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Abstract: Methodologies and approaches for assessing the vulnerability of a public transport network
are generally based on quantifying the average delay generated for passengers by some type of
disruption. In this work, a novel methodology is proposed, which combines the traditional approach,
based on the quantitative evaluation of averaged disruption effects, with the analysis of the asymme-
try of effects among users, by means of Lorenz curves and Gini index. This allows evaluating whether
the negative consequences of disruptions are equally spread among passengers or if differences exist.
The results obtained show the potential of the proposed method to provide better knowledge about
the effects of a disruption on a public transport network. Particularly, it emerged that disrupted
scenarios that appear similar in terms of average impacts are actually very different in terms of the
asymmetry of effects among users.
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1. Introduction

Efficient and reliable public transport systems provide a good alternative to private
cars, which are a major source of atmospheric pollution [1–3]. Despite the enhanced
technological efficiency, public transport cannot avoid being affected by unplanned and
adverse events that impair its regular functioning [4,5]. Disruptions may derive from
different sources, e.g., technical component malfunctions or breakdown, road crashes,
maintenance or terroristic attacks, and natural hazards such as floods and earthquakes [6].
Such disruptive events may affect public transport infrastructure or service at different
spatial scales, generally causing the failure or partial unavailability of one or more elements
of the transport network. The consequent decline in service level is usually higher than the
typical variability experienced during day-to-day travels [7,8].

In case of disruptions, travelers may have to reschedule their journey to the desired
destination by using alternative transport solutions and generally incur increased travel
costs mainly due to additional waiting and transfer times [9,10]. In particular, both nominal
and travelers’ perceived travel costs may become higher [4,11,12]. In a degraded transit
network, passengers may not be able to reach their desired destinations within an accept-
able period of time, with a decrease in accessibility [13], and might even decide to cancel
the trip, with loss of social and economic opportunities [1,14]. This is especially relevant in
rural and remote areas, where fewer alternative routes are available and disruptions may
intensify social exclusion [15,16]. From the perspective of service operators, they may incur
additional costs because of increased fuel consumption, potential fare reimbursement, and
overtime payments to personnel [10,17].

In this context, system vulnerability to unexpected events is usually computed at
the network level by using indicators that measure the impacts on the overall network,
such as the total decrease in network efficiency [18,19] or average increase in travel times
or generalized costs [9,17,20]. In the literature, topological approaches to estimate the
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vulnerability of transport systems are based on network structure and connectivity [21] and
metrics such as local and network efficiencies [22,23], node degree [23,24], and betweenness
centrality [18,25–27]. Some other methods are based on serviceability indicators such
as generalized travel costs [28–30] or delays [31–33]. Serviceability approaches focus
on the degradation of network operational performance and the consequent failure of
the system functional requirements [34–40]. Finally, some other approaches focus on
accessibility issues, particularly the impacts on socioeconomic activities and on the ability
of the inhabitants of a region to access facilities and services [13,41–43].

Even if such measures provide significant insights into the magnitude of disruptions,
they do not capture potentially asymmetrical distribution of impacts, which depends on
how they propagate in the system and the system’s capability to respond to them. For ex-
ample, impacts may either significantly affect a small fraction of travelers—while the rest of
them experience lower or zero impacts—or may be equally distributed among all travelers.
These aspects have not been addressed before in the transport vulnerability literature.

This work proposes a novel approach to explore vulnerability issues of a public
transport network based on the combination of classical vulnerability measures with
the analysis of the effects on public transport users, by taking into account potential
asymmetries measured by the Lorenz curve. The Lorenz curve, originally employed in
economics to represent the distribution of wealth among the population [44], has been
used in various fields, including transport. It has been applied to study public transport
equity [45–47], to assess the equality of benefits in public transport investments [48], or to
measure equity in transport accessibility [49]. Other authors evaluated the concentration
degree of transport services to analyze the effect of imbalance on different social groups [50],
to compare link performances for transit operations [51], or to analyze demand imbalances
in public transport [52]. To the authors’ knowledge, Lorenz curves have not yet been
applied in the context of vulnerability analyses. In this work, vulnerability is estimated in
terms of passengers’ delays, which are the primary and direct consequence of disruptions.
Then, the Lorenz curve approach allows evaluating whether negative consequences of
disruptions are equally spread among passengers or, conversely, if disparities exist. Finally,
the distribution of delays among users has been summarized by the Gini coefficient index.

The remainder of the paper is organized as follows. Section 2 describes the methodol-
ogy adopted to evaluate public transport system vulnerability together with the distribution
of impacts among users. The adopted model is explained in Section 3, while Section 4
presents the results obtained by testing the methodology on a case study. Finally, results are
discussed in Section 5, and the conclusions of the study, with future directions for research,
are presented in Section 6.

2. Methodological Framework

To evaluate public transport vulnerability, the common approach is to compare “base”
and “disrupted” scenarios on the basis of performance indicators computed in undisrupted
and degraded conditions (see Figure 1, boxes in black). The public transport network
under normal operating conditions is described in the base scenario—also referred to as
baseline or nominal scenario—while disrupted scenarios refer to full or partial failure of
some elements of the network for a given period. Vulnerability is then measured as the
change in a number of selected indicators, and the criticality of the disrupted elements
is measured by performance indicators [7]. Network disruptions include node and links
failure, which could be random or chosen by some pre-determined strategies [53]. Some
centrality criteria are used to select potentially critical elements—whose failure is likely
to cause major consequences—including current traffic loads [20,54] and probability of
use [42]. Potentially critical elements may be identified also by benefitting from expert
judgement without computing specific centrality measures for the network links [15,55].
However, despite reducing computational efforts, this approach may miss potentially
critical locations and may then be inaccurate [16].
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Figure 1. Procedure for evaluating transport network vulnerability.

Here, the serviceability approach is used to define vulnerability; in particular, public
transport operational degradation in the aftermath of a disruption is considered. To
simulate disrupted scenarios, potentially critical links are chosen among the most central
ones, which are those whose failure would cause higher impacts on the system. Link
centrality is identified based on travelers’ flow in baseline operating conditions, and
impacts are defined from a traveler’s perspective by evaluating passengers’ delays. The
probability of occurrence of a disruption is neglected, in line with previous works [31,56]. In
fact, even if some authors highlight that vulnerability derives from the combination of the
probability of occurrence of a disruptive event and its consequences on the system [57,58],
vulnerability has often been considered only in terms of consequences on transport system
functioning, since the probability of occurrence of disruptive events is generally difficult or
even impossible to determine [4].

A simulation-based approach is used here, in which the public transport system is
modelled as a dynamic, stochastic system resulting from the interaction of the transport
supply (network configuration and services) and transport demand sub-systems, in line
with the ones proposed in [17,59–62]. The simulation model allows considering the effects
of congestion and spill-over on public transportation operations, showing how flows
evolve as a consequence of service or network changes, and quantifying the related effects
generated on users.

Unlike existing studies on vulnerability, this study explicitly considers the distribution
of impacts on travelers, particularly how delays are distributed among passengers (red box
in Figure 1), in order to provide a more comprehensive representation of the consequences
of vulnerability.

More specifically, Lorenz curves and the Gini index are used to investigate and
quantify the asymmetry of disruption effects in a public transportation network. Generally
speaking, the Lorenz curve depicts how a given “interest variable” is distributed among a
population and is represented as a function of the cumulative proportion of the population
(x-axis) and the cumulative distribution of the interest variable itself (y-axis), both quantities
being represented as percentages. Here, the interest variable is the loss of public transport
serviceability expressed in terms of passengers’ delay. Figure 2 shows an example of Lorenz
curve representing the distribution of delays among passengers after a disruption. If the
cumulative share of delays is perfectly aligned with the cumulative share of the population,
the Lorenz curve results in a 45-degree straight line, known as the “line of symmetry” (in
red), which represents the ideal situation of perfectly symmetrical delay distribution. On
the contrary, the black curve represents an asymmetrical distribution of delays (e.g., 50% of
passengers experience about 20% of the overall delay, point 1 in Figure 2).
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Figure 2. Lorenz curve to identify delay distribution.

While the Lorenz curve is useful for a graphic representation of asymmetrical dis-
tributions of delays, the Gini coefficient is a quantitative measure of the overall degree
of asymmetry measured as the discrepancy between the Lorenz curve and the situation
of perfectly symmetrical distribution. The Gini index is defined as the ratio of the area
between the Lorenz curve and the line of symmetry (area A, red-colored in Figure 2) to
the total area below the line of symmetry (area A+ area B, the latter being grey-colored in
Figure 2). The value of the Gini index ranges in [0, 1]. The lower bound refers to a situation
of perfect symmetry, in which the delay is the same for all passengers. When the effects
of disruptions are not symmetrically distributed among passengers, the Gini index value
increases as asymmetry increases.

3. Model
3.1. Public Transport System Model

The public transport service network is described by a directed graph G composed
of (i) a set of nodes s (stops) representing locations where passengers can board and/or
alight from public transport; (ii) a set of road links e (in the following called “line links”)
representing physical connections between stops, where each e connects two adjacent stops;
and (iii) a set of links g representing pedestrian links between stops [63]. A public transport
line l ∈ L is defined as a sequence of line links e, L being the set of lines l. Any consecutive
pair of stops (sy, sw) may be connected by: (i) a line link el

y,w if a line service l exists between
these two stops; (ii) a pedestrian link gy,w, otherwise. The capacity ce of the road link e is
defined as the maximum number of vehicles that can use e in the time period τ (veh/τ).
Finally, the transport service is realized by vehicles characterized by seat capacity and
operating speed.

Travel demand SOD is modelled as a time-dependent origin-destination (OD) matrix
at stop level, where each element dod represents the flow of travelers starting their trip
at stop o and arriving at stop d in a given time period. For each o-d pair, a passenger n
uses a path kn from the set of all the available paths Kod, kn ∈ Kod, where kn is defined as a
sequence of links e. Each path may include one or more transfers, transk, occurring when
two consecutive links e of kn belong to different lines.

The probability that passenger n will use path kn, pn (kn), is modelled by a multinomial
logit model [63]:

pn(kn) =
exp (νkn)

∑kn∈Kod exp(νkn)
(1)



Sustainability 2021, 13, 8737 5 of 14

where νkn is the utility of path kn for passenger n defined as [17]

νkn = βwaitE[twait
kn

] + βivtE
[
tivt
kn

]
+ βgE

[
tg
kn

]
+ βtransmtrans

kn
+ βcmcmkn (2)

In Equation (2), E[twait
kn

] is the expected waiting time at stops (both origin and transfer

stops, if applicable) for passenger n; E
[
tivt
kn

]
is the expected in-vehicle time on path kn,

which includes running times on links and dwell times at stops; E
[
tg
kn

]
is the expected

walking time on pedestrian links; cmkn is the monetary cost of kn; and mtrans
kn

is the number
of transfers along kn. βs are the respective parameters. In-vehicle times are the same for
passengers following the same path between o and d, while monetary costs may depend
on fare policies (e.g., discounts for elderly or teenagers/children, special fares for regular
working commuters, agreements with firms for discounts to their employees, etc.). Walking
times depend on walking speed, which may vary among passengers following the same
path. Finally, for a given o-d pair, the number of transfers may depend on the user’s choices
if several alternative lines share some stops.

3.2. Simulation Model

The supply and demand models have been implemented by using BusMezzo [64,65],
a mesoscopic agent-based simulator that has been previously used in the context of transit
disruptions [17,35]. In BusMezzo, passengers’ decisions and transit vehicle operations
are modelled at a microscopic level of detail, while traffic dynamics are represented on a
mesoscopic scale. Mesoscopic simulation models allow transit dynamics to be captured
even on large-scale transit networks, as vehicles are represented individually but with-
out modelling their second-by-second movement [65,66]. As an agent-based simulator,
BusMezzo models individual passengers undertaking successive adaptive decisions and
is able to represent the dynamic nature of the public transport supply, including various
sources of uncertainty [67]. Compared to other types of transit simulators, BusMezzo en-
ables simulating the interaction between public transport operations and travelers’ choices,
including the opportunity to switch their route after supply changes [68], different from
schedule-based simulators in which passenger demand is represented as aggregate flows
(e.g., VISUM). Furthermore, BusMezzo is completely integrated into the mesoscopic traffic
simulation model Mezzo [63] and differs from other available agent-based transit assign-
ment simulators (such as MATSim or MILATRAS) for the level of integration with road
traffic simulation.

For each line l, scheduled vehicles realize trips between terminal stops according to
the scheduled timetable. For each link e of line l, the vehicle travel time is the sum of
running times on links and dwell times at stops, both described as stochastic variables.
Dwell times are functions of the number of alighting and boarding passengers and depend
on the type of stop (in-lane or bay) [64].

To represent day-to-day fluctuations, the number of passengers has been modelled
by assuming a random Poisson process with average arrival rates corresponding to the
elements of the OD matrix SOD.

The goal of each traveler n is to reach his/her trip destination at the minimum per-
ceived generalized cost [69,70]. The progress of individual passengers is modelled as a
sequence of travel decisions which are formulated as discrete random choices at certain
decision times. More specifically, for each local choice (for example, boarding vs. waiting
at the stop), the passenger evaluates alternatives by assessing the expected utility to arrive
at its destination, conditional on taking the successive link. At a given time t’, the path kn
is chosen on the basis of the value assumed by the variables of the utility function νkn :

νkn(t
′) = βwaittwait

kn
(t′) + βivttivt

kn
(t′) + βgtg

kn
(t′) + βtransmtrans

kn
+ βcmcmkn (3)
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Passengers’ choices will vary according to variations in waiting and travel times, as
well as vehicle capacity constraints. Utility is computed in different periods t’: (i) when
the traveler starts travelling, (ii) at stops when a vehicle arrives and the traveler decides
whether to board or not, and, (iii) when on board, when the traveler decides where to alight.

During the simulation, on-vehicle passenger load is recorded to identify the remaining
number of passengers that can board, with the condition of seat capacity constraints.
Outputs from the simulation include time-dependent statistics at passenger and stop levels,
such as passengers’ travel times, vehicle loads, late vehicle arrivals at stops, number of
boarding and alighting passengers, and travel times between stops.

3.3. Disrupted Scenario and Vulnerability Evaluation

Central links are identified as those intercepting as much passenger flow as possible
in normal operating conditions. The centrality measure of link e, LCe, is defined as

LCe = ∑kn
aekn (4)

where aekn are the elements of the link-path incidence matrix

aekn =

{
1 i f eεkn

0 otherwise
(5)

where kn is the path chosen by passenger n.
A disrupted scenario, δ is defined as the network state in which a disruption affects

one or more links e. The disruption is modelled as a decrease in the link capacity ce for
a given period tδ, ce

δ being the capacity of link e in disrupted conditions, which is lower
than the capacity ce

b in baseline conditions. Reduction in link capacity generally causes
travel time increase and then delays at successive stops with cascading effects on vehicle
scheduling and waiting times at stops, which are likely to be longer. Then, passenger travel
times in disrupted scenarios are generally higher than travel times in baseline conditions.

A passenger n is said to be delayed if his/her total travel time in the disrupted
condition, TTn

δ, is higher than his/her travel time in the baseline condition, TTn
b. For a

given scenario—included the baseline one—the total travel time for passenger n from o to
d is given by the sum of waiting time at stops twait

kn
, in-vehicle times tivt

kn
, and walking times

on pedestrian links tg
kn

. Delay of passenger n in the disrupted scenario δ is computed as

DELδ
n = TTb

n − TTδ
n ≥ 0 (6)

and the average delay on the network is given by

DELδ =
∑Nδ

n=1 DELδ
n

Nδ
(7)

where Nδ is the number of passengers experiencing a delay in scenario δ. The higher the
average delay, the higher the vulnerability of the network in the disrupted scenario.

Once passengers’ delays are known, Lorenz curves are depicted to understand if
delays are distributed symmetrically or asymmetrically among passengers. For each
disrupted scenario δ, a Lorenz curve LOδ is built by evaluating the share of delay DELn

δ

for each delayed traveler n. Each point in the curve is identified by the set of coordinates
(Xn

δ; Yn
δ) where Xn

δ is the cumulated proportion of passengers (Xn
δ< Xn+1

δ) and Yn
δ is

the corresponding cumulated proportion of delays. Finally, the Gini index in scenario δ,
Vδ

GINI is computed as

Vδ
GINI = 1−∑Nδ

n=1

(
Xδ

n − Xδ
n−1

)(
Yδ

n + Yδ
n+1

)
(8)

where X0
δ = Y0 = 0, Xnδ

δ = Ynδ = 1, and VGINI
δ ranges in [0, 1].
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4. Case Study
4.1. Public Transport System Description and Implementation

The proposed approach has been applied to the case study of Bologna, a mid-sized
city (around 380,000 inhabitants) in Northern Italy. Its public transport network, shown in
Figure 3, consists of 11 bus lines (in both directions), with 659 nodes (stops) and 770 links.
Lines are operated by vehicles having different values of seat capacity and are characterized
by maximum scheduled frequency and operating speeds. Key attributes of each line are
also provided in Figure 3. The coordinates of each stop, vehicle characteristics and line
timetables have been obtained from available open data (https://www.tper.it/tper-open-
data) (accessed on 1 August 2021).
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Utility function coefficients in Equation (2) have not been calibrated for the case
study; however, proper values can be found in the literature which are appropriate for the
socio-economic context of the study area. In particular, the values estimated in [71] have
been assumed suitable for this case: βwait = βg = −0.07, βivt = −0.04, and βtrans = −0.334.
As for monetary costs, in the case study, the ticket fare is the same for all the lines, and
then for all paths, i.e., no single ticket discounts for users’ categories exist, and fare zones
are not applied so that the hypothesis that the user’s path choices are not affected by
monetary costs is reasonable. In the considered case study, information regarding expected
remaining time until next vehicle arrival for all lines serving all connected stops is provided
to passengers at stops. Finally, when using connection links between stops, passengers are
assumed to walk at a constant speed vg = 1.2 m/s (~4.5 km/h) with a maximum walking
threshold of 500 m.

As other similar cities, the Bologna public transport service has experimented disrup-
tions such as vehicle breakdowns, infrastructure issues, accidents, and floods. In the several
scenarios, the public transport supply is simulated starting at 7:00 a.m. until 12:00 a.m.
(T = 5 h) in order to be realistic with operating conditions—i.e., the service starts according
to scheduled timetable, while transport demand will use the service according to its specific
needs. As the most interesting condition occurs during peak hours, the passenger demand
refers to the peak morning period 7:30–9:30 a.m. Passenger demand data, collected during
an on-board survey campaign in 2018, have been provided by the transit service operator
and refer to passenger trips during a weekday morning peak-period between 7:30 and
9:30 a.m. In the first half hour, from 7:00 to 7:30 a.m., the simulation allows positioning the
vehicles in the network according to the planned schedule in order to ensure that when
peak-hours passengers start their journey at 7:30 a.m., the service is available at all locations.
The remaining period until 12:00 a.m. allows simulating how the peak-hours demand is
affected by disruptions and how these effects are distributed among passengers. The time

https://www.tper.it/tper-open-data
https://www.tper.it/tper-open-data
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length T has been considered suitable to let passengers complete their journey according to
the nature of the disruption.

During T, 10 simulations have been considered, which leads to a maximum error
less than 5% for estimating the passenger travel time. To validate the model, simulated
bus travel times and passenger loads throughout the network in undisrupted conditions
are compared with data collected and made available by the service operator, including
average travel times and loads.

4.2. Disrupted Scenario Definition: Central Links Identification

The load centrality LCe of each link has been computed in the baseline scenario, and
links have been ranked according to it. The first five links have been selected for modelling
five disrupted scenarios δ. More specifically, the first scenario corresponds to the disruption
of the first-ranked link, the second to the second-ranked, and so on. In addition, for a
more realistic representation, adjacent links to the most central ones having similar LCe
values (up to 10% difference) have also been disrupted to assure line closures of a relevant
length—which have been identified as “segment”. Table 1 and Figure 4 show the links with
the highest LCe values that were selected for modelling the disrupted Scenarios (δ1–δ5). The
simulated disruption corresponds to the complete closure of the segment due to unexpected
events (such as road accidents or infrastructure issues), and then the capacity ce of such
links has been set to zero for the morning peak-hour between 8:00 and 9:00 a.m. (tδ= 1 h).
Moreover, no service replacement has been planned, due to both the unexpected nature of
the event and the short duration of the disruption. For such scenarios, vulnerability has
been quantified in terms of average passenger delays (see Section 3, Equations (6) and (7)).
Then, the Lorenz curves LOδ1−5 and Gini indices VGINI

δ1–5 have been computed, in order
to refine the evaluation of the disruption impacts according to the proposed approach.

Table 1. Central links characteristics and centrality measure.

Scenario Disrupted Lines Disrupted Segment Length (m) LCe

δ1 14, 11, 13, 19, 20, 25, 27 900 25,382
δ2 13, 19, 21, 25, 35, 36 1300 19,772
δ3 11, 20, 21, 25 1300 19,603
δ4 13, 19, 36 850 13,246
δ5 14, 20, 21 1000 13,200
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Figure 4. Central links and disrupted segments (highlighted in red in the five scenarios δ1–δ5).

5. Results and Discussion

Transport system performance is evaluated for the simulation period 7:00–12:00 a.m.,
with a transport demand of almost 50,000 travelers. The system operating conditions



Sustainability 2021, 13, 8737 9 of 14

for the baseline scenario (also referred to as b) are assumed to be ideal and to proceed
as scheduled; in this situation, passengers do not experience any delay, and the average
simulated travel time (consisting of waiting, in-vehicle, and walking times) is 34 min. Half
of passengers take between 5 and 25 min to complete their paths.

Table 2 shows the average simulated travel times in the base (b) and disrupted Sce-
narios (δ1–δ5). As can be seen, the average travel time remains almost the same among
the considered scenarios, with just a slight difference (about 3 min at most). The average
travel time is not able to capture the effects of a disrupted network condition, particularly
for verifying the impacts produced on the users that are mainly affected by disruptions.
In order to have a clearer view of such effects, the number of passengers who experience
a delay should be explicitly considered, and delay distribution among such passengers
should be computed.

Table 2. Average travel times and percentage of delayed passengers.

Scenario Average Travel Time (min) Percentage of Delayed Passengers (%)

b 34.19 0
δ1 36.80 15.38
δ2 37.80 20.22
δ3 35.46 11.51
δ4 35.28 18.14
δ5 36.55 14.79

As reported in Table 2, the percentage of passengers suffering from a delay varies in
the five scenarios between 11% (the lowest, in δ3) and 20% (the highest, in δ2), while the
average passengers’ delay DELδ is computed as in Equation (7) by taking into account only
delayed passengers. The average delays for delayed passengers range between 12 and 17
min, as shown in Figure 5a (standard deviation of DELδ is also reported). The scenarios
with the highest average delay are δ1 and δ2, with average delays of 16 and 17 min,
respectively. However, the delay varies significantly among travelers, depending on the
origin-destination pair and path choice (see Figure 5b). In particular, some passengers
experience more than 1 h delay, especially in δ1 (3.4%) and δ2 (4.0%). For these passengers,
the disrupted segments play a relevant role in connecting their o-d, since no other acceptable
alternatives are available.
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To identify the (a) symmetry of impacts, the Lorenz curves LOδ are depicted in Figure 6
for the five scenarios, while the Gini coefficients VGINI

δ are provided in Table 3. Overall, the
curves suggest relatively low symmetry in terms of impacts on passengers, as showed by
the difference between the symmetrical distribution line (in red in Figure 6) and the Lorenz
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curves, and only a small fraction of users experiences the majority of delays. Similarly, the
Gini indices VGINI

δ vary in the five scenarios ranging from 0.34 to 0.44, confirming that
delay distributions are far from perfectly symmetrical.
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Table 3. Vulnerability Gini indices, load centrality, and average passenger delay for Scenarios (δ1–δ5).

Scenario VGINI
δ LCe DELδ (min)

δ1 0.40238 25,382 15.74
δ2 0.44415 19,772 16.88
δ3 0.38586 19,603 13.79
δ4 0.34230 13,246 12.99
δ5 0.34366 13,200 14.51

The most asymmetrical scenario is δ2 (VGINI
δ = 0.44), with passengers experiencing

delays also greater than 1 h. In this scenario, 80% of delayed passengers experience only
45% of the total amount of delay, while the remaining 20% of passengers experience the
majority of delays. Referring to cases δ1 and δ3, delays are slightly more symmetrical:
in these cases, 80% of the passengers share approximately 50% of delays. Scenarios δ4
and δ5, in which the disrupted links are the less central ones among the considered cases,
have similar and lower Gini indices (VGINI

δ = 0.34), suggesting a slightly more symmetric
delay distribution.

As shown by the simulation results, the links with higher centrality LCe are generally
the ones whose closure causes the highest average delay (see Table 3). In the scenarios
where the most central links are closed (δ1 and δ2), the magnitude of the impact is greater,
and the network is more vulnerable. Conversely, for Scenarios δ3 and δ5, delays are lower
and the network less vulnerable. These results seem to suggest the existence of some
correlation between the centrality measure and the network vulnerability, although the
centrality of a link does not necessarily mean that its closure leads to the most critical
situation, particularly in terms of asymmetry of impacts (compare, for example, Scenarios
δ1 and δ2 in Table 3).

Evaluating disrupted performance only in terms of aggregate network indicators—
such as the average travel times or average delays—may not be enough for an in-depth
understanding of vulnerability. The use of Lorenz curves and the Gini index characterizes
the vulnerability of the disrupted system with more details. In particular, the obtained
results show that Scenarios δ1 and δ2, where disrupted links are the most central ones, also
have higher Gini indices. In such cases, delays are asymmetrically distributed and concen-
trated on few passengers, whose experienced impacts are higher than those expressed by
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the average delay indicator. More specifically, by considering only average delays, scenario
δ5 (DELδ = 14.51 min) would be comparable to scenario δ1 (DELδ = 15.74 min). Neverthe-
less, Lorenz curves show that delays are more symmetrically distributed among passengers
in δ5 than in δ1 (VGINI

δ5 = 0.344 vs. VGINI
δ1 = 0.402), with δ5 being less vulnerable than δ1.

Even if average delays are similar, the disrupted conditions of the system in the two cases
are not the same, as delays distribute differently, as do the effects perceived by users.

The additional computation of the Gini index contributes to a better understand-
ing of public transport system vulnerability, by combining network level (delays) and
concentration (Gini index) indicators.

The proposed methodology may help transport system planners and operators to
identify vulnerable scenarios together with links that should be prioritized when planning
maintenance, emergency, and actions (such as providing alternative routes or vehicles or
upgrading existing service or infrastructure). Furthermore, the estimate of asymmetries can
support the implementation of public transportation equity policies in order to highlight
any potentially disadvantaged class of users in terms of accessibility and disruption effects.
Particularly, the combined use of average delays, Lorenz curves, and the Gini index may
help stakeholders to define thresholds for the acceptability of imbalance in the distribution
of delays and to set up actions for compensation.

6. Conclusions and Further Research

This paper presents a new approach to analyze the vulnerability of public transport
systems that is based on the combination of network indicators and impact (a) symmetry
evaluation. To the authors’ knowledge, this approach has not yet been considered in the
transport vulnerability literature and practice, as previous studies generally deal with
vulnerability in terms of network-level indicators such as average delay or increased
generalized cost. The methodological framework proposed in this work relies on classical
approaches by using the Lorenz curve and Gini index to analyze delay symmetry on
travelers and identify delay imbalances among passengers.

The enrichment of vulnerability analysis by means of the inclusion of delay asymmetry
evaluation allows computing better public transport system performances in the case of
disruption. By considering both these elements, operators and planners of public transport
systems are provided with a better understanding of how the effects of a disruption affect
users. This, along with the identification of critical locations, is also of utmost importance
for devising measures and strategies to safeguard network performance, for allocating
maintenance or emergency resources, and for supporting the implementation of policies
aimed at public transportation equity.

The analysis performed on a public transport network of a medium-sized city showed
that, in general, average user travel time is not sufficient to compare network performance
under normal and disrupted conditions. On the contrary, quantifying the delay experienced
by users under disrupted conditions and the asymmetry of its distribution may have
important impacts on setting up equity policies. The results for the test case showed that
some of the tested scenarios, while showing similar results in terms of vulnerability from
the point of view of average delays, actually involve differences in terms of the distribution
of impacts among users.

Further research is expected in terms of different performance measures that could be
used to determine public transport vulnerability by suitably weighting several components
of the total travel times, such as increased walking times and additional transfers in
the re-routed path, as well as the effects of on-board crowding on perceived level of
service. In addition, Lorenz curve-based vulnerability analysis may be applied to different
transport modes, such as individual road transport or air transport, by using suitable
performance measures.
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