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Department of Mathematics, University of Bologna, Bologna BO 40126, Italy
martin.huska@unibo.it, serena.morigi@unibo.it,
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Abstract. We propose a variational method for recovering discrete sur-
faces from noisy observations which promotes sparsity in the normal vari-
ation more accurately than `1 norm (total variation) and `0 pseudo-norm
regularization methods by incorporating a parameterized non-convex
penalty function. This results in denoised surfaces with enhanced flat
regions and maximally preserved sharp features, including edges and
corners. Unlike the classical two-steps mesh denoising approaches, we
propose a unique, effective optimization model which is efficiently solved
by an instance of Alternating Direction Method of Multipliers. Experi-
ments are presented which strongly indicate that using the sparsity-aided
formulation holds the potential for accurate restorations even in the pres-
ence of high noise.

Keywords: Non-convex optimization · Surface Denoising · Sparse Vari-
ational Formulation

1 Introduction

The goal of a surface denoising algorithm is to remove undesirable noise or spu-
rious information on a 3D mesh, while preserving original features, including
edges, creases and corners. The restored surface is a 3D mesh that represents as
faithfully as possible a piecewise smooth surface, where edges appear as discon-
tinuities in the normals.

Through time three main numerical approaches have been developed to solve
the mesh denoising problem. Initially, linear/nonlinear diffusion equations were
proposed in which the evolution of vertices is guided by Partial Differential Equa-
tions, see [12, 7]. In general, the isotropic/anisotropic diffusion flows are known
to have a strong regularization effect, failing, therefore, in the accurate recovery
of sharp mesh features, despite the expedients proposed to preserve the local
curvature of the mesh, [8]. More recently, also thanks to the considerable impact
in the image processing field, two major challenges have emerged for mesh de-
noising: data driven and optimization-based methods. Approaches belonging to
the former class aim to learn the relationship between noisy geometry and the
ground-truth geometry from a training dataset, [13]. Optimization-based mesh
denoising methods formulate the mesh restoration as a minimization problem
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and seeks for a denoised mesh that can best fit to the input mesh while sat-
isfying a prior knowledge of the ground-truth geometry and noise distribution.
These approches grew their popolarity more and more also thanks to the last
sparsity-inducing extraordinary results. This work belongs to this latter class of
optimization-based methods.

Assuming an observed noisy triangulated surface with vertex set V 0 be cor-
rupted by additive white Gaussian noise, an estimate V ∗ ∈ RnV ×3 of the noisy-
free vertex set V can be obtained as a solution of the following variational model

V ∗ ∈ arg min
V ∈RnV ×3

J (V ), J (V ) :=
λ

2
‖V − V 0‖22 + R(V ) , (1)

where ‖v‖2 denotes the Frobenius norm of matrix v. J (V ) is the sum of a reg-
ularization term R(V ) and a convex smooth (quadratic) fidelity term, defined
by the classical regularization parameter λ that controls the trade-off between
fidelity to the observation and regularity in the solutions V ∗ of (1). The regular-
izer R(V ) encodes a priori knowledge on the solution. In particular, to promote
solutions that have piecewise constant normals with sharp discontinuities in the
normal map the regularizer can be designed in a way to penalize a measure of the
”roughness” or bumpiness (curvature) of a mesh, or, equivalently, to promote
sparsity on this measure. A natural bumpiness measure for a surface is the normal
deviations, represented by yi := ‖(∇N)i‖2, with ∇ ∈ RnE×nT a gradient (linear)
operator and (∇N)i the normal variation between two adjacent triangles sharing
the i-th edge. The ideal regularizer to induce sparsity on the vector y is the `0
pseudo-norm, but its combinatorial nature makes the minimization of (1) an NP-
hard problem. Nevertheless, in [2] `0 optimization is directly applied to denoise
mesh vertices and in [11] a similar strategy is applied to smooth point clouds.
However, even under small amounts of noise and/or with non-uniformly shaped
triangles, the strong effect of `0 can produce spurious overshoots and fold-backs,
and the method becomes extremely computationally inefficient. The alternative
`1 norm is the convex relaxation of the `0 pseudo-norm, and plays a fundamental
role in sparse image/signal processing. In [1], `1-sparsity has been adopted to
denoise point sets in a two-phase minimization strategy. However, the `1 norm
tends to underestimate high-amplitude values, thus struggling in the recovery
under high-level noise and presents undesired staircase and shrinkage effects. A
substantial amount of recent works has argued for classes of sparsity-promoting
parametrized nonconvex regularizers in favor of their superior theoretical prop-
erties and excellent practical performances [9, 5]. In this direction, the Minimax
Concave (MC) penalty φ(·; a) : R→ R see [4], provides a recognized alternative
to the `1 norm and this motivated us to use it in the construction of our regu-
larizer R(V ). The parameter a allows to tune the degree of non-convexity, such
that φ(·; a) tends to `0 pseudo-norm for a→∞. The proposed regularizer R(V )
controls sparsity of the normal deviation magnitudes more accurately than the
`1 norm, while mitigating the strong effect and the numerical difficulties of `0
pseudo-norm. It can handle higher level noise than [2], produce better shaped
triangles, while faithful recovering straight or smoothly curved edges.
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Most of the variational mesh denoising approaches, split the process into
two optimization phases - the normal smoothing phase followed by a vertex
position update. The second phase suffers from foldovers problems and normal
inconsistency, [15]. We propose a one-phase, effective, sparse variational model
to directly smooth vertices, while preserving sharp features, keeping the normal
consistency, and reducing foldovers problems. An efficient algorithm for minimiz-
ing the (non-convex) formulation is proposed which is based on the Alternating
Direction Method of Multipliers (ADMM). Numerical experiments show the ef-
fectiveness of the proposed method for the solution of several mesh denoising
examples.

2 Sparsity-aided Variational Model

Let us assume a surface embedded in R3, which is approximated by a trian-
gulated mesh (V, T,E), where V ∈ RnV ×3 , V = {vi}nV

i=1 represents the set of
vertices, T ∈ RnT×3 , T = {τm}nT

m=1 is the set of triangles and E ∈ RnE×2 , E =
{ej}nE

j=1 is the set of edges. We denote the first disk, i.e. triangle neighbors of a

vertex vi, by D(vi) = {τm | vi ∈ τm}. Let N (V ) : RnV ×3 → RnT×3 be the map-
ping that computes the piecewise-constant normal field over the mesh, where the
m-th element being the outward unit normal at face τm = (vi, vj , vk), defined as

Nm(V ) :=

(
(vj − vi)× (vk − vi)
‖(vj − vi)× (vk − vi)‖2

)T
∈ R3 , m = 1, . . . , nT . (2)

Focusing on the recovery of surfaces characterized by piecewise constant nor-
mals with sharp discontinuities in the normal map, we propose the following
sparsity-inducing variational model to determine solutions V ∗ which are close
to the noisy data V 0 according to the observation model and, at the same time,
for which the vector of components y∗i = ‖(∇N∗)i‖2, i = 1, · · · , nE , is sparse

V ∗ ∈ arg min
V ∈RnV ×3

J (V ;λ, a) (3)

J (V ;λ, a) :=
λ

2
‖V − V 0‖22 +

nE∑
j=1

φ
(∥∥∥(∇N (V ))j

∥∥∥
2

; a
)
.

At the aim to construct a parameterized sparsity-promoting regularizers charac-
terized by tunable degree of non-convexity a ∈ R+, the function φ(t; a) is chosen
among the wide class of parameterized, scalar, non-convex penalty functions,
which mimic the asymptotically constant behaviour of the `0 pseudo-norm. In
particular we consider one of the most effective representatives, the so-called
minimax concave (MC) penalty function, φ(t; a) : R→ R, defined as

φ(t; a) =

{
−a

2
t2 +

√
2a t for t ∈

[
0,
√

2/a
)
,

1 for t ∈
[√

2/a,+∞
) (4)

which, for any value of the parameter a, satisfies the following assumptions:
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– φ(t; a) ∈ C0(R) ∩ C2(R \ {0})
– φ′ (t; a) ≥ 0 , φ′′(t; a) ≤ 0, ∀ t ∈ [0,∞) \ {

√
2/a}

– φ(0; a) = 0, inf
t
φ′′(t; a) = −a.

The proposed non-convex penalty plays a key role in controlling, by the param-
eter a > 0, the normal variation more accurately than total variation (TV) and
`0 regularizations, and induces sparsity more effectively.

input mesh V 0 λ = 60 λ = 400 λ = 800

Fig. 1. Example 1: influence of the fidelity parameter λ for fixed a = 0.8.

Finally, we introduce the discretization of the gradient operator on the 3D
mesh. Since the normal field is piecewise-constant over the mesh triangles, the
gradient operator vanishes to zero everywhere but the mesh edges along which
it is constant. Therefore, the gradient operator discretization is represented by
a global sparse matrix D ∈ RnE×nT defined as

Dij =


√
li if τj

⋂
τk = ei , k > j,

−
√
li if τj

⋂
τk = ei , k < j,

0 otherwise ,
(5)

where li = |ei|, i = 1, . . . , nE represents the length of i-th edge.

In Section 3 we describe an iterative optimization algorithm to solve (3).

As the mesh topology does not change during the iterations, the matrix D
can be decomposed as D = LD̄, with L = diag{

√
l1,
√
l2, . . . ,

√
lnE
} being the

diagonal matrix of edge lengths, updated during the iterations, and D̄ ∈ RnE×nT

an edge-length independent sparse matrix.

3 Numerical solution of the sparse variational model

In this section we provide details of the Alternating Direction Method of Mul-
tipliers (ADMM)- based numerical method for the solution of the nonconvex
optimization problem (3). Introducing a matrix variable N ∈ RnT×3 with row
components defined in (2), and utilizing the variable splitting technique for
t ∈ RnE×3, t = DN , where D is discretized as in (5), the optimization problem
(3) is reformulated as
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{V ∗, N∗, t∗} ∈ arg min
V,N,t

λ2 ‖V − V 0‖22 +

nE∑
j=1

φ (‖tj‖2; a)

 , s.t.
t = DN,

N = N (V ) .

(6)

We define the augmented Lagrangian for (6) as

L(V,N, t, ρ1, ρ2;λ, β1, β2, a) =
λ

2
‖V − V 0‖22 +

+

nE∑
j=1

[
φ
(
‖tj‖2 ; a

)
−
〈
ρ1j , tj − (DN)j

〉
+
β1
2
‖tj − (DN)j‖22

]
+

+

nT∑
m=1

τm=(vi,vj ,vk)

[
−〈ρ2m , Nm −Nm(V )〉+

β2
2
‖Nm −Nm(V )‖22

]
, (7)

where β1, β2 > 0 are scalar penalty parameters, and ρ1 ∈ RnE×3, ρ2 ∈ RnT×3

represent the matrices of Lagrange multipliers associated with the constraints.

We then consider the following saddle-point problem:

Find (V ∗, N∗, t∗, ρ∗1, ρ
∗
2) ∈ RnV ×3× RnT×3× RnE×3× RnE×3× RnT×3

s.t. L(V ∗, N∗, t∗, ρ1, ρ2) ≤ L (V ∗, N∗, t∗, ρ∗1, ρ
∗
2) ≤ L (V,N, t, ρ∗1, ρ

∗
2),

∀(V,N, t, ρ1, ρ2) ∈ RnV ×3× RnT×3× RnE×3× RnE×3× RnT×3 .(8)

An ADMM-based iterative scheme is applied to approximate the solution of
the saddle-point problem (7)–(8). Initializing to zeros both the dual variables

ρ
(0)
1 , ρ

(0)
2 and N

(0)
m = Nm(V (0)) , m = 1, . . . , nT , the k-th iteration of the pro-

posed alternating iterative scheme reads as follows:

t(k+1) = arg min
t∈RnE×3

L(V (k), N (k), t; ρ
(k)
1 , ρ

(k)
2 ) , (9)

N (k+1) = arg min
N∈RnT ×3

L(V (k), N, t(k+1); ρ
(k)
1 , ρ

(k)
2 ) , (10)

V (k+1) = arg min
V ∈RnV ×3

L(V,N (k+1), t(k+1); ρ
(k)
1 , ρ

(k)
2 ) , (11)

ρ
(k+1)
1 = ρ

(k)
1 − β1

(
t(k+1) −DN (k+1)

)
, (12)

ρ
(k+1)
2 = ρ

(k)
2 − β2

(
N (k+1) −N

(
V (k+1)

))
. (13)
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Ground truth `2 − `1 `2 − `0

a = 0.05 a = 0.0005 a = 2

Fig. 2. Example 1: (left) empirical convergence of ADMM algorithm for some recon-
structed meshes; (right) sensitivity to the penalty.

The updates of Lagrangian multipliers ρ1 and ρ2 have closed form, while the
solutions to the remaining subproblems will be described in detail in the following
sections.

Subproblem for t. Omitting the constant terms in (7), we can rewrite the
subproblem (9) as

t(k+1) = arg min
t∈RnE×3

nE∑
j=1

[
φ
(
‖tj‖2 ; a

)
−
〈
ρ1j , tj − (DN)j

〉
+
β1
2
‖tj − (DN)j‖22

]
.

(14)
Due to the separability property of φ(·; a), problem (14) is equivalent to nE
three-dimensional problems for each tj , j = 1, . . . , nE in form

t
(k+1)
j = arg min

tj∈R3

{
1

β1
φ
(
‖tj‖2 ; a

)
+

1

2
‖tj − r(k+1)

j ‖22
}
, (15)

where r
(k+1)
j :=

(
DN (k)

)
j

+ 1
β1

(
ρ
(k)
1

)
j
.

Necessary and sufficient conditions for strong convexity of the cost functions
in (15) are demonstrated in [3]. In particular, the problems in (15) are strongly
convex if and only if the following condition holds:

β1 > a =⇒ β1 = εa, for ε > 1. (16)
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Under the assumption (16), the unique minimizers of (15) can be obtained in
closed form as

t
(k+1)
j = min(max(ν − ζ/‖rj‖2, 0), 1) rj ,

where ν =
β1

β1 − a
and ζ =

√
2a

β1 − a
. We remark that the condition on β1 in (7)

only ensures the convexity conditions (16) of t-subproblem (15), but does not
guarantee convergence of the overall ADMM scheme.

Subproblem for N . Gathering the non-constant terms w.r.t. N in (7), we can
reformulate (10) as

N (k+1) = arg min
N∈RnT ×3

{
β1
2
‖t(k+1) −DN‖22 +

〈
ρ
(k)
1 , DN

〉
−
〈
ρ
(k)
2 , N

〉
+
β2
2

∥∥∥N −N (V (k)
)∥∥∥2

2

}
,

for which the first optimality conditions lead to the following three linear sys-
tems, one for each spatial coordinate of N ∈ RnT×3

(
DTD +

β2
β1
I

)
N =

β2
β1
N
(
V (k)

)
+
ρ
(k)
2

β1
+DT

(
t(k+1) − 1

β1
ρ
(k)
1

)
. (17)

Since β1, β2 > 0, the linear system coefficient matrix is sparse symmetric,
positive definite and identical for all three coordinate vectors, therefore, the
system can be solved by applying a unique Cholesky decomposition. At each
iteration, the edge lengths diagonal matrix L in D = LD̄, needs to be updated
as the vertices V move to their new position. For large meshes, an iterative solver
warm-started with the solution of the last ADMM iteration, is rather preferred.
A normalization is finally applied as N represents the normal field.

Subproblem for V . Omitting the constant terms in (7), the subproblem for V
reads as

V (k+1) = arg minV ∈RnV ×3 {JV (V )}

JV (V ) = λ
2 ‖V − V

0‖22 +
∑nT

m=1

[〈
ρ
(k)
2m
,Nm(V )

〉
+ β2

2

∥∥∥N (k+1)
m −Nm(V )

∥∥∥2
2

]
.

(18)
The functional JV (V ) is proper, smooth, non-convex and bounded from below by
zero. A minimum can be obtained applying the gradient descent algorithm with
backtracking satisfying the Armijo condition or using the BFGS method. For
the experimental section we used the gradient descent algorithm for efficiency.
The partial derivative of (18) w.r.t vertex vi ∈ V , i = 1, . . . , nV reduces the sum
in (18) to the sum over the first disk D(vi) and is given as
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∇viJV (V ) = λ(vi − v0i ) +
∑

τm∈D(vi)
τm=(vi,vj ,vk)


(
ρ
(k)
2m
− β2N (k+1)

m

)
× (vk − vj)

‖(vj − vi)× (vk − vi)‖2

−

〈
ρ
(k)
2m
− β2N (k+1)

m , (vj − vi)× (vk − vi)
〉

[(vj − vi)× (vk − vi)× (vk − vj)]

‖(vj − vi)× (vk − vi)‖32

 ,
(19)

which simplifies as follows, for all triangles m = 1, . . . , nT ,

∇viJV (V ) = λ(vi − v0i )+

∑
τm∈D(vi)

[(
ρ
(k)
2m
− β2N (k+1)

m

)
−
〈
ρ
(k)
2m
− β2N (k+1)

m ,Nm(V )
〉
Nm(V )

]
2sτm

× (vk − vj),

with sτm := ‖(vj − vi)× (vk − vi)‖2/2 the area of triangle τm with updated
vertices in V , and Nm(V ) = ((vj − vi)× (vk − vi))/(2sτm).

The convergence of our proposed three block ADMM scheme is not easy to
derive relying on the results presented so far, see [14]. However, we will provide
some evidence of the numerical convergence in the experimental section.

Many two-phase mesh denoising algorithms present the normal orientation
ambiguity problem in the vertex updating phase, which provokes ambiguous
shifts of the vertex position due to direction inconsistency of the normal vectors
[16, 10]. In [6] this issue is solved by an orientation aware vertex updating scheme
which considers the parallelism of the normal determined by triangle vertices to
a given normal vector.

Proposition 1. The reconstructed normal map N∗ obtained by solving (6) via
the proposed ADMM, satisfies the orientation consistency.

Proof. The vertex update is computed by solving the ADMM sub-problem (18).
The second term in function (18) induces for each triangle τm the orthogonality
between the triangle normal Nm and ρ2, that is, it minimizes the volume of the
parallelepiped defined by the edges ρ2, (vj − vi) and (vk − vi) thus imposing ρ2
to lie in the triangle plane generated by (vj − vi) and (vk − vi). The third term
in the objective function (18) penalizes the discrepancy between the restored

normal (N
(k+1)
m ) and the triangle face normal obtained by its updated vertices,

both in orientation and in magnitude.

4 Numerical Examples

We validate the proposed method both qualitatively and quantitatively on a
variety of benchmark triangulated surfaces characterized by different sharpness



Sparsity-aided Variational Mesh Restoration 9

and smoothness features. The noisy meshes have been synthetically corrupted
following the degradation model

v0i = vi + cidi , i = 1, . . . , nV , (20)

where ci ∈ R is Gaussian noise distributed with zero mean and standard de-
viation σ = γl̄ where l̄ is the average edge length and γ ≥ 0 represents the
noise level. The vectors di, i = 1, . . . , nV can be random directions or the vertex
normal itself. All the meshes are rendered in flat-shading model.

original ours [10] [16] [2] [15] [13]

Fig. 3. Example 2: Denoising results from input meshes corrupted by noise levels γ =
{0.15, 0.3, 0.3, 0.2, 0.2}, from top to bottom.

Example 1 presents various aspects of our algorithm, and illustrates the
sparsity-promoting benefits introduced by the penalty φ(·; a) with respect to
`1 (TV) and `0 penalty terms. In Example 2 the performance of the proposed
method is compared with some other variational methods for mesh denois-
ing, namely [10, 16, 2, 15], which have been kindly provided by authors of [15]
at https://github.com/bldeng/GuidedDenoising, and a learning-based ap-
proach [13]. For each method, we show their best results we achieved by tuning
the corresponding set of parameters.
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The quantitative evaluation regards the following error metrics, which mea-
sure the discrepancy of the computed V ∗, N∗ to the noisy-free mesh VGT , NGT :

– Mean squared angular error (MSAE) MSAE = E[∠(NGT , N
∗)2] ,

– L2 vertex to vertex error (EV ) EV = ‖V ∗−VGT ‖F
nV

.

For all the tests, the iterations k of the ADMM algorithm are stopped as
soon as either of the two following conditions is fulfilled:

k > TH1 = 200 ,
∥∥V (k+1) − V (k)

∥∥
2
/
∥∥V (k)

∥∥
2
< TH2 = 10−6. (21)

Fig. 2(left) shows the energy evolution curve in terms of the number of iterations
for some of the meshes reported in this section, which returns the empirical
convergence of the proposed ADMM algorithm.

Example 1 We illustrate how the model parameters λ and a influence the result
quality. The value for λ depends on the amount of noise: the smaller the noise
the bigger has to be λ. In Fig.1, for a fixed noise level γ = 0.3 and di being the
normal at vi, the amount of noise removed from the cube hole mesh is less for
increasing λ values. The sensitivity to the penalty function in the recovery of a
corrupted fandisk mesh (noise level γ = 0.2) is illustrated in Fig. 2(right). In
the first row the noisy free mesh is shown together with the denoised meshes
obtained by the `2− `1 and the `2− `0 models, respectively. The results present
remarkable losses of sharp features and creases. In the second row the `2−φ(t; a)
model is applied with optimal a = 5× 10−2, a = 5× 10−4 as for a → 0, φ(t; a)
behaves like the `1- penalty (TV), and finally with a = 2, since for a → ∞
the penalty approaches to `0- penalty. The value of a in φ(·; a) allows to tune
the degree of non-convexity and thus the degree of flatness reconstruction, while
preserving features. Fig. 2 (third row) shows the histograms of the sparsified
measure ‖∇N (V )‖2 for our model `2−φ(t; a) (left), `2− `1 model (center), and
the `2 − `0 model (right).

Example 2 In this example we compare our method with other state of-the-
art methods. Fig. 3 shows the denoised meshes colored by their mean curvature
scalar map, with fixed range, and zoomed details on mesh edges. Compared to
the visually better denoising results obtained by our method, remarkable over-
laps appear on the other results and severe shaped triangle perturbations are
introduced in the reconstructed meshes. To further demonstrate the robustness
to noise, in Fig. 4 we test our sparsity-inducing variational framework on in-
creasing levels of noise γ = {0.2, 0.3, 0.4, 0.5, 0.6} from top to bottom, and in
the last two rows also for arbitrary noise directions (di) in (20) and a real 3D
scanned data, respectively. Below each synthetic result, we report the quantita-
tive evaluations according to the error metrics (MSAE × 102,EV × 106). Both
quantitatively and qualitatively the results confirm the effectiveness of our sparse
variational proposal. Finally, we can comment on the efficiency of our algorithm
which computational time is, on average, one order less than the `2−`0 denoising
method, and comparable to the other tested methods.
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γ = 0.2 (0.62;3.84) (2.11;8.96) (0.79;4.24) (1.37;5.53) (1.02;4.92)

γ = 0.3 (2.15;6.42) (3.05;7.15) (2.19;6.37) (4.82;14) (2.25;6.56)

γ = 0.4 (3.98;51.3) (13.56;72.6) (10.55;54.3) (7.97;93.7) (9.79;62.4)

γ = 0.5 (3.26;58.1) (9.84;74.4) (6.18;43.4) (10.7;71) (8.33;69.2)

γ = 0.6 (2.3;87.6) (10.6;144) (11.8;150) (5.93;180) (6.45;143)

γ = 0.2 (2.5;5.9) (4.51;6.33) (6.16;6.87) (4.2;6.53) (5.34;6.56)

input V 0 ours [10] [16] [2] [15]

Fig. 4. Example 2: Comparison of our method with related works.
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5 Conclusion

The proposed single-phase variational method is capable to restore sharp edges
and creases from a noisy triangulated surface in a significantly better way than
other two-phases variational methods which rely on `0 and `1 regularizers. This
is achieved by introducing a parameterized sparsity inducing penalty with a
parameter a which allows for promoting a fair smoothing of the normal field to
be reconstructed. One of the future investigations will be aimed at a rigorous
theory to derive convexity conditions in the convex non-convex framework which
would lead to the well-known convex optimization benefits.
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