s ARCHIVIO ISTITUZIONALE
ONIVERSITA DI BOLOGNA DELLA RICERCA

Alma Mater Studiorum Universita di Bologna
Archivio istituzionale della ricerca

A nonlinear Bismut-Elworthy formula for HJB equations with quadratic Hamiltonian in Banach spaces

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

Published Version:

Addona, D., Bandini E, Masiero F (2020). A nonlinear Bismut-Elworthy formula for HJB equations with

guadratic Hamiltonian in Banach spaces. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND
APPLICATIONS, 27(4), 1-56 [10.1007/s00030-020-00639-7].

Availability:

This version is available at: https://hdl.handle.net/11585/832207 since: 2021-09-14
Published:

DOI: http://doi.org/10.1007/s00030-020-00639-7
Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

(Article begins on next page)
16 July 2024


http://doi.org/10.1007/s00030-020-00639-7
https://hdl.handle.net/11585/832207

This is the final peer-reviewed accepted manuscript of:

Addona, D., Bandini, E. & Masiero, F. A nonlinear Bismut—Elworthy formula for HJB
equations with quadratic Hamiltonian in Banach spaces. Nonlinear Differ. Equ. Appl.
27, 37 (2020)

The final published version is available online at https://dx.doi.org/10.1007/s00030-
020-00639-7

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.



https://cris.unibo.it/
https://dx.doi.org/10.1007/s00030-020-00639-7
https://dx.doi.org/10.1007/s00030-020-00639-7
https://dx.doi.org/10.1007/s00030-020-00639-7

A nonlinear Bismut-Elworthy formula for HJB equations with
quadratic Hamiltonian in Banach spaces

Davide ADDONA* !, Elena BANDINI'' and Federica MASIERO*!

Dipartimento di Matematica e Applicazioni, Universita di Milano-Bicocca, Milano, Italy

Abstract

We consider a Backward Stochastic Differential Equation (BSDE for short) in a Markovian frame-
work for the pair of processes (Y, Z), with generator with quadratic growth with respect to Z. The
forward equation is an evolution equation in an abstract Banach space. We prove an analogue of the
Bismut-Elworty formula when the diffusion operator has a pseudo-inverse not necessarily bounded
and when the generator has quadratic growth with respect to Z. In particular, our model covers
the case of the heat equation in space dimension greater than or equal to 2. We apply these results
to solve semilinear Kolmogorov equations in Banach spaces for the unknown v, with nonlinear term
with quadratic growth with respect to Vv and final condition only bounded and continuous, and to
solve stochastic optimal control problems with quadratic growth.

Keywords: Stochastic heat equation in 2 and 3 dimensions, nonlinear Bismut-Elworthy formula, quadratic
Backward Stochastic Differential Equation, Hamilton Jacobi Bellman equation.

MSC 2010: 60H10; 60H30; 93E20; 35Q93.

1 Introduction

In this paper we consider Markovian BSDEs whose generator has quadratic growth with respect to Z.
Our BSDE is related to a forward stochastic differential equation of the form

dXb® = AXb%dr + F(X5%)dr + (—A)~dW,, 71¢€[tT], (1)
X" =z €E, '

where E is a Banach space which is continuously and densely embedded in a real and separable Hilbert
space H, and the diffusion operator (—A)~% admits a pseudo-inverse not bounded. The choice of setting
the problem in a Banach space is due to the fact that in many situations of interest the drift F' is not
well defined on the whole Hilbert space H but only on a subset: a typical example is provided by the
so called polynomial nonlinearities in reaction diffusion equations, see also Example 6.11 for a concrete
situation.

In this context we generalize the Bismut-Elworthy type formula introduced in [10], where the Lipschitz
case was studied in the Hilbert space framework, and the forward equation had a diffusion operator with
bounded inverse. We apply our results to study quadratic semilinear Kolmogorov equations of the form
(1.2), and to solve stochastic optimal control problems with quadratic growth.
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The presence of the diffusion operator (—A)~% in (1.1) allows us to deal with stochastic heat equations
in 2 and 3 space dimensions, while stochastic heat equations in one space dimension can be considered
without any regularization of the white noise, that is in the case with « = 0. We also assume that the
map F in (1.1) is only dissipative, so in general is well defined only on the Banach space E and not on
the whole Hilbert space H; this is a natural situation arising in many models, see e.g. [4] and [6].

The solution of equation (1.1) will be denoted by X, or also by X*%%, to stress the dependence on the
initial conditions, and the transition semigroup related to X*® will be denoted by

P+ () () == E[p(X7")]

for any ¢ bounded and measurable function. At least formally, the generator of P, ; is the second order
differential operator

1 —a *\ —Q
(L)) = S(Tr((=A)*(=A")"*V2f)(2) + (A2, Vf(2)) + (F(2), Vf(2)).
This is the link with the solution, in mild sense, of the semilinear Kolmogorov equation in E (see e.g.

[5)):

oT,7) = (). (1.2)

We recall that by mild solution of equation (1.2) we mean a bounded and continuous function v :
[0,T] x H— H, once Gateaux differentiable with respect to z, and satisfying the integral equality

{ %(t,x) =—Lv(t,z)+ ¢ (t,z,v(t,x), Vo(t,z)(—A)™), tel0,T], z € E,

T
v(t,xz) = P.r[¢] () —|—/t P, s [w(s, (s, ), Vo (s,-) (—A)_o‘)] (x)ds, t€[0,T], z € E. (1.3)

Second order differential equations like (1.2) are a widely studied topic in the literature, see e.g. [5]. In
the case of ¥ only locally Lipschitz continuous, we cite [14], [20], [18] and also [19], where in particular
the quadratic case is studied with datum ¢ only continuous. We also mention the monograph [3], where

semilinear Kolmogorov equations related to forward equations of reaction diffusion type are studied, but
requiring Lipschitz continuity of the final datum.

We will consider equation (1.2) under the assumptions that the final datum ¢ is bounded and con-
tinuous, and that 1 has quadratic growth with respect to the derivative Vu(—A)~%. In order to prove
existence and uniqueness of a mild solution of the form (1.3) for the Kolmogorov equation (1.2), we aim
at representing this mild solution in terms of a Markovian BSDE of the form

{ dYr = —p(1, X+, Yz, Z7) dr + Zr dW-, (1.4)

Yr = ¢(X7).

We recall that, in order to solve partial differential equations by means of BSDEs, one of the crucial
tasks is the identification of Z with the derivative of Y taken in the directions of the diffusion operator.
In this regard, we refer to the seminal paper [21] for the finite dimensional case, and to [11] for the infinite
dimensional extension in Hilbert spaces: in both papers the driver v is Lipschitz continuous in Y and in
Z, and 9 and ¢ are differentiable. We also mention [17], where an extension to the Banach space case is
studied with the same assumptions of Lipschitz continuity and differentiability on the data. Notice that
in the above mentioned papers the boundedness of the inverse of the diffusion operator is a key property
in order to prove the identification formula for Z.

Another key task consists in proving a nonlinear Bismut-Elworthy formula for the BSDE (1.4).
Bismut-Elworthy formulas for the transition semigroup of equations of type (1.1) with invertible dif-
fusion operator are a classical topic in the literature, see e.g. [5], and have been considered also in the
case of an operator like the one in (1.1), with pseudo-inverse which is not necessarily bounded, see [3].



According to these classical Bismut formulas, for every 0 <t < 7 < T,z € H, h € H, and for every
bounded and continuous real function f defined on H, one has

(Vo Py lf](2), ) = Bf (X00) Uhte, (15)
where (G(r, X}*) being the general diffusion operator)

1
T—1

vrt = L (G 0 XL ),
t

In [10] a nonlinear Bismut-Elworthy formula for the process Y solution of the BSDE (1.4) is proved when
1) is Lipschitz continuous with respect to Z and the process X takes its values in a Hilbert space H.
According to this formula, for 0 <t <7 <T, x € H, for every direction h € H,

T
E [V, Y} "h] = IE[ / P (r, XE2, Yo, Zbe) ghite dr} +E {qs(X;:Z)UQ’E’t’””] . (1.6)
T
Identity (1.6) is then used in [10] to solve a semilinear Kolmogorov equation of the form of (1.2). When the
Hamiltonian function 1 is Lipschitz continuous with respect to the derivative of v, semilinear Kolmogorov
equations of the type of (1.2) can be solved also by using the estimates coming from the classical Bismut
formulas (1.5) and by a fixed point argument, see e.g. [3], [5], [13].

In the quadratic case this procedure does not work anymore since the fixed point argument cannot be
applied: for this reason, nonlinear versions of Bismut-Elworthy formulas, that give an alternative way to
solve equations like (1.2), are particularly interesting in such a framework. In [19], a nonlinear version of
the Bismut-Elworthy formula has been provided and has been applied to semilinear Kolmogorov equations
of the type of (1.2), with quadratic hamiltonian, but in a Hilbert space and with diffusion operator with
bounded inverse.

In the present paper, we generalize (1.6) to the Banach space framework, where the diffusion operator
(—A)~* has unbounded pseudo-inverse operator and the coefficients are not necessarily differentiable. In
this context, the nonlinear Bismut formula (1.6) has its own independent interest, and moreover it allows
to solve the Kolmogorov equation with Hamiltonian function quadratic with respect to Vo(—A)~. We
first provide an analogous of the nonlinear Bismut formula given in [10] in the case of Banach space
framework and Lipschitz continuous generator, see Theorem 4.4. We then prove a nonlinear Bismut
formula in the quadratic case when ¢ and ¢ are differentiable, namely Theorem 5.1; the differentiability
assumptions are finally removed by means of an approximation procedure, suitably generalizing the
one introduced in [23]. In order to achieve these results, by denoting by (Y%, Z%%) a solution to the
Markovian BSDE (1.4) and by assuming that ¢ and 1 are differentiable, the two main ingredients are
the identification

ZI =V, Y (-A)"?, te|0,T),z € E, (1.7)

and an a priori estimate of Z%* of the form (C being a constant depending on t, T, A, F, ||}||s)
|24l < O(T = 1)7V2, (1.8)

that are the objects of Theorem 3.10 and Proposition 3.12, respectively. Both (1.7) and (1.8) are new
in the Banach space framework and in the case of quadratic generator with respect to z. Concerning
the identification result (1.7), notice that the standard approach with the Malliavin calculus cannot be
implemented in this Banach framework, nor the variational approach developed in [17] in the Lipschitz
continuous case: to deal with the quadratic case, one needs to generalize this latter variational approach
and to apply it not only to the the forward process X but also to the the pair of processes (Y, 7). On
the other hand, estimate (1.8) is particularly delicate due to the presence of the operator G = (—A)~®
with unbounded inverse.



Our results can be applied to a stochastic optimal control problem consisting in minimizing a cost
functional of the form

T (t 2, ) :E[[Tz(s,xg,us)dsm(xg;)} (1.9)

over all the admissible controls u taking values in H and not necessarily bounded. Here [ has quadratic
growth with respect to u, and X" is the solution of the controlled state equation

{ dXY = AXtdr + F(XY)dr + Qu-dr + (—A)~dW,, 7€ [t,T] (1.10)

K —
X =z,

with @ =1 or @ = (—A)~®. Since we work in a Banach space, we are able to treat a wider class of cost
functionals which respect to those which we can consider in Hilbert spaces. Indeed, in Example 6.11 we
present a control problem for a stochastic heat equation in the Banach space of continuous functions, with
cost functional well defined in the Banach space of continuous functions but not in the Hilbert space of
square integrable functions. The aim of this latter part of the work is to characterize the value function as
the solution of the associated Hamilton Jacobi Bellman (HJB in the following) equation, and to provide
a feedback law for optimal controls. If @ = (—A)~%, namely when the controls affect the system only
through the noise (the so called structure condition holds true), the optimal control problem (1.9) can
be completely solved, see Theorem 6.10. When ) = I, the optimal control problem can be completely
solved by restricting ourselves to the class of more regular controls taking values in D((—A)™%), see
Theorem 6.16. In the general case of Q = I and H-valued controls, we are able to provide an “c-optimal
solution” of the problem in the sense that the value function can be approximated by a sequence of
functions which are solutions of approximating HJB equations, and we can obtain an e-optimal control
in feedback form, see Theorem 6.26. So a contribution of this paper is also to extend the BSDE approach
for stochastic optimal control problems from state equation with structure conditions to cases where the
structure condition is violated.

The paper is organized as follows: in Section 2 we fix the notations and we give the results on the
forward process. In Section 3 we introduce the forward backward system: here the main results are the
identification (1.7) of Zp" with VY;»*(—A)~, which is new in the case of 1 quadratic with respect to z
and in the Banach space framework, and the a priori estimate (1.8) on Z not involving derivatives of the
coefficients of the BSDE. In Section 4 we give the nonlinear Bismut formula (1.6) in the Banach space F
and with ¢ Lipschitz continuous with respect to z, then in Section 5 we extend formula (1.6) to the case
of ¢ quadratic with respect to z. In both Sections 4 and 5, the Bismut formula is applied to solve the
corresponding semilinear Kolmogorov equation (1.2). Finally in Section 6 we apply the previous results
to solve the stochastic optimal control problem (1.9).

2 Notations and preliminary results on the forward process

We assume that E is a real and separable Banach space which admits a Schauder basis, and that E is
continuously and densely embedded in a real and separable Hilbert space H. E and H are respectively
endowed with the norms | - |[g and | - |z. We fix a complete probability space (§2,.7,P) endowed with a
filtration {%#;, ¢t > 0} satisfying the usual conditions.

We list below some notations that are used in the paper. Let K be a given Banach space endowed
with the norm |- |g. For any p,q € [1,00) and any t € [0, T], we set

e LP(0,T; K) the space of K-valued measurable functions defined on [0, 7], normed by

T » 1/p
oo = ([ 15Feds) "



o LA(% LP(0,T; K)) the space of adapted processes (us)seqo, 77, defined on [0, 7] and with values in
K, normed by

T » a/p1\1/4
llull La(o;Le0,155)) = (EK/ |uS|de) D .
0

o SP((t,T]; K) (resp. P([t,T]; K)) the space of all adapted processes (X)se[,7], continuous on
(t,T] (resp. on [t,T]) and with values in K, normed by

1/p
XNty = X Lo (e11:0) = (E{ sup |Xs\§<]) '
s€t,T]
If K = R we simply write .#?([t, T)).

o /7([t,T]; K) the space of all predictable processes (Zs)se[s, 7] With values in K normed by

1ZN.ar e, 11:k) = <E{(/tT |ZS|§<ds>p/2D1/p_

If K =R we simply write .#7([t,T]).

We denote by L(FE, K) the space of all bounded linear operators from E to K, endowed with the usual
operator norm. E* denotes the dual space of E, and (-, ) gx g+ denotes the duality between E and E*.
We say that a function f : E — K belongs to the class ¥'(FE, K) if f is continuous and Gateaux
differentiable on E and if the gradient Vf : B — L(FE, K) is strongly continuous. If K = R we simply
write 41(E). We say that f : [0, T] x E — R is in 9% ([0,7] x E) if f is continuous and Gateaux
differentiable with respect to every z € E and the gradient Vf : [0, T] x E — L(E,R) is strongly
continuous. For more details on this classes of Gateaux differentiable functions see [11, Section 2.2].

2.1 The forward equation

We are given the Markov process X in E (also denoted X*® to stress the dependence on the initial
conditions) solution to the equation

dXb" = AXE*dr + F(X5%)dr + (—A)~*dW,, 7€ lt,T], (2.1)
X" =z€ekE, '
where (W:) cjo,] is a cylindrical Wiener process with values in H, see e.g. [0] for details on cylindrical

Wiener processes in infinite dimensions. From now on {.%,,7 > 0} will be the natural filtration generated
by the Wiener process and augmented in the usual way.

We assume the following on the coefficients of equation (2.1).

Hypothesis 2.1. 1. A is a linear operator which generates a contraction analytic semigroup (etA)tZO
on the Hilbert space H and there exist c,w > 0 such that |eh|g < ce™“!|h|g for any h € H and
any t > 0. Further, the restriction of A to E generates a contraction Cy (or analytic) semigroup
on E.

2. The stochastic convolution
t
wh(s,t) == / et—WA_A)~dW,, 0<s<t<T,
S

admits an E-continuous version, and, for any p > 2, E[sup,c(o 1 lwA()|%] < +oo (when s =0 we
write w(t) instead of w*(0,t)).



3. F:D(F)C H— H is a measurable and dissipative map, and E C D(F).

4. The restriction Fg of F to E is a map from E to E which is measurable and dissipative (where
no confusion is possible, we simply write F instead of Fg). F € 9Y(H,H) and Fg is Fréchet
differentiable. Further, there exist a,c,y > 0, m € N and for any z € E an element z* € 0|z|g,
such that, for any x € E, h € H,

|Fe()|e < o1+ [|5"),
IVF(2)| 2 < c(l+ |23,
(F(z +2) = F(x),2")pxpe < —alz|5" ™ +c(1+[a]}),
IVE(2)h|g < c(1+|z|3") |h|a.

5 ae(0,1/2).

By Hypothesis 2.1-1. and the Kuratowski theorem, see e.g. [22], Chapter I, Theorem 3.9, it follows
that F is a Borel set in H.

Remark 2.2. Since by Hypothesis 2.1-3.-4. F is differentiable and dissipative, we get
1>|z—aDF(x)z|lg, x,z€FE, |zlg=1, a>0.

In particular, from the Hahn-Banach theorem, there exists z* € 0|z|g such that |z — aDF(x)z|p =
(z — aDF(x)z,2*)px g+, and therefore (DF (z)z,z*)gx g+ < 0. Further, from [0, Appendiz D] we have

D_|z|gy = min{{y, 2*)px g+ : 2" € 0|z|p}. (2.2)

Remark 2.3. Since A generates a contraction semigroup on E, then A is dissipative, and for any
x € D(A) we have (Az,x*)px g+ <0, * € O|z|g, see Example D.8 in [0].

We now give an example of spaces E and H and of an operator A satisfying Hypothesis 2.1-1.-2.

Example 2.4. Let d,n € N withd < 3, 0 C R? be an open bounded set, H := L*(0;R™) and E :=
C(O;R™). Further, let A be the realization in H of the operator

g —(p+ 1) =(A—-(p+1)I,....,.A=(p+ 1)),
with boundary conditions $u = 0, where B = (%1, ...,B,) and

d

B, =1d, or By ::Zyi(g)i

=1,...
6517 66867]6 ) 7n’

i=1

where v; is the normal vector to the boundary of O. As shown for example in [10], A satisfies Hypothesis
2.1-1. Moreover, [3, Lemma 6.1.2] with Q = (—A)~% shows that Hypothesis 2.1-2. is satisfied with this
choice of H, E and A.

In the following proposition we collect important results on the solution of the forward equation
(2.1). We recall that, given x € E and t € [0,7], a mild solution to (2.1) is an adapted process
X% [0,T] x Q — E which satisfies

XbT =74y —i—/ TTOAR(XET)ds —1-/ AW, T € [t, T), P-as. (2.3)
t

t

Proposition 2.5. Let Hypothesis 2.1 hold true. Then the following hold.



(i) For any x € E, t € [0,T)], the problem (2.1) admits a unique mild solution X** € P((t,T]; E),
for any p > 1. If A generates a strongly continuous semigroup on E, then the process X** is also
continuous up to t. Moreover, there exists a positive constant ¢ such that, for any T € [t,T],

| X5 g < e|z|g + h(t,T), P-as., (2.4)

where

h(t,T) := ceTt) / (1 + |wA(t, s) %Emﬂ) ds + sup |wA(t7 s)|E-
t sEt,T]

(i1) For any x € E, t € [0,T)], the mild solution X"* to (2.1) is Gateauz differentiable as a map from
E to SP([t,T]; E), and

sup |V XY2|g <|z|lg, 2€E, P-as. (2.5)
z€E,T€[t,T)

Moreover, X** is Gateauz differentiable as a map from E to ([0, T); H), and

sup |V, XL"h|g <|hlg, h€H, P-as. (2.6)
z€E,TE[t,T]

(i11) For any x € E, t € [0,T] and T € [t,T],

V. X5%h = T4 4 / TTIAYR(XENV, X hds, he H, P-as. (2.7)
t

Proof. Ttem (i) can be proved arguing as in [6, Theorem 7.13].
The first part of (i¢) and inequality (2.5) follow from [17, Propositions 3.10 & 3.13]. We claim that

sup |V XL"2|lg < |zlg, 2€E P-as. (2.8)
z€E,T€[t,T)

If the claim is true, since E is densely embedded into H, by approximation we immediately deduce
(2.6) for any h € H. In order to prove (2.8), we consider z € F and the approximating processes
G"z :=nR(n,A)V,X5%2 n € N, where R(n, A) := (nl — A)~. Then, G"z is a strict solution to

%sz = AG"z +VF(X:")G"2, 1€ (t,T], GPlz=nR(n,A)z.

The dissipativity of F' and A implies -£|G?z|3, < 0, which gives |G"z|g < [nR(n,A)z|y. Letting
n — +o0o we get (2.8).

It remains to prove (ii7). To this end, we recall that (see e.g. [17]), for any x, 2 € E, the process V,X5% 2
is a mild solution to

d¢, = ACdT + VF(XE),, T€lt,T), (2.9)
Ct =zc€ E7 .
and therefore
Ve Xi%r =elm 84, 4 / TV (XY, X2 ds, P-as. (2.10)
t

Let h € H and let (h,) C E be an approximating sequence of h in H. If we replace h, to z in (2.10),
from (7i) we deduce that the left-hand side of (2.10) and the first term in the right-hand side of (2.10)



converge respectively to V,X5%h and to e(""94h, as n — +oo. As far as the integral in the right-hand
side of (2.10) is considered, with z replaced by h,,, again from (ii) we infer that

eTIAVE(XE )V X hy — eTTOAVE(XET) VL XETh,  P-as.,

as n — +o0o. Thanks to Hypothesis 2.1-4., and estimates (2.4), (2.6), we can apply the dominated
convergence theorem and therefore

/ AV R (XE Y, X Dy, ds — / TTAV (XY, X hds,  P-as.,
t

t

as n — 400, which gives (2.7). m|

We conclude this section by providing both integral and pointwise estimates for V, X**z in D((—A)®).
These estimates will be crucial to prove the identification formula for Z and the nonlinear Bismut-
Elworthy formula, see respectively Proposition 3.12 and Lemma 4.1.

Proposition 2.6. Let Hypothesis 2.1 holds true, and let x € E, 2 € H and t € [0,T]. Then, V,X"%z €
D((—=A)'/?), a.e. in (t,T) and P-a.s., and there exists a positive constant C' such that, for any e € [0,1/2],

/ |(—A)°V, X072 %ds < O(1 — )1 7%|2%, T€[t, T], P-as. (2.11)
t

Proof. Let x € E. We prove (2.11) for t = 0, the case t € [0, T] can be proved by analogous computations.
We first assume that z € E. Let V, X7z be a strict solution to (2.9), otherwise we can approximate it
by smooth processes, as in the proof of Proposition 2.5, item (ii). The dissipativity of F' in H gives

VX2l = (AVLX22, VXTI + (VE(XD)Va X2, VX2 2 < (AV.XE2, Vo XE )i,
for any s € [0, 7). Integrating between 0 and 7 € [0, 7] we get
VX722 + /OT<—AV$X§z,V1sz>Hds <
Since (— AV, X%2, V. X*2)g = |(=A)Y/2V,XZ2|% for any s € [0, 1], from (2.6) we deduce that V, X%z €

D((—A)'/2) for any 7 € [0,T]. Thus (2.11) holds for ¢ = 1/2, ¢t = 0 and any z € E.
Let us now consider ¢ € [0,1/2). From interpolation estimates (see e.g. [16, Section 2.2])

(—A) e aly < Celaly *|(=A)2alf;, =€ D((=A)'?). (2.12)
By replacing « by V, X7z in (2.12), we get
[ NAFVoXEafds <C2 [ |-V XEA I X2l s
0 0
T 2¢e T 1-2¢
gcg(/ (= A)/2V, X223 ds (/ Vo XS2fhds) <O E e,

0 0

with C' := sup. (g 1 /2) C2. We conclude that (2.11) holds for t =0, € € [0, 1/2] and any z € E.

Let us now consider z € H, and let (z,) C E be an approximating sequence of z in H. Then, from
(2.6), for any 7 € [0,T] we get

Ve X2z, - VX2 P-as. in H, as n — +o0. (2.13)



Since (2.11) holds for any z € E, it follows that ((—A)Y/?V,X?%z,) is a Cauchy sequence in .2>([0,T]; H),
and therefore there exists a process & € .#2([0,T]; H) such that (—A)'/?V, X%z, — ¢ in .#>([0,T]; H).
Since (—A)~1/2 is a bounded operator on H, it follows that

Vo X%z = (=A) (= A) PV X" 2, — (—A) T2,

in .#?([0,T); H). Therefore, also by (2.13), (—A)~'/2¢ = V, X%z a.e. in (0,T) and P-a.s., which means
that V, X%z € D((—A)Y/?) a.e. in (0,T) and P-a.s., and (—4)Y/?V, X%z = ¢ a.e. in (0,7) and P-a.s. In
particular, we get

t
/ [(—A)YV2V, X722 ds < C|z|%.
0

Again, by applying interpolation estimates we see that (2.11) holds for € € [0,1/2], t = 0 and any z € H.
O

Proposition 2.7. Let Hypothesis 2.1 holds true and let x € E, z € H and t € [0,T]. Then, for any
r€FE and z € H,

E[ sup |(—A)°‘VmXﬁ’Iz|H] <Clzlg ((r =)™ + (1 — )~ (j2[ 2" + C7)) (2.14)
TE(L,

and if in addition z € D((—A)%), then (2.17) gives

B[ sy I(=A)"TXEsln] <O (A e+ =0 (e < C) ) (219
TER,T
where CT = E[SupTE[O,T] |wA(T)|2Em+1].

Proof. We prove estimate (2.14), then (2.15) follows from analogous arguments. Fix € E, z € H and
let us consider t = 0. We recall that A generates an analytic semigroup on H and therefore ¢4z belongs
to D((—A)¥) for any k € N and any h € H, and |(—A)?etAh|y < Cst=P|h|y for any B > 0 and some
positive constant Cz. This means that V,X*z € D((—A)%) for any 7 € [0,T] and, recalling (2.7),

(—A)V, X2 = (—A)% ™2 —|—/ (—A)*eT=9AYV F(X?)V, X%2dz, P-as.
0
From Hypothesis 2.1-4. and (2.6) we deduce that
[(—A)V, XEz|lg <Cot™%|zlm + cCa/ (1 —8) “|IVF(X?)V.X?2|gds
0

§C|Z|H<7'70‘ + 7'170‘<|:::|2Em+1 + sup |w?(r) %mH)), P-a.s.,
7€[0,T)

for some positive constant C' independent of x, z. Then, for any 7 € (¢, T,

(= A)*V, X5 g gC|z|H((T 1) (T — t)1*a<|x|%Em+1 + sup |wA(T)|2Em+1)), Pas., (2.16)
TE[t,T)

for some positive constant C' independent of z, z,t. Further, if z € D((—A)%), then

[(—A)*V, X572 g §C(|(—A)O‘Z|H +(r— t)lfa(|x|§;"+1 + sup |wA(T)|§m+1)|z|H), Poas.  (2.17)
TE[t,T

Taking the expectation in (2.16) and (2.17) we get respectively (2.14) and (2.15). O



3 The forward-backward system

We consider the following forward-backward system of stochastic differential equations (FBSDE for short)
for the unknown (X,Y,Z) (also denoted by (X% Y* Z4%) to stress the dependence on the initial
conditions ¢ and z): for given t € [0,T] and = € E,

dX, = AX.dr + F(X,)dr + (—A)~dW,, 7€ [t,T),

Xt =, (31)
dY, = —(1, X, Y., Z.) dr + Z dW,, T €[t T,
Yr = ¢(X7).

The second equation is of backward type for the unknown (Y, Z) and depends on the Markov process X.
Under suitable assumptions on the coefficients 1 (the so-called generator of the BSDE) and ¢ we look
for a solution consisting of a pair of processes (Y, Z) € #2([t,T]) x .#?([t,T]; H). More precisely, we
will assume that v is Lipschitz continuous with respect to y and locally Lipschitz continuous and with
quadratic growth with respect to z, as stated below.

Hypothesis 3.1. The functions ¢ : E — R and ¢ : [0,T]x ExRx H — R in (3.1) satisfy the following.
(i) ¢ is continuous, and there exists a nonnegative constant Ky such that |¢(z)| < Ky for every z € E.

(ii) v is measurable and, for every fized t € [0,T], the map ¥(t,-,-,+) : E X R x H — R is continuous.
Moreover, there exist nonnegative constants Ly, and Ky such that

[P(t, 21, Y1, 21) — Y(t, T2, Y2, 22)| < Ly (|21 — 22| + [y1 — 2| + |21 — 22|lm (1 + 21|15 + |22]H)) s
|¢(t,l‘,0,0)| S K’l/h

for every t € [0,T), 1,22 € E, y1,y2 € R and 21,20 € H.

Theorem 3.2. Assume that Hypotheses 2.1 and 3.1 hold true, and for any (t,z) € [0,T] x E, let
(Xtr Yhe Z5T) be a solution to the FBSDE (3.1). Then, there exists a unique solution of the Markovian
BSDE in (3.1) such that

1Yl o2 e,y + 125 a2 e,y < C

where C' is a constant that may depend on T, A, F, Ky, Ly, Ky4.. Moreover, setting v(t,z) := Ytt’l,
YE* =w(s, X0"), P-as., s€[t, T), (3.2)
and there exists a Borel function u : [t, T] x E — H such that
Z0 = u(s, Xb"), P-as., ae. s€[t, T). (3.3)

Proof. The first part of the result substantially follows from [15]. Identities (3.2)-(3.3) are a consequence
of the Markov property of X, see for instance Theorem 4.1 in [7] or the proof of Theorem 5.1 in [12]. O

We recall some further estimates for the solution (Y, Z) of the forward-backward system (3.1). In
particular, Z € .#?([t,T]; H), for any p > 1. The corresponding proof can be found e.g. in [19].

Proposition 3.3. Assume that Hypotheses 2.1 and 3.1 hold true, and for any (t,z) € [0,T] x E, let
(XH* Yb® Z6%) be a solution to the FBSDE (3.1). Then, for allp > 1,

1Y 5o e,y + 125 Naw 2,778 < C,s

where C' is a constant that may depend on T, A, F, Ky, Ly, K.
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At this point, we aim at proving a stability result for the BSDE when the final datum and the
generator are approximated by sequences of Fréchet differentiable functions (¢, )n>1, (¥¢)e>1, converging
pointwise respectively to ¢ and 1, and such that, for all ¢t € [0,T], z, 21,22 € E, y1,y2 € R, 21,22 € H,

|pn(2)| < Ky, |e(t,2,0,0)] < Ky, (3.4)
[Ye(t, 21,91, 21) — Yie(t, T2, y2, 22)| < Ly (|21 — x2|g + [y1 — y2| + |21 — 22|w (L + |21]m + |22]H)).  (3.5)

)}

To provide such approximations we extend the results in [23] valid for Hilbert spaces: by using Schauder
basis, the approximation performed in that paper can be achieved also in Banach spaces. We start by
introducing the following objects.

Definition 3.4. i) Denote by (e,)n>1 the normalized Schauder basis in E and by (hy) an orthonormal
basis of H. For any n € N, we define the projections Q,, : H — R™ and P, : E — R" as follows:

Qnz:=(21,...,2n), Pox:=(x1,...,25),
forany z € H and x € E with z =Y . | zphy and x =Y 02 | Tpep, 2n, Ty € R.
it) We consider nonnegative smooth kernels 9 € C°(R) and p,, € C(R™), m € N, such that
supp (9) C{C € R[] <1}, supp (pm) C{E ER™ [l <m1}, W1y = Ipmllzr gy = 1.

i11) For any n,L € N, we set 9¢(¢) = L9(€C) for any ¢ € R, and

6u@) = [ pule - Puz) (Z@ (Jie. (36)
wttan2)i= [ [ [ pee=Payotn—@ent—u(n Z@ez,c Zm ) )G diy e

(3.7)
It is not hard to prove the following lemma.
Lemma 3.5. Le ¢ and v satisfy Hypothesis 3.1. Then the following hold.
(i) For any n € N, the function ¢, in (3.6) is Fréchet differentiable, satisfies estimate (3.4), and

lim ¢,(z) =¢(x), z€kE.

n—-+oo

(ii) For any £ € N, the function 1, in (3.7) is Fréchet differentiable with respect to x,y, z, satisfies
estimates (3.4)-(3.5), and

ehr+n Yo(t,x,y,2) = (t,x,y,2), (t,z,y,2) €[0,T] x ExRx H.
A

We can now give a stability result for the Markovian BSDE in (3.1) related to a forward process
X taking values in the Banach space E, when the final datum and the generator are approximated
respectively by the sequences (¢, )n>1 and (¢¢)¢>1. Notice that, differently from [19], where the forward
process X takes its values in a Hilbert space H, the final datum and the generator cannot be approximated
in the norm of the uniform convergence by means of their inf-sup convolutions. However, even if we only
have pointwise convergence, this turns out to be enough for our purposes.
Clearly, the following result holds true if we approximate only % or ¢. We postpone its proof to Section
7.1.
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Proposition 3.6. Assume that Hypotheses 2.1 and 3.1 hold true. For any (t,z) € [0,T]x E, let (X,Y,Z)
be a solution to the FBSDE (3.1). Let (Y™, Z™!) be the solution of the BSDE in the forward-backward
system
dX, = AX,dr + F(X,;)dr + (—A)"“dW,, T € [t,T),
Xt =T,
Ayt =~y (1, X, YU 200 dr 4 200 aw,, T e [t T),
Y7 = 6u(Xr),

that is, the FBSDE (3.1) with final datum equal to ¢, in (3.6) in place of ¢, and with generator i, in
(3.7) in place of ¥. Then, for all p > 1, the unique solution of the Markovian BSDE in (3.1) is such that

(3.8)

1Y = Y™ s ie.0yy + 12 = Z™ v .1:00) = O as n,l — oo.

We now state a result on differentiability for the solution of a Markovian BSDE with generator with
quadratic growth, with respect to the initial datum z.

Proposition 3.7. Assume that Hypotheses 2.1 and 3.1 hold true, and for any (t,x) € [0,T] x E, let
(Xtr Yhe Z6%) be a solution to the FBSDE (3.1). Assume moreover that ¢ is Gateaux differentiable
with bounded derivative, and that v is Gateauz differentiable with respect to x, y and z. Then the triple
of processes (Xb® Y4® Z4%) js Gateauz differentiable as a map from E with values in #*((t,T); E) x
([t T)) x #*([t,T); H) and, for any h € E,

—dV,YPTh = V(r, X0 YT Z60) XD hdr + Vo (r, X0T, Y, Z6T)V, YR dr
AV (7, XEP Y 26 I hdr — NV, Z5 hdW,, T € [t,T),
VoY "h = Vap(Xp")VeX37h, (3.9)
AV, Xb"h = AV, XLPhdr + VF(XL*)V, X5 hdr, 7€ [t,T),
V.X{"h = h.

Moreover, there exists a constant C, only dependent on T, A, F, Ky, Ly, K¢, such that
T
E[ sup |VY R +/ V. Z%h)% dT] < COlhf3,. (3.10)
r€lt, T) t

Proof. In the case of a Markovian BSDE with generator 1 quadratic with respect to Z and related to
a forward process taking values in a Hilbert space, the result is given in Theorem 4.5 of [2]. Since in
Proposition 2.5 we have proved the differentiability of X** with respect to z € E, the same conclusions
hold when the forward process takes values in the Banach space E, namely

T
E| sup |VzYst’””h|2+/ ‘Ver_’zhﬁidT} < Clhf2.
T€[t, T) t

The stronger estimate (3.10) comes from Proposition 2.5, estimate (2.6). a

3.1 Identification of Z and a priori estimates on (Y, 7)

We now prove an a priori estimate on Z%* depending only on the L°°-norm of the final datum. The
novelty towards [19] is that we work in a Banach space and the pseudo-inverse of the diffusion operator
is the unbounded operator (—A)®. In order to get this estimate and also for the subsequent results of
the paper, it will be crucial to prove the identification

2" = VYA,
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which is new in the Banach space framework and in the case of quadratic generator with respect to z.
We have to make the following assumption:

Hypothesis 3.8. There exists a Banach space Ey C D((—A)%) dense in H such that (—A)"*Ey C E
and (—A)~®: Ey — E is continuous.
Remark 3.9. Notice that, if 2 C R? is a bounded open domain with smooth boundary, H = L*(2) and

1

A is the Laplace operator in dimension 2 with Dirichlet boundary conditions, we can take Ey = D((—A)?2)
and all the requirements of Hypothesis 3.8 are verified.

Theorem 3.10. Assume that Hypotheses 2.1, 3.1 and 3.8 hold true, that ¢ is Gateauz differentiable with
bounded derivative, and that v is Gdteauz differentiable with respect to x, y and z. For any (t,x) € [0,T] %
E, let (X4, Yb® Z5%) be the solution to the FBSDE (3.1). Then the triple of processes (X"®, YH® Z6%)
is Gateauz differentiable as a map from E with values in #?((t,T); E) x *([t,T]) x #>*([t,T); H).
Moreover, setting v(t,x) = Y;t’x, then, P-a.s.,

YT = u(s, X07), s €[t T), (3.11)
Zbh = Vu(s, X0 )V, X" (—A)"“h, ae. s € [t,T], h € Ey. (3.12)
Proof. The key ingredient consists in generalizing the variational approach introduced in [17], by applying

it both to the forward process X and to the pair of processes (Y, Z): this extension, together with the
quadratic growth of 1, makes the proof more involved with respect to the one of Theorem 3.17 in [17].
Due to the many delicate passages, the proof is quite lenghty and we postpone it to the Section 7.2. O

Corollary 3.11. Under the assumptions of Theorem 3.10 we have
ZVh = Vu(s, XE*)(=A)"*h, h € H, for ae. s € [t,T], P-as.,

where Vv(s,x)(—A)~% denotes an extension of the operator V v(s,z)(—A)~%* : Eg — R to the whole
space H. Moreover, there exists a constant C, that may depend also on V¢, V1) and Ly, such that

|Z0% | g < C, for a.e. s € [t,T], P-as. (3.13)

Proof. Since Ejy is dense in H, by (3.12) in Theorem 3.10, for almost every s € [0, T'] and almost surely
with respect to the law of X, the operator V,v(s,z)(—A)~® : Ey — R extends to an operator defined on
the whole H, which we still denote Vo(s,z)(—A)~ .

Moreover, from (3.12) and by the Markov property, we get

U,X},’I

zZhe = 77 =V, Yok lh=xte (=A)7%, forae. o €[0,T], P-as.

Estimate (3.13) follows from the fact that, by (3.10), we have sup,, |V,Y,2"*| < C, where C is a constant
that does not depend on k. O

Now we use the previous result to give a priori estimates on Z%*, and on VY %%, Notice that, since
the diffusion operator (—A)~“ has an unbounded pseudo-inverse operator, when o > 0 estimates (3.14)-
(3.15) are completely new and cannot be deduced by analogous results with bounded diffusion operators
with bounded inverse. We postpone the proof to Section 7.3.

Proposition 3.12. Assume that Hypotheses 2.1 and 3.1 hold true, and for any (t,x) € [0,T] x E, let
(Xt Yo Z6%) be the solution to the FBSDE (3.1). Then there exists a positive constant Cp only
depending on T, A, F' Ky, Ly, Ky such that

|ZE"h| < COp(T —t)"Y?|h|g, P-as., he H, (3.14)
V.Y, h| < Cp(T — )Y |h|y, P-as., he H. (3.15)
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4 The Bismut-Elworthy formula and the semilinear Kolmogorov
equation: the Lipschitz case

Recall that we deal with a process X taking values in a Banach space and solution to equation (2.1),
with special diffusion operator (—A)~% with pseudo-inverse (—A)® which is not bounded.

In the present section we adequate to our framework the results in [10]. More precisely, in Subsection
4.1 we present a nonlinear version of the Bismut-Elworthy formula in the case of Lipschitz generator,
which extends the one provided in [10] in the case of a process X taking values in a Hilbert space, and
with a bounded diffusion operator with bounded inverse. Providing the Bismut-Elworthy formula in
the case of Lipschitz generator is a fundamental step in order to obtain the analogous formula in the
quadratic case. Moreover, it allows us to give an existence and uniqueness result in the Banach framework
for the semilinear Kolmogorov related to the process X, and with coefficients ¢ and 1) not necessarily
differentiable, see Subsection 4.2.

For 0 <t < s<T and h € H we define the real valued random variables

1

vre = L [ arvaxon ). (@
t

s—1
Notice that, for any h € H, the process U"*? is well defined thanks to formula (2.11) in Proposition 2.6.
In what follows we prove some useful estimates on the process UM,

Lemma 4.1. Assume that Hypotheses 2.1 hold true. For any (t,x) € [0, T] x E, let X"* be the unique
mild solution to (2.1). Then, for any h € H and for any ¢ > 1,

EJUEE=) T < € (s — ) EF) |y, (4.2)
and also y
q 1
(B] swp quleee)) " <o -0, (4.3)
sE[#,T]

Proof. We compute

Sit q] < ﬁE[(/t |(—A)°‘V$Xﬁ"”h|2dr>q/2}

C(s — )" 2| hf})?/? = C(s — 1) "1 F|n)g,

E[Ute|7] = E| / (~A) VX5, dW,)
t

=Goon

where in the latter inequality we have used formula (2.11) of Proposition 2.6 with & = a.. Analogously,
we have

IE[ sup |Us’lvtvw|ﬂ < CﬁE[(/T|(—A)°‘V1Xﬁ’$h|2dr)q/2} < O(T — )9+ |p| .
- t

SE[%,T]

4.1 The Bismut formula

We can now give a version of the Bismut-Elworthy formula in the case of Lipschitz generator and in the
Banach space framework. We consider only the case of final datum ¢ and generator 1) bounded with
respect to x, since we aim to treat such a model in the quadratic case. We start with the case when the
coefficients are also differentiable. An analogous result is proved in [10] in the Hilbert space framework
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using the Malliavin calculus. Since here the process X takes its values in a Banach space, we avoid the
use of the Malliavin calculus by exploiting instead techniques similar to the ones used in the proof of
Theorem 3.10.

In the rest of the section we will assume the following, that substitutes Hypothesis 3.1.

Hypothesis 4.2. The functions ¢ : E — R and ¢ : [0,T] X EXRx H — R in (3.1) satisfy the following.
(i) ¢ is continuous, and there exist a nonnegative constant K, such that |¢p(z)| < K4 for every x € E.

(ii) 1 is measurable and, for every fized t € [0,T], the map ¢¥(t,-,-,-) : E X R x H — R is continuous.
Moreover, there exist nonnegative constants L, and K, such that

[Y(t, 21,91, 21) — Y(t, 02, Y2, 22)| < Ly (|71 — 22|E + Y1 — 92| + |21 — 22|H) ,
|’l[)(t,l’,0,0)| < K?,Da

for every t € [0,T), 1,22 € E, y1,y2 € R and 21,20 € H.

Remark 4.3. The results in this section can be extended to the case of data v and ¢ having polynomial
growth with respect to x. Since in Section 5, which is the core of the paper and where the driver ¢ has
quadratic growth with respect to z, we are able to consider only data v and ¢ bounded with respect to x,
we have decided to present also here only the bounded case. We also notice that when ¢ has quadratic
growth with respect to z, also in the Hilbert case, up to our knowledge it is not known how to consider
data ¢ and v with polynomial growth with respect to x, see [19].

Theorem 4.4. Let Hypotheses 2.1 and 4.2 hold true, and for any (t,z) € [0, T)| X E, let (X"*,YH* Z6®)
be a solution of the forward-backward system (3.1), and let U™"* be the process defined in (4.1). Assume
moreover that ¢ is Gateauz differentiable with bounded derivative, and that v is Gdteauz differentiable
with respect to x, y and z. Then fort < s<T,xr € E, h€ H,

T
B[V, Yioh] =B[ [0 (X0 Y0, 207 U ar] + B [0 0] (4.4)

Proof. Let £ be a given square integrable Ey-valued predictable process, and X% be a mild solution to
the equation

dXet® = AXSMdr + F(XSH%)dr + (—A)~ el dr + (—A)~dW,, 1€ [t,T],
{Xf’t’z =z (45)
We also consider the pair of processes (Y%, Z&5%) solution to the Markovian BSDE
—dY ST = qf(r, Xobe Yebtr zebaydr — ZebedW, . 1€ [t,T),
{ﬁ“:mw%. o
Arguing similarly to the proof of Theorem 3.10, we define
i K Vs Vet Zoam T 2 rele) (4.7)

which are solution to the forward-backward system (7.14) with s — § = ¢t. We already know (see formula
(7.9) with s — § = t) that

X, = / VXX (CA) ot do, T [t,T), Pas. (4.8)

t
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Now we want to prove a similar identification for the pair (Y, Z). To this aim, for any o € [t,T], we
consider the Markovian BSDE in (3.1) on the time interval [o,T], and with initial condition y given at
time o; from Proposition 3.7 we know that the derivative with respect to y € F in the direction h € E
satisfies the following BSDE, that we write in integral form: for any 7 € [t,T], P-a.s.,

T T
V.Y 7Yh :Vx¢>(X;vy)va;’:yh—/ sz;’vxder+/ (Vatb(r, XTV, YOV, ZOV)V, XV

+V p(r, XV, Y7, ZONV Y, 7V hdr + V 4 (r, X7V, Y, 7Y, Z;”y)VzZ‘r”yh)dr.
(4.9)

Let us take y = X5® and h = (—A)~ %, in (4.9), and let us integrate both sides with respect to o € [t, 7].
By inverting the order of integration where necessary, and using the Markov property, it is immediate to
get

/ vV, YoX (—A)og, do
t
T o, Xh® o, Xb® —a r T o, Xh® —a
- / Vo o(XP )T XX (—A)og, do - / ( / VL2 (A, do)aw,
t T t
T T Xt,:u Xt,z Xt,z Xt,z
+/ (/ Vot (T,X;” oy X goXe )VZX;” . (—A)_"gada)dr
T t
+/ (/ vyw(r’ X:'XQ,I,YTU’X}’J,Z;T’X;@)VQCYTU’X:’J(—A)_agg dU)d’l"
t t
[ (] Vbt X2 e g, 20 () g do)ar,
t t
By (4.6) and (4.7), together with (4.8), we can conclude that
. T - . T ,z
v, - / VYO (C Ay o, 7, = / V20X (LA do, Te (T, P-as.,  (4.10)
t t

since these two pairs of processes satisfies the same BSDE. By density, arguing as in Corollary 3.11, we
infer that formulas (4.8) and (4.10) hold true for any square integrable H-valued predictable process &.
Now, let n € E, and let us take

& = (—A)*V, X0, 1€ (t,T). (4.11)

Notice that, since (—A4)*V,X5%n € D((—A)'/?~*) P-a.s., thanks to Proposition 2.6, (—A4)*V, X"y € H
for any 7 € (¢,T], P-a.s., and so

/ eTmIA(—A) T (—A) VX do = / TV, Xy do, T € (1,T], P-as.,
t t

which belongs to E. Therefore, for all 7 € (¢,7] we have X -+ € E P-a.s., where X denotes the mild
solution to the forward equation in (7.14) with s — § = t with £ given by (4.11). With this choice of £
equalities (4.8) and (4.10) can be rewritten as

X, = / Vo XIX NV, X ndo = (1 — )V, XE, Y, = / VY2 X VX do = (1 — )V, Yy,
t t
(4.12)
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Z, = / Vfo’Xft”mVfo,’znda = (1 —t)V, 2%y, 1€t T), P-as.
t
Let us now set
1.p(7'7 t,x) =Vah(r, X0¥ YT ZE X dr + Vo (r, XE*, Y9, Z8) Y dr

+ Vap(r, XE2, Y 287 7% dr,

HXET) =V, (X ") XE".

By (4.12), 1/1 and ng can be rewritten as

D(rt,x) = (1 — 1) (Vorb(r, X%, Y07, ZE)V, X% npdr + Vib(r, X071, Z5%)V, Vi ndr
+Votp(r, XLE Y E*, Z05)\V  Zh ndT) (4.13)

S(XET) = (T = t)Vad( X" ) Vo X0, (4.14)

Notice that the right-hand sides in (4.13) and in (4.14) are nothing else (modulo a renormalization) than
the terms appearing in the right-hand sides of the first two equations in (3.9). Now we aim at finding an

expression for ¢ and ¢ that does not involve the derivative of ¥, ¢, X, Y and Z: this in turn will furnish
an expression of V.Y that does not involve the derivatives of ¥, ¢, X, Y and Z, as in formula (4.4). To
this end, let us consider the process

We =W, — s/ (—A)*V X ndr, 0<t<o<T, (4.15)
t
and let us define a probability measure Q. such that
dQE _ 4 e} t,x 62 T a t,z, |2
e — o (s/t (—A)*V, X, dW,) — 5/t |(~A)*Va X[} do).

By the Girsanov theorem, (W)sep, 7 is a cylindrical Wiener process in H under Q.. Arguing as in the
proof of Theorem 3.10, we also notice that the process X under Q. and the process X¢ under P have the
same law. Therefore,

T
BV, Y1) = BV.B(X)VaXin) + B[ [ (Voo Xem, Y27 2579 X4

T

V{0, XY ZEE VY 4 V{0, X, Y, 2 4 2 ) do|

Lot S
— —]E X ] E|: _— ,t, d j| .
B +E[ [ et do
By differentiating inside the expectation with respect to € and changing the order of integration, we get
. d e
E ,t, — ]E[_ ’XE,t,x’ Ya’t’z, Ze,t,:z :| _ = ]EQ ,Xt’x, Yt’x, Zt,x
Wlot )] =E[ 7 _ oo Xghn Ypte 2500 ] = £ B (o, X7, vhe 2]

— E[4(0, XL7, V2", ZL7) / (~A)* T, X1, aw)|,
t

and so, recalling (4.1),

[ "L ot,0)do] -] / L | AT x W) oo, X, Y 24 do]

o—t o—1t
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T
:]E[ / Uty (o, ng,yj’w,zf,@)da].

Similarly, E[p(X%")] = E[¢p(X5")U""], and this proves (4.4) when 5 € E. The general case with n € H
follows by density, thanks to estimates (3.15) and (4.2). a

In the next result we remove the differentiability assumption on % and ¢ in Theorem 4.4.

Theorem 4.5. Let Hypotheses 2.1 and 4.2 hold true, and for any (t,z) € [0, T| X E, let (X"*,YH* Z6®)
be a solution of the forward-backward system (3.1), and let UMY be the process defined in (4.1). Then,
fort <s<T,xz€FE,hec H, the Bismut formula given in (4.4) holds true.

Proof. The proof follows the same lines of the one of Theorem 3.10 in [10]. The main ingredients are
formula (3.12) in Theorem 3.10 and Proposition 3.6, which provide respectively the identification of
Z in the Banach space case and with the diffusion operator (—A)~®, and the stability result for the
BSDE in (3.1) when the generator and the final datum are approximated by (3.6)-(3.7). We underline
that approximations (3.6)-(3.7) preserve the boundedness and the growth, and are only of pointwise
type. Notice that in [10], the final datum and the generator are approximated by means of their inf-sup
convolutions, so that the approximation is uniform. However, thanks to the aforementioned stability
properties for the BSDE, our pointwise approximations (3.6)-(3.7) are sufficient to obtain the desired
result. |

4.2 The semilinear Kolmogorov equation

By means of Theorem 4.5, we can give an existence and uniqueness result in the Banach framework for
the semilinear Kolmogorov related to the the process X, and with coefficients ¢ and 1 not necessarily
differentiable, as it is assumed in [17].

Let P, t < 7 < T, be the transition semigroup related to the process X** solution of the forward
equation (2.1), namely, for every bounded and measurable function ¢ : E — R, P, -[¢](x) := Ep(X57).
We consider the following semilinear Kolmogorov equation

{ % (t,2) = =2 (t,2) + ¥ (Lo,0(t,2), VO "u(t0)),  te[0.T), zEF, (4.16)

o(T,z) = ¢(z),
where .Z is the generator of the transition semigroup (P s)o<t<s<T, that is, at least formally,
1 —«a *\—Q
(Zf)(@) = 5 (Tr((=4)7*(=47) V2f) (@) + (Az, Vf(x)) + (F(z),V[(z)), =€E.

We introduce the notion of mild solution of the nonlinear Kolmogorov equation (4.16), see e.g. [11].

Definition 4.6. A function v :[0,T] x E — R is a mild solution of the semilinear Kolmogorov equation
(4.16) if v € %1 ([0, T] x E), and

T
v(t,z) = P.r (9] (x) +/t P [1/)(57 (s, ), v, (s,")| (x)ds, t€][0,T], z€E. (4.17)

Theorem 4.7. Let Hypotheses 2.1 and 4.2 hold true. Then the semilinear Kolmogorov equation (4.16)
has a unique mild solution v given by the formula

o(t,x) = Y", (t,x) €[0,T] x E,
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where, for any (t,x) € [0, T| x E, (X"*,Y"* Z4%) denotes the solution to the FBSDE (3.1). In addition,
we have, P-a.s.,

YET =o(s, XET), Z0" = V,v(s, X"V X" (—A)™, ae. s€[t, T).

Proof. If the data ¢ and 1 are also differentiable, the result can be proved as in [17], Theorem 6.2. When
the data are not differentiable, the Bismut formula (4.4) is still true, see Theorem 4.5, and the result can
be proved arguing as in [10], Theorem 4.2. |

5 The Bismut-Elworthy formula and the semilinear Kolmogorov
equation: the quadratic case

We are ready to state and prove the main result of the paper, which is a nonlinear Bismut-Elworthy
formula as the one in Theorem 4.5, but in the case of quadratic generator. This in particular will give

an existence and uniqueness result for the Kolmogorov equation (4.16) in the quadratic case and in the
Banach framework, see Theorem 5.4.

Theorem 5.1. Let Hypotheses 2.1 and 3.1 hold true. For any (t,x) € [0, T] x E, let (Xt®,Y4® Z6%)
be the solution of the forward-backward system (3.1) and let UMH be the process defined in (4.1). Then,
fort <s<T,x€FE and h € H,

T
BV, Yioh] = B[ [0 (X070, 207) U ar + B [o(0Xm 0] (5.1)

Proof. We split the proof into two steps: we first prove the statement when 1 is differentiable with respect
to x,y and z, and then we remove this additional assumption.

STEP 1. We start by considering 1 differentiable with respect to x, y and z. For all n > 1, let us denote
by (Xt ymte 7Zmtr) the solution of the Markovian BSDE in (3.1) with final datum equal to ¢,, in
(3.6) in the place of ¢:

{ dYTn’t,I = —¢(T7 X-zt—J’ Y‘rn’t)w, Z‘zr-b)tw) dr + Z‘zr-b’t,m dW-,—, TE [tv T]a (5 2)

YT = g (X77).

By estimate (3.13) in Corollary 3.11, for any n > 1, there exists a constant C(n), depending on n, which
is bounded for every n and blows up as n — oo, and such that

|Zm0T g < C(n), P-as., ae. s€[t,T). (5.3)
In particular,
W(Sa%yvzl) - 1/)(5@»%22)‘ < C(Tl)|21 - 22|H7 z21, 22 € H: ‘ZZ|H < C(Tl), i= 172

Therefore, the generator ¥ acts as a Lipschitz generator with respect to z in the BSDE (5.2), so the
Bismut-Elworthy formula stated in Theorem 4.5 holds true for the BSDE (5.2): for every s € [t, T1,

T
E [V, Y"'"h] = ]E[ / W (r, XbT, yube, gnite) ghte dr} +E [qsn(X;:f)U;W] . (5.4)

At this point we aim at taking the limit as n — oo in (5.4).
We start by considering the right-hand side of (5.4). By the properties of the approximations (¢ )n>1
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together with (4.2), by the dominated convergence theorem and the pointwise convergence of ¢, to ¢ we
have

E|l[n(X5") — o(XFNUE"] < (Ellon(X5") — 6(X57) )2 (BT ) /2
< C(T = 1)WY (Bl |gn (X57) — 6(X57))2 = 0 as n — oo,

Therefore,
lim B[, (X5 U] = B[o(x57) U]

n—oo

In order to compute the limit of the remaining term in the right-hand side of (5.4), we will show that

T
lim IE[ / Y (r, X5, Ym0 Znbe) uhbe —ap (v, XE2 V0T Z57) Uf’t7w|dr] —0.
t

n—oo

‘We notice that

T

T
E| / 6 (1 X7, Y00, Z ) U — 4 (1, X7, Y1, Z007) U di |
t "
_ E[/ I (r, Xt ymbe, Z:L,t,x) Urh,t,x — (7,’ Xt yte, Zﬁx) Urh,t,x| dr]
t

T
4 E[/ I (,,,, Xi,z7yrn,t,z’ Z;I;L,t,z) U:z,t,m — ¢ (r, X;,m’ Y*rt,z’ Zﬁ,z) U;L,t,z| d’r]

#
= T+1II (5.5)

We start by estimating the term I in (5.5). We have
t+T

T=B[ [T (rXpm e 22t U g (X0 Y, 207 U
t
4T

2
<LE[ [T (vt vk ar)
tﬂ

2
FLE[ [T (1200 = 2 (L1200 + 120 ) (U2 ]
t
— I, + I, (5.6)

We recall that, by estimate (3.14) in Proposition 3.12, and since ||¢,|lcoc < Ky, there exists a constant C,
not depending on n, such that
|Z0 g < O(T —t)7Y2, P-as.

So, since Zt = 27" and Zp® = 27N for 7 € [t, ]
|Zmb® |y 4+ |25 g < C sup (T —r)"V2<O(T —t)7% P-as. (5.7)
re[t,#]

We only show the convergence of I, in (5.6) since the convergence of I, follows in a simpler way by
the boundedness of Y% and of Y™ (uniform in n), and by the convergence of Y% to Y** in
LP([t,T]), p > 2. Using (5.7), Holder inequality with p = ﬁ and ¢ = ﬁ, for some 2a < f < 1,
together with estimate (4.3) in Lemma 4.1, we get

t+T

2
I, < C(T =)~ H(T - ) PR / |zt =zt P dr
t
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t+T 1— t+T 1+

<C(T—t) 3 (T—1)} (E[/T |Zf’t’$—Zﬁ’I|§{dr])T</ ’ E(Ute| 5] dr)
t

t

SC(T—t)_§(1+B)(E[/ |Zf’t’x—Zﬁ’w|%1d7"D (/ 41+md7”>
t t (r—t)1+e
T 1-5

<O~y AP @ -0 (] [zt -2 a]) T
t

t+T 1-8

<O(T—t) 3 (E[/ Tzt gt dr]) )

t
as n — oo, since 2% — Z4 in #?([t,T); H).
Let us now estimate the term I7 in (5.5). To this end, we recall that, by Theorem 3.3, Y™t% Yt
are bounded in .#?([t,T]) and Z™"* Z%* are bounded in .#?F([t,T]; H), by a constant independent on
n. Moreover, by Proposition 3.6, Y™ converges to Y*® in .#P([t,T]) and Z™"® converges to Z® in
M ([t,T); H), for any p > 1. By using again Hélder’s inequality for some p,q > 1, % + % =1, and

estimate (4.3) in Lemma 4.1, we get

T
IT=E| / 6 (1, X, Y0, Z00 ) U — (v, X0, Y7, Z0) U dr |

+T

2

T
<E[ sup Ukt / 6 (1, X, Y0, Z00) = (1, X1, V10, 2000 | |
T2

=

LT »
<(E swp |utee)t (E] / 6 (1, X2, Y0, Z000) = (r, X1, Y10, 200 | ]|

SE[#,T]
1 g t t t t t t P\
<O (B [ Qv = Yo 1200 = 20U 1220 127 ] )
(T —t)zte ST
1 T— b
ol € v’
(T —t)2to L 2 relt,T)

b

T 2 T 2 % 1
+(1E[(/ |Zf’t’$—Z}f’m|§{dr) (/ (1+|Z,f"t’m|H+|Z,’f’“”\H) dr) D}
t+T #
C

2

1 T—t s
{E (] s vy
(T —t)zt> L 2 relt,T]

(5 [, 1z0s 2oV (] [ (141221412200 ] ) T} o
2 2

IN

+

as n — oo. Collecting all the previous results, we deduce that, for every s € [t, T,

T
: n,t,x _ t,x t,x t,x h,t,x t,x h,t,x
Tim E[V, ¥ h] _]E[/s W (r, X0®, Y0 207\ U dr} +E [qs(XT YUk } . (5.8)
In particular, by taking s = ¢ in (5.8),
T
] n,t,x — 3 B s h, 5 t,x h,t,l
lim V.Y, h_]E[/t Y (r, X5, Ve Zbe) ! ”‘dr} +1E[¢(XT YUk }

which shows that lim,, _,,, V. Yt"’t’xh exists. Moreover, arguing as in the end of the proof of Theorem
4.1 in [19], we deduce that lim,, o V, Y/""*h =V, Y;""h for all h € H.
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STEP 2. Let us now remove the differentiability assumptions on . For any k > 1, let 15 be the function
defined in (3.7). From Lemma 3.5 we know that vy, is differentiable and it preserves the Lipschitz constant,
so that

|vzwk

Moreover, again from Lemma 3.5, ¥y (t,z,y,2) — ¥(t,x,y,2) as k — +oo for any (t,z,y,2) € [0,T] x
ExRx H,and forany t € [0,T], x € E, y € R, 21,22 € H,

B* < Ly, |Vyte| < Ly.

[Vr(t, z, 91, 21) — Yn(t, 2,92, 22)| < Ly(|y1 — y2| + 21 — 22|5 (1 + 21|52 + |22|H)), (5.9)

for any k € N. We consider the BSDE with generator equal to 1 in the place of ¥:

AY P = —apy (7, X2 YO ZBNE) dr + ZP5T dW,, T € [t,TY,
k,t,x t,x (510)
Ypt = ¢(Xg").
By the first part of the proof, for any k > 1,
T
E [V, YEtoh] = ]E[ / Ui (r, X0 Yt gkt ghite dr] +E [¢(X§:$)U£¢”’] . (5.11)
S

We aim at taking the limit as k — oo. We start by considering the first term in the right-hand side of
(5.11), and we will show that

T
lim ]E[ / [k (7, X027, Y00, ZEDE) URST — 4 (r, X7, V", Z17) Uﬁ’t’$|dr} =0.
k—o0 t
We start by splitting the integral above as follows:

T
E| / e (1, XL Y0, ZERE) U — (1, X7, Y1, Z07) U dr |
t
t+T

2
B[ [ o (r Xp YR 2B U g (r X0, Y 20 U
t

T
+ E|:/ W}k (,’,,7 Xﬁ’I,Y;k’t’z, Zf’t’z) U:z,t,z _ 1/} (7", )(71:‘@7)/7},17 Zﬁ,z) Urh,t,l‘| d?”:|
t+T
2
= I+1I. (5.12)
In order to estimate the term I in (5.12), we notice that
T
2
B[ [ o (n 07 Y 2B UR g (r, X0 Y 2 UL ]
t
t+T

3
+ E[/ |¢k (’I’, Xf,’x, Y'Ttw’ Z:/‘yx) Uﬁ’t’z _ ,lp (7,’ Xﬁ,m’YTt,m’ Zﬁ,m) U:l,t,z| d?":|
t
= I+ 1. (5.13)

Concerning I, in (5.13), by (3.4)-(3.5) we can argue as for I in Step 1, and get that I, — 0 as k — +oo.
Let us now consider the term I in (5.13). From Hypothesis 3.1 and formulas (3.4) and (3.5) it follows
that

[ (r X270, Z07) = (r, X, Y07, Z07) | SC(L+ YT+ 1207 ), (5.14)
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where C'is a positive constant depending on L, and K. Arguing as for I is Step 1, one can prove that
t+T
e Ll(Q;Ll(t, %;R)).

Recalling that 1, — 1 pointwise as k — +o0o, we get that I, — 0as k — 4oo by the dominated
convergence theorem.
Let us now estimate 7 in (5.12). To this end, we notice that

re (L Y00+ [ 2 ot

T
I gIE[ / L [k (r Xp7 YRS ZERE  URST — gy (r, X007, Y00, Z07) Ut dr}

2

t+

2

= II, + I, (5.15)

T
B[ [ 1 (X0 Y07 ZE) URT — g (1 X0 Y0, 21 U

Arguing as for the term IT7 in Step 1, we deduce that II, — 0 as k — 0. As far as I, in (5.15) is
considered, we get

1/q T P\ 1/p

I, S(E[ sup |Ush’t’z|qD (E{/ n (1, X0 % Y08, Z0%) =4 (r, X, Y00, Z07) |d7”] ) .
t+T
2

s€[¥,T]

Arguing as for IT in Step 1 it follows that
t+T
res (L Y]+ |20 utte e 1 (9, 1 (S5 TR ) ).

Since v, pointwise converges to 1, we can again apply the dominated convergence theorem which gives
IT, — 0 as k — +0o. We can thus conclude that, for every s € [t, T,

T
lim E[V, v} —E| / b (r, X0, Y00, Z07) UM dr| + B [o(Xp") Ut

As in the end of Step 1, arguing as at the end of Theorem 4.1 in [19] we can show that, for any s € [t, T,
limy o0 B [Vg Y0TR] = E [V, YE7R]. |

We now state two corollaries: the former is about integral estimates of V, Y% the latter is about
the identification of V,Y%?* with Z%% without differentiability assumptions. Notice that, by means of
the Bismut formula (5.1), we can also recover estimate (3.15) on V,Y %%,

Corollary 5.2. Let (t,z) € [0, T] x E. Under the assumptions of Theorem 5.1, the process V, Y1
belongs to #>([t,T]), and there exists a constant C depending only on Ly, Ky, Ky such that
T
1[«:[/ |V Y;’I|2ds} <C(T —t)~%. (5.16)
t
Proof. Integrating (5.1) between ¢t and T we get

T T T 2
[ vimpas= [C[B[ [ v (e v 2 vt an] + 8 [s0mupte] [ ds
t t s

T T 9 T T2
< C/ ’]E[/ w (7", Xf,’m, )/Tt,x’ Z,,t.’x) U:‘L,t,ﬂf d711| ‘ ds +/ ‘E [QS(X,}’Z)UTa ,z] ’ ds
t s t
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= IT+1I.

We have

T
1
I1< o dr = O(T — )22,
< [ 16l gram 4 = O =)

For what concerns I, we split it as

T T 2
I:C(/ E[/ W (r, X0, Y1, Zbw) phete dr” ds
S

t+T

2
t+T

2 T 2
+ / E| / U (r X0V, ) Ul ] [ ds)
t s
=:1,+ 1.

From (4.3) and Proposition 3.3 we have

t+T t+T
3 T€[+T>

Iago/T (IE[ sup |U,f%t@|/T I (r,Xﬁ’z,Yf’z,Zﬁ’z)|dr])2ds
T) s

< C'/;E[Te[sup |Uf’t’””|2}IE[(/ST (1+ Y5 + | 287 1%) drﬂds

ST
T T 2
< O(T —t)~1=2 /” IEK/ (1+ V2% + | 257 1%) dr> }ds < O(T — )2,
3 S

On the other hand, we consider the function under the integral sign in I;, and we split it as follows:

T
E| / U (r, X0, Y0 20 ) Ul |
s or .

B[ [ vz ubear] <6 [

U (r, X0, Y 20 Ul

2

— I

We argue as in the proof of Theorem 5.1, Step 1. In particular, arguing as for the estimate of I we infer
that
I < O(T — )1/

for some positive constant C. On the other hand, as far as Ij’ is considered, arguing as in the estimate
of I, we get that
[y < O(T — 1)~/

for some positive constant C. Hence,

t+T

I, < C/ ’ (T —t)"'2%ds = O(T — )22,
t

and this concludes the proof. O

In the following we prove that the identification of Z with the directional derivative of Y remains true
also when ¢ and 1 are not differentiable.
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Corollary 5.3. Under the assumptions of Theorem 5.1, for every (t,z) € [0,T] X E,
24 LY Ay (5.17)

Proof. Let ¢ and v be respectively approximated by ¢, and 1, in (3.6) and (3.7), and let (Y™4% Zn.te)
be the solution of the BSDE with final datum ¢,, and generator 1,,. By Theorem 4.7 we already know that
ZPh" = V,Y/"""(=A)~®. On the other hand, we have shown in Theorem 5.1 that  — Y% = v(7, X1%)
is differentiable and that V,Y""* — V, Y % dt ® dP a.e. and a.s., as n — oo. Moreover, by computing
the joint quadratic variation between the process Y“** and ftT EcdWe, t <7 <T, &€ #?([t,T); H), it
turns out that

/ Vo' (s, XL7)(—A) "% ds :/ Zmtre ds, P-as., ae. T € [t,T],
t t

where we have set v" (1, X1%) := Y™"*. By taking a subsequence (that for simplicity we call again n)
and letting n — oo in both sides, from Proposition 3.6 we get

/ Vu(s, X0*)(—A)" ¢, ds :/ Zb¢ ds, ae. T € [t,T], P-as.,
t t

which gives formula (5.17). O

Using Theorem 3.10, we can give an existence and uniqueness result for the Kolmogorov equation
(4.16) and we can provide a Feynman-Kac formula in the quadratic case and in the Banach framework.

Theorem 5.4. Let Hypotheses 2.1 and 3.1 hold true. Then there exists a unique mild solution v(t,z) of
the semilinear Kolmogorov equation (4.16) given by the formula

v(t,x) = Y;ttJv
where (X% Y52 Z6%) s the solution to the FBSDE (3.1), and P-a.s.,
YET = (s, X0T), Z0T = V,v(s, XEP)V X" (—A)7, ae. s € [t,T).

In particular,
1
lv(t,z)| < C, IVou(t,z)| < C(T —t)~ T

If in addition ¢ is Gateauz differentiable with bounded derivative, and 1 is Gateaux differentiable with
respect to x, y and z, then
1Zo"|n < C.

Proof. For the first part without differentiability assumptions on ¢ and 1, it is enough to apply Theorem
5.1 and Corollary 5.3 to get existence of the solution, as well as the estimate for v. The uniqueness
follows from the uniqueness of the solution of the related BSDE. The estimate for V v(¢,x) is a direct
consequence of Proposition 3.12. The second part of the result can be proved in a standard way by means
of Proposition 3.7 and the identification of Z proved in Theorem 3.10, see e.g. the proof of Theorem 6.2
in [11]. O
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6 A quadratic optimal control problem

In this section we deal with the controlled state equation

{ dX* = AXYdr + F(X%)dT + Qu.dr + (—A)~“dW,, 7€ [t,T), 61)

X =xz€k,

where Q = (—A)~% or @ = I, and u is the control process belonging to a suitable space % of H-valued
functions. We will study the optimal control problem associated to equation (6.1) with cost functional
J:[0,T] x E x % — R defined by

J(t,x,u) == E[/tT E(s,X;‘,us)ds} + E[®(XF)], (6.2)

that we are going to minimize over all admissible controls. We define the value function of the optimal
control problem as

V(t,z) = ingfl J(t,z,u), x€H, tel0,T)]. (6.3)
ue

For any p > 1, we introduce the spaces of admissible control processes
Uy = {u € L*(Q; LP(0,T; H)) : u is adapted } ,
Uy = {ue L*(Q;LP(0,T; D((—A)*))) : u is adapted} ,
where D((—A)%)) is endowed with the norm
%o = [a|a +[(=A)"2[m.

We first prove some results about well posedness of the controlled equation (6.1). The main novelty
towards Section 2 and the known results in the literature is that the controls u are not necessarily
bounded, together with the fact that X evolves in a Banach space E.

Beside Hypothesis 2.1 we assume the following.

Hypothesis 6.1. There exists 3 > 0 such that D((—A)?) C E with continuous embedding.

Remark 6.2. Let A be an operator satisfying Hypothesis 2.1-(i). If Hypothesis 6.1 holds true, then we
have the following.

(i) For anyt >0 and h € H, e"*h € E and there exists a positive constant ¢ such that

le!h|p < ctP|h|g. (6.4)

(ii) For anyt >0 and h € H, there exists a positive constant ¢ such that

et (= A)~h|g < ctFTINOp 5. (6.5)

(i4i) For anyt >0 and h € D((—A)%), there exists a positive constant ¢ such that

le“4hlp = e (= A) (= A)*h|p < ctTFFONY(—A) |y < et TPFON0 B,

Remark 6.3. Hypothesis 6.1 may be replaced by the weaker condition in Remark 6.2-(i). However, this
condition would not imply Remark 6.2-(ii)-(iii).
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Example 6.4. Let 2 C R? be a bounded domain with smooth boundary. Set H = L*(2), E = C(2),
and let A be the Laplace operator with Dirichlet boundary conditions. Then, Hypothesis 6.1 is satisfied
with B> 1/2.

We will deal with mild solutions to (6.1), namely adapted processes X% : [t,T] x Q — E such that
Xbow — ey 4 /T eTIAR (X ds + /T T4 Quds + /T T4 (—A)~2aw,, (6.6)
t t t
for any 7 € [t,T], P-a.s. For any t € [0,T], u € %, we set
I%(t,7) == / ’ "I AQugds, T € [t, T). (6.7)
t

Lemma 6.5. Let A be an operator satisfying Hypothesis 2.1-(i), and assume that Hypothesis 6.1 holds true
for some positive constant . Let p > 1, and set p' be the conjugate exponent of p, i.e., p~t+ (p')~t = 1.
Then the following hold.

(i) Case @ =(—A)" and p'[( — a) VO] < 1.
For any uw € %,, I*(t,7) € E for any 7 € [t,T], P-a.s., and there exists a positive constant ¢y, g p1
such that

[1“(t, 7)|e < capprllvlLeormy, T€ItT], P-as. (6.8)
(ii) Case @ =1 and p'[(B —a) V0] < 1.

For anyu € %, I"(t,7) € E for any 7 € [t,T], P-a.s., and there exists a positive constant c,.5p T
such that

[I“(t, )| < Ca,ﬂﬁp,T||UHLP(O,T;D((_A)O¢)), T € [t,T], P-a.s.

(iii) Case Q=1 and p' < 1.
For any u € %,, I'(t,7) € E for any 7 € [t,T], P-a.s., and I"“(t,T) satisfies estimate (6.8) for
some positive constant Co g,p,T-

Proof. Let us prove item (i), items (i¢) and (ii¢) follow from similar arguments. From Hypothesis 6.1,
we have

eI A) g < ofr — )TNy |y ae. s € (t,7),P-as.
Therefore,
‘/ e(‘r—s)A(_A)—aust‘ S/ ‘e(r—s)A(_A)—aus
t B t

T N V-4
<e( [ (r= )P a5) o o
t

<e(r — t)(—ﬂ+a)/\o+1/p ||u||LP(O,T;H)7 P-a.s.

Eds < c/ (7 — 5) ATy | yds
t

a

Thanks to Lemma 6.5, arguing as in [6, Theorem 7.11] we deduce the following result, which is the
counterpart of Proposition 2.5-(i) for the controlled equation.
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Proposition 6.6. Let Hypothesis 2.1 holds true, and assume that Hypothesis 6.1 holds true for some
positive constant 3. Lett € [0,T], p > 1, and set p’ be the conjugate exponent of p. Then the following
hold.
(i) Case @ = (—A), p[(F—a) V0] < 1.
For any x € E and uw € %,, there exists a unique mild solution XL™" to (6.1) belonging to
2((t,T); E). Moreover, there erists a positive constant ¢ such that, for any T € [t,T),

X745 < oflole + Nulf5g b + sup (6 T)E), Peas (6.9)
TE[t,T)
(ii) Case Q =1, p'[(f —a)V 0] <1.
For any x € E and u € %", there exists a unique mild solution Xb®u to (6.1) belonging to
S2((t,T); E). Moreover, there exists a positive constant ¢ such that, for any T € [t, T},

A
|X$—7I,u|E < C("TlE + ||u||2LT(1_’1T;D((_A)a)) + sup |’LU (t)7)|2Em+l)’ P-a.s. (6'10)
T€E[t,T]
(iti) Case Q =1, p'B < 1.
For any x € E and u € %,, there exists a unique mild solution X" to (6.1) belonging to
S2((t,T); E). Moreover, there exists a positive constant ¢ such that, for any T € [t,T],

| Xp™ e < C(|$|E + ”u”%;?(?lT;H) + Sl[ltPT] w?(t,7) QEm+1)’ P-as. (6.11)
TE[L,

Proof. We show item (i), the proof of items (i7) and (iii) being analogous. Since by Lemma 6.5 the
convolution defined in (6.7) is a well defined E-valued process for any u € %,, it is possible to argue as in [0,
Theorem 7.11]. Therefore, by applying the fixed point theorem we infer that for any ¢t € [0,7], € E and
u € %,, there exists a unique mild solution X**** to (6.1) with F replaced by its Yosida approximations
F,, a > 0, such that X*"®% gatisfies (6.9). Further, the sequence {X %%} o converges as a — 0 to
the mild solution X»** to (6.1). In particular, estimate (6.9) holds true also for X%, |

6.1 The structure condition: the case Q = (—A)™“

In this section we deal with control processes u € %, and with the controlled equation

{ dX* = AX dr 4+ F(X®)dr 4+ (—A)"®urdr + (—A)~dW,, 7€ [t,T), 612)

X =x€FE,
satisfying the so called structure condition: the control affects the system only through the noise.

We make the following assumptions on the cost functional (6.2).

Hypothesis 6.7. Let ¢: E — R and £:[0,T] x E x H — R be two measurable functions satisfying the
following properties.

(1) ¢ is continuous and bounded.

(ii) For allt €[0,T), u € H, the function x — £(t,z,u) is bounded and continuous from E onto R. For
allt € [0,T], x € E, the function u — £(t,z,u) is continuous from H onto R. Further, there exist
¢, C, R positive constants such that, for allt € [0,T], x € E, u € H,

0 <0tz u) <c(l+ |ulg)? (6.13)
((t,z,u) > Clul?y, |ulg > R. (6.14)
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(iii) There exists a positive constant L > 0 such that, for allt € [0,T], 1,22 € E, u € H,

[0(t, x1,u) — £(t, 22,u)| < Llzy — 22| B,

Remark 6.8. Under Hypothesis 6.7-(i1), it is easy to see that there exist ¢, R positive constants such that
U(t,z,u) > c(|lul}; — R?*), te€[0,T), z€ FE, ue H.
We introduce the Hamiltonian function
Wtz z) = ulélg {(t,z,u) + (z,uyg}, t€0,T], z€E, z€ H. (6.15)

Arguing as in [9, Lemma 3.1] we deduce an analogous result.

Lemma 6.9. Let Hypotheses 6.7 be satisfied. Then, the function 1 in (6.15) is Borel measurable, and
there exists a positive constant C such that

—C(1+|2|%) < ¥(t,z,2) < L(t,z,u) + |z|lglulg, t€[0,T], x€E, z,uc H. (6.16)
Further, if the minimum in (6.15) is attained, it is attained in a ball of radius C(1 + |z|g), i.e.,

t,r,z) = inf
vl ) w€H,|ulp <C(1+|z|m)
Ut @, 2) < Utz u) + (z,u)m,  |ulp = C(1+ |z|0).

{U(t,z,u)+ (z,u)g}, t€[0,T], x€E, z€ H, (6.17)

Finally, there exists a positive constant C' such that, for any x1,x2 € E, 21,22 € H,
[h(t, @1, 21) — Y(t, 22, 22)| < C|o1 — 22|p + |21 — 22|l(1 + |21 + [22]m)), ¢ €[0,T]. (6.18)
The HJB equation associated to the control problem (6.3), related to the controlled state equation
(6.12), is given by

{ 2u(t,2) = —2v (o) + ¥ (t2,v(t,2), VOV "u(ta)),  te[0.T], 2 € E, (6.19)

o(T,z) = ¢ (x),

where 1 is defined in (6.15). The HJB equation (6.19) turns out to be a semilinear Kolmogorv equation
as (4.16), with ¢ and ¢ satisfying Hypotehsis 3.1. So by Theorem 5.4 its mild solution can be represented
in terms of the solution (X%, Y%% Z4%) of the forward-backward system (3.1).

In the following Theorem we state and prove the fundamental relation, and we characterize the optimal
control with a feedback law.

Theorem 6.10. Let Hypotheses 2.1, 6.7 hold true, and assume that Hypothesis 6.1 holds true with a
constant B such that f —a < 1/2. Let X"%% be the mild solution of (6.12),V (t,z) be the value function
of the control problem (6.3), and v be the mild solution of the HJB equation (6.19). Then, for any
(t,x) € [0,T] x E and u € -, the so called fundamental relation holds true:

T

’U(t,x) = J(taxau) + E{/ (w(saX?I’ua Z?I) - g(st?z’uaUs) - Z;f,mus) dS] .

T

In particular, v(t,z) < V(t,x), for all (t,x) € [0,T] x E. Moreover, if there exists a measurable function
~v:[0,T] x E x H— H satisfying

w(taxaz) = K(t,x,v(t,m,z)) + <Z,’Y(t,$,2)>H, te [OvT]v T e E7 z € H>
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then
o(t,z) =V(t, x)

and, thanks to (6.17), the process @ defined by
U = (s, X2 Vou(s, X2V, XD"(-A)"*) for-ae. s € (0,T), P-as.,
belongs to U and it is optimal.

Proof. The proof is standard and follows the same lines of [9, Proposition 4.1]. We notice that, by
Proposition 6.6-(4), problem (6.12) admits a unique mild solution X**% for any u € %. Further, for any
u € %>, we introduce the family of stopping times 7,, defined by

T, := inf {7- €tT]: / lus|3ds > n}, n € N.
t

Then we proceed as in [9, Proposition 4.1], by applying the Girsanov Theorem and using the fact that
1) satisfies Hypothesis 3.1-(ii), and that the pair of processes (Y%, Z%%), solution to the Markovian
BSDE in (3.1), are identified respectively with the solution v of the HJB equation (6.19) and with
its directional derivative V(=4 “y. Namely, by Theorems 5.1 and 5.4, Y5* = v(s, X1*) and Z4* =
Vvu(s, X5V, X584 (—A)~. |

Example 6.11. We now exploit Example 2.4 with n = 1, namely we present an heat equation with
additive noise in dimension less than or equal to three. As we will see, we consider the space of con-
tinuous functions, where the heat semigroup with Dirichlet boundary conditions turns out to be analytic.
Heat equations, and in general reaction diffusion equations, arise naturally in applications from physics,
chemistry and so on, and it is interesting to treat optimal control problems related to them in the Ba-
nach space of continuous functions: this allows, for instance, to control some variable of the state, say,
the temperature, in specific points, see below for a mathematical formulation of this problem. Besides
the interest in the related controlled problems, we are able to consider dissipative drifts with polynomial
growth.

In the complete and filtered probability space (Q, F,{F, t > 0},P), let us consider the equation

ZX(1,8) = Ly 2 X (1,8 — (X (1,€))° + Qu(r,©) + QW (,€), TE€[t,T], (€0,
X" (r,8) =0, T€][t,T], €0, (6.20)
X“(t,f)zxo(f), e,

where 0 C R, d < 3 is an open bounded set, and W (r,€) is a space-time white noise on [0,T] x R%.
The process u(T, &) is a predictable process such that u(t,-) € L?(O;R). We denote by A the realization
of the Laplacian with Dirichlet boundary conditions and we consider Q = (—A)™%. As already noticed in
Example 2.4, the operator A and Q satisfy Hypothesis 2.1.

Let H := L*(0;R) and E := C(O;R). If v € E, equation (6.20) can be reformulated in an abstract way
in the Banach space E as

dXWh® = AXH0dr + F( XY dr + (—A) " %urdr + (—A)~*dW,, 7€t T), (6.21)
XM =20 € E, '
where F(X%H%) = — (Xf’t’m)g, and it satisfies Hypothesis 2.1, points 3 and 4. Clearly F is not well
defined on the whole Hilbert space H but it is well defined in E.
We then introduce the cost functional, that has to be minimized over all admissible controls % :
T
J(t,z,u) =E / (s, X257 ug)ds| + E [gb(X;f’t’I)] (6.22)
t
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with

fs.0) = [ (s, (©) de) + 1 ( [ 1@ |2d5) , (6.23)
o(z) == rgneaé( |z(§)| A k. (6.24)

Here k > 0 and p is a finite regular measure on . The current cost in (6.23) is well defined on the
space of continuous function on O, but for an arbitrary p it is not well defined on the Hilbert space of
square integrable functions. Moreover, the final cost in (6.24) is well defined on the space of continuous
functions, but it is not differentiable. This example shows therefore that in the Banach space framework
we can treat a larger class of stochastic optimal control problems than the one covered by the previous
Hilbert space theory.

Concerning the functions ly and l; appearing in (6.23), we ask that, for all s € [0,T], ¢ — ly(s,¢) is
bounded and continuous from R to R and Iy : [0,4+00) — R is continuous with

0<h(y)<l4+y and I(y)>Cy, y>R%

Under these assumptions the function ¢ defined in (6.23) satisfies Hypothesis 6.7.

6.2 The case () = I with a special running cost

In the present section we deal with control processes u € %, and with the controlled equation

{ dX" = AX dr + F(X")dr 4 urdr + (—A)~*dW,, 7€ [t,T], (6.25)

Xp'=x€E.
The controlled equation (6.25) has a different structure towards (6.12) considered in Subsection 6.1, so
the problem is different, and we need different assumptions on the cost functional (6.2).

Hypothesis 6.12. Let ¢ : E — R and £ : [0,T] x E x H = RU {400} be two measurable functions
satisfying the following properties.

(1) ¢ is continuous and bounded.

(ii) For allt € [0,T], u € D((—A)%), the function x — L(t,z,u) is bounded and continuous from E
onto R. For allt € [0,T], x € E, the function u s £(t,x,u) is continuous from D((—A)%) onto R.
Further, there exists ¢, C, R positive constants such that, for allt € [0,T], x € E andu € D((—A)%),

0 < l(t,z,u) < c(1+ |ula)?, (6.26)
((t,z,u) > Clul2,  |ulo > R. (6.27)

(iii) There exists a positive constant L > 0 such that, for any t € [0,T], u € D((—A)*), 1,22 € E,
|e(t, z1,u) — L(t, x2,u)| < L|z1 — 22| E-
Remark 6.13. Condition (6.27) in Hypothesis 6.12 implies that, if u does not take values in D((—A)%),

then J(t,x,u) = +oo. In particular, inf,cqp J(t,7,u) = infyeq, J(t,x,u), so we can limit ourselves to
consider here the space of admissible controls Us".

Remark 6.14. Under Hypothesis 6.12-(ii), there exist positive constants ¢, R such that, for anyt € [0,T),
r € E, ue D((—A)%), we have (t,z,u) > c(Ju|?2 — R?).
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We introduce the Hamiltonian function

Y (t, x, 2) = D%?fA) ){K(t,m,u) + (z,(—A)*uyy}, te€l0,T], z€E, z€ H. (6.28)
ue —A)x

Arguing again as in [9, Lemma 3.1}, we infer the following properties of 1.

Lemma 6.15. Let Hypotheses 6.12 be satisfied. Then, the function ¥® in (6.28) is Borel measurable and
there exists a positive constant C' such that

—C(1+|2|%) < vt 2, 2) < Lt z,u) + |2|mlula, t€0,T], 2€E, z€ H, uc€ D((—A)*). (6.29)
Further, if the minimum in (6.28) is attained, it is attained in a ball of radius C(1 + |z|m), i.e.,

t,x,z) = inf Ltz ,u) + z2(—A)%u}, te€l]0,T], x€FE, z€ H. 6.30
v ) ueD((_A)&)vluLwSC(I'HZIH){ ( ) (=4 u} 0.7] (6.30)

Finally, for any 1,22 € E, 21,22 € H, ¥, there exists a positive constant C' such that
[ (21, 21) — P (E, 22, 22)| < C(|lz1 — 22| + |21 — 22|w (L + |21|m + [22|w)), t€[0,T].  (6.31)

The HJB equation associated to the control problem (6.3), related to the controlled state equation
(6.25), is given by

{ 8 (1) = — Lo (t,2) +9° (62,0(,2), VOV u(t,2)),  te0,T], z€ B, (6.32)

o(T,z) = ¢ (x),

where 1* is defined in (6.28). Again, the HJB equation (6.32) turns out to be a semilinear Kolmogorv
equation as (4.16), with ¢¥® and ¢ satisfying Hypotehsis 3.1. So by Theorem 5.4 its mild solution can be
represented in terms of the solution (X%% Y% Z6%) of the forward-backward system

dX, = AX.dr + F(X,)dr + (=A)~dW,, 7€ [t.T),

Xt =,
dY, = (1, X, Y, Z,) dr + Z» dW,, 7€ [t,T], (6.33)
YT = ¢(XT)7

which is nothing else than the forward-backward system (3.1) with v instead of 1.
As in Subsection 6.1, in the following Theorem we state and prove the fundamental relation, and we
characterize the optimal control with a feedback law.

Theorem 6.16. Let Hypotheses 2.1, 6.12 hold true, and assume that Hypothesis 6.1 holds true with
a constant 8 such that 8 — o < 1/2. Let X»®" be the mild solution of (6.25), V(t,z) be the value
function of the control problem (6.3), and v be the mild solution of the HIB equation (6.32). Then, for
any (t,z) € [0,T] x E and v € %",

T

v(t,z) = J(t, z,u) + ]E/ (U (s, XE2M, Z5%) — (s, X1 ug) — Z0" (— A)%us) ds.
In particular, v(t,x) < V(t,x), for allt € [0,T], x € E. Moreover, if there exists a measurable function
~v*:[0,T] x Ex H— D((—A)%) satisfying

v (t,x,2) =Lt z,v*(t, x, 2)) + (2, (—A)*v*(t,2,2) )y, t€[0,T],x€FE, z€ H,
then

v(t,z) =V (t,z)

and, thanks to (6.30), the process

al = 7%(s, X5 V(s XTT )V, XTW (—A)™) for-ae. s € (0,T), P-as., (6.34)

belongs to %> and it is optimal.
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Proof. Notice that by Proposition 6.6-(ii), for any u € %" there exists a unique mild solution X%**
to (6.25) which satisfies (6.10). The proof is similar to the one of Theorem 6.10. The main difference
consists in the fact that, for any given u € %", we introduce a family of stopping times depending on
the norm | - |4:

Tn::inf{Te[t,T]:/ |us|id.s>n}, n € N.
¢

Then, we set u}} :=u,1,<;, +uolr>r,, up € D((—A)*), and we introduce the process
T
wr.=w, —I—/ (—A)*ulds.
t

Afterwards, we apply the Girsanov Theorem: writing u, = (—A)~%(—A)%u, in (6.25), we get that X ="
is mild solution to

dX, = AX,dr + F(X,)dr + (—A)~dW?, e [t,T],
Xt =x€FE.

By (6.31) in Lemma 6.15, we see that Hypothesis 3.1-(ii) is verified by ¥*. We conclude by arguing again
as in [9, Proposition 4.1] and in Theorem 6.10. O

6.3 The case () = I with a general running cost

In this subsection we deal with the general controlled equation (6.25) under Hypothesis 6.7 on the
coefficients of the cost functional, and we consider control processes u € %. Unlike the two cases just
treated, in this framework the HJB equation would not have the structure of equation (4.16 ) since the
Hamiltonian function would depend on Vv, not only on the directional derivative V(=4 "4, see e.g. [8],
formula (6.67) and the discussion related to formulas (4.278)-(4.279). Up to our knowledge, when ¢ in
only continuous, the well posedness of such an equation is an open problem: in [3] an equation of this
type is solved in mild sense with Lipschitz type assumptions on the final datum ¢.

For this reason, we will not end up identifying the value function (6.3) with the solution of the HJB
equation, but instead we will approximate it. The following result will be used in the aforementioned
approximation of the value function.

Proposition 6.17. Assume that Hypothesis 2.1 holds true. Let t € [0,T], x € E and u,u € %. Then,

T
sup |XE®w - X2 < / lus — is|3; ds, P-a.s., (6.35)
Telt,T] t

where X4®% and X% are respectively the mild solutions to (6.25) with control u and .

Proof. Let us set L(7) := Xb®% — X% and let us assume that L(7) is a strict solution to

L L(r) = AL(7) + F(Xt®") — F(XL2%%) + u, — @y, 7€ [t,T],
L(t) =0,

otherwise we can use an approximation argument as in the proof of Proposition 2.5(ii). Then, the non-
positivity of A, the dissipativity of F', the Cauchy-Schwartz inequality and the Young inequality give

1 1
__|L(8)|H < <’LLS - ﬂ'va(S»H < §|u5 - asﬁq + §|L(S)|%I7 s € [th]v P-a.s.
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Integrating between ¢ and 7 and applying the Gronwall Lemma, we get
|L(7)|% S/ lus — @s|%ds, V1€ [t,T], P-as.,
t

and we immediately deduce (6.35). O

Thanks to Proposition 6.17 we deduce that, up to a subsequence, we can approximate X»®% in H
by means of mild solutions X*%"" of problem (6.25), with u replaced by u”, where (u,) C Y, satisfies
u" = u in %,. In the following proposition we prove that a similar approximation holds true in E.

Proposition 6.18. Let Hypothesis 2.1 holds true. Let t € [0,T], p > 2, and set p’ be the conjugate
ezxponent of p. Assume that Hypothesis 6.1 holds true for some positive constant 3 such that p'8 < 1. Let
u € %, and (u™) C %, be such that u™ — w in %,. Then, for any x € E,

lim | XLou™ — xbeu|p =0, Vrelt,T], Pas., (6.36)

n—-+oo
where (uFr) C (u™) be such that uk» — ugs P- a.s. for a.e. s € (t,T).

Proof. As usual, we limit ourselves to consider the case t = 0. For any n € N, let us set L" :=
Xou'™ _ X®u where X®U'" and X®% are mild solutions to (6.25) with initial datum z and control
processes u*» and u, respectively. Further, let us denote by N the subset of € such that P(N) = 0 and
ubn — ug on Q\ N for a.e. s € (t,T). Then, for any ¢ € [0, 7]

t t
Ly :/ e(tfs)A(F(X;”’“kn) —F(Xf’“))ds—i—/ DAk )ds, P-as.
0 0
which gives
¢ . . ¢ K
L7 < /0 = DA(P(X T4y — (X)) | pds + /O =94k — g )| pds = I7(E) + I(t), P-as.

Let us estimate I and I3 separately. As far as I is concerned, from the boundedness of ¢4 on E,
Hypothesis 2.1-4. and (6.11), it follows that

[eCIAFXET) = FXE) e < oo, s € (0,7),
on 2\ N. Further, from (6.4) it follows that
e IAEXT) = P(XE")|e < et — ) PIF(XE) = F(XE")|a,
on Q\ N, for any s € (0,T). Since F is continuous on H, from (6.35) we infer that |F(X%"") —
F(XZ") g — 0on Q\ N as n — +oo for any s € (0,7). The dominated convergence theorem implies

that I7 — 0 as n — +oo on 2\ N.
Concerning I, from (6.4) and arguing as above we get

¢
I3 (t) Sc/ (t — s) " Plubr — ug|pds < T PHYP ||ukn — ullLeo, ;) — 0, 1 — 400,
0

on Q\ N. This concludes the proof. O
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6.3.1 The approximate optimal control problem

We will consider the Hamiltonian function * in (6.28) under Hypothesis 6.7. This prevents us to obtain
directly estimates as those in Lemmas 6.9 and 6.15, since we don’t have the structure condition and
the assumptions on ¢ are not sufficient to bound the term (—A)®u. For this reason, for any n € N we
introduce the function ¢, : [0,7] x E x H — R defined by

o5, ) = €(s, 2, u) + %|(—A)au\§1. (6.37)

Lemma 6.19. Let A be an operator satisfying Hypothesis 2.1-(i). Then the function ¢,, in (6.37) satisfies
the following conditions: for any (t,z) € [0,T] x H,

0 <ly(t,z,u) <cp(1+|u2) ue D(—A)%),
Jen, R>0: Ly(t,z,u) > cplul2 —cR?,  ue D((—A)%).

Proof. The first inequality directly comes from (6.37). On the other hand, for any ¢t € [0,7], z € E and
u € D((—A)%), by Remark 6.8 we have

1
Cn(t2,u) > e (Julfy — B?) + —|(=A)ulfy > enlulg — cR”.

For any n € N, we introduce the approximate Hamiltonian function

Yn(t, z,2) == D%?fA) ){Zn(t,x,u) +(z,(—A)%uyy}, te€l0,T], x€E, z€ H. (6.38)
ue —A)~

Estimates in Lemma 6.19 give the following result, which is analogous to Lemma 6.15.

Lemma 6.20. Let Hypothesis 6.7 be satisfied, and let A be an operator satisfying Hypothesis 2.1-(1).
Then, for any n € N, the function 1, in (6.38) is Borel measurable, and there exists a positive constant
C,, such that

—Cn(1+ |2|%) < Yn(t,x,2) < otz u) + |2|g|ula, t€[0,T], € E, 2€ H, uc D((—A)"). (6.39)
Further, if the minimum in (6.38) is attained, it is attained in a ball of radius Cp (1 + |2|m), i.e.,

Un(t,z,2) = {n(t,x,u) + 2(—A)*u}, t€]0,T), x€E, z€ H.

inf
u€D((—A)¥),|ula <Cn(1+]|2]H)
In particular, there exists a positive constant C,, such that, for any x1,x9 € E, 21,20 € H,
[Vn(t, @1, 21) — Yult, 22, 22)| < Cn(lz1 — 22|E + [21 — 22|m (L + |21]m + [22|w)), t€[0,T].  (6.40)

For any n € N, we introduce the approximate cost functional defined by
T
Tn(t, 1) = E[ / En(s,X:,uS)ds} +E[®(XY)], (6.41)
t
and the associated approximated optimal control problem

Vo(t, z) := uérga Jn(t, x,u), te€0,T], x € E. (6.42)
2
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The HIJB equation associated to the control problem (6.42), related to the controlled state equation
(6.25), is given by

{ 8 (t,2) = —2v (t,2) + 4" (La,0(t,2), VO "o(t,2)),  te[0,T), z€ F, (6.43)

v(T,z) = ¢ (),
where ¢" is defined in (6.38). The HJB equation (6.43) is the analogous of (6.32) in Section 6.2. So
again by Theorem 5.4, its solution can be represented in terms of the solution (X* Y™6% 7Zn62) of the
forward-backward system
AYte = —y (7, Xb2, Z080)dr + ZrtedW,, T € [t T,
Vit = o)),
dXb® = AXb%dr + F(XL%)dr + (—A)~dW,, 1€t T],
X" =z €E,

(6.44)

which is nothing else than the forward-backward system (6.33) with ¢" instead of .
We consider the following assumptions.

Hypothesis 6.21. For any n € N, there exists a measurable function v, : [0,T] x E x H — D((—A)%)
satisfying

Yn(t,x,2) = L (t, 2,y (t, 2, 2)) + (2, (—A) v (t, 2, 2))g, t€[0,T],z€E, z€ H. (6.45)

We state the analogous of Theorem 6.16 for the approximate optimal control problems (6.42). The
results can be proved by verbatim repeating the proof of Theorem 6.16.

Theorem 6.22. Let Hypotheses 2.1, 6.7 hold true, and assume that Hypothesis 6.1 holds true with 8 < %
Let X*%% be the solution of equation (6.25) and for any n € N, let V,, be the function defined in (6.42),
and vy, be the mild solution of the HIB equation (6.43). Then, for any (t,x) € [0,T] x E and u € U5,

T
’L)n(t,{L') = Jn(tvxau) + E[/ (Z/Jn(S, Xz)w’ua Z;%t’x) - én(saX;’z’uaus) - Z;ht)x(—A)aus) ds}a
where (XH® Y™b® ZmbT) 4s the solution to (6.44). In particular, v,(t,z) < V,(t,x), for all (t,z) €
[0,T] x E. Finally, if Hypothesis 6.21 holds true, then

vp(t, ) = Vo (t, ) (6.46)
and, thanks to (6.30), the process
" = (s, X5 V(s X2T )V, XT8 (—A)™) for-ae. s € (0,T), P-as. (6.47)

belongs to 5 and it is optimal.

6.3.2 A characterization of the value function

In the present section we show that the value function V' of the optimal control problem (6.3) can be
approximated by the sequence (v,,) of mild solutions to (6.43), that are identified with the approximated
value functions (V},), see formula (6.46) in Theorem 6.22. As a byproduct, we deduce that the sequence
(u™) defined in (6.47) is a minimizing sequence for (6.3), and it is a bounded sequence in %.

We start by introducing a family of processes by means of the Yosida approximations, namely for any
u € %, we consider a suitable sequence (ux)g>1 C %5* which converges to u in %. Since @™ € %5 for
any n € N, this would allow to approximate V (¢, z) in terms of J(¢, x, ™).
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Definition 6.23. Let u € %. For any k € N we denote by uy, the function defined as

kR(k, A) (u(t,w)), if u(t,w) is well defined,
ug(t,w) ==
0 otherwise.

Lemma 6.24. Let A be an operator satisfying Hypothesis 2.1-(i). Let u € % and let uy, with k € N, be
the process introduced in Definition 6.23. Then, for any k € N, § € [0,1] and (t,w) € [0,T] x £,

luk(t,w)g < Clu(t,w)]x, (6.48)
[(—A) u(t, )| < csk®|ult,w)|u, (6.49)

for some positive constants C, cs not depending neither on k nor on w. In particular, uy € %5, ux — u
P-a.s., a.e. in [t,T] as k — 400, and

up — u in % asn — +oo. (6.50)

Proof. Estimate (6.48) directly follows from the properties of R(k, A). Further, the fact that up — u
P-a.s., a.e. in [t,T] as k — +oo follows from the properties of Yosida approximations. Then, convergence
(6.50) follows from the dominated convergence theorem, Finally, it easily follows that

[(—A)u(t,w)|g < kClu(t,w)|m,

for any (t,w) € [0,T] xQ and any k € N, where C' is the same positive constant as in (6.48). Interpolation
estimates give (6.49). O

Proposition 6.25. Let Hypotheses 2.1, 6.7, 6.1 hold true. Let uw € % and let u,, with n € N, be the
process introduced in Definition 6.23. Let J, J, be respectively the cost functionals in (6.2), (6.41). Then
for any (t,z) € [0,T] x E we have

J(t,x,uy) = J(t,x,u), n— +oo, (6.51)
Jn(t, T un) = J(t, ,u), n— +oo. (6.52)
In particular, (6.51) implies that
V(t,z) = én%f J(t,z,u), (t,z)€[0,T]x E. (6.53)
u 5

Proof. The last part of the statement is straightforward, after we prove the first part.

We first show (6.52). Since u,, pointwise converges to u, a.e. in (0,7), P-a.s., from (6.50) in Lemma 6.24
and Proposition 6.18 it follows that X%%un — XL%% Poas. in F as n — +oo for any 7 € [t,T]. By
dominated convergence theorem we deduce that

E[®(X55")] — E[®(X5E5Y)], n — +oo. (6.54)

To estimate the convergence of the approximate running cost ¢,, in (6.37), we consider separately the two
terms in (6.37). We stress that

T
E| /t [0, XL, (un)s) — €5, X1, )| ds |

T T
SB[ [ 15, X)) = €5, X )] B[ [ 6, X070 (n).) = €5, X7 )]
t t
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Arguing as above, from Hypothesis 6.7-(iii) and (6.36) we get

[0(s, XLTUn (upn)s) — £(s, X0 (un)s)| SLIXE"Un — XE5% 5 =0, n— +oo, P-as.

Further, from (6.13) in Hypothesis 6.7-(ii) and (6.48) we infer that
[0(s, X3, (un)s) = £(8, X3, (un)s)| < e(1 + |ug|Fy),

for any s € (¢,T"), P-a.s. By dominated convergence theorem we get

T
E[/ €, X2, (1)) = €05, X2 (wn)s)|ds| = 0, n— +o.
t

Moreover, the continuity of ¢ with respect to v and the dominated convergence theorem give
T
E / [0(s, XE5 (uy)s) — £(s, X0 ug)|ds| — 0, n — +o0.
t

Finally, since o € (0,1/2), from (6.49) with 6 = o we have

1 T
EE[/ [(—A)*(un)s|?; ds} < Cn** Mull3, — 0, n — +oo,
t

and this concludes the proof of (6.52).
To conclude, we notice that (6.54), (6.55) and (6.56) give (6.51).

The following theorem constitutes the main result of the section.

(6.55)

(6.56)

Theorem 6.26. Let Hypotheses 2.1, 6.7, 6.21 hold true, and assume that Hypothesis 6.1 holds true with
8> % For any n € N, let 4™ and v,, denote respectively the process in (6.47) and the mild solution to

(6.43). Let V', J be respectively the functions in (6.3), (6.2). Then, for any (t,z) € [0,T] X E,

V(t,z) = nggloo vn(t, ) = HEIEOO J(t,x,a").

Moreover, (™) is bounded in Us.
Proof. Let (t,x)
J(t,x,u.) < V(t,x) +e. We have

||u€||%/2a — 0, n — 400,

¢
n n

VB[ [ AV ).l ds] <
t
which gives that J,(t, z,u:) — J(t,z,u) as n — +o0. It follows that
V(t,z) < Vp(t,z) = Jn(t, z,up) < Jp(t,z,us) = J(t z,us) < V(t ) + €.
The arbitrariness of € gives

lim V,(t,z) =V(t,z), (t,x)€[0,T]x E.

n—-+oo

(6.57)

€ [0,7] and € > 0. From (6.53) it follows that there exists u. € %* such that

(6.58)

Then the first equality in (6.57) follows from (6.58), recalling that, by Theorem 6.22, V,, (¢, x) = v, (t, x)

for any n € N.
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On the other hand, since V,,(¢,z) = J,(t,z,a"™) for any n € N,
V(t,x) < J(t,x,a") < Ju(t,x,a") = Vi (t, x),

so that, taking into account (6.58), the second equality in (6.57) follows.
Finally, let us prove that (a™) is bounded in %%. Assume by contradiction that there exists a subse-
quence (uy, ) C (a") such that [lug, [|%, > n for any n € N. Then,

T T
n <l = [ (] un, ()Pd)as+ [ ( [ uk, (5) PP ) ds
t {lug, (s)|la <R} t {lug, (s)|la>R}

T
§TR2+/ (/ |ukn(s)|2d]P’)ds.
¢ {lun, |>R}

On the other hand, since £ is nonnegative and satisfies (6.27),
T
IE[/ E(S,Xf",ukn(s))ds]
t
T T
= / (/ g(S’X;cn,ukn(s))d}P’>ds —|—/ (/ g(S,Xf",ukn(s))d]P)ds
t {luky, (s)lm <R} t {luky, ()la >R}

T
2/ (/ k., (5) P ) ds.
¢ M, 0la>R)

Therefore E[ftT U(s, X uy, (s))ds] > n — TR?, which contradicts (6.57). O

Remark 6.27. [t is possible to get an explicit rate for the convergence on J(t,z,a™). Indeed, computa-
tions in the proof of Theorem 6.26 give

[ (t,z,a") = V(t2)] < [Valt,z) = V(E,2)] < [Jult,2,ue) = V(E )] < e+ Cnuellfp,

for any n € N and any € > 0.

7 Proofs of Section 3

7.1 Proof of Proposition 3.6

Thanks to (3.4), (3.5) and to Proposition 3.3, the pair of processes (Y™, Z™!) is bounded in .#?([t, T]) x
AP([t,T); H), uniformly with respect to n,l. The BSDE satisfied by the pair of the difference processes
(Y™ — Y, Z% — Z) is
{ Ay —Y;) = (U(1, X+, Yr, Z:) — (7, X2, YU Z00)) dr + (220 = Z7) dW,, 7€ [t,T),
Yt = Yr = ¢u(X1) — ¢(X7).

Writing the previous equation in the integral form, we get

YTn,l . YT
T T
— 6 (X7) — S(X1) —/ (Zm — 2,) dw, +/ (W8, X, Yar Z0) — (s, Xo, Y, Z,)) ds

T T

T
+/ (th1(5, Xo, Yo, Zo) — (s, Xo, Yo, Z00)) ds
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T
+ / (th1(5, Xa, Yo, Z00) — ain(s, X, Y Z00)) ds

T
—pn(Xr) — S(Xr) + / (05, Xo, Yo Zs) — (5, Xo, Yor Z4)) ds

/ i(s, Xs,Ys, Zs) — hi(s, Xs, Yy, Z0)

T
(2, — ZY) ds — / (Z™t — Z,) dw,

Z an
X, Yo, Z) — oy (s, Xo, YL, 2001
wl S, Agy Xy Lg ) W(S, sylg s lg )(Y;—Yn’l) ds
sz 7szn,l s

T

T
=¢n(X1) — ¢(XT) + / (V(s, X5, Ys, Zs) — thi(s, X7, Ys, Zs)) ds — / (zmt — Z) dwr!

/ wl S Xsyifsvznl) wl(stS7}/.sn7l’Zg7l)
Y o szn,l

(Y; _Y'Sn,l) dS,

where in the last passage we have used that

T "t/)z(S,Xs,Ys, Zs) - wl(S,Xs, Y, Z;L’l)

Wb =w, — — ds, 12>t
Zs— Zs
which, by the Girsanov Theorem (see, e.g., [0, Theorem 10.14]), is a cylindrical Wlener process under an
equivalent probability measure Q™!. Taking the Q™!-conditional expectation EQn [ = Egnal|F], we
get
T

VP Y B 00 (Xr) — 60X + B | [ (00 X0 Ve 20) = (5, Xo,Yau 22)

T

/ lel S XsaYsaan) Tpl(saXSstn’le?’l)
in Y an’l

(¥, = ™) ds].

By taking the absolute value, the expectation and by applying the Gronwall lemma, we deduce that, for
allp > 1, Y™ — Y in #P([t,T]) as n,{ — oo, with respect to the probability measure Q™! and also
with respect to the original probability measure.

For what concerns the estimate of Z — Z™!, by applying the Ité formula to |Y™! — Y|? we get

T
B[l - il +E[ [ 122 - 21f3 ar)
t

— E[|on(Xr) - 6(Xr)P"| - 28] TP ) (6 X Yo Z0) (X Y, 220

t

T
<E[6,(Xr) ~ 6(Xr) | + 28] [ V2 = Vo0 X Vi 22) = (X Vi 20| d]
t
T
n 2E[/ Y Y, |[ (7 X, Yoy Zy) — (7, X, YL Z090)| dT}
t

T
B[ 6n(Xr) = 6(Xr)*| + 28| sup ¥ - V| | WX Yo, 20) — i X Ve 2,) ]
Tet,T t

T
+CE[ sup |YT”’Z—YT|/ L+ 1Y =Y 412 = 20 (1+|ZT|H+|Zf*l|H))dT]
TE[t,T) t

Let us consider the right-hand side of the above inequality. Thanks to estimates (3.4), (3.5) and to
the boundedness of Y and Y™! in .#P([t,T]; E), the first two terms converge to 0 as n,l — oo by the
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dominated convergence theorem. For what concerns the third term, by applying Holder’s inequality with
P, q conjugate exponents, we get

T
E[ sup |YT”’Z—YT|/ (1+\YT—YT"’I|+|ZT—Zf’l|H(1+|ZT|H+|Zf’l|H))dT}
TE[t,T] t

1

<o(s[ e =) (B[ 120 200r) ) o

as n,l — oo. The stability result for p = 2 follows, and we can pass to the case of general p in a usual
way. O

7.2 Proof of Theorem 3.10

The differentiability properties of (X* V%% Z%%) and the identification formula (3.11) directly follow
respectively from Proposition 3.7 and formula (3.2) in Theorem 3.2.

Let us now prove identification formula (3.12) for Z. Fix t € [0, T]. By the definition of the function
v, wWe can write

v (T, Xﬁx) +/ Zb AW, = v(t, ) +/ Yodo, 0<t<71<T, (7.1)

t t
where we have used the notation 1, := (o, Xt%, Y% Z1%). Notice that towards [17] we do not have
Y € #*([0,T]), but we only know that ¢ € LP(Q2, L*(0,T;R)) for any p > 2. As in [17], we define a

family . of predictable processes with real values in the following way:

S = {predictable processes 7 : for any k=0,...,2" — 1,

kT

ml[,LT (k+1)T)(t):77k (th"”’thk> fOI'OStl S Stlk S o
PRI 2

7" bounded functions in C*°(R"*,R) with bounded derivatives of all orders}.
We will briefly write 1, = n;(W.), where by W. we mean the trajectory of W up to time .
Let us set & := ns for ¢ € Fy. From now on we fix s > ¢, and § > 0, small enough such that s —§ > ¢.

We also identify H with its dual H*, and we write £ for £*. Multiplying both sides of (7.1), with 7
replaced by s, by fss_ s$0dW, and taking the expectation, we get

]E[v (s, X1) / ; gadW[,} :E[ /t " bodo / ;g,,dwg} +JE[ /t " gteaw, / ;ggdw,,] (7.2)

It is immediate that

o [ oo [ ) =0, 5[ [zraw [ ] =5[ [z

so (7.2) simplifies in

E[v (s, X1) /:éggdw,,] :E[/S:%da /jggodwa} +]E[/:6 Zbe 5,,da]

By dividing both sides of the previous equality by § and letting § — 0, we get

E[z27¢] = lim lE[v (5, X1) / ) £ dW, | — lim %]E[ / " yodo / ) E-dW, . (7.3)
s—0 s—04 s—0

5—00
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We will prove that

lim g (v (s, X2) / 55 £ AW, | = B[V, (u(s, X)) (-4) ¢, (7.4)
lim %]E[/s;z/},,da /s;g(,dwg} —0. (7.5)

If (7.4) and (7.5) hold, then, by (7.3), for every n € ., E[ZL%ns] = E[Vv(o, X5*)(—A)~%n;s] for
almost every o € [t,T]. By the arbitrariness of n, we would have, for almost every o € [t,T], ZL%¢ =
Vo (v(o, X5"))(—A) =, P-a.s. for all ¢ € Ey, and the formula (3.12) would follow.

Let us thus show that (7.4) and (7.5) hold true. We start by proving (7.4). One proceeds as in [1],
following also [17]. In particular, for 0 <t < o < T, we define

We =W, — €/0£T (We)dr, (7.6)
t

where &.(WF) depends on the trajectories of W up to time r, and the dependence is given by the
definition of 1. The process (W¢), is defined as the solution of (7.6), which is not considered as a
stochastic differential equation, as specified in [1, p. 476]. Equation (7.6) can be solved step by step in
each interval

[kT (k+1)T

272—n> k=0,...,2" 1.

(W), is well defined for every 0 < o < T, see [17] for more details. Moreover, W¢ is a function of the
trajectories of W up to time o, that is, W = WZ(W.), and we can write

W§:Wa—5/ & (W (W) dr, 0<t<o<T.
t

Now we define a probability measure (). such that

W ep (o[ & e aw, —5 [ e v wy)ao).

By the Girsanov Theorem, under Q., Wi = W, — e[ &.(W#(W.))dr is a cylindrical Wiener process in
H. By this construction of (W¢),, it is also clear that for every 0 < o < T, W¢ is pathwise differentiable
with respect to ¢ and 2 S = —/ &-(W.)dr, see also [1, p. 476].

t

de|le=0""0 —

By (7.1), the random varaible v(s, X!?*) is square integrable and

S

E[v?(s, Xt)] gc{1+1E{(/tsg,,dW(,)2} +E| /:%daf”

&:{HE[/: |£0|§1da] +]EH /tsngdaﬂ} < 0.

S
Therefore, by the Cauchy—Schwarz inequality the expectation of v(s, X1®) / &,dW, is well defined.
s—0
We claim that

d

E[o (s, X2) / _éggdwg} = 4B [0 (5 X07). (7.7)
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As a matter of fact,

d t,x _ d t,z s 62 S N
£|5:0EQE [v (s, X)) = E\a:oE [U (s, X5%) exp (5 /375 edW 5 — 5 /575 ||§U||Hdg>]

—~ lim v (5, X!) é{ exp (s/;gadwg - %/_6 €15 do) = 1}] = E]v (s, X27) /s;ggdwg],

where in the last passage we have used the dominated convergence theorem being £ bounded.
Now notice that, in (Q,.%,Q.), X%® is a mild solution to the equation

dXP* = AXDPdr + F (XL%) dr 4+ (—A)"%e& (Wo)dr + (—A)~“dWE, 1€ [s—6,T].
On the other hand, in (2, #,P), we consider the process X¢ which is a mild solution to the equation

{de AXEdr + F (X2)dr + (—A)~%ct, (W) dr + (—A)~dW,, 1€ [s—6,T],
__)(tz
s—0 s—4"

Then the process X*? under Q. and the process X¢ under PP have the same law, so (7.7) yields

d

IE[ s, X1) / §UdW E[v (s, X°)]. (7.8)
d5|5 0
Let us set XT = %lszoXi and A°X, = Xi;X’, P-a.s. for any 7 € [s — 4, T]. Arguing as in [17], one can
prove that
lim |A°X, — X, |5 =0, X, = / VXX (LAYt do, TE[s—8,T], Pas.  (7.9)
E—> s—&

Formula (7.9) in turn allows to show that

&m0 (05, X2) | = E[Vav (s, X17) X, | = E[T,0 (s, X17) / 55 VXN (- A)ydo]

so that formula (7.8) gives
E{v (s, Xb%) / gadWa] - E[Vzv (s, Xt) / VIX,?’X?“(—A)-aggda] (7.10)
s—0 s—6
By (7.10) we have
. 1 t,x
}1_1)1%) SE v (s, X0")

) {vxv (5, X17) Vx5 (—A)“’&s} =E {Vm (v(s, Xﬁ’z))(—A)‘%s]

§,,dWU] = lim 1IEZ [Vzv (s,Xz’I) / Vng»Xf;w(_A)D‘ggda]
5—6 6—0 0 5—6

so (7.4) is proved.
It remains to prove (7.5). Recalling identifications (3.2)-(3.3), we have

1 S
E]E[ W(o, X, YT, Zte) da/ 5,,dW
s—0

= %E[/S;q/)(a, Xo,v(0,X,),u(o, X,))do /5—5 fgde}
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1d s
= <T5= E Xe& Xe€ Xe
6 da |€:0 |:/S_6 w(aj o) U(U, 0')7 U(O', O'))do.:| ,

which is the analogous of formula (7.8) with f5 := / 1,do in place of v. Now we notice that
-

X, Y, Z,

| =

where we have used the notation
d d
(— Y.

Y, Z) = =
( ) d€|5=0 dé‘\s:O

Z) = (Vao(o, X2)X, Vau(o, X2)X).
By (7.9) and (2.5), we have

|X7’|E < l O',Xé’m

0

(—A)_a&,da‘E <C, Tels—4T)

On the other hand, the pair of processes (Y7 Z ) is solution to the FBSDE

V(T XET, YT, 250 2, dr — Z.dW,, T € [s - 6,T),

YT = qu)(X%I)XT’
dXT = AXTdT + VF(Xi’x)XTdT, T E[s—196,T],
X5 = O

d
&) _01/1(0,Xf,,v(a,Xi),u(a,Xﬁ)) Vo — +Vng + V.1, 5 €[s—0,T],

—dY, = V(r, XLT, YT, 25N X dr + V (7, XET, YT, Z6)Y dr

(7.11)

(7.12)

(7.13)

(7.14)

Moreover, taking into account (7.13) and the linearity of the BSDE (7.14), we get that the pair (Y, Z)

satisfies the estimates

By Hypothesis 3.1,

Vaths
Therefore, collecting (7.12)-(7.13), (7.15)-(7.16) and (7.17), (7.11) gives

EE{ ’

; Yo, XE¥, V", Z5%)do / €AW, |
5—38

s—0
s

= 1 [ iw(a7 Xg,,/U(O', ch,),u(a, Xg))daj|
0 s— 5

:]E[/Sé( o =2 +vywa. +vzwgé)da]

s—
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(7.15)

(7.16)

(7.17)



SC(H—CE[/: IVwaIM “CEUS Vg Zelt |Z lm

] < C&—HE[/S; |Za|§1da}

which goes to zero as ¢ goes to zero. This shows that (7.5) holds true and concludes the proof. O

7.3 Proof of Proposition 3.12

In the following Cr will denote a positive constant which may depend on 7', L., Ky, K4 but not on V¢,
and that may vary from line to line. We fix (¢,2) € [0T] x E.

We start by proving estimate (3.14). We first take ¢ and 1 differentiable. By Proposition 3.7, the triple
of processes (X%, Ve Z4%) is Gateaux differentiable as a map from E with values in #2((t, T); E) x
S2([t,T)) x #*([t,T); H), and for any h € Ey, the triple of processes (V,X"* V,Y"®h V,Z"%h) is
solution to (3.9), and satisfies estimate (3.10).

Let us now introduce the process

we =W, —/ V.(s, XL, YET 780 ds, T € [t,T),
t

where Q is the probability measure such that W@ is a Brownian motion in (Q,.%, (%;)i>0, Q).
Let us fix h € Ey. Arguing as in [19, Proposition 3.6] it follows that

thh _eft SX YtTthdvaYTt,zh
+/ ! T XIS AING (s, XU Y, 255V, X hds, 7 € 1, T,
t

Therefore, (|Fﬁ’zh|2)76[t)T] is a Q-submartingale, which implies, thanks to identification formula (3.12),
that

E@ / |FLop) ds] (T = O|FF b = (r — )| 20" (= A)*h|, T€t, T). (7.18)

Further, since v is differentiable and Lipschitz continuous with respect to x and y, and VX% is bounded
(see (2.6)), we deduce that

|FE"h|? < Cp (VoY R + hlY), 7€t T), P-as. (7.19)

It remains to estimate |V,Y*h|. To this aim, we recall the well-known estimate
Q [ p/2
BQ[( [ |zt7hds) | <Clelln, TeltT) (7.20)
t
for some C' > 0 and any p < +o0. Formulas (7.20), (3.12) and (2.15) give
B[ [ Ivyienpas) < B9 [ |27 (- A) VXL bds] < @I I(-A) Ry, 7 e [ T
t t

which, together with (7.18) and (7.19), allows us to conclude that

CT

1207 (—A)hp <

7 |(=A) G, he B

Let now fix h € H. We notice that in this case we can write h = (—A)*(—A)~“h. Therefore,

Cr

12 hP =120 (- A ()P <

(=A)*(=A)~ "Rl <

h € H,
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which provides (3.14) in the case of ¥ and ¢ differentiable.
Finally, the case ¥ and ¢ non differentiable can be obtained by approximating ¥ and ¢ with ,, and ¢,
in (3.6) and (3.7), respectively. For the proof we refer to [19, Proposition 3.6].

Let us now prove estimate (3.15). Again, at first we prove the result when ¢ and ¢ are differentiable
and then we generalize it by approximation. Let us fix h € Fy. For any t < n < 7 < T, the submartingale

property of (|F§’$|%I)S€[t’T] gives
E@[/ |Fst’mh|2ds] :/ EQ[|Fth|?]ds z/ EQ[|FL*h|)ds = (r — n)EQ[| FL7h[?]. (7.21)
n n n

Moreover, for any 7 € (¢,T] we split

E@[ /t TlF;?“hlzds} :EQ[ /t e IFst’””hIst] +]E@[ /(:

Let us evaluate separately I; and . Concerning I, identification formula (3.12), (7.20) and (2.14) give
E@[/ |vyj>fh|2ds}
U

<B[ [ |28 (- A X has]
n

|Fst’zh|2ds] =1 + . (7.22)
+7)/2

# Crtr =072 (lafy st 4 20 s pAl]) e [ 172 s

TE[t,T)
< Cr||®|1%|hl (n — 1)~ (7.23)
Hence, from (7.19), (7.21) and (7.23) it follows that
—t —2a
B Fyhl) < Crlelln (U0 +1), t<y<rsT (7:24)

By applying Fubini’s theorem and (7.24), we infer that

(t+7)/2 (t+7)/2
I < Crlj @l Al (7~ t)_l/t (s — ) "2ds + (r — t)_l/t ds|
= Cr|h|H (T —t) 72 + (1 — )] < Cp|h|} (1 — )72, t<n<t<T. (7.25)
As far as I is concerned, we take advantage from (7.19) and (7.23). Then, for t <n <7 < T we get
I < Crlhlfy [(r =) + (1 = )7**] = Cr[lG (T — ) + (1 = )] < Crlhlf(r —t)7**. (7.26)
Thus collecting (7.21), (7.25) and (7.26), we have

(1 — n)EQ[|[F-"h)?] < EQ/ |FB*h|2ds < Cr|h|%(t — )72, t<n<7<T,
t

so that

1
I —
(=t i
Let us now fix h € H, and let us consider a sequence (h,) C Ey such that h, — h as n — +oo in H.
Taking (7.27) with h replaced by h,, and letting n — +o0, it follows that

C

Inequality (3.15) follows from (7.28) by taking 7 =T and n = t. |

EQ(|F}*h*] < Cr heEy, t<n<rt<T. (7.27)

EC[|Fyehf’] <
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