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This research explores the integration of Deep Reinforcement Learning (RL) and
a Wave Function Collapse (WFC) algorithm for a goal-driven, open-ended
generation of architectural spaces. Our approach binds RL to a distributed
network of decisions, unfolding through three key steps: the definition of a set of
architectural components (tiles) and their connectivity rules, the selection of the
tile placement location, which is determined by the WFC, and the choice of which
tile to place, which is performed by RL. The act of thinking becomes granular and
embedded in an iterative process, distributed among human and non-human
cognitions, which constantly negotiate their agency and authorial status. Tools
become active agents capable of developing their own sensibility while
controlling specific spatial conditions. Establishing an interdependency with the
human, that engenders the design patterns and becomes an indispensable
prerequisite for the exploration of the generated design space, exceeding human

or machinic reach alone.
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INTRODUCTION
As Al simultaneously pervades and restructures our
technological ecology, it also reshapes our cognitive
processes and habits along with it. Conquering ter-
ritories of knowledge that were thought to be in-
violably human only few years ago, complex non-
human cognitions compel us to rethink our model
of authorship, acknowledging the implied intricacies,
and questioning both our relationship with tools and
conception of creativity.

We propose to explore a paradigm for architec-
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tural design in which non-human forms of cogni-
tions are embedded into the decision network (Clark
2008). Instead of mere passive devices, we consider
those forms active agents able to promote, select,
reinforce and inhibit design directions by their own
affordances (Leach 2016). These liberated tools, in-
stead of being aimed at parroting human thinking,
are acknowledged in their own sensibility and biases;
non-human cognitions enabled to claim a broader
autonomy and authorship coparticipation, by contin-
uously negotiating both their agency and their au-



thorial status (Picon 2016) (Parisi 2014).

General Adversarial Network (GAN) based appli-
cations of Al for the generation of architectural pro-
posals such as Bolojan [1], Chaillou (2020), del Campo
(2019, 2020) train algorithms to produce outputs as
wholes, mostly in the form of images, be they plans
or pictures, out of other images or language. These
applications leverage on an idea of conception de-
liberately declared as a form of intuition, in which Al
replace in some measure the human mind in the act
of conceiving a fully-fledged outcome. Instead, we
employ Reinforcement Learning (RL) to develop a lo-
cal distributed behavior, which continuously medi-
ates between internal and external conditions, and
whose outcome over time is a three-dimensional as-
semblage, generated by an inherently spatial and
material-aware process.

In order to form three-dimensional spatial orga-
nizations, RL must be coupled with an iterative gen-
eration algorithm such as Wave Function Collapse
(WFQ), which relies on a discrete representation of
both space and connectivity structure [2]. Given a
limited set of parts (tiles), their local connection rules,
and information about the topological structure of
space, the algorithm can unravel a vast array of differ-
ent spatial conditions. Albeit the WFC design spaceiis
ripe with variety, the algorithm nature makes it frag-
mented and its unaided navigation (i.e. converging
towards an established goal by tweaking initial con-
ditions) impossible.

We present a methodology for steering the gen-
eration of these assemblages towards specific spa-
tial qualities via a continuously enacted feedback-
loop between the human designer and the Al. Cou-
pled with WFC, an Artificial Neural Network (ANN) is
trained implementing Proximal Policy Optimization
(PPO) (Schulman et al. 2017 [6]). Thus, the system
takes responsibility in shaping the global space by
learning how to perform local component selection,
ostering the development of a cognitive structure
capable of pursuing specific and articulated spatial
conditions resulting from the iterative assemblage of
three-dimensional parts. More specifically, our re-

sults show how, selecting quantified spatial descrip-
tors representing both local and global features, it
is possible to characterize the assemblage’s spatial
qualities, enabling the designer’s analysis and inter-
vention, while providing continuous feedback to the
algorithm.

METHODS

Assemblages

The notion of assemblages we refer to is Manuel
Delanda’s expansion of Deleuze’s agencements
(Deleuze and Guattari 1987): arrangements in which
both the qualities of parts and their mutual rela-
tions play a crucial role in defining the qualities of
the whole (DelLanda 2006). DelLanda aims to move
beyond the structuralist metaphor of the organism
(parts have no existence outside the whole) with-
out returning to the collage model (there are no
relations, only individual parts), since both show a
limited ability to explain emergence (Johnson 2001).
In the assemblage framework, while parts maintain
their own individual identity, they might acquire fur-
ther characterization from their interactions inside
the assemblage. Also, they can be detached from
an assemblage and plugged in another one where,
while maintaining their embedded “properties’, they
can exhibit different relational “capacities’, afforded
by the mutated interactions within the new assem-
blage.

Delanda’s theory is aimed at society at large, and
establishes a theoretical framework based on parts
and their mutual relations, independent of the ap-
plication domain and its specific nature. In architec-
ture, focusing on their topological (and not semantic
or structural) aspects, assemblages align with a view
based on tectonics (the construction from parts, pro-
ceeding by addition or growth), rather than hylomor-
phism (the imposition of a figure over inert matter) or
stereometry.

The design of parts, or components, and their
connectivity, plays a key role in the design process.
In a typical functionalist approach, the elementary
component is a finalized unit, its function not sup-
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Figure 1

Iterative tile
placemente inside
the grid.

posed to exceed the designated purpose; a column
or a beam correspond to single, specific elements. To
fully inquire the assemblages’ potential, it is neces-
sary to loosen up this specificity, leaving space for
genericity and incompleteness: a radical opening to
foster context-dependent emerging conditions, as
well as differentiation and variety, all based on the
constitutive interrelation among parts. As a conse-
quence, the definitions and understanding of archi-
tectural semantics and tectonics change: “column”
or "beam” rather than elements, identify conditions
that can be expressed by one as well as several ele-
ments, while each element can determine multiple
conditions at once.

The design process we propose unfolds through
three key moments in which critical choices are de-
ployed: the definition of a set of tiles, their connec-
tivity rules, and the grid of cells to be populated,
the selection of the next location where a tile will be
placed, which is determined by the WFC algorithm,
and the choice of which tile to place, which is per-
formed by the ANN. While tiles and connectivity de-
sign happen outside the simulation, the system af-
fords mutual feedback-loops of influence: tiles and
connectivity design shape the assemblage’s space of
possible configurations, while the assessment of the
assemblage qualities reveals the tiles capacities and
provides the necessary input to act back on the tiles
themselves.

Wave Function Collapse

Wave Function Collapse (WFQ) is a constraint solving
algorithm, that iteratively places tiles in a predeter-
mined grid of cells, complying with a set of provided
adjacency rules, regardless of the tiles content (Fig-
ure 1). In particular the algorithm has gained mo-
mentum in game design, especially for procedural
textures synthesis and world generation, since it spa-
tializes information in a coherent topological struc-
ture, generating aperiodic patterns. Our implemen-
tation, made in Unity3D, is intended both as a plat-
form for the generation and exploration of a large
field of three-dimensional assemblages, and as train-
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ing environment for an ANN, making goal-oriented
spatial generation manageable via Machine Learning
techniques.

WEFC requires a discretized representation of space,
a grid defined by a set of cells along with the topo-
logical structure of their connections. The algorithm
is not limited by a regular grid or a specific network
topology; different grids have been explored, both in
two and in three dimensions, ranging from square to
hexagonal, up to space-filling polyhedral grids such
as cubical, rhombic dodecahedral and truncated oc-
tahedral. The initial implementation was performed
on a bidimensional square grid in which every cell is
connected with its adjacent ring of eight neighbors
(four sides and four corners). This setup combines
an affordable simplicity in tiles design with a rich, yet
manageable, connectivity set, while granting com-
plex enough outcomes and clarity in the assessment
phase.

Each cell is initialized to an unobserved state; in-
stead of containing a tile, the state is the superposi-
tion of all the probabilities of containing every spe-
cific tile (akin to a picture resulting from the semi-
transparent overlay of several images). A single iter-
ation consists of three phases: observation, collapse
and propagation. During each observation, anew un-
observed cell is selected and collapsed to a defined
state containing a particular tile. WFC relies on an en-
tropy function to measure, for every cell, the degree
of uncertainty about the possible tiles it may contain.
The next cell to collapse is selected choosing the cell
with the lowest entropy value; in other words, the



point with the lowest level of uncertainty, which con-
tains the lowest number of possible states. This fos-
ters more coherence into the assemblages, making
the algorithm less prone to fall into contradiction (i.e.,
the impossibility to place a tile that satisfies all the
connectivity constraints). To quantify uncertainty, we
follow the original implementation by Maxim Gumin
[2] evaluating the Shannon entropy. Given a discrete
random variable z,if z;, . . . , ., are the possible out-

comes, and P(x;), ..., P(zy) their probabilities to
occur, the entropy of x is defined as:
H(x) ==Y P(z;)log P(z;) (1)
=1

Subsequently, during the collapse phase, a tile is
placed, randomly selecting among those who satisfy
the connectivity constraints. Then, during propaga-
tion, the new information gained from the previous
collapse is diffused. For each neighbor cell the list of
suitable tiles and the entropy values are recursively
updated based on the new constraints defined by
the placed tile. If no tile satisfies these constraints,
the algorithm falls into contradiction and stops, oth-
erwise the process continues with another iteration,
until grid completion [3].

Tiles Design and Spatial Configurations
Every tile is provided with three types of information:
a set of connection rules determining the allowed ad-
jacencies in every direction, the contained geome-
try, and, in order to establish all its possible permuta-
tions, a symmetry type identifier. A large number of
tilesets was tested on both bidimensional and three-
dimensional grids. Complexity brews quickly: even
a slim tileset grants the emergence of a large collec-
tion of articulated and diverse outcomes. This abun-
dance in results largely depends on the careful de-
sign of the adjacency constraints; minor changes can
mark the difference between a successful system and
one prone to contradiction.

The algorithm manifests a tendency towards pat-
tern homogeneity and self-similarity in its spatial out-
comes (Figure 2). Though those may be desired qual-
ities, said results still represent a narrow subset of all

the spatial configuration the components are inher-
ently able to produce. The random tiles selection
mechanism gives each tile the same probability to
occur without the possibility to control this choice;
as a consequence, the system lacks the capacity to
stabilize patterns outside its bias range and/or orient
the final outcome. To address this limitation, some
authors assign probability “weights” to each tile [4],
affecting their chances of being selected. We pro-
pose to train an ANN leveraging Deep Reinforcement
Learning techniques to perform this choice. The aim
is to achieve, by mean of an intelligent, context-
aware and open-ended agency, a wider range of con-
figurations with more control on their spatial quali-
ties.
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Reinforcement Learning

Differently from other kinds of Deep Learning algo-
rithms (Goodfellow 2001), RL is not based on a pre-
existing dataset (Figure 3). The ANN instead learns
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Figure 3
Information flow in
RL.

its behavior from the experience accumulated by
an agent interacting with an environment, trying to
maximize a series of rewards awarded after its ac-
tions. In this process, the algorithm itself generates
its own set of data from which its behavior is devel-
oped. The agent and the environment are part of a
mutual feedback-loop. The agent performs actions
based on its perception of the environment’s current
state. These actions modify the environment, chang-
ing its state and, by doing so, affecting the agent’s
subsequent actions.
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During the training process, the environment pro-
vides an additional signal: a positive or negative re-
ward associated to every state that guides the train-
ing process. The agent shapes its behavior trying
to maximize this reward, learning from how its ac-
tions lead to higher or lower values. Therefore, a
careful engineering of the reward function is essen-
tial to orient and widen the spectrum of agent’s be-
haviors. If defining such function can be straight-
forward for simple problems, when complexity in-
creases or when facing open-ended problems such
as the ones characterizing architecture, translating
the desired qualities of the outcome in terms of re-
wards becomes challenging.

Nonetheless, since the designer is required to set
goals instead of hardcoding behaviors inside the al-
gorithm, a task that proves to be hard in terms of
human understanding, such as mapping the com-
plex non-linear correlations between local actions
and global outcomes, can be externalized to the RL
algorithm that trains the ANN and iteratively refines
its policy. This method appears more capable of ap-
proaching those ill-defined problem whose bound-
ary conditions are difficult to trace, since, instead of
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learning how to deliver complete, definite solutions,
what the algorithm develops is a sensibility, the abil-
ity to produce structured yet adaptable proposals, in-
teracting with the environment and navigating dif-
ferent, often conflicting, conditions.

Quantitative Spatial Analysis

A set of six quantified spatial descriptors is defined
with a twofold purpose: trying to characterize space
by analyzing different qualities at both the global and
local scale, and defining the associated reward func-
tions. Translating architectural spatial qualities into
quantitative design goals for the ML algorithm, they
enable the comparative analysis of the resulting as-
semblages’ features, and set up the data in a com-
putable and intelligible form for the Al.

1. Density. Every tile has an associated local
density value, representing the degree to which the
cell is filled. Density is defined as the average local
density of the observed cells. The associated reward
is calculated by defining a desired density and then
comparing it with the actual one.

1 — |desiredDensity — actualDensity| (2)

2. Spatial distribution. While density is a global
parameter, spatial distribution is defined as the co-
herence of a desired local density distribution with
the actual one. The associated reward is calculated
by computing at each cell’s collapse the difference
between the desired local density and the actual lo-
cal density. During training the desired distribution
is randomly generated by the system via an attractor
field. After the training, the designer can provide a
custom desired distribution.

1 — |desiredFieldValue — actualFieldValue|  (3)

3. Orientation. Principal directions are associated
to each tile from a predetermined set, in a range
of none to two per tile. Orientation designates the
main direction inside the assemblage, if the main
direction does not surpass the others at least by a
threshold amount, the assemblage is marked as non-
directional. The corresponding positive reward is
awarded if the main direction corresponds to the de-



sired main direction.
directionalTiles
totalTiles
4-5. Structural and spatial connectivity. The tiles
are divided into two categories according to their
local density value: void tiles and solid tiles, which
when connected with others from the same cate-
gory form structural and spatial clusters respectively.
When working in a tridimensional space, the infor-
mation about whether or not each structural clus-
ter is connected to the ground is also retained. Set-
ting a threshold, it is possible to identify, for each
structural cluster, tiles clusters that are either discon-
nected from the ground, or whose size is below the
threshold.
tilesUnderThreshold
1-— (5)
totalTiles
6. Planar connectivity. This parameter is de-
fined only for a three-dimensional assemblage. A
plane representing the element orientation can be
assigned to each tile by providing its normal vector.
Tiles which plane is horizontal (within a given thresh-
old), are clustered as in connectivity analysis. Given a
threshold, planar connectivity and its reward are de-
fined with the same formula used for structural and
spatial connectivity.

> threshold (4)

Training

The implemented machine learning algorithm is
PPO (Proximal Policy Optimization), a state-of-the-
art deep RL class of algorithms developed by OpenA/
(Schulman et al. 2017 [6]). This model, unlike pre-
vious RL algorithms, is able to operate with continu-
ous inputs and outputs. It selects actions relying on
an advantage function that estimates the expected
value of each possible choice and updates its policy
according to the divergence between its inferences
and the actual outcome.

The algorithm is implemented in the Unity ML-
Agents Toolkit, a library seamlessly integrated in
Unity3D (Juliani et al. 2020 [5]). The ANN architec-
ture consists of 3 hidden -layers, each containing 256
units. This architecture has proved sufficiently ro-

bust when operating in 2D and 3D with different sets
of tiles, while maintaining the same structure and
hyper-parameters.

Given a starting grid of cells, a training episode is
made of as many iterations are needed to complete
an assemblage or run into a contradiction. At each it-
eration, the environment provides information about
its current state, and the collected inputs are normal-
ized (remapped in a 0-1 range). Information regard-
ing the allowed tiles in the collapsing cell and the tiles
already placed in the adjacent ones is represented in
one-hot encoder form. The remaining information
is given in a continuous form as normalized scalars,
and contains both the desired and actual values of
the selected spatial features, along with their relative
weights.

Subsequently, the ANN selects, among a list of
allowed elements, which tile place inside the collaps-
ing cell. The ANN returns an array of normalized val-
ues as a one-hot encoder, representing the probabil-
ity of each candidate tile to be the overall most valu-
able choice; sampling from this probability distribu-
tion, the tile is selected. After updating the environ-
ment and awarding the correspondent reward, the
ANN policy is also updated.

For each training, a subset of active spatial qual-
ities is set, a weight is provided for every feature,
and the corresponding rewards are scaled so that
the maximum total achievable reward during each
training episode is 1. Additional reward is awarded
for each completed step, up to a maximum of 0.25,
encouraging the agent to complete the assemblage
without falling into contradiction.

During training, a generalization function mod-
ifies the desired values and their relative weight at
given intervals. Multiple instances of the assembling
algorithm, each one with different values, are run at
the same time. These two strategies prevent the ANN
from overfitting to a limited set of goal values. The
training performance is monitored via TensorBoard,
assessing through its generated charts the cumula-
tive reward, as well as the episode length and behav-
ior entropy, averaged over the last 100 episodes.
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Figure 4

Results: comparison
between heuristic
guided and Al
guided assemblage.

Figure 5

Results: Output of
the ANN guided
assemblage when
trained on all the
descriptors at once.

Figure 6
Three-dimensional
tileset and
connectivity rules.

Resulting Assemblages

The assemblages realized by the trained ANN are
compared against a stochastic baseline that assigns
to each tile a different probability in a random choice
(Figure 4). In one set of 25 tests, in which the shared
goal was to obtain an assemblage with a target den-
sity of 50%, the ANN consistently outperformed the
baseline (average 54% against 73% of the baseline),
while also exhibiting more structured patterns (Fig-
ure 5).

Training
Global

Given a common set of initial tiles, each descriptor
consistently led to the appearance of specific pat-
terns in the outcome. Since these patterns emerge
as a byproduct of the repetition of certain sequences
of actions, they display how strategies developed to
maximize the assigned reward also yield related for-
mal qualities. These qualities and their causal corre-
lation with the set goals can be clearly discerned in
the case of a single descriptor, while in the case of a
larger number of descriptors this correlation is more
difficult to discern, hindering the designer’s ability to
fine tune the training. Despite the inherent difficul-
ties of understanding a system with high dimension-
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ality and interrelated simultaneous parameters, this
can be considered a limit of this approach.

The emergent cognitive behavior is not bounded
to a defined dimension of the grid, so what is learned
in the training environment’s limited space can be ap-
plied to larger assemblages. This behavior is contin-
gent to the inherent history of the undergone train-
ing: repeating the training process, even with the
same parameters, can lead to different actions and
strategies in the same conditions and with the same
reward values. In this sense the descriptors are not
intended as objective representations of the assem-
blage’s spatial features, but as stimuli to hone the Al's
sensibility.

Mapping and Visualizing

Transitioning from a bidimensional space to a tridi-
mensional one, the increased dimensionality and re-
lated number of permutations leads to an inflation
of the possible tiles to compute and, consequently,
of the number of parameters inputted into the ANN.
In order to maintain sufficient design agility and pro-
vide a design space that facilitates the individuation
of the ANN contribution, after experimenting with
sets differentiating in tiles amount, geometry and
connectivity, a simple and limited set of tridimen-
sional tiles is adopted: a total of six planar elements,
three horizontal, two vertical, and one diagonal (Fig-
ure 6). The set was used to produce a database of
approximately 10,000 assemblages performed in a
10x10x10 grid containing the placed tiles as well as
the coded resulting spatial qualities (Figure 7).
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Figure 7

Results: Output of
the ANN guided
assemblage when
trained on density,
orientation and a
combination of
orientation and
connectivity.



Figure 8

Multiple
visualizations of a
resulting
assemblage.

Figure 9

Global view on the
resulting
assemblages

Superabundance of mathematically unique results is
a typical consequence of procedural generative pro-
cesses, and WFC makes no exception. This excess of
information defies analysis in human terms. Manual
methods are unfeasible for such large amounts, while
quantitative analysis on its own fails to account for
all the qualitative and perceptual features embedded
in the assemblage. Furthermore, the understanding
of a three-dimensional intricate spatial assemblage
cannot rely on visual inspection alone: making com-
parisons, and even grasping the spatial structure of
a single episode, is a complex cognitive task which
can be significatively eased when supported by an
externalized representation (Clark 2008). Therefore,
an interface, mediating between human and non-
human cognitions and intelligible to both is required
to help orientation while navigating the algorithm-
generated outcomes. A coordinate system is im-
plemented using the previously established quanti-
tative spatial descriptors, making the database ad-
dressable for human and machinic inquiries alike.
This orientation system, allows the selection of a spe-
cific assemblage based on the analyzed spatial quali-
ties: it is coupled with a visualization system that dis-
plays the resulting three-dimensional assemblage,
an automated selection of multiple viewpoints, and
various graphic representation of the parameters set
(Figure 8). Quantitative and qualitative features com-
plement each other, enhancing the completeness of
the assessment process.

However, the analysis system is still limited by
the difficulty of visualizing and examining this high
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dimensional space in a three-dimensional represen-
tation (Figure 9). Dimensionality reduction tech-
niques such as Self-Organizing Maps (Harding 2016),
although notimplemented at the present stage of re-
search, can help this process.
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CONCLUSIONS

This research explores a granular and distributed
paradigm for cognition and creation of architec-
tural space. Acknowledging the limitations of a
self-contained human creativity and challenging the
myth of its primacy, the generation process adopted
is not anthropocentric, as it puts the human in a
more extended cognitive ecology where the algo-
rithmic intelligence of WFC and ANN participate as
co-contributors with autonomous agency and au-
thorship.

The current state of our research refers to a no-
tion of architectural space that is deliberately partial
to its topological features and includes only visual ac-
counts of phenomenological qualities. Despite such
self-imposed restrictions and the limitations that en-
sue, quantitative and qualitative complexity must be
reckoned with early on. The presented method pro-
vides a compass to navigate an otherwise scattered
design space: the descriptors perform the dual role
of connective tissue for the design space and coordi-
nate system for the analysis of multiple outcomes.

Goals and reward functions are indicators of ab-
stract performances formulated by a human. Given a



set of tiles and connectivity constraints, each descrip-
tor is entangled with its own emergent patterns and
form stable connections with the outcome’s prop-
erties. Nonetheless, said qualities and their expres-
sion exceed the boundaries of this influence, since
they are the result of autonomous machinic sensibil-
ities developed during the training. Thanks to the
WEFC properties these patterns are extendable, with
unaltered tileset and training, to larger or multiple
grids, therefore suitable for agile design iterations.
Even so, combined goals interact in a non-linear fash-
ion, which defies a priori effect prediction and detec-
tion of individual contributions. The use of machine
learning techniques to deal with high dimensional-
ity (such as self-organizing maps) seems promising,
and it is considered as a future implementation to
strengthen post-generation analysis.

The interplay among tile design, WFC, and RL
produces topologically coherent spatial structures,
which are directly computable based on intrinsic
measurable properties and their inherent data rep-
resentation. Our goal is neither a phenomenological
use of Al, where ANNs are trained to develop features
based on preexisting catalogs, nor the reduction of
the architectural outcome to its fitness against some
predetermined condition. Instead, we aim at the ex-
pansion of the creative architectural horizon by in-
cluding non-human, autonomous agency and sensi-
bility in the design of spatial arrangements.
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