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Combining Vision and Tactile Data
for Cable Grasping

Alessio Caporalib, Kevin Galassib, Gianluca Laudantea, Gianluca Pallib, Salvatore Pirozzia

Abstract—In this paper, the problem of properly combining
vision and tactile data to locate a deformable linear object, such
as a cable, and grasp it according to a required position and
orientation of the cable is considered. Tactile sensors suitably
developed for this task are adopted in the experiments together
with a vision algorithm based on deep learning for the detection
of the cable shape from a 2D camera image. The vision system
is initially adopted to locate the cable in the scene and execute
the grasp, then the tactile sensor is used to estimate the cable
shape and position after grasping. The capability of the systems
of performing cable regrasp by correcting the grasp pose thanks
to the tactile data acquired during the first grasp is considered
to deal with the cases in which the vision system can’t be used
because of occlusions. Experimental trials show the capability of
improving significantly the quality of the grasp thanks to tactile-
based regrasping. Finally, the fusion between the shape estimation
provided by the vision system and the one provided by the tactile
sensor is also presented.

Index Terms—Robotic Grasping, Deformable Objects, Sensor
Fusion, Shape Estimation

I. INTRODUCTION

The successful manipulation of Deformable Linear Objects
(DLOs) strongly depends on knowledge of their geometrical
characteristics, especially because they can change shape on
the basis of interaction with the environment. To tackle this
kind of task the robotic systems needs to be equipped with
sensing tools able to provide the correct needed information
about the object to grasp. In literature, the object character-
istics are very often estimated by using tactile sensors and/or
vision systems. These last are almost always used due to their
efficiency in data collection [1], [2]. The approaches based
only on the vision may fail in presence of occlusions, light
variations, obstacles and in these cases the tactile sensors can
be used to overcome the encountered limitations. For these
purposes, recognition strategies based on tactile sensor data
have been proposed by several researchers: in [3] the authors
propose to reconstruct the object models from discrete tactile
point clouds; in [4] authors propose a bag-of-words approach;
Meier et al. [5] present a probabilistic spatial approach; in [6]
the authors propose a Bayesian approach to estimate poses
of unknown objects. Recently, many researchers have been
working on integrating vision and tactile data [7], [8], [9].
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Fig. 1. Setup representation: a 2D camera is placed at a known distance from
the wire positioned over two supports. Behind the cable there is a Pollock
image to show the capability of ARIADNE. The different reference frames
are reported.

However, none of these past works deals with the detection
of the position and the shape of DLOs. The latter, performed
by exploiting both tactile sensors and/or machine vision, has
been already demonstrated by the authors in [10]. In this paper
the wire shape estimation, previously proposed in [11], is
extended to the new tactile sensor (with 5 × 5 taxels) and
integrated with the vision system. More in detail, this paper
aims to describe possible strategies and algorithms concerning
the wire grasping by exploiting the data available from a vision
and tactile system. The vision system is used to recognize
the cables to grasp and to implement an approaching phase
through a vision-based control algorithm. After the cable
grasping based on vision data, the tactile sensor is used to
evaluate the grasp quality, in order to release and re-grasp the
cable if the first approaching phase did not allow to obtain
the desired grasp. In particular, the tactile map is used to
evaluate the position and the orientation of the wire with
respect to the end-effector frame and to compare it with a
desired pose. The grasping pose correction is useful in all
tasks where the cable have to be precisely positioned: e.g., in
switchgear assembly, where the cables have to be inserted into
the small connectors of the electro-mechanical components.
No prior knowledge of cable mechanical characteristics (e.g.,
length, stiffness, diameter) are hypothesized for the proposed
approach. Moreover, assuming that the location of the cable is
barely known, the correction of the cable grasping pose based
on the output of the tactile sensor only is also evaluated. The
proposed procedures are experimentally tested with different
DLOs. A fusion of the shape reconstructed by using the vision



system with the shape estimated by the tactile sensor is shown
as starting point for future developments. A video with a
sequence of sub-tasks has been prepared to clarify the various
proposed phases.

II. USE OF VISION DATA FOR CABLE DETECTION

For the grasp test, a 2D camera is placed at a known
distance from the cable. Figure 1 shows how the camera and
the grasping pose reference frames are arranged in space.
Moreover, a fiducial marker is placed in a known position on
one finger in order to estimate the camera position with respect
to the robot: the marker is detected by the camera providing
its position in the camera frame, as shown in Fig. 2a, then the
knowledge of the marker position in the world frame thanks
to the robot kinematics is exploited to compute the camera
position with respect to the robot, see Fig. 2b.

The computer vision algorithm adopted to detect the cable
in the scene is based on ARIADNE [12], a framework for
segmentation of DLOs in complex and cluttered backgrounds,
as shown in Fig. 3. Starting from the input image provided
by the camera and reported in Fig. 3a, a deep convolutional
neural network [13] trained on a custom dataset [14] is used
for the generation of a binary mask of the scene, see Fig. 3b.
Then, a superpixel segmentation [15] is applied to the white
portion of the gnerated mask to reduce the complexity and
allow the generation of a region adjacency graph. Walks on
the graph are executed aiming at connecting the nodes of
the graph into a meaningful ordered way, i.e. nodes of the
same real wire should be connected together. The result is
the segmentation of the DLOs in the original image into
individual instances. Each of them modelled by a B-Spline
estimated starting from the graph’s nodes sequence, as reported
in Fig. 3c. The approximation is parametrized using a value
s ∈ [0, 1] with s = 0 and s = 1 corresponding to the two
ends of the cable in the image, therefore the grasping point
on the cable is defined by selecting s = 0.5, the middle point
of the curve. The orientation of the wire in the image plane is,
instead, obtained by evaluating the inclination of the segment
defined between the spline points at s = 0.45 and s = 0.55.
The resulting reference frame is thus selected with the x−axis
aligned to the wire direction, the y−axis normal to the x−axis
and in the image plane, and the z−axis orthogonal to the
image plane in the direction of the camera. The grasp reference
frame shown in Fig. 3d is then converted in the coordinate
system of the end-effector, to be used for the actual grasp.
The conversion can be applied by knowing the rotation matrix
R between the two systems and the relative position vector p


xworld
yworld
zworld

1
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

xcamera
ycamera
zcamera

1

 (1)

In future development, the distance z will be computed by
the introduction of a second camera looking at the same scene
along a different direction, by exploiting the stereophotography

(a) (b)

Fig. 2. Marker placed on the finger (a) used to detect the relative position of
the camera with respect to the robot(b).

(a) (b)

(c) (d)

Fig. 3. Input image for ARIADNE with cluttered background (a), binary
mask for object with DLO characteristic (b), the approximated spline model
(c) and the final reference frame for grasp (d).

to obtain the depth of a point, which in this case coincides
with the distance of the cable to grasp. Also the use of depth
cameras has been evaluated but the recognition of thin cables
becomes infeasible.

III. TACTILE SENSOR FOR SHAPE RECOGNITION OF
GRASPED CABLE

After the cable grasping, executed on the basis of cable
reference frame obtained from the vision system, the only
information retrieved by the vision system may not be enough
to detect if the grasping has been correctly completed. Further-
more, even if the grasping phase seems completed, it is not
possible to know the ”quality” of the grasp by using the vision
only. For these reasons, a tactile sensor can be very useful to
obtain additional information about the cable handling.

The tactile sensor, used in this paper, has been suitably
designed for REMODEL Project applications on the basis of
original idea presented in [16], and in particular for grasping
DLOs, i.e., cables, ropes and hoses. It consists in a sensorized
finger (Fig. 4a) that can be mounted on typical commercial
grippers (Fig. 4b). The sensing area is composed by 25



(a) (b)

Fig. 4. Tactile sensor (a) and gripper with sensorized fingers integrated into
(b).

Fig. 5. Sensing area dimensions with taxel distribution.

photo-reflectors organized in a 5 × 5 matrix with a spatial
resolution of 3.55 mm (Fig. 5) suitably assembled with a
deformable silicone ”cap”. A photo-reflector is an optoelec-
tronic component, consisting of a Light Emitting Diode (LED)
and a PhotoTransistor (PT), which provides a voltage signal
dependent on the amount of incident light. In particular, these
photo-reflectors work in reflection mode: the light emitted by
the LED is reflected by the bottom of the deformable layer and
comes back to the PT in an amount dependent on the local
deformation. Each measuring point is called ”taxel”. When a
cable (or an object in general) is pressed against the silicon
surface, by using the 25 voltage signals coming from taxels,
it is possible to obtain a tactile map corresponding to the
deformation of the silicone cap.

In order to read data from the tactile sensor and use the
information for grasping and manipulation tasks, a suitable
software system has been developed. The Robot Operating
System (ROS) has been selected as framework for process
scheduling and inter-process communication management,
since it represents a de facto standard for the robotics re-
searchers community. The whole system is pictured in Fig. 6
and it is composed of three ROS Nodes communicating with
each other by means of ROS Topics.

1) read sensor node: The tactile sensor is equipped with
a microcontroller (MCU) that accepts simple requests and
communicates, through a serial interface, the sensor identifier,
the number of sensing elements (in this case 25) and the raw
digital signals corresponding to the photo-reflectors voltages.

Fig. 6. Scheme of the ROS network.

The read sensor node interrogates the MCU, translates the
digital signals back in voltage values and publishes informa-
tion on two different ROS Topics: one with the raw voltage
values as received (defined as vij , with i = 1, . . . , 5 and
j = 1, . . . , 5 according to taxel numbering in Fig. 5) and
another one with the same data after the bias removal (defined
as ∆vij). This last operation is important to make the voltage
values comparable, since they could be different due to the
manufacturing process of the silicon cap, and it is achieved
by subtracting from the voltage value of each photo-reflector
the mean value of the first 50 received samples. In this way,
the final values correspond to the voltage variations with
respect to the ”nominal” offset voltage values of the taxels.
The frequency at which this node interrogates the sensor and
publishes on the ROS topics is equal to 500 Hz.

2) wire params node: This node estimates the shape of
the cable in contact with the sensor by exploiting the data
published by the read sensor node. In particular, it computes
linear and quadratic approximations for the cable shape and
publishes the corresponding parameters on two different ROS
Topics. The reference system used in the following formulas
is the one having the origin at the center of taxel c33, i.e., the
center of the silicone pad, the x-axis pointing towards taxel
c35 and the y-axis pointing towards taxel c13 (see Fig. 5 for
taxels numbering and reference system).

The considered linear approximation for the cable is:

y = mx+ n (2)

where m and n are the two parameters computed and pub-
lished on the correspondent topic. Instead, the considered
quadratic approximations are:

y = ax2 + bx+ c (3)
x = ay2 + by + c (4)

in case of vertical and horizontal axis of symmetry, respec-
tively. In both cases, a, b and c are the three computed and
published parameters.



The algorithm for the computation of these parameters, in
both cases, is constituted by three steps:

• detection of the wire direction (horizontal or vertical);
• computation of the centroid coordinates for each column

(if horizontal) or for each row (if vertical);
• computation of the cable model parameters using the

centroid coordinates.
The first step, i.e., the detection of the main direction,

consists in computing and comparing these two quantities:

h = min

( 5∑
i=1

∆vi1,

5∑
i=1

∆vi2,

5∑
i=1

∆vi3,

5∑
i=1

∆vi4,

5∑
i=1

∆vi5

)

v = min

( 5∑
j=1

∆v1j ,

5∑
j=1

∆v2j ,

5∑
j=1

∆v3j ,

5∑
j=1

∆v4j ,

5∑
j=1

∆v5j

)
where ∆vij is the voltage variation of the taxel cij . Having
these two values, if h > v the main direction is aligned with
the x-axis (horizontal), while if h < v it is aligned with the
y-axis (vertical).

In the second step, the centroids computation depends on
the main direction computed in the first step. If it is horizontal,
the y-coordinates ycj of the column centroids are computed as

ycj =

∑5
i=1 yi∆vij∑5
i=1 ∆vij

j = 1, ..., 5 (5)

while, if the main direction is vertical, the x-coordinates xci
of the row centroids are computed as

xci =

∑5
j=1 xj∆vij∑5
j=1 ∆vij

i = 1, ..., 5. (6)

The two terms xj and yi are the mechanical x-coordinate of
the j-th column and the mechanical y-coordinate of the i-th
row respectively. The complete coordinates of the centroids
will be (xj , y

c
j) in case of horizontal cable, or (xci , yi) in case

of vertical cable.
The third and last step consists in computing the parameters

m, n of the equation (2) and a, b, c of the equation (3) or (4)
by using a least squares method applied to the centroids data
obtained with the equation (5) or (6), respectively. At the elab-
oration end, the wire params node publishes the parameters
for the 1−st order (linear) and 2−nd order (quadratic) cable
approximation models and the centroids coordinates on three
ROS topics (the latter are used for graphic representation by
the plotter node).

3) plotter: As shown in Fig. 6, the plotter node reads from
the topics published by the other two ROS Nodes and then
uses this information to represent in a graphical way the tactile
map and the approximation of the cable shape. This node can
show different information depending on the user’s choice.
In fact, it can show the tactile map only or the tactile map
with the linear/quadratic approximation. Examples of tactile
maps together with the representations of linear and quadratic
approximation are reported in Fig. 7a and Fig. 7b respectively,
where the blue circles represent the tactile map (the radii of

(a) (b)

Fig. 7. Graphical representations of tactile maps together with linear (a) and
quadratic (b) models for the cable.

(a) (b)

(c) (d)

Fig. 8. Cable detection and initial grasp: pre-grasp cable configuration (a),
grasp pose (b) and corresponding tactile maps (pre-grasp (c) and after the
grasp (d)). A uniform background is used for clarity.

the circles are proportional to the voltage variations of the
corresponding taxels), the green dots are the centroids and the
red line is the shape approximation.

IV. EXPERIMENTS

The experiments are executed by using a 7−dof robotic
arm, the Panda from Franka Emika, equipped with a Schunk
PG70 parallel fingers electric gripper. The robot is controlled
through MoveIt, a ROS plugin specifically designed to provide
a high-level interface for trajectory and motion planning. This
framework enables to control the robot by passing the desired
trajectory to the low-level controller. To control the gripper
instead, a ROS-service has been created to set the position of
the fingers through an USB port connected with the gripper’s
DMI controller.

1) Cable detection and initial grasp: The result of a sample
initial grasp is shown in Fig. 8. In particular, Fig. 8a shows



(a) (b)

(c) (d)

Fig. 9. Shape estimations for wires of (a) 2.5 mm, (b) 3.5 mm, (c) 4.0 mm
and (d) 1.5 mm diameters

the starting condition in which the cable is positioned on two
supports with an initial unknown configuration. ARIADNE
network elaborates this image to detect the cable and compute
the reference frame to use for the cable grasping. The robot
exploits the computed cable frame to implement the grasp task
by reaching the grasping pose reported in Fig. 8b. The tactile
maps, corresponding to two images of pre-grasp and grasp, are
reported for completeness of information from the available
sensing system. From Fig. 8c it is evident that no contact is
highlighted by the tactile sensor, while, after the grasp, the
cable information that can be extracted from the tactile map
in Fig. 8d are very clear.

2) Shape reconstruction: This experiments aim to show
results about the approximation of the cable shape obtained
by using the procedure presented above. To test the quality of
the computed shape approximations, the tactile sensor has been
pressed using wires of different diameters while an external
camera acquired the scene. Thus, the graphical representation
of the 2−nd order wire model and the image of the real
wire have been compared by superimposing the former on the
latter. These comparisons are reported in Fig. 9 for different
cables, where it is possible to see how accurate are the
approximations. The images also report the raw tactile maps
and centroids. The less accurate is the one in Fig. 9d, also
due to the small diameter of the cable (1.5 mm) with respect
to the tactile sensor spatial resolution (3.55 mm).

A. Grasping correction experiment

This experiment aims to demonstrate how the cable shape
estimation can be used to re-grasp the wire in order to reach a
desired grasping pose. The objective is to use the parameters
given by the linear approximation of the wire shape to grasp it

in a desired manner, i.e., with a certain position and orientation
with respect to the sensorized finger. The cable has a diameter
of 2.5 mm and it is suspended between two supports to
avoid eventual collisions during the grasping task (as the case
reported in Fig. 8a). The experiment consists in grasping the
cable two consecutive times: the first time is a ”trial” grasp and
the second one is the final grasp, after applying a correction
to the pose of the robotic arm. For the first grasp, the cable
location is obtained by using the algorithm explained in Sec. II.
Then, once the fingers are closed over the cable, the linear
approximation obtained by the wire params node is used to
compute the new robot pose for the final grasp. In particular,
the desired cable pose for this experiment is the one with the
cable aligned with the x−axis of the reference system used
for the shape approximation. In terms of the parameters m and
n in the equation (2), where m is angular coefficient of the
straight line and n is its distance from the center of the sensor,
the desired cable pose results in having both parameters equal
to zero (see Fig. 10). Once the two parameters have been
computed, these are used to build the following homogeneous
transformation matrix to correct the one given by the vision
system and used during the first grasp:

Tcorr =


cosα − sinα 0 0
sinα cosα 0 n

0 0 1 0
0 0 0 1

 (7)

with α = arctan (m).
Figure 11 shows the two grasps occurring during the ex-

periment: the image on the left (11a) shows the “trial” grasp
while the one on the right (11b) shows the final grasp, with the
cable in the desired pose with respect to the fingers. In order to
evaluate the effectiveness of the re-grasp, the same experiment
has been repeated 20 times, starting from different initial
grasps (by adding small random offset on initial reference
frame), and the error with respect to desired pose has been
evaluated. In particular, the mean errors, for the 20 repetitions,
at the first grasp in terms of wire position (n) and orientation
(α) have been computed and compared with the same mean
errors computed after the re-grasp. The obtained values are
4.0 mm and 0.32 rad for the first grasp, while after the re-grasp
they decrease to 1.9 mm and 0.11 rad, respectively.

Finally, the fusion between the cable shape estimation pro-
vided by the vision system and the tactile sensor is reported in
Fig. 12. This figure reports on the left the shape reconstruction
obtained by the fusion of ARIADNE output with linear tactile
map interpolation, while in the right the shape reconstruc-
tion resulting from the fusion of ARIADNE output and the
quadratic tactile map interpolation. These combinations can
be exploited in future developments for the advanced wire
manipulation in cases where the camera occlusions cannot be
avoided.

V. CONCLUSION

This paper presented a possible approach for the grasp
of DLOs. As shown the proposed solution exploits both



Fig. 10. Parameters of linear approximation with respect to the sensor frame.

(a) (b)

Fig. 11. Grasping correction experiment: initial grasp (a) and final grasp (b).

vision data coming from a standard 2D camera and tac-
tile data available from tactile sensors suitably developed in
REMODEL Project. The images are elaborated by using a
suitably designed software package (ARIADNE). The vision
data are used to recognize the wire position in order to define
a frame used for the DLO initial grasp. After the initial
grasp, the tactile data are used to evaluate the wire shape
with respect to a known reference frame. The same data have
been used to re-grasp the wire if the initial grasping pose
is considered not satisfactory, by reaching a desired position
and orientation for the grasped object. The attached video
summarizes all proposed approaches, in order to demonstrate
their effectiveness, by collecting a sequence of tasks executed
with the experimental setup and the sensor system presented
in the paper. In the first part, the localization of the cable
by the vision sensor through the Ariadne software package is
shown. The vision sensor provides the grasp pose of the cable
to the robot that then executes the grasp. The second part
shows side by side the tactile signals with the data related to
their post processing with the estimated wire shape and the
actual wire used during the experiments. Different diameters
have been used. In the third, the same data are superimposed
in order to allow the reader an immediate comparison between
the estimated shape and ground truth. The last part reports an
experiment of re-grasp on the basis of tactile data. After a
first grasp where the wire shape is estimated, the wire is re-
grasped in order to horizontally align the wire with respect to
the tactile sensor frame.

(a) (b)

Fig. 12. Vision and tactile shape estimation fusion: with linear tactile map
interpolation (a) and with quadratic tactile map interpolation (b).
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