma.
Properties (iv) and (v) can be proved analogously, using the contraction property of S(u) with

respect to || · ||−1 given in Proposition 5.2-(ii).

Additional results on V = H1
0 (I). The space V = H1

0 (I) is continuously embedded in the set
of continuous functions on I. For any k ∈ N, let us set

ek =

√
2√

1 + k2π2
sin(kπ). (5.14)

Then (ek)k≥1 is an orthonormal basis of V = H1
0 (I), and ∆ek = −k2π2ek. For all v ∈ V , we set

(v, ek)V :=
∫ 1

0 v(z)ek(z)dz +
∫ 1

0 v
′(z)e′k(z)dz. We have

||v||2V =
∑
k≥1

(v, ek)
2
V , ||v||2−1,V = ((I −∆)−1v, v)V =

∑
k≥1

1

(1 + k2π2)
(v, ek)

2
V ,

||S(r)v||2−1,V =
∑
k≥1

1

(1 + k2π2)
(S(r)v, ek)

2
V =

∑
k≥1

1

(1 + k2π2)V
e−2rk2π2

(v, ek)
2
V ∀r ≥ 0.

Remark 5.6. Lemma 5.3 and Propositions 5.4. hold true with V = H1
0 (I) in place of E = L2(0, 1).
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The following result for the PDEs (5.1), given in Lemma 4.1 in [23], plays a fundamental role.

Lemma 5.7. Set V− := min(V Na, V K , V L, V ChR2), V+ := max(V Na, V K , V L, V ChR2), and let
d ∈ D̄N . If v ∈ H1

0 (I) is continuous in I = [0, 1], and v(z) ∈ [V−, V+] for all z ∈ I, then, for every
d ∈ D̄N ,

φdr(v)(z) ∈ [V−, V+], r ∈ [0, T ], z ∈ I. (5.15)

Physiologically speaking, we are only interested in the domain [V−, V+]. Since Lemma 5.7 shows
that this domain is invariant for the controlled PDMP, we can modify the local characteristics of
the PDMP outside the domain [V−, V+] without changing its dynamics inside of [V−, V+]. We will
do so for the rate functions σdi,ξ. From now on, consider a compact set K containing the closed
ball of E, centered in 0 with radius max{V−, V+}. We will rewrite σdi,ξ outside K such that they
all become Lipschitz and bounded functions. We also take Vref taking values in K and f̃ bounded
and globally Lipschitz such that

f̃(v) = ||v − Vref ||2, ∀v ∈ K. (5.16)

Since the control set A = [0, amax] is bounded, the corresponding value function and cost

J̃(t, x, α) = Et,xα
[∫ T

t

(
κf̃(vs) + α(Xs)

)
ds

]
, V (t, x) = inf

α∈Atad
J̃(t, x, α),

are bounded as well.
The next two results show that the case of the stochastic controlled infinite-dimensional Hodgkin-

Huxley model can be actually covered by the theory on controlled infinite-dimensional PDMPs
developed in the present paper.

Proposition 5.8. Let v, v′ ∈ V such that v(z) and v′(z) belong to [V−, V+] for all z ∈ [0, 1]. The
following hold.

(i) There exist a positive constants C1 such that, for all d ∈ D̄N , and a ∈ A,

|λ((φds(v), d), a)− λ((φds(v
′), d), a)| ≤ C1 ||v − v′||−1,V , r ∈ [0, T ]. (5.17)

(ii) If in addition ||(I − ∆)Vref || < +∞, there exists a positive constant C2 such that, for all
d ∈ D̄N , a ∈ A, the function f in (5.6) satisfies

|f(φds(v), a)− f(φds(v
′), a)| ≤ C2 ||v − v′||−1,V , r ∈ [0, T ]. (5.18)

Proof. Let us prove item (i). Recalling (5.3) and using the Cauchy-Schwarz inequality we have

|Φi(φ
d
s(v))| ≤ ||φds(v)|| ||φzi ||. (5.19)

Since
||φds(v)|| ≤ ||φds(v)||∞ ≤ max{|V−|, |V+|}, (5.20)

and the same inequalities hold for φds(v
′), we have

|αq(Φi(φ
d
s(v)))− αq(Φi(φ

d
s(v
′)))| ≤ Kq,R |Φi(φ

d
s(v))− Φi(φ

d
s(v
′))|, (5.21)

with R = max{|V−|, |V+|} and Kq,R the Lipschitz constant of αq depending on R. Taking into
account Remark 5.6, we conclude by applying the V -versions of Lemmas 5.3 and 5.4.
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Let us now consider item (ii). Using the basis (ek) introduced in (5.14), and applying the
Cauchy-Schwarz inequality,

|f(φds(v), a)− f(φds(v
′), a)| = κ

∣∣∣∑
k≥1

((φds(v)− Vref , ek)2 − (φds(v
′)− Vref , ek)2)

∣∣∣ (5.22)

≤ κ
∑
k≥1

|(φds(v0)− φds(v′), ek)| |(φds(v) + φds(v
′)− 2Vref , ek)| ≤ κ ||φds(v)− φds(v′)||−1,V T ,

where

T :=
∑
k≥1

(1 + k2π2)(φds(v) + φds(v
′)− 2Vref , ek)

2 = ||(I −∆)(φds(v) + φds(v
′)− 2Vref )||2V .

By Proposition 5.4 and Remark 5.6, it remains to study the boundedness properties of T . Since
by assumption ||(I −∆)Vref || < +∞,

T ≤ C(||(I −∆)φds(v)||2V + ||(I −∆)φds(v
′)||2V + ||(I −∆)Vref ||2V ). (5.23)

Let us thus consider the term ||(I −∆)φd(s, v)||V . Being (I −∆) linear, we can write

(I −∆)φds(v) = (I −∆)S(s)v0 +

∫ s

0
(I −∆)S(s− r)bd(φdr(v), a) dr.

Moreover, since (I −∆) and S(r) commute,

||(I −∆)φds(v)||V ≤ ||(I −∆)v||V +

∫ s

0

∑
i∈IN

(|γi|+ |ci| |Φi(φ
d
r(v))|) ||(I −∆)φzi ||V dr, (5.24)

where we have used that (recall formula (5.12))

(I −∆)bd(φ
d
r(v0), a) =

∑
i∈IN

γi (I −∆)φzi −
∑
i∈IN

ci Φi(φ
d
r(v0)) (I −∆)φzi .

Recalling (5.19) and (5.20), (5.24) yields

||(I −∆)φds(v)||V ≤ ||(I −∆)v||V +

∫ s

0

∑
i∈IN

(|γi|+ |ci| max{|V−|, |V+|}||φzi ||) ||(I −∆)φzi ||V dr.

Recalling (5.9) we see that, for any i ∈ IN , ||(I − ∆)φzi ||V ≤ Ci. Since IN is finite, we conclude
from the above inequality that there exists some constant Γ such that

||(I −∆)φd(s, v)||V ≤ ||(I −∆)v||V + ΓT ; (5.25)

analogous inequalities holds true for φds(v
′) and v′. Then (5.23), together with (5.25), yields

T ≤ 2||(I −∆)v||V + 2 ΓT + 4 ||(I −∆)Vref )||2V . (5.26)

and the conclusion follows.

Proposition 5.9. Let v0 ∈ V such that v0(z) ∈ [V−, V+] for all z ∈ [0, 1]. Then there exist two
positive constants C1, C2, only depending on T,N,max{|V−|, |V+|}), such that, for all d ∈ D, a ∈ A,

||φds(v0)||V ≤ C1, s ∈ [0, T ], (5.27)

|f((φds(v0), d), a)|+ |λ((φds(v0), d), a)|+ ||b(φds(v0), d)||V ≤ C2, s ∈ [0, T ]. (5.28)
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Proof. Estimate (5.27) is obtained arguing as in Lemma 5.5-(i). The boundedness of f(φds(v0), a)
follows from (5.27), recalling that

|f(φds(v0), a)| = κ
∣∣∣∑
k≥1

((φds(v0)− Vref , ek)2
∣∣∣ ≤ κ(||φds(v0)||2V + V 2

ref − 2Vref ||φds(v0)||V ).

On the other hand, recalling (5.12) and (5.19),

||bd(φds(v0))||V ≤
∑
i∈IN

|γi| ||φzi ||V +
∑
i∈IN

|ci| ||φds(v0)|| ||φzi || ||φzi ||V ,

and we obtain the bound from Lemma 5.5-(i) and the fact that || · || ≤ || · ||V .
The boundedness of λd(φ

d
s(v0), a) follows from the form of the functions αq, βq, together with

(5.19) and the fact that || · || ≤ || · ||V .

6 Proofs of the results in Section 2

6.1 Proof of Proposition 2.5

The boundedness of V directly comes from (2.16) and the boundedness of f and g. Let Cb([0, T ]×E)
be the set of bounded functions, continuous on [0, T ] × E with the | · | × || · ||−1 norm. For any
bounded Borel-measurable function ψ : [0, T ]× E → R we set

T ψ(t, x) := inf
α∈Atad

Et,xα

[∫ T t1∧T

t
f(Xs, αs) ds+ g(XT )1T≤T t1 + ψ(T t1, XT t1

)1T>T t1

]
.

We aim at proving that

(i) T ψ ∈ Cb([0, T ]× E) for any ψ ∈ Cb([0, T ]× E);

(ii) T is a contracting map in Cb([0, T ] × E) and V is its unique fixed point. In particular, V
satisfies the DPP (2.17);

(iii) V is uniformly continuous in the | · | × || · ||−1 norm.

Proof of item (i). Set U = {u : [0, +∞)→ A measurable}. One can show that

T ψ(t, x) = inf
u∈U

J̄(t, x, u) (6.1)

with

J̄(t, x, u) =

∫ T−t

0
χu(s, x)(fu(s, x) + Lt,uψ (s, x)) ds+ χu(T − t, x)g(φu(T − t, x)),

where χu(s, x) = e−
∫ s
0 λ(φu(r,x),ur) dr, fu(s, x) = f(φu(s, x), us), and

Lt,uψ (s, x) =

∫
E
ψ(s+ t, y)λ(φu(s, x), us)Q(φu(s, x), us, dy).

In the sequel C will denote a generic constant, that may vary from line to line, and that may
depend on T . Let t, t′, s ∈ [0, T ], t′ ≤ t ≤ s, x, x′ ∈ E, u ∈ U . Let ψ ∈ Cb([0, T ] × E). Recalling
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hypotheses (HbλQ)-(i), (Hfg) and (2.12)-(2.13), we have |χu(s, x)| ≤ 1, |fu(s, x)| ≤ C, and, for
any s′ ≤ s,

|χu(s′, x)− χu(s, x′)| ≤ (1− e−C||x−x′||−1) + (1− e−C(s−s′)), (6.2)

|fu(s, x)− fu(s, x′)| ≤ C||x− x′||−1., (6.3)

|g(φ(T − t, x))− g(φ(T − t′, x′))| ≤ ω(||x− x′||−1). (6.4)

On the other hand, by (HbλQ)-(i)-(ii), together with the boundedness and continuity of ψ, we
have |Lt,uψ (s, x)| ≤ C and, for s < T − t,

|Lt,uψ (s, x)− Lt,uψ (s, x′)| ≤ |λ(φu(s, x), us)− λ(φu(s, x′), us)| ||ψ||∞

+ ||λ||∞
∣∣∣∣ ∫

E
ψ(s+ t, y) [Q(φu(s, x), us, dy)−Q(φu(s, x′), us, dy)]

∣∣∣∣
≤ C σ(||φu(s, x)− φu(s, x′)||−1) ≤ Cω(||x− x′||−1), (6.5)

where the latter inequality follows from (2.13). Then, for any t, t′ ∈ [0, T ], x, x′ ∈ E, u ∈ U ,

|J̄(t, x, u)− J̄(t′, x′, u)|

≤

∣∣∣∣∣
∫ T−t

0
χu(s, x)fu(s, x) ds−

∫ T−t′

0
χu(s, x′)fu(s, x′) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ T−t

0
χu(s, x)Lt,uψ (s, x) ds−

∫ T−t′

0
χu(s, x′)Lt,uψ (s, x′) ds

∣∣∣∣∣
+ |χu(T − t, x)g(φu(T − t, x))− χu(T − t′, x′)g(φu(T − t′, x′))|

≤
∫ T−t

0
|χu(s, x)fu(s, x)− χu(s, x′)fu(s, x′)| ds

+

∫ T−t

0
|χu(s, x)Lt,uψ (s, x)− χu(s, x′)Lt,uψ (s, x′)| ds+ C|t− t′|

+ C|g(φu(T − t, x))− g(φu(T − t′, x′))|+ C|χu(T − t, x)− χu(T − t′, x′)|

≤ C

(∫ T−t

0
|χu(s, x))− χu(s, x′)| ds+

∫ T−t

0
|fu(s, x)− fu(s, x′)| ds

+

∫ T−t

0
|Lt,uψ (s, x)− Lt,uψ (s, x′)| ds+ |g(φu(T − t, x))− g(φu(T − t′, x′))|

+ |χu(T − t, x)− χu(T − t′, x′)|+ |t− t′|

)
≤ C(ω(t− t′) + ω′(||x− x′||−1)), (6.6)

for some modulus of continuity ω, ω′, where the latter inequality follows from (6.2), (6.3), (6.4),
(6.5).

Proof of item (ii). Denote by P(A) the set of Borel probability measures on A, set M = {u :
[0, +∞)→ P(A) measurable}, and introduce the auxiliary map T ′ : Cb([0, T ]×E)→ Cb([0, T ]×E)
defined by

T ′ψ(t, x)

:= inf
m∈M

{∫ T−t

0
χm(s, x)

∫
A

(fm(s, x, u) + Lt,mψ (s, x, u))m(s, du) ds+ χm(T − t, x)g(φm(T − t, x))

}
.
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Here φm(s, x) is the unique mild solution to the parabolic partial differential equation

ẋ(s) = −Lx(s) +

∫
A
b(x(s), u)m(s, du), x(0) = x ∈ E.

Moreover, χm(s, x) = e−
∫ s
0 λ(φm(r,x),u)m(r,du) dr, fm(s, x, u) = f(φm(s, x), u), and

Lt,mψ (s, x, u) =

∫
E
ψ(s+ t, y)λ(φm(s, x), u)Q(φm(s, x), u, dy).

Set At,Rad = {γ : Ω× [t,∞)→ P(A) predictable}. It can be proved that T ′ is a contracting map in
Cb([0, T ]× E) and that

V ′(t, x) := inf
γ∈At,Rad

Et,xγ
[∫ T

t
f(Xs, u) γ(s, du) ds+ g(XT )

]
is its unique fixed point, see e.g. Theorem 3.3 and Lemma 3.4 in [23]. It is clear that V ′ = T ′V ′ ≤
T V ′. The reverse inequality follows from the density of the set U in M with respect to the Young
topology, see Theorem 3.6 in [8] for more details. Analogously, one proves that V = V ′, and
concludes that V is also the unique fixed point of T in Cb([0, T ]× E).

Proof of item (iii). It directly follows from item (ii) and estimate (6.6).

6.2 Proof of Proposition 2.6

By Proposition 2.5,

V (t, x) = inf
α∈Atad

Et,xα

[∫ T t1∧T

t
f(Xs, αs) ds+ g(XT )1T≤T t1 + V (T t1, XT t1

)1T>T t1

]
. (6.7)

Setting U = {u : [0, +∞)→ A measurable} and arguing as in the proof of Proposition 2.5, formula
(6.7) gives

V (t, x) = inf
u∈U

{∫ T

t
e−

∫ s
t λ(X̃t,x,u

r ,ur) drf(X̃t,x,u
s , us)ds

+

∫ T

t
e−

∫ s
t λ(X̃t,x,u

r ,ur) dr

∫
E
V (s, y)λ(X̃t,x,u

s , us)Q(X̃t,x,u
s , us, dy) ds

+ e−
∫ T
t λ(X̃t,x,u

r ,ur) drV (T, X̃t,x,u
T )

}
where we have set X̃t,x,u

r = φu(r − t, x), r ∈ [t, T ]. We aim at proving that

V (t, x) = Λ(t, x) := inf
u∈U

{∫ ζ

t
e−

∫ s
t λ(X̃t,x,u

r ,ur) drf(X̃t,x,u
s , us)ds

+

∫ ζ

t
e−

∫ s
t λ(X̃t,x,u

r ,ur) dr

∫
E
V (s, y)λ(X̃t,x,u

s , us)Q(X̃t,x,u
s , us, dy) ds

+ e−
∫ ζ
t λ(X̃t,x,u

r ,ur) drV (ζ, X̃t,x,u
ζ )

}
, ζ ∈ [t, T ]. (6.8)
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It is easy to see that

Λ(t, x) = inf
α∈Atad

Et,xα

[∫ ζ∧T t1

t
f(Xs, αs) ds+ V (ζ ∧ T t1, Xζ∧T t1 )

]
, ζ ∈ [t, T ].

On the other hand, for any α ∈ Atad,

τ ∧ T t1 ∧ T = τd ∧ T t1 ∧ T, Pt,xα -a.s.

with τd := inf {s > t : (s, φα0(s− t, x)) /∈ B ((t, x); ρ)}. Therefore, formula (2.18) would follow from
identity (6.8) by choosing ζ = T ∧ τd.

Let us thus prove (6.8). We first prove that Λ(t, x) ≤ V (t, x). Let us fix ζ ∈ [t, T ] and β ∈ U . We
have

V (ζ, X̃t,x,β
ζ ) = inf

u∈U

{∫ T

ζ
e−

∫ s
ζ λ(X̃

ζ,X̃
t,x,u
ζ

,u

r ,ur) drf(X̃
ζ,X̃t,x,u

ζ ,u
s , us)ds

+

∫ T

ζ
e−

∫ s
ζ λ(X̃

ζ,X̃
t,x,u
ζ

,u

r ,ur) dr
∫
E
V (s, y)λ(X̃

ζ,X̃t,x,u
ζ ,u

s , us)Q(X̃
ζ,X̃t,x,u

ζ ,u
s , us, dy) ds

+ e−
∫ T
ζ λ(X̃

ζ,X̃
t,x,u
ζ

,u

r ,ur) drV (T, X̃
ζ,X̃t,x,u

ζ ,u

T )

}
≤
∫ T

ζ
e−

∫ s
ζ λ(X̃

ζ,X̃
t,x,β
ζ

,β

r ,βr) drf(X̃
ζ,X̃t,x,β

ζ ,β
s , βs)ds

+

∫ T

ζ
e−

∫ s
ζ λ(X̃

ζ,X̃
t,x,β
ζ

,β

r ,βr) dr
∫
E
V (s, y)λ(X̃

ζ,X̃t,x,β
ζ ,β

s , βs)Q(X̃
ζ,X̃t,x,β

ζ ,β
s , βs, dy) ds

+ e−
∫ T
ζ λ(X̃

ζ,X̃
t,x,β
ζ

,β

r ,βr) drV (T, X̃
ζ,X̃t,x,β

ζ ,β

T ). (6.9)

Recalling the flow property

X̃
ζ,X̃t,x,β

ζ ,β
r = X̃t,x,β

r , r ∈ [ζ, T ],

inequality (6.9) yields

V (ζ, X̃t,x,β
ζ ) ≤

∫ T

ζ
e−

∫ s
ζ λ(X̃t,x,β

r ,βr) drf(X̃t,x,β
s , βs)ds

+

∫ T

ζ
e−

∫ s
ζ λ(X̃t,x,β

r ,βr) dr
∫
E
V (s, y)λ(X̃t,x,β

s , βs)Q(X̃t,x,β
s , βs, dy) ds

+ e−
∫ T
ζ λ(X̃t,x,β

r ,βr) drV (T, X̃t,x,β
T ). (6.10)

Multiplying by e−
∫ ζ
t λ(X̃t,x,β

r ,βr) dr both sides of (6.10) we get

e−
∫ ζ
t λ(X̃t,x,β

r ,βr) drV (ζ, X̃t,x,β
ζ ) ≤

∫ T

ζ
e−

∫ s
t λ(X̃t,x,β

r ,βr) drf(X̃t,x,β
s , βs)ds

+

∫ T

ζ
e−

∫ s
t λ(X̃t,x,β

r ,βr) dr

∫
E
V (s, y)λ(X̃t,x,β

s , βs)Q(X̃t,x,β
s , βs, dy) ds

+ e−
∫ T
t λ(X̃t,x,β

r ,βr) drV (T, X̃t,x,β
T ). (6.11)
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Adding to both sides of (6.11) the quantity∫ ζ

t
e−

∫ s
t λ(X̃t,x,β

r ,βr) drf(X̃t,x,β
s , βs)ds

+

∫ ζ

t
e−

∫ s
t λ(X̃t,x,β

r ,βr) dr

∫
E
V (s, y)λ(X̃t,x,β

s , βs)Q(X̃t,x,β
s , βs, dy) ds

we obtain

Λ(t, x) ≤
∫ T

t
e−

∫ s
t λ(X̃t,x,β

r ,βr) drf(X̃t,x,β
s , βs)ds

+

∫ T

t
e−

∫ s
t λ(X̃t,x,β

r ,βr) dr

∫
E
V (s, y)λ(X̃t,x,β

s , βs)Q(X̃t,x,β
s , βs, dy) ds

+ e−
∫ T
t λ(X̃t,x,β

r ,βr) drV (T, X̃t,x,β
T ).

We conclude by the arbitrariness of β ∈ U .

Let us now prove that Λ(t, x) ≥ V (t, x). Let us fix ζ ∈ [t, T ]. For any ε > 0, let uε ∈ U such that

Λ(t, x) ≥
∫ ζ

t
e−

∫ s
t λ(X̃t,x,uε

r ,uεr) drf(X̃t,x,uε

s , uεs)ds (6.12)

+

∫ ζ

t
e−

∫ s
t λ(X̃t,x,uε

r ,uεr) dr

∫
E
V (s, y)λ(X̃t,x,uε

s , uεs)Q(X̃t,x,uε

s , uεs, dy) ds

+ e−
∫ ζ
t λ(X̃t,x,uε

r ,uεr) drV (θ, X̃t,x,uε

θ )− ε.

From the definition of V (ζ, X̃t,x,uε

ζ ), there exists βε ∈ U such that

V (ζ, X̃t,x,uε

ζ )

≥
∫ T

ζ
e−

∫ s
ζ λ(X̃

ζ,X̃
t,x,uε

ζ
,βε

r ,βεr) drf(X̃
ζ,X̃t,x,uε

ζ ,βε

s , βεs)ds

+

∫ T

ζ
e−

∫ s
ζ λ(X̃

ζ,X̃
t,x,uε

ζ
,βε

r ,βεr) dr
∫
E
V (s, y)λ(X̃

ζ,X̃t,x,uε

ζ ,βε

s , βεs)Q(X̃
ζ,X̃t,x,uε

ζ ,βε

s , βεs , dy) ds

+ e−
∫ T
ζ λ(X̃

ζ,X̃
t,x,uε

ζ
,βε

r ,βεr) drV (T, X̃
ζ,X̃t,x,uε

ζ ,βε

T )− ε. (6.13)

We set
γε = uε1[t,ζ] + βε1[ζ,T ].

We have γε ∈ U . Moreover, the flow property gives

X̃
ζ,X̃t,x,uε

ζ ,βε

r = X̃t,x,γε

r , r ∈ [ζ, T ].

Therefore (6.13) reads

V (ζ, X̃t,x,uε

ζ ) ≥
∫ T

ζ
e−

∫ s
ζ λ(X̃t,x,γε

r ,γεr ) drf(X̃t,x,γε

s , γεs)ds

+

∫ T

ζ
e−

∫ s
ζ λ(X̃t,x,γε

r ,γεr ) dr
∫
E
V (s, y)λ(X̃t,x,γε

s , γεs)Q(X̃t,x,γε

s , γεs , dy) ds
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+ e−
∫ T
ζ λ(X̃t,x,γε

r ,γεr ) drV (T, X̃t,x,γε

T )− ε,

and (6.12) gives

Λ(t, x) ≥
∫ T

t
e−

∫ s
t λ(X̃t,x,γε

r ,γεr ) drf(X̃t,x,γε

s , γεs)ds

+

∫ T

t
e−

∫ s
t λ(X̃t,x,γε

r ,γεr ) dr

∫
E
V (s, y)λ(X̃t,x,γε

s , γεs)Q(X̃t,x,γε

s , γεs , dy) ds

+ e−
∫ T
t λ(X̃t,x,γε

r ,γεr ) drV (T, X̃t,x,γε

T )− 2ε

≥ V (t, x)− 2ε.

The conclusion follows from the arbitrariness of ε.

6.3 Proof of Lemma 2.10

Let us fix t ∈ (ε, T − ε), ε > 0. We first prove that the map

r 7→ − ∂ψ

∂s
(r, φα0(r − t, x)) + 〈φα0(r − t, x), L∗Dϕ(r, φα0(r − t, x))〉

+ 〈φα0(r − t, x), h(||φα0(r − t, x))||)L∗Dδ(r, φα0(r − t, x))〉

is continuous on [t, T − ε), uniformly in α0, and on BR(x) := {x ∈ E : ||x|| ≤ R}, R > 0. To
this end, let r, r′ ∈ [t, T − ε). Since ψ satisfies Definition 2.8, in particular ∂ψ

∂s , L∗Dϕ, L∗Dδ are
bounded on bounded sets of E. In the following C will denote a generic constant that may depend
on T and x, and that may vary from line to line. For any x ∈ E : ||x|| ≤ R, R > 0, we have∣∣∣∣∂ψ∂s (r, φα0(r − t, x))− ∂ψ

∂s
(r′, φα0(r′ − t, x))

∣∣∣∣
≤ Cω(|r − r′|+ ||φα0(r − t, x))− φα0(r′ − t, x))||) ≤ CσR(|r − r′|),

where in the latter inequality we have used (2.10). Using again the properties of the test functions,
together with (2.10)-(2.11), we get

|〈φα0(r − t, x), L∗Dϕ(r, φα0(r − t, x))〉 − 〈φα0(r′ − t, x), L∗Dϕ(r′, φα0(r′ − t, x))〉|
≤ |〈φα0(r − t, x)− φα0(r′ − t, x), L∗Dϕ(r′, φα0(r′ − t, x))〉|
+ |〈φα0(r − t, x), L∗Dϕ(r, φα0(r − t, x))− L∗Dϕ(r′, φα0(r′ − t, x))〉|.
≤ CσR(|r − r′|) + C(1 + ||x||)ω(|r − r′|+ ||φα0(r − t, x)− φα0(r′ − t, x)||)
≤ CσR(|r − r′|).

Analogously,

|〈φα0(r − t, x), h(||φα0(r − t, x))||)L∗Dδ(r, φα0(r − t, x))〉
− 〈φα0(r′ − t, x), h(||φα0(r′ − t, x))||)L∗Dδ(r′, φα0(r′ − t, x))〉|
≤ CσR(|r − r′|).

Moreover, for any x ∈ E, a ∈ A, and any measurable function α0 : R+ × E → A, the map

r 7→ f(φα0(r − t, x), a)
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is continuous on [t, T − ε), uniformly in α0 and in a. Indeed, from (Hfg) and (2.13), for any
r ∈ [t, T − ε), x ∈ E : ||x|| ≤ R, R > 0,

|f(φα0(r′ − t, x), a)− f(φα0(r − t, x), a)|
≤ Cω(||φα0(r − t, x), a)− φα0(r′ − t, x), a)||−1) ≤ CσR(|r − r′|).

Let us finally study the continuity of the maps

r 7→ Laψ(r, φα0(r − t, x), a))

= 〈b(φα0(r − t, x), a), Dψ(r, φα0(r − t, x))〉

+ λ(φα0(r − t, x), a)

∫
E

(ψ(r, y)− ψ(r, φα0(r − t, x)))Q(φα0(r − t, x), a, dy).

Since by Definition 2.8 Dψ is bounded on bounded sets of E, and using assumption (HbλQ) for
b, for any x ∈ E : ||x|| ≤ R, R > 0 we get

|〈b(φα0(r − t, x), a), Dψ(t, φα0(r − t, x))〉 − 〈b(φα0(r′ − t, x), a), Dψ(r, φα0(r′ − t, x))〉|
≤ |〈b(φα0(r − t, x), a)− 〈b(φα0(r′ − t, x), a), Dψ(r, φα0(r′ − t, x))〉|
+ |〈b(φα0(r − t, x), a), Dψ(t, φα0(r − t, x))〉 −Dψ(r, φα0(r′ − t, x))〉|
≤ CσR(|r − r′|) + Cω(|r − r′|+ ||φα0(r − t, x), a)− φα0(r′ − t, x)||)
≤ C σR(|r − r′|).

On the other hand, by assumption (HbλQ) for λ and Q, recalling that ψ is uniformly continuous
on (ε, T − ε)× E, for any x ∈ E : ||x|| ≤ R, R > 0 we have∣∣∣λ(φα0(r − t, x), a)

∫
E

(ψ(r, y)− ψ(r, φα0(r − t, x)))Q(φα0(r − t, x), a, dy)

− λ(φα0(r′ − t, x), a)

∫
E

(ψ(r′, y)− ψ(r′, φα0(r′ − t, x)))Q(φα0(r′ − t, x), a, dy)
∣∣∣

≤ |λ(φα0(r − t, x), a)− λ(φα0(r′ − t, x), a)|
∣∣∣ ∫

E
(ψ(r′, y)− ψ(r′, φα0(r′ − t, x)))Q(φα0(r′ − t, x), a, dy)

∣∣∣
+ |λ(φα0(r − t, x), a)| |ψ(r′, φα0(r′ − t, x))− ψ(r, φα0(r − t, x))|

+ |λ(φα0(r − t, x), a)|
∣∣∣ ∫

E
ψ(r, y)Q(φα0(r − t, x), a, dy)−

∫
E
ψ(r′, y)Q(φα0(r′ − t, x), a, dy)

∣∣∣
≤ C||φα0(r − t, x)− φα0(r′ − t, x)||−1 + Cω(|r − r′|+ ||φα0(r′ − t, x)− φα0(r − t, x)||)
+ CσR(|r − r′|) + Cω(||φα0(r − t, x), a)− φα0(r′ − t, x), a)||−1)

≤ CσR(|r − r′|),

where the latter inequality follows from (2.10)-(2.11)-(2.12).

6.4 Proof of Theorem 2.11

We start by giving the following preliminary result.

Lemma 6.1. Assume that Hypotheses (HL) and (HbλQ) hold. Let 0 < t < T̄ < T , τ̂ be a
stopping time such that τ̂ ∈ [t, T̄ ], x ∈ E, α ∈ Atad, and X be the process in (2.6) under Pt,xα . For
R > 0, let τR be the exit time of X from {y : ||y|| ≤ R}, and set τ = τ̂ ∧ τR. Let ψ = ϕ+ h(|| · ||) δ
be a test function. Then,

Et,xα [ψ(τ,Xτ )] ≤ ψ(t, x) + Et,xα
[∫ τ

t

(
∂ψ

∂t
(r,Xr) + 〈b(Xr, αr), Dψ(r,Xr)〉

)
dr

]
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− Et,xα
[∫ τ

t
〈Xr, L

∗Dϕ(r,Xr) + h(||Xr||)L∗Dδ(r,Xr)〉 dr
]

+ Et,xα
[∫ τ

t

∫
E

(ψ(r, y)− ψ(r,Xr))λ(Xr, αr)Q(Xr, αr, dy) dr

]
. (6.14)

Proof of Lemma 6.1. The result follows from the Dynkin formula (2.14) and the properties of the
test functions ψ in Definition 2.8. In particular, Dψ(r,Xr) = Dϕ(r,Xr) + h(||Xr||)Dδ(r,Xr) +

δ(r,Xr)
h′(||Xr||)
||Xr|| Xr, and 〈LXr, δ(r,Xr)

h′(||Xr||)
||Xr|| Xr〉 ≥ 0, being L monotone.

Proof of Theorem 2.11. Viscosity subsolution property. Let ψ(s, y) = ϕ(s, y)+δ(s, y)h(||y||)
be a test function of the type introduced in Definition 2.8, such that V −ψ has a global maximum
at (t, x) ∈]0, T [×E. We also assume that

V (t, x) = ψ(t, x), (6.15)

and consequently
V (s, y) ≤ ψ(s, y), ∀ (s, y). (6.16)

Remember that T t1 denotes the first jump time of X. We apply the dynamic programming principle
(2.18) to θ := (t+ η) ∧ T t1, where η > 0 is such that (t+ η) < T . By (6.16) we have

ψ(t, x) 6 Et,xα
[
ψ(θ,Xθ) +

∫ θ

t
f(Xr, αr) dr

]
, ∀α ∈ Atad. (6.17)

All elements of Atad have the form (2.5). Let us fix a ∈ A, and let us take α ∈ Atad such that α0 ≡ a.
Notice that, Pt,xα -a.s., Xr = φa(r − t, x) for r ∈ [t, θ). In particular, by (2.11),

||Xs|| ≤ C(1 + ||x||) =: Rx.

Denoting by τR, for any R > 0, the exit time of X from {y : ||y|| ≤ R}, it follows that θ =
(t + h) ∧ T t1 ∧ τRx . As a matter of fact, if (t + h) ≤ T t1, then (t + h) ∧ T t1 ∧ τRx = t + h. On the
other hand, if (t+ h) > T t1, we have two cases: if XT t1

/∈ BRx , then (t+ h) ∧ T t1 ∧ τRx = τRx = T t1,

if XT t1
∈ BRx , then (t+ h) ∧ T t1 ∧ τRx = T t1. Then (6.17) for such an α, together with Lemma 6.1,

implies that

Et,xα
[∫ θ

t

[
∂ψ

∂t
(r,Xr) + Laψ(r,Xr) + f(Xr, a)

]
dr

]
− Et,xα

[∫ θ

t
〈Xr, L

∗Dψ(r,Xr) + h(||Xr||)L∗Dδ(r,Xr)〉 dr
]
≥ 0, (6.18)

with Xr = φa(r − t, x). Moreover, by Lemma 2.10, the (deterministic) map

r 7→∂ψ

∂t
(r, φa(r − t, x)) + Laψ(r, φa(r − t, x)) + f(φa(r − t, x), a)

− 〈φa(r − t, x), L∗Dψ(r, φa(r − t, x)) + h(||φa(r − t, x)||)L∗Dδ(r, φa(r − t, x))〉

is continuous at t, uniformly in a. Therefore, for any ε > 0 there exists η > 0 such that (6.18) with
θ associated to η becomes(

ε+
∂ψ

∂t
(t, x) + Laψ(t, x) + f(x, a)− 〈x, L∗Dψ(t, x) + h(||x||)L∗Dδ(t, x)〉

)
Et,xα [θ − t] ≥ 0,

(6.19)
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valid for any a ∈ A. Now we observe that Et,xα [θ − t] ≥ 0 by definition of θ. Then (6.19) implies(
ε+

∂ψ

∂t
(t, x) + Laψ(t, x) + f(x, a)− 〈x, L∗Dψ(t, x) + h(||x||)L∗Dδ(t, x)〉

)
≥ 0,

for any ε > 0 and a ∈ A. The conclusion follows by the arbitrariness of ε and a.

Viscosity supersolution property. Let ψ(s, y) = ϕ(s, y) + δ(s, y)h(||x||) be a test function of
the type introduced in Definition 2.8, such that V + ψ has a global minimum at (t, x) ∈]0, T [×E.
We also assume that

V (t, x) + ψ(t, x) = 0, (6.20)

so we have
V (s, y) ≥ −ψ(s, y), ∀ (s, y). (6.21)

We will show that V is a viscosity supersolution by contradiction. Let us use the notations of
Lemma 2.10. Assume that

inf
a∈A

Gψa (t, x) = µ > 0. (6.22)

By Lemma 2.10, there exists η > 0, independent from α0, such that

Gα0(r) ≥ µ

2
> 0, ∀r ∈ [t, t+ η), (6.23)

Let us now set θ := (t + η) ∧ T t1 where η satisfies (t + η) < T . By the dynamic programming
principle (2.18), for all γ > 0 there exists α ∈ Atad such that

V (t, x) + γ ≥ Et,xα
[∫ θ

t
f(Xr, αr) dr + V (θ,Xθ)

]
,

and therefore, recalling (6.20) and (6.21),

− ψ(t, x) + γ ≥ Et,xα
[∫ θ

t
f(Xr, αr) dr − ψ(θ,Xθ)

]
. (6.24)

As in the proof of the viscosity subsolution property, we set Rx to the the bound in (2.11), and
we notice that θ = (t + h) ∧ T t1 ∧ τRx , where τR denotes the exit time of X from {y : ||y|| ≤ R}.
Applying Lemma 6.1 to ψ between t and θ, we get

γ > Et,xα
[∫ θ

t
f(Xr, αr) dr

]
− Et,xα

[∫ θ

t

[
∂ψ

∂t
(r,Xr) + 〈b(Xr, αr), Dψ(Xr, αr)〉

]
dr

]
− Et,xα

[∫ θ

t

∫
E

(ψ(r, y)− ψ(r,Xr))λ(Xr, αr)Q(Xr, αr, dy) dr

]
+ Et,xα

[∫ θ

t
〈Xr, L

∗Dϕ(r,Xr) + h(||Xr||)L∗Dδ(r,Xr)〉 dr
]
.

Then

γ > Et,xα
[∫ θ

t

(
−∂ψ
∂t

(r,Xr) + 〈Xr, L
∗Dϕ(r,Xr) + h(||Xr||)L∗Dδ(r,Xr)〉

)
dr

]
+ Et,xα

[∫ θ

t
inf
a∈A

(−Laψ(r,Xr) + f(Xr, a)) dr

]
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= Et,xα
[∫ θ

t
inf
a∈A

Gψa (r,Xr) dr

]
. (6.25)

By the definition of θ, together with (2.5) and (2.6), for all r ∈ [t, θ), αr = α0(r − t, x), with α0 as
in (2.5) and Xr = φα0(r − t, x). Thus (6.23) yields

γ ≥ Et,xα
[∫ θ

t
Gα0(r) dr

]
≥ µ

2
Et,xα [(θ − t)] . (6.26)

Now we notice that

Et,xα (θ − t) = ηEt,xα (1T1>t+η) + Et,xα ((T1 − t)1T1≤t+η)
≥ η Pt,xα (1T1>t+η)

= η e−
∫ t+η
t λ(φα0 (s,x),α0(s,x)) dr

≥ η e−ηM ,

where in the latter inequality we have used that by assumption λ is bounded by some constant M .
By letting γ go to zero we obtain the contradiction.

7 Proofs of the results in Section 4

7.1 Proof of Theorem 4.3

The boundedness of v follows from (4.9), (4.5), together with the definition of V ∗ in (3.17) and the
assumption (Hfg).

Let us now turn to the continuity properties. We argue as in the proof of Proposition 2.5. For
any a ∈ A, for any bounded Borel-measurable functions ψ on [0, T ]× E, we define the map

Taψ(t, x) := inf
ν∈V

Et,x,aν

[∫ T t1∧T

t
f(Xs, Is) ds+ g(XT )1T≤T t1 + ψ(T t1, XT t1

)1T>T t1

]
.

We have Taψ(t, x) = infν∈V̄ J̄(t, x, a, ν), with

J̄(t, x, a, ν) =

∫ T−t

0
χν(s, x, a)(f(s, x, a) + Ltψ(s, x, a)) ds+ χν(T − t, x, a)g(φ(T − t, x, a),

where χν(s, x, a) = e−
∫ s
0 (λ(φ(r,x,a),a)+

∫
A νs(b)λ0(db)) dr, f(s, x, a) = f(φ(s, x, a), a), and

Ltψ(s, x, a) =

∫
E
ψ(s+ t, y)λ(φ(s, x, a), a)Q(φ(s, x, a), a, dy),

and V̄ = {ν : [0, ∞)×A→ (0, ∞) measurable and bounded}. Let us denote by Cb([0, T ]×E) the
set of bounded functions, continuous on [0, T ]× E with the | · | × || · ||−1 norm.

We aim at proving that, for any ψ ∈ Cb([0, T ]×E), for any a ∈ A one has Taψ ∈ Cb([0, T ]×E).
Once this is achieved, proceeding along the same lines of the proof of Proposition 2.5, item (ii),
one can get that, for any a ∈ A, Ta is a contracting map in Cb([0, T ]×E) and v is its unique fixed
point. In particular, v satisfies the randomized dynamic programming principle (4.11).

Let thus ψ ∈ Cb([0, T ] × E). In what follows C will denote a generic constant, that may vary
from line to line, and that may depend on T . Let t, t′, s ∈ [0, T ], t′ ≤ t ≤ s, x, x′ ∈ E, a ∈ A, ν ∈ V.
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Recalling hypotheses (HbλQ)-(i), (Hfg) and (3.2), we have |χν(s, x, a)| ≤ 1, |f(s, x, a)| ≤ C, and,
for any s′ ≤ s,

|χν(s′, x, a)− χν(s, x′, a)| ≤ (1− e−C||x−x′||−1) + (1− e−C(s−s′)), (7.1)

|f(s, x, a)− f(s, x′, a)| ≤ C||x− x′||−1, (7.2)

|g(φ(T − t, x, a))− g(φ(T − t′, x′, a))| ≤ ω(||x− x′||−1). (7.3)

On the other hand, by (HbλQ)-(i)-(ii), together with the boundedness and continuity of ψ, we
have |Lψ(s, x, a) ≤ C and, for s < T − t,

|Ltψ(s, x, a)− Ltψ(s, x′, a)| ≤ |λ(φ(s, x, a), a)− λ(φ(s, x′, a), a)| ||ψ||∞

+ ||λ||∞
∣∣∣∣ ∫

E
ψ(s+ t, y) [Q(φ(s, x, a), a, dy)−Q(φ(s, x′, a), a, dy)]

∣∣∣∣
≤ C σ(||φ(s, x, a)− φ(s, x′, a)||−1) ≤ Cω(||x− x′||−1), (7.4)

where the latter inequality follows from (3.2). Then, for any t, t′ ∈ [0, T ], x, x′ ∈ E, a ∈ A, ν ∈ V,

|J̄(t, x, a, ν)− J̄(t′, x′, a, ν)|

≤

∣∣∣∣∣
∫ T−t

0
χν(s, x, a)f(s, x, a) ds−

∫ T−t′

0
χν(s, x′, a)f(s, x′, a) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ T−t

0
χν(s, x, a)Ltψ(s, x, a) ds−

∫ T−t′

0
χu(s, x′)Ltψ(s, x′, a) dr

∣∣∣∣∣
+ |χν(T − t, x)g(φ(T − t, x, a))− χν(T − t′, x′)g(φ(T − t′, x′, a))|

≤
∫ T−t

0
|χν(s, x, a)f(s, x, a)− χν(s, x′, a)f(s, x′, a)| ds

+

∫ T−t

0
|χν(s, x, a)Ltψ(s, x)− χν(s, x′, a)Ltψ(s, x′, a)| ds+ C|t− t′|

+ C|g(φ(T − t, x, a))− g(φ(T − t′, x′, a))|+ C|χν(T − t, x, a)− χu(T − t′, x′)|

≤ C

(∫ T−t

0
|χν(s, x, a))− χν(s, x′, a)| ds+

∫ T−t

0
|f(s, x, a)− f(s, x′, a)| ds

+

∫ T−t

0
|Ltψ(s, x, a)− Ltψ(s, x′, a)| ds+ |g(φ(T − t, x, a))− g(φ(T − t′, x′, a))|

+ |χν(T − t, x, a)− χν(T − t′, x′, a)|+ |t− t′|

)
≤ C(ω(t− t′) + ω′(||x− x′||−1))

for some modulus of continuity ω, ω′, where the latter inequality follows from (7.1), (7.2), (7.3),
(7.4). This also allows to conclude that v is uniformly continuous in the | · | × || · ||−1 norm.

7.2 Proof of Theorem 4.4

We first give the following preliminary result.

Lemma 7.1. Let 0 < t < T̄ < T , τ̂ be a stopping time such that τ̂ ∈ [t, T̄ ], x ∈ E, a ∈ A, ν ∈ V,
and (X, I) be the PDMP constructed in Section 3.1 under the probability Pt,x,aν . For R > 0, let τR
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be the exit time of X from {y : ||y|| ≤ R}, and set τ = τ̂ ∧ τR. Let ψ = ϕ + h(|| · ||) δ be a test
function. Then,

Et,x,aν [ψ(τ,Xτ )] ≤ ψ(t, x) + Et,x,aν

[∫ τ

t

(
∂ψ

∂t
(r,Xr) + 〈b(Xr, Ir), Dψ(r,Xr)〉

)
dr

]
− Et,x,aν

[∫ τ

t
〈Xr, L

∗Dϕ(r,Xr) + h(||Xr||)L∗Dδ(r,Xr)〉 dr
]

+ Et,x,aν

[∫ τ

t

∫
E

(ψ(r, y)− ψ(r,Xr))λ(Xr, Ir)Q(Xr, Ir, dy) dr

]
. (7.5)

Proof of Lemma 7.1. By Proposition 3.1, applying the Dynkin formula to ψ(s,Xs) between t and
τ and taking the expectation under Pt,x,aν , we get

Et,x,aν [ψ(τ,Xτ )] = ψ(t, x) + Et,x,aν

[∫ τ

t

(
∂ψ

∂t
(r,Xr) + 〈b(Xr, Ir), Dψ(r,Xr)〉

)
dr

]
+ Et,x,aν

[∫ τ

t

(
− 〈LXr, Dψ(r,Xr)〉+

∫
E

(ψ(r, y)− ψ(r,Xr))λ(Xr, Ir)Q(Xr, Ir, dy)

)
dr

]
.

We conclude noticing that Dψ(r,Xr) = Dϕ(r,Xr) + h(||Xr||)Dδ(r,Xr) + δ(r,Xr)
h′(||Xr||)
||Xr|| Xr, and

that 〈LXr, δ(r,Xr)
h′(||Xr||)
||Xr|| Xr〉 ≥ 0, being L is monotone.

Proof of Theorem 4.4. Viscosity subsolution property. Let ψ(s, y) = ϕ(s, y)+δ(s, y)h(||x||)
be a test function of the type introduced in Definition 2.8, such that v − ψ has a global maximum
at (t, x) ∈ [0, T ]× E. We also assume that

v(t, x) = ψ(t, x), (7.6)

so we have
v(s, y) ≤ ψ(s, y), ∀ (s, y). (7.7)

Fix (t, x, a) and ν ∈ V. Let η > 0 and define θ = (t + η) ∧ T t1, where T t1 denotes the first jump
time of (X, I). Using the identification property (4.9), from the randomized dynamic programming
principle (4.11), together with (7.7), we get

ψ(t, x) 6 Et,x,aν

[
ψ(θ,Xθ) +

∫ θ

t
f(Xr, Ir) dr

]
.

Applying Lemma 7.1, we obtain

Et,x,aν

[∫ θ

t

[
∂ψ

∂t
(r,Xr) + LIrψ(r,Xr) + f(Xr, Ir)

]
dr

]
− Et,x,aν

[∫ θ

t
〈Xr, L

∗Dψ(r,Xr) + h(||Xr||)L∗Dδ(r,Xr)〉 dr
]
≥ 0, (7.8)

where

LIrψ(r,Xr) = 〈b(Xr, Ir), Dψ(r,Xr)〉+

∫
E

(ψ(r, y)− ψ(r,Xr))λ(Xr, Ir)Q(Xr, Ir, dy). (7.9)

Now we notice that Pt,x,a-a.s., for all r ∈ (t, θ), (Xr, Ir) = (φ(r − t, x, a), a). Moreover, by Lemma
2.10, the map

r 7→∂ψ

∂t
(r, φ(r − t, x, a)) + Laψ(r, φ(r − t, x, a)) + f(φ(r − t, x, a), a)
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− 〈φ(r − t, x, a)L∗Dψ(r, φ(r − t, x, a)) + h(||φ(r − t, x, a)||)L∗Dδ(r, φ(r − t, x, a))〉

is continuous, uniformly with respect to a ∈ A. We can proceed as in the proof of Theorem 2.11.
By the latter continuity property, for any ε > 0, we can find η > 0 independent of a such that (7.8)
holds true for θ corresponding to η. Since Et,xα [θ − t] ≥ 0 by definition of θ, then identity (7.8)
implies (

ε+
∂ψ

∂t
(t, x) + Laψ(t, x) + f(x, a)− 〈x, L∗Dψ(t, x) + h(||x||)L∗Dδ(t, x)〉

)
≥ 0,

for any ε > 0 and a ∈ A. As in the proof of Theorem 2.11, we conclude by the arbitrariness of ε
and a.

Viscosity supersolution property. Let ψ(s, y) = ϕ(s, y) + δ(s, y)h(||x||) be a test function of
the type introduced in Definition 2.8, such that v+ ψ has a global minimum at (t, x) ∈ [0, T ]×E.
We also assume that

v(t, x) + ψ(t, x) = 0, (7.10)

so we have
v(s, y) ≥ −ψ(s, y), ∀ (s, y). (7.11)

We will show that v is a viscosity supersolution by contradiction. Let us use the notations of
Lemma 2.10. Assume that

Gψ (t, x, ψ,Dϕ,Dδ) = µ > 0. (7.12)

By Lemma 2.10 that we apply for α0 ≡ a, a ∈ A arbitrary, there exists η > 0, independent from a,
such that

Ga(r) ≥ µ

2
> 0 ∀r ∈ [t, t+ η). (7.13)

Let us set θ = (t+ η) ∧ T t1 and fix a ∈ A. By the dynamic programming principle (4.11) toghether
with the identification property (4.9), we see that, for all γ > 0, it exists a strictly positive,
predictable and bounded function ν such that

v(t, x) + γ > Et,x,aν

[∫ θ

t
f(Xr, Ir) dr + v(θ,Xθ)

]
.

Recalling (7.10) and (7.11), we get

−ψ(t, x) + γ > Et,x,aν

[∫ θ

t
f(Xr, Ir) dr − ψ(θ,Xθ) + β(η) 1τ∧T1≤T

]
. (7.14)

Applying Lemma 7.1, inequality (7.14) yields

γ > Et,x,aν

[∫ θ

t
f(Xr, Ir) dr −

∫ θ

t

(
∂ψ

∂t
(r,Xr) + 〈b(Xr, Ir), Dψ(Xr, Ir)〉

)
dr

]
− Et,x,aν

[∫ θ

t

∫
E

(ψ(r, y)− ψ(r,Xr))λ(Xr, Ir)Q(Xr, Ir, dy) dr

]
+ Et,x,aν

[∫ θ

t
〈Xr, L

∗Dψ(r,Xr) + h(||Xr||)L∗Dδ(r,Xr)〉 dr
]
. (7.15)

Noticing that

−LIrψ(r,Xr) + f(Xr, Ir) = Uψ(r,Xr, Ir, Dψ) > inf
a∈A

Uψ(r,Xr, a,Dψ),
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with LI is the operator in (7.9), previous inequality gives

γ > Et,x,aν

[∫ θ

t

(
−∂ψ
∂t

(r,Xr) + 〈Xr, L
∗Dϕ(r,Xr) + h(||Xr||)L∗Dδ(r,Xr)〉

)
dr

]
+ Et,x,aν

[∫ θ

t
inf
a∈A

Uψ(r,Xr, a,Dψ) dr

]
= Et,x,aν

[∫ θ

t
Gψ (r,Xr, ψ,Dψ,Dϕ,Dδ) dr

]
. (7.16)

By the definition of θ, together with (3.6), for all r ∈ [t, θ), Xr = φ(r−t, x, a). Thus, (7.16) together
with (7.13) yields

γ ≥ Et,x,aν

[∫ θ

t
Gψ (r, φα0(r − t, x), ψ,Dψ,Dϕ,Dδ) dr

]
≥ µ

2
Et,x,aν [(θ − t)] . (7.17)

We conclude as in the proof of Theorem 2.11 using that

Et,xα (θ − t) = ηEt,xα (1T1>t+η) + Et,xα ((T1 − t)1T1≤t+η)
≥ η Pt,xα (1T1>t+η)

= η e−
∫ t+η
t λ(φα(s,x),α0(s,x)) dr

≥ η e−ηM ,

where M is an upper bound of λ. We obtain the contradiction by letting γ go to zero.

7.3 Proof of the comparison Theorem 4.5

We begin recalling the following result concerning an equivalent definition of viscosity super and
subsolution to (2.19)-(2.20).

Definition 7.2. Let assumptions (HL), (HbλQ) and (Hfg) be satisfied. We will say that a
function ψ is a test function in the sense of Definition 7.2 if ψ(s, y) = ϕ(s, y) +h(||y||), where ϕ, h
are as in Definition 2.8 without being bounded, however ϕ is bounded on every set (ε, T − ε)×{x ∈
E : ||x|| ≤ R}, ε ∈ (0, T ), R > 0.

(i) A bounded B-upper-semicontinuous function u : (0, T ]×E → R is a viscosity subsolution in
the sense of Definition 7.2 of (2.19)-(2.20) if u(T, x) ≤ g(x) on E, and, whenever u− ψ has
a global maximum at a point (t, x) for a test function ψ(s, y) = ϕ(s, y) + h(||y||), then

∂ψ

∂t
(t, x)− 〈x, L∗Dϕ(t, x)〉

+ inf
a∈A

{
〈b(x, a), Dψ(t, x)〉+

∫
E

(u(t, y)− u(t, x))λ(x, a)Q(x, a, dy) + f(x, a)

}
≥ 0.

(ii) A bounded B-lower-semicontinuous function w : (0, T ]× E → R is a viscosity supersolution
in the sense of Definition 7.2 of (2.19)-(2.20) if w(T, x) ≥ g(x) on E, and, whenever w + ψ
has a global minimum at a point (t, x) for a test function ψ(s, y) = ϕ(s, y) + h(||y||), then

− ∂ψ

∂t
(t, x) + 〈x, L∗Dϕ(t, x)〉

+ inf
a∈A

{
〈b(x, a),−Dψ(t, x)〉+

∫
E

(w(t, y)− w(t, x))λ(x, a)Q(x, a, dy) + f(x, a)

}
≤ 0.
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(iii) A viscosity solution of (2.19)-(2.20) in the sense of Definition 7.2 is a function which is both
a viscosity subsolution and a viscosity supersolution.

Lemma 7.3. Let assumptions (HL), (HbλQ) and (Hfg) be satisfied. If a function u : (0, T )×
E → R (resp. w : (0, T )×E → R) is bounded and uniformly continuous in the | · | × || · ||−1 norm,
and is a viscosity subsolution (resp. supersolution) of equation (2.19)-(2.20), then it is a viscosity
subsolution (resp. supersolution) of equation (2.19)-(2.20) in the sense of Definition 7.2.

Proof of Lemma 7.3. This lemma extends to the infinite-dimensional framework a well known result
in the finite-dimensional case, see e.g. Lemma 2.1 in [26].

We consider the subsolution case, the supersolution case can be proved analogously. Let thus
u : (0, T ) × E → R be bounded and uniformly continuous function in the | · | × || · ||−1 norm,
providing a viscosity subsolution to (2.19)-(2.20). Let u − ψ has a global maximum at (t, x) for a
test function ψ(s, y) = ϕ(s, y) +h(||y||), where without loss of generality we can assume that ϕ and
h(|| · ||) are bounded and that u(t, x) = ψ(t, x). By assumption, it exists a modulus σu such that

|u(s, y)− u(s, z)| ≤ σu(||y − z||−1) s ∈ (0, T ), y, z ∈ E. (7.18)

For any ε > 0, let ūε be the sup-inf convolution of u (see e.g. Definition D.24 in [14]), namely

ūε(s, x) = inf
z∈E

sup
w∈E

(
u(w)−

||z − w||2−1

2ε
+
||z − x||2−1

ε

)
.

Then, according to Proposition D.26 in [14], ūε, ∂ū
ε

∂t
, Dūε are uniformly continuous in the |·|×||·||−1

norm and bounded, and for any s ∈ [0, T ], y ∈ E,

u(s, y) ≤ ūε(s, y), (7.19)

|u(s, y)− ūε(s, y)| ≤ σu(tε), (7.20)

where tε√
ε
→ 0 as ε → 0. This implies in particular that ūε, ∂ūε

∂t
, Dūε and A∗Dūε are uniformly

continuous with respect in the | · | × || · || norm.
Let η be a smooth function, such that η(τ) = 1 for τ < 1, η(τ) = 0 for τ > 2, and which is

strictly decreasing on [1, 2]. We define

ψε(s, y) := ψ(s, y) η

(
||y − x||−1

ε

)
+ ūε(s, y)

[
1− η

(
||y − x||−1

ε

)]
.

By definition u(t, x)− ψε(t, x) = 0. Moreover

u(s, y)− ψε(s, y) = u(s, y) η

(
||y − x||−1

ε

)
+ u(s, y)

[
1− η

(
||y − x||−1

ε

)]
− ψ(s, y) η

(
||y − x||−1

ε

)
− ūε(s, y)

[
1− η

(
||y − x||−1

ε

)]
= (u(s, y)− ψ(s, y)) η

(
||y − x||−1

ε

)
+ (u(s, y)− ūε(s, y))

[
1− η

(
||y − x||−1

ε

)]
.

For all (s, y) ∈ [0, T ]× E, u(s, y) ≤ ūε(s, y) by (7.19), and u(s, y)− ψ(s, y) ≤ 0 by assumption.
It follows that u− ψε has a global maximum at (t, x). Therefore, we apply Definition 2.9 with

ψε(s, y) = ϕε(s, y) + h(||y||) δε(s, y), where

ϕε(s, y) = ϕ(s, y) η

(
||y − x||−1

ε

)
+ ūε(s, y)

[
1− η

(
||y − x||−1

ε

)]
,
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δε(s, y) = η

(
||y − x||−1

ε

)
.

Notice that ψε(t, x) = ψ(t, x) = u(t, x), ∂ψε

∂t (t, x) = ∂ψ
∂t (t, x), Dψε(t, x) = Dψ(t, x). We get

0 ≤ ∂ψ

∂t
(t, x)− 〈x, L∗Dϕ(t, x)〉

+ inf
a∈A

{
f(x, a) + 〈b(x, a), Dψ(t, x)〉+

∫
E

(ψε(t, y)− u(t, x))λ(x, a)Q(x, a, dy)

}
=
∂ψ

∂t
(t, x)− 〈x, L∗Dϕ(t, x)〉

+ inf
a∈A

{
f(x, a) + 〈b(x, a), Dψ(t, x)〉+

∫
E

(u(t, y)− u(t, x))λ(x, a)Q(x, a, dy)

+

∫
E

(ψε(t, y)− u(t, y))λ(x, a)Q(x, a, dy)

}
.

At this point we notice that

|ψε(t, y)− u(t, y)| =
∣∣∣∣(ψ(t, y)− ūε(t, y)) η

(
||y − x||−1

ε

)
+ ūε(t, y)− u(t, y)

∣∣∣∣
≤ |ψ(t, y)− ūε(t, y))| η

(
||y − x||−1

ε

)
+ |ūε(t, y)− u(t, y)|

≤ |ψ(t, y)− u(t, y))| η
(
||y − x||−1

ε

)
+ |ūε(t, y)− u(t, y)|

[
1 + η

(
||y − x||−1

ε

)]
≤ |ψ(t, y)− u(t, y))| η

(
||y − x||−1

ε

)
+ σu(tε)

[
1 + η

(
||y − x||−1

ε

)]
,

where in the latter inequality we have used (7.20). The conclusion follows by the Lebesgue domi-
nated convergence theorem.

Proof of Theorem 4.5. We will show the result by contradiction. Assume therefore that u � v.

Step 1. Set uη(t, x) = u(t, x) − η
t , v

η(s, y) = v(s, y) + η
s , η > 0, and, for ε, δ, β > 0, define the

function

Φε,δ,β(t, s, x, y) := uη(t, x)− vη(s, y)−
||x− y||2−1

2ε
− δ(||x||2 + ||y||2)− (t− s)2

2β
.

By perturbed optimization (see, e.g. Corollary 3.26 in [14]) there exist sequences an, bn ∈ R,
pn, qn ∈ E such that

|an|+ |bn|+ |qn|+ |pn| ≤
1

n
, nδ →∞, (7.21)

and
Φε,δ,β(t, s, x, y) + ant+ bns+ 〈Bpn, x〉+ 〈Bqn, y〉

attains a strict maximum at some point (t̄, s̄, x̄, ȳ) ∈ (0, T ]×(0, T ]×E×E. Standard considerations
yield (see e.g. [14], page 209)

lim
β→0

lim sup
n→∞

|t̄− s̄|2

2β
= 0, ∀δ, ε > 0, (7.22)

lim
δ→0

lim sup
β→0

lim sup
n→∞

δ(||x̄||2 + ||ȳ||2) = 0, ∀ε > 0, (7.23)
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lim
ε→0

lim sup
δ→0

lim sup
β→0

lim sup
n→∞

1

2ε
||x̄− ȳ||2−1 = 0. (7.24)

Then, recalling that by assumption u � v, it follows from (7.22)-(7.23)-(7.24) and the uniform
continuity of u, v, that for sufficiently small ε, η, δ, β > 0 and n large enough, t̄, s̄ < T .

Step 2. From Step 1 we deduce that

u(t, x)− (ϕ(t, x) + h(||x||)) has a global maximum over (0, T )× E at (t̄, x̄),

v(s, y) + (ψ(s, y) + h(||y||)) has a global minimum over (0, T )× E at (s̄, ȳ),

where h(||z||) := δ||z||2, and

ϕ(t, x) :=
η

t
− ant− 〈Bpn, x〉+

||x− ȳ||2−1

2ε
+

(t− s̄)2

2β
,

ψ(s, y) :=
η

s
− bns− 〈Bqn, y〉+

||x̄− y||2−1

2ε
+

(t̄− s)2

2β
.

In particular, ∇h(||z||) = 2δz, and

∂ϕ

∂t
(t̄, x̄) = − η

t̄2
− an +

t̄− s̄
β

,
∂ψ

∂t
(s̄, ȳ) = − η

s2
− bn −

t̄− s̄
β

,

B−1Dϕ(t̄, x̄) = −pn +
x̄− ȳ
ε

, B−1Dψ(s̄, ȳ) = −qn −
x̄− ȳ
ε

.

Step 3. Viscosity inequalities. By Lemma 7.3, u is a viscosity subsolution of equation (2.19)-(2.20)
in the sense of Definition 7.2. Therefore, using Step 2, we have

t̄− s̄
β
− η

T 2
− an −

〈
x̄, L∗

(
B(x̄− ȳ)

ε
−Bpn

)〉
+ inf
a∈A

{〈
b(x̄, a),

B(x̄− ȳ)

ε
−Bpn + 2δx̄

〉

+

∫
E

(u(t̄, y)− u(t̄, x̄))λ(x̄, a)Q(x̄, a, dy) + f(x̄, a)

}
≥ 0. (7.25)

Similarly, being v is a viscosity supersolution of equation (2.19)-(2.20) in the sense of Definition 7.2
by Lemma 7.3, proceeding as before one gets

t̄− s̄
β

+
η

T 2
+ bn −

〈
ȳ, L∗

(
B(x̄− ȳ)

ε
+Bqn

)〉
+ inf
a∈A

{〈
b(ȳ, a),

B(x̄− ȳ)

ε
+Bqn − 2δȳ

〉

+

∫
E

(v(s̄, y)− v(s̄, ȳ))λ(ȳ, a)Q(ȳ, a, dy) + f(ȳ, a)

}
≤ 0. (7.26)

Subtracting (7.26) from (7.25) we obtain

2η

T 2
≤ −(an + bn)− 1

ε
〈(x̄− ȳ), L∗ (B(x̄− ȳ))〉+ 〈x̄, L∗Bpn〉+ 〈ȳ, L∗Bqn〉 (7.27)

+ sup
a∈A

{〈
b(x̄, a),

B(x̄− ȳ)

ε
−Bpn + 2δx̄

〉
−
〈
b(ȳ, a),

B(x̄− ȳ)

ε
+Bqn − 2δȳ

〉
+

∫
E

(u(t̄, y)− u(t̄, x̄))λ(x̄, a)Q(x̄, a, dy)
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−
∫
E

(v(s̄, y)− v(s̄, ȳ))λ(ȳ, a)Q(ȳ, a, dy) + f(x̄, a)− f(ȳ, a)

}
,

where we have used that inf A1− inf A2 ≤ sup(A1−A2)). Using condition (2.1), together with the
assumptions on the functions b and f , (7.27) yields

2η

T 2
+ an + bn ≤ 〈x̄, L∗Bpn〉+ 〈ȳ, L∗Bqn〉

+ sup
a∈A

{
1

ε
〈b(x̄, a)− b(ȳ, a), B(x̄− ȳ)〉 − 〈b(x̄, a), Bpn〉+ 〈b(x̄, a), 2δx̄〉

− 〈b(ȳ, a), Bqn〉+ 〈b(ȳ, a), 2δȳ〉+

∫
E

(u(t̄, y)− u(t̄, x̄))λ(x̄, a)Q(x̄, a, dy)

−
∫
E

(v(s̄, y)− v(s̄, ȳ))λ(ȳ, a)Q(ȳ, a, dy) + f(x̄, a)− f(ȳ, a)

}
≤ 〈x̄, L∗Bpn〉+ 〈ȳ, L∗Bqn〉

+ C

( ||x̄− ȳ||2−1

2 ε
+ (|Bpn|+ |Bqn|) + ω(||x̄− ȳ||−1) + δ(1 + ||x||2 + ||y||2)

)
+ sup
a∈A

{∫
E
u(t̄, y)λ(x̄, a)Q(x̄, a, dy)−

∫
E
u(t̄, y)λ(ȳ, a)Q(ȳ, a, dy)

}

+ sup
a∈A

{∫
E

(u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ))λ(ȳ, a)Q(ȳ, a, dy)

}
. (7.28)

At this point, by Hypothesis (HbλQ)-(i)-(ii), we get

sup
a∈A

{∫
E
u(t̄, y)λ(x̄, a)Q(x̄, a, dy)−

∫
E
u(t̄, y)λ(ȳ, a)Q(ȳ, a, dy)

}
≤ Cω(||x̄− ȳ||−1).

Therefore it remains to prove that

sup
a∈A

{∫
E

(u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ))λ(ȳ, a)Q(ȳ, a, dy)

}
(7.29)

converges to 0 when the parameters go to their respective limits.

Step 4. Proof of the convergence of (7.29) to 0. Set m := 2(||u||∞ ∨ ||v||∞) and

M := Φε,δ,β(t̄, s̄, x̄, ȳ) + ant̄+ bns̄+ 〈Bpn, x̄〉+ 〈Bqn, ȳ〉.

By Step 1, we know that M is a strict maximum on (0, T ]× (0, T ]× E × E of the function

Φε,δ,β(t, s, x, y) + ant+ bns+ 〈Bpn, x〉+ 〈Bqn, y〉.

The definition of Φε,δ,β implies that

M = u(t̄, x̄)− η

t̄
− v(s̄, ȳ)− η

s̄
−
||x̄− ȳ||2−1

2ε
− δ(||x̄||2 + ||ȳ||2)− (t̄− s̄)2

2β
+ ant̄+ bns̄+ 〈Bpn, x̄〉+ 〈Bqn, ȳ〉

= u(t̄, x̄)− η

t̄
− v(s̄, ȳ)− η

s̄
− (t̄− s̄)2

2β
−
||x̄− ȳ||2−1

2ε
− δ||x̄− Bpn

2δ
||2 − δ||ȳ − Bqn

2δ
||2
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+
||Bpn||2

4δ
+
||Bqn||2

4δ
+ ant̄+ bns̄, (7.30)

which in turn implies that

η

t̄
+
η

s̄
+

(t̄− s̄)2

2β
+
||x̄− ȳ||2−1

2ε
+ δ||x̄− Bpn

2δ
||2 + δ||ȳ − Bqn

2δ
||2

= u(t̄, x̄)− v(s̄, ȳ)−M +
||Bpn||2

4δ
+
||Bqn||2

4δ
+ ant̄+ bns̄.

Moreover u(t̄, x̄) − v(s̄, ȳ) ≤ m and ant̄ + bns̄ ≤ T for all n ≥ 2, since |an| + |bn| ≤ 1
2 for n ≥ 2.

Therefore

δ||x̄− Bpn
2δ
||2 + δ||ȳ − Bqn

2δ
||2 ≤ m−M +

||Bpn||2

4δ
+
||Bqn||2

4δ
+ T, (7.31)

M ≤ m+
||Bpn||2

4δ
+
||Bqn||2

4δ
+ T. (7.32)

Let us take K ∈ N satisfying

2KM > m+ T +
||Bpn||2

4δ
+
||Bqn||2

4δ
−M, (7.33)

and define the set

Γ1,d :=

{
(x, y) ∈ E × E; ||x− Bpn

2δ
||2 + ||y − Bqn

2δ
||2 ≤ 2KM

δ

}
. (7.34)

Notice that from (7.31) we have (x̄, ȳ) ∈ Γ1,d. Let also α > 0 be such that

m+ T +
||Bpn||2

4δ
+
||Bqn||2

4δ
− 2KM + α < M (7.35)

and D be a smooth function on E × E satisfying

D(x, y) = −δ

(
||x− Bpn

2δ
||2 + ||y − Bqn

2δ
||2
)
, ∀(x, y) ∈ Γ1,d, (7.36)

−2KM ≤ D(x, y) ≤ −2KM + α, ∀(x, y) ∈ Γc1,d.

Then the function

uη(t, x)− vη(s, y)−
||x− y||2−1

2ε
− (t− s)2

2β
+ ant+ bns+D(x, y) +

||Bpn||2

4δ
+
||Bqn||2

4δ
(7.37)

admits a strict maximum at (t̄, s̄, x̄, ȳ). Indeed, if (x, y) ∈ Γ1,d the expression (7.37) coincides with
Φε,δ,β(t, s, x, y) + ant + bns + 〈Bpn, x〉 + 〈Bqn, y〉, and if (x, y) /∈ Γ1,d, by the definition of D(x, y)
the expression (7.37) is smaller or equal to

uη(t, x)− vη(s, y)−
||x− y||2−1

2ε
− (t− s)2

2β
+ ant+ bns− 2KM + α+

||Bpn||2

4δ
+
||Bqn||2

4δ

≤ uη(t, x)− vη(s, y) + ant+ bns− 2KM + α+
||Bpn||2

4δ
+
||Bqn||2

4δ

≤ m+ T − 2KM + α+
||Bpn||2

4δ
+
||Bqn||2

4δ
,
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the latter being strictly smaller than M by the choice of α (cf. (7.35)). Using Step 1 with x = y
we obtain that, for all y ∈ E,

Φε,δ,β(t̄, s̄, y, y) + ant̄+ bns̄+ 〈Bpn, y〉+ 〈Bqn, y〉 ≤ Φε,δ,β(t̄, s̄, x̄, ȳ) + ant̄+ bns̄+ 〈Bpn, x̄〉+ 〈Bqn, ȳ〉,

which implies

u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ)

≤ −
||x̄− ȳ||2−1

2ε
+ δ||y − Bpn

2δ
||2 + δ||y − Bqn

2δ
||2 − δ||x̄− Bpn

2δ
||2 − δ||ȳ − Bqn

2δ
||2

≤ δ

(
||y − Bpn

2δ
||2 + ||y − Bqn

2δ
||2
)
. (7.38)

Let us set

Σ1 :=

{
y ∈ E : ||y − Bpn

2δ
||2 + ||y − Bqn

2δ
||2 ≤ 2KM√

δ

}
.

For any y ∈ Σ1 we obtain by (7.38) that

u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ) ≤ 2KM
√
δ. (7.39)

Let us now set (since we are interested in δ ∈ (0, 1) we have 2KM√
δ
< 2KM

δ )

Σ2 :=

{
y ∈ E :

2KM√
δ

< ||y − Bpn
2δ
||2 + ||y − Bqn

2δ
||2 ≤ 2KM

δ

}
.

Inequality (7.38) yields

u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ) ≤ 2KM, ∀y ∈ Σ2. (7.40)

Finally set

Σ3 :=

{
y ∈ E : ||y − Bpn

2δ
||2 + ||y − Bqn

2δ
||2 > 2KM

δ

}
.

Let us now take y ∈ Σ3. Then (y, y) belongs to Γc1,d. From the previous arguments

u(t̄, y)− v(s̄, y)− η

t̄
− η

s̄
− (t̄− s̄)2

2β
+ ant̄+ bns̄+D(y, y) +

||Bpn||2

4δ
+
||Bqn||2

4δ
≤M,

which together with (7.30) implies

u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ) ≤ −
||x̄− ȳ||2−1

2ε
− δ||x̄− Bpn

2δ
||2 − δ||ȳ − Bqn

2δ
||2 −D(y, y).

Thus we obtain
u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ) ≤ 2KM, ∀y ∈ Σ3. (7.41)

At this point, let us go back to (7.29). Using the partitioning E = Σ1 ∪Σ2 ∪Σ3, in (7.29) we split
the integral on E in the integrals over the sets Σi. From (7.39) together with (HbλQ), we get

sup
a∈A

∫
Σ1

(u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ))λ(ȳ, a)Q(ȳ, a, dy) ≤ ||λ||∞ 2KM
√
δ,
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which obviously converges to zero. On the other hand, by (7.40) and (7.41), we obtain

sup
a∈A

{∫
Σ2

(u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ))λ(ȳ, a)Q(ȳ, a, dy)

+

∫
Σ3

(u(t̄, y)− u(t̄, x̄)− v(s̄, y) + v(s̄, ȳ))λ(ȳ, a)Q(ȳ, a, dy)

}
≤ ||λ||∞ 2KM sup

a∈A
(Q(x̄, a,Σ2) +Q(x̄, a,Σ3)).

Since we have chosen the parameters according to (7.21), in particular ||Bpn||δ ≤ 1
nδ converges to 0.

This completes the proof recalling assumption (HQ’) (see Section 4) and the respective definitions
of Σ2,Σ3.
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16(6-7):1075-1093, 1991.

[26] Soner, H.M. Optimal control with state-space constraint II. SIAM J. Control Optim. 24(6):1110-1122, 1986.
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