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ABSTRACT: Computational capabilities are rapidly increasing, primarily
because of the availability of GPU-based architectures. This creates
unprecedented simulative possibilities for the systematic and robust computation
of thermodynamic observables, including the free energy of a drug binding to a
target. In contrast to calculations of relative binding free energy, which are
nowadays widely exploited for drug discovery, we here push the boundary of
computing the binding free energy and the potential of mean force. We introduce
a novel protocol that leverages enhanced sampling, machine learning, and ad hoc
algorithms to limit human intervention, computing time, and free parameters in
free energy calculations. We first validate the method on a host−guest system, and
then we apply the protocol to glycogen synthase kinase 3 beta, a protein kinase of
pharmacological interest. Overall, we obtain a good correlation with experimental
values in relative and absolute terms. While we focus on protein−ligand binding,
the strategy is of broad applicability to any complex event that can be described
with a path collective variable. We systematically discuss key details that influence the final result. The parameters and simulation
settings are available at PLUMED-NEST to allow full reproducibility.

1. INTRODUCTION

In (bio)chemistry, free energy is still the most relevant and
challenging physiochemical parameter to predict computation-
ally. When studying the formation of biomolecular complexes
under equilibrium conditions, the binding free energy is
directly related to the affinity of the interacting partners. In
drug discovery, accurate binding free energy estimations
(within 1 kcal/mol) are crucial to identifying novel drug
candidates.1,2 As such, a significant portion of the computer-
aided drug discovery community is working to improve the
accuracy, precision, and robustness of binding free energy
predictions by refining the force field parameters3−9 and
enhancing the sampling of slow degrees of freedom.10,11 In this
context, enhanced sampling algorithms12,13 are increasingly
combined with machine learning for more accurate free energy
predictions.14−17

The advances in free energy perturbation (FEP) have
enabled the frequent application of FEP in drug discovery to
estimate the relative binding free energy (RBFE).18−20 When
FEP simulations are applied to predict RBFEs, the ligand is
alchemically transformed into another one through inter-
mediate steps. Because free energy is a state function, the
choice of the intermediate states is arbitrary, making the
approach very flexible.21,22 Recent progress in computer
hardware and software has made it feasible to apply FEP (or
other alchemical) methodologies to absolute binding free

energy (ABFE) predictions,1,23−26 creating the possibility of
directly comparing the binding affinities across chemically
different molecules that bind the same target or targets of the
same family.27,28 Although attractive, the routine application of
FEP approaches to ABFE calculations is still limited because
they do not fully consider how key phenomena (e.g., induced
fit and desolvation) contribute to the binding affinity.29,30

Their broad application to drug discovery is also limited by the
higher computational cost of ABFE relative to RBFE studies.
Additionally, FEP provides minimal details about binding
intermediates, transient pockets, and molecular mechanisms
because these calculations rely on unphysical paths (i.e., the
alchemical transformations).
A comprehensive representation of protein−ligand binding

events can be provided by free energy methods based on
physical paths, including steered molecular dynamics (MD)
(via Jarzynski’s equation31), umbrella sampling,32 metady-
namics,33,34 and so on. With these methods, one can simulate
the complete association/dissociation process of a drug
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binding to a target in explicit water, taking the structural
flexibility of the receptor into account. The free energy is then
calculated from the potential of mean force (PMF), leading to
good thermodynamic and kinetic estimations.35 Although
attractive, there are at least two key challenges to be addressed
to make these approaches widely applicable to drug discovery:
(i) the choice of the “optimal” collective variables (CVs) to
recapitulate the physical path and capture the slow degrees of
freedom of the system and (ii) the definition of the operational
workflow to set up, run, and analyze the simulations and
eventually provide thermodynamics and kinetics data. For
point (i), we here exploit the path CVs (PCVs),36 which have
been extensively used to study protein−ligand binding. For
point (ii), a simple, complete, and semiautomatic approach to
path-based applications has not yet been reported, although
attempts in this direction date back to 2010.37 We here devise
an operational workflow that encompasses: (i) an enhanced
sampling method to generate an initial guess path (we use
adiabatic bias molecular dynamics unbinding simulations
(ABMD)38 or steered MD); (ii) a machine-learning method
to extract an approximate minimum free energy path from the
initial guess path; (iii) a steered MD-based ad hoc method
here introduced to make uniform the root mean square
displacement (RMSD) between consecutive frames to
eventually define the PCVs; (iv) well-tempered metadynam-
ics39 (WT-MetaD) using the PCVs to obtain the PMF; (v) a
technique based on the solvent excluded surface to compute
the standard volume correction via NanoShaper;40 and (vi) the
calculation of the standard binding free energy via the ratio of
partition functions. We discuss this last aspect as reported by
Doudou et al.,41 because it requires identifying the frame
discriminating between the bound and unbound states, and
this choice influences the outcome. Here too, we suggest a
system-independent and semiautomatic procedure to identify
the most reliable separating frame by analyzing the binding free
energy profile. The pipeline depicted in Figure 1 is validated by
computing the binding affinities of two diverse series of
compounds, targeting two well-known benchmark systems,
namely, a host−guest (HST−GST) complex43 and the
glycogen synthase kinase 3 beta (GSK-3β),44 a system of
pharmacological interest. The computational results and
experiments correlated well. In addition to evaluating the
RBFE correlations, we also discuss the accuracy of our
estimates in absolute terms. This semiautomatic method is of
wide applicability for path-based free energy methods, limiting
the number of free parameters and human intervention.

2. METHODS
Here, we introduce a computational strategy to compute the
PMF along the PCVs.36 While the proposed protocol is of
general applicability, we focus on the protein−ligand binding
free energy. The procedure is detailed in the following
paragraphs, and it can be summarized in the main steps listed
below:

i) Generation of a MD trajectory describing the rare event
under investigation, for example, the association/
dissociation of protein−ligand complexes;

ii) Identification of a preliminary minimum free energy
path by a machine-learning path-finding algorithm42 and
optimization of the distance between consecutive frames
(i.e., RMSD) by the equidistant waypoints algorithm
(reported here for the first time);

iii) Reconstruction of the PMF by WT-MetaD on PCVs;
iv) Estimation of the standard binding free energy by

processing the PMF plus the standard volume correction
via a NanoShaper-based40 technique, purposely devel-
oped for the present study.

2.1. Path Generation via Enhanced MD Simulations.
The characterization of the free energy profiles underlying
binary complexes’ dissociation processes was considered a
testbed for our computational strategy. In particular, we
considered two sets that have been well characterized by both
experiments and computations: the cucurbit[8]uril (CB8)
HST−GST system proposed in the SAMPL6 challenge and a
congeneric series of ATP-competitive inhibitors against the
GSK-3β.43,44 In Section 2.5, we report the standard protocol
used to set up both systems. To generate the putative
dissociation paths connecting the bound and unbound states of
the ligand, steered MD45,46 and ABMD38 simulations were
performed on the CB8 and GSK-3β systems, respectively. In
the steered MD simulations of the HST−GST complexes, the
center of mass (COM) of the guest (GST) was pulled out
from the CB8 cavity by applying a spring constant of 2000 kJ
mol−1 nm−2 and a pull rate of 0.0001 nm ps−1, except for G2
and G3, whose larger molecular structures required a slightly
higher pull rate. When asymmetric GST molecules are
involved, there are slight differences between the two PMF
profiles projected over both exit directions from the CBn
cavity, as reported in previous studies on CBn complexes.47,48

Hence, we performed two independent steered MD simu-
lations along the two exit directions from CB8 for the
asymmetric GST molecules included in our selection (G2 and
G3). After 10 ns of steered MD simulations, a final COM

Figure 1. Graphical summary of the operational workflow.
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distance between CB8 and the GST molecules of approx-
imately 10 Å was achieved for all complexes. GROMACS
2016.549 was used to perform the pulling simulations in the
NVT ensemble. The dissociation processes for the congeneric
series of pyrazine-derivative inhibitors of GSK-3β were
previously studied by ABMD coupled with an electrostatics-
driven CV (i.e., elABMD).50 elABMD is an enhanced sampling
simulation technique that smoothly drives the system toward
the desired end state while minimally perturbing its natural
evolution, determined by thermal fluctuations because of finite
temperature.38 As such, once the system-dependent force
constant affecting the magnitude of the backward fluctuations
of the reaction coordinate is tuned correctly, a rare event can
be accurately sampled, including the metastable states. Here,
we selected one of the 20 unbinding trajectories reported in ref
50. by considering: (i) the computational unbinding time near
the average one, as defined in ref 49.; (ii) the achievement of
the complete ligand solvation (assessed in this study by looking
at the protein−ligand contacts within 6 Å); and (iii) the
physical soundness of the dissociation pathway. Here, we
evaluated the exit direction of the ligand and the time spent
sampling the unbound, prebound, and bound states, whose
relevance to this study is discussed in Section 4.
2.2. Approximate Minimum Free Energy Path

Finding and Optimization of the Interframe Distance
with the Equidistant Waypoints Algorithm. At this stage,
enhanced sampling (or plain MD) trajectories are already
available. To accelerate the path-building phase, we do not
refine the path by running further simulations. Instead, we
clean up the path using the available samples; that is, we find
an approximate minimum free energy path. This strategy is
very flexible because it does not require running further
simulations (e.g., the string method), and it can deal with
presampled trajectories from plain MD or enhanced sampling
(in the latter case, more care is needed). The execution time of
this step is negligible compared to a MD run. To find an
approximate minimum free energy path, we use the principal
path algorithm, as previously formulated.42 Given a points
cloud, this machine-learning method connects two points
defined a priori in data space and tries to pass through the local
support of the data distribution, capturing the most “abstract”
morphing path between these points. The method searches for
a smooth out-of-sample geodetic ruled by the data sample
density. It was inspired by the string method,51 but with several
differences:

• The string method is an online method similar to a
stochastic gradient descent which is run simultaneously
to a MD simulation. The principal path method is a
batch method and is applied a posteriori irrespective of
the MD sampling technique.

• The principal path can be applied to any kind of data,
provided a points cloud or distance matrix is available,
making it a machine-learning method, particularly a
kernel method.

• The string method has no variational formulation,
whereas a functional form is explicit in the principal
path method. Indeed, we have shown that the string
method iterations minimize the principal path functional
in an approximate way.42

Finally, the method might also be seen as a plain elastic
band,52 where the potential function is substituted with the k-
means cost function (discussed below).

The principal path algorithm is formally a regularized
version of the k-means clustering algorithm. However, its
purpose is significantly different as the principal path searches
for a smooth one-dimensional manifold discretized by the
waypoints. In particular, if we consider a set of points X = {xj ∈
Rd}, j = 1, .... , N, and two points w0, wNc + 1 ∈ Rd,the path
connecting these two points is defined as an ordered set W of
Nc waypoints w ∈ Rd. The principal path is found by
minimizing the standard k-means cost function with the
addition of a quadratic regularization term, which restrains the
distance between consecutive waypoints and controls the level
of smoothness of the path:
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where δ(ui, j) is the Kronecker delta, which gives the
membership of the ith sample to jth cluster/waypoint and ui
is a membership function that gives the cluster index; hence
δ(ui, j) is different from 0 only if the ith sample belongs to the
jth cluster. The first term coincides with the standard k-means
cost function, and the second term introduces a set of
harmonic restraints applied to consecutive waypoints. The
hyper-parameter s regulates the trade-off between the data
fitting and the smoothness of the path, as shown in Figure S1
in the Supporting Information.
By applying the path algorithm to real conformations

sampled by MD, the closest physical frames of the original
simulation to the ones calculated by the principal path are
identified, thus defining a complete sequence of consecutive
conformations capturing the event sampled by MD. At this
stage, a clean path is available, but because of the peculiarities
of molecular simulations, the distance in terms of RMSD
between the neighboring snapshots identified is far from being
uniform (Figure 2b). This aspect appears to be particularly

relevant when the PCVs,36 S(x) and Z(x), are chosen to trace
the principal path. As reported in the original paper
introducing the PCVs,36 consecutive frames must be as
equidistant as possible to ensure the smooth progression of
S(x) along the path and, more importantly, the proper
mapping between the formal variable S(x) and the underlying
metric space. Thus, we devised an algorithm based on a series
of 20 ps-long steered MD simulations to make uniform the
spacing between pairs of successive frames by placing
additional and equidistant configurations as needed (Figure
2c). This automated procedure is close in spirit, even if devised

Figure 2. Graphical representation of the path preparation for one of
the GSK-3β complexes studied in this work. (a) Guess unbinding
path generated via elABMD; (b) approximate minimum free energy
path defined via the path-finding algorithm; (c) optimized unbinding
path in terms of spacing between pairs of successive frames. A reduced
number of frames are reported to simplify the representation of the
system in the three stages.
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independently, to a procedure reported by Bernetti et al.53 The
principal path algorithm was developed in MATLAB, and the
algorithm to make uniform the distance between consecutive
frames was developed in Python 3 (see Algorithm 1
pseudocode in the Supporting Information). The code is
available upon request. The steered MD simulations were run
in GROMACS 2016.549 patched with PLUMED 2.5.54

The interframe distance was computed as the RMSD of the
heavy atoms of the GST molecule for the CB8 complexes,
while the RMSD alignment was performed on a selection of 16
C atoms defining the ring core of the CB8 molecule. For the
GSK-3β system, the heavy atoms of the ligand and the protein
residues located within 4 Å of the ligand in the bound state
were considered for RMSD computation. For alignment, we
used 25 Cα atoms belonging to residues that were uniformly
distributed on the protein structure showing a small coordinate
displacement during a plain MD simulation. The GSK-3β
residues considered in this study for the RMSD alignment
were Met162, Tyr163, Gln164, Leu165, Phe166, Arg167,
Ser168, Leu169, Ala170, Tyr171, Ile172, Ser237, Ile238,
Asp239, Val240, Trp241, Ser242, Ala243, Gly244, Cys245,
Leu320, Leu329, Pro331, Leu332, and Ala334 according to
PDB code 4ACC. The target RMSD threshold between
consecutive frames along the path was set equal to 1 Å for all
systems.
2.3. WT-MetaD and PCVs. The free energy surfaces

underlying the unbinding processes under investigation were
reconstructed by WT-MetaD39 along the PCVs, S(x) and
Z(x):
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In eqs 2 and 3, x represents the current system
configuration, ∥x − xi∥2 is the distance between the current
configuration and the ith frame of the path, P is the number of
frames included in the original path, and λ is a parameter that
modulates the smoothness of the path representation. Here, λ
was set equal to 230.0 nm−2 according to the following
heuristic equation that only depends on quantities available
before running WT-MetaD:

λ =
∑ −= x x

P2.3

i
P

i1
2

(4)

WT-MetaD was initialized from the bound state and then
ran to a maximum of 1 μs. By fixing the maximum computing
time to be invested in sampling the potential energy surfaces
via WT-MetaD, we accumulated a total simulation time of 8 μs
and ∼8.5 μs for the CB8 and GSK-3β systems, respectively.
Gaussians with a nominal height of 0.2 kcal/mol were used
together with a bias factor of 15. The width of the Gaussians
was set to 0.2 and 0.01 nm2 along S(x) and Z(x), respectively,
whereas the available space along the Z(x) dimension was
limited by placing a wall at Z(x) equal to 0.05 nm2. The
Gaussians deposition time was set to 500 MD steps. All WT-
MetaD simulations were performed using GROMACS
2016.549 patched with PLUMED 2.5.54 WT-MetaD simu-

lations run on one GPU node (2 CPU Intel Xeon E5−2650 v4
@ 2.20GHz 12 Cores each, 2 NVIDIA Tesla P100-PCIE-
12GB), performing 100 and 30 ns/day for the CB8 and GSK-
3β systems, respectively. Simulation of one ligand of GSK-3β
for 1 μs of WT-MetaD costs approximately 30 days of one
node computing time.

2.4. Standard Binding Free Energy Computation. The
standard binding free energy, ΔGb°, was calculated as reported
by Doudou et al.:41

Δ ° = Δ + Δ = − −
°
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The first term of eq 5 represents the probability ratio
between the bound and unbound states of the ligand. The
second term is the standard volume correction. Qsite and Qbulk
denote the partition functions for the bound and unbound
regions, respectively, whose ratio is computed by integrating
the FES as reconstructed by WT-MetaD, F(S, Z), and defined
to be zero at its lowest point (i.e., the ligand bound state) (eq
6). The frame separating the bound and unbound states was
identified as the first inflection point obtained by plotting the
binding free energy, ΔGb, as a function of the bound/unbound
frame. In Sections 3.2.1 and 4, the procedure is further
explained and discussed together with a representative
example.
In detail, the argument of the logarithm in the first term is:

∫
∫

=
−

−

( )
( )

Q

Q

dSdZ

dSdZ

exp

exp

F S Z
RT

F S Z
RT

site

bulk

site

( , )

bulk

( , )

(6)

The second term of eq 5 quantifies the free energy for
changing from the standard-state volume V° equal to 1661 Å3,
corresponding to a concentration of 1 M, to the sampled
unbound volume, Vbulk. This correction term is needed to
include in the free energy estimate the effect of the limited
conformational space available to the ligand when in the
unbound state. In this study, the unbound volume, Vbulk, was
quantified using NanoShaper40 (freely available at https://
gitlab.iit.it/SDecherchi/nanoshaper and also available in the
BiKi Life Sciences software package55), by considering the
S(x) frames of the principal path describing the dissociated
state of the binary complex. In detail, we collected all the
frames belonging to the unbound state in a single pdb file, and
then we computed the solvent excluded surface on this union
of the ligand atoms. This union surface gives an accurate
approximation of the volume traced by the ligand in the
unbound state (Supporting Information). In the Results
section, the standard binding free energy, ΔG°b, for each
complex refers to the time average of the last portion of each
WT-MetaD simulation, whose length was determined by two
conditions:56 (i) in the considered window, the system is fully
diffusive along S(x) and (ii) the residual height of the hills
must be less than 10% of the initial height (i.e., 0.2 kcal/mol in
this study). An estimate of the sampling error is computed as
the standard error of the time fluctuation of ΔG°b over the
converged portion of each WT-MetaD simulation. All the data
and PLUMED input files to reproduce the results are available
on PLUMED-NEST (www.plumed-nest.org), the public
repository of the PLUMED consortium,57 as plumID:21.004.
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2.5. System Setup. All the CB8 complex structures were
obtained from the SAMPL6 repository.43 The host and GST
molecules were modeled according to the general Amber force
field (GAFF)58 version 1.8. The AM1-BCC59,60 point charges
were used as supplied by the SAMPL6 organizers. Water is
described by the TIP4P-Ew model.61 Sodium and chloride ions
are added to neutralize the system and to maintain the
corresponding experimental ionic strength at which the
experimental binding affinity was measured, that is, 25 mM
Na3PO4 buffer at pH 7.4.43 All complexes are minimized by
5000 steepest descent steps and then equilibrated. The
equilibration protocol requires the thermalization of the
system at 300 K in three steps using the Bussi−Parrinello
thermostat62 for a total of 0.3 ns of dynamics. Subsequently, 1
ns of MD in the NPT ensemble is performed until the average
pressure of the system is equilibrated to 1 atm according to the
Parrinello−Rahman barostat.63 All MD simulations are
performed using GROMACS 2016.549 patched with PLUMED
2.5.54 Production runs are performed in the NVT ensemble,
setting 2 fs as the time step. Velocities are randomly assigned
before each production run. A cutoff of 12 Å was used for
nonbonded interactions, while long-range electrostatic inter-
actions were treated with the particle mesh Ewald64 scheme,
using a grid spacing of 1.6 Å. A temperature of 300 K was
controlled using the V-rescale thermostat,62 while bond lengths
for chemical bonds involving hydrogens were restrained to
their equilibrium values with the LINCS algorithm.65 For the
detailed protocol used to set up the GSK-3β systems, we refer
the reader to ref 50.

3. RESULTS

First, we describe the computational strategy applied to the
HST−GST system (the CB8-G6 complex). We detail the
procedure implemented to identify the S(x) frame to compute
the rate of partition functions between the bound and
unbound regions (eq 6). In the second part of this section,
we outline the results for the GSK-3β complex system.

3.1. HST−GST Benchmark System. As a testbed for our
computational strategy, we chose the HST−GST system from
the cucurbit[n]uril (CBn) family, proposed in the SAMPL6
binding challenge. We identified six positively charged GST
molecules (Figure 3) displaying a wide range of binding
affinities for the host, from −13.5 to −6.45 kcal/mol (Table 1),
including a few cases whose experimental binding free energies
differed by less than 1 kcal/mol. The highly symmetric CB8
comprises eight identical glycouril monomers linked by pairs of
methylene bridges, resulting in its characteristic ring shape
(Figure 3). Because of their top-bottom symmetry, asymmetric
GSTs have at least two symmetry-equivalent binding modes.
For this reason, G2 and G3 were included in our selection. All
HST−GST complexes included in the data set display 1:1
experimental stoichiometry.

3.2. HST−GST Binding Free Energy. As previously
mentioned, steered MD was chosen as an enhanced simulation
technique to generate preliminary paths of the HST−GST
systems. The path algorithm42 was subsequently applied to
identify an approximate minimum free energy path, describing
the dissociation process for every complex in the benchmark
data set, thus detecting the milestone frames. Once defined,
the principal path was then subjected to the steered MD-based
procedure to optimize the definition of the PCVs. Each

Figure 3. Top and side perspective views of the 3D structure of the CB8 host. Carbon atoms are represented in black, hydrogens in white,
nitrogens in blue, and oxygens in red. GST molecules are shown as 2D chemical structures with an explicit protonation state.

Table 1. Prioritization of the GST Molecules on Standard Binding Free Energies Obtained by WT-MetaD and ITC
Experimentsa

GST ID ΔGb ΔGV ΔG°b Rankcomp ΔG°b,exp Rankexp

G2 −7.7 0.0 −7.7 ± 0.1 6 −7.66 ± 0.05 5
G3 −9.6 −0.1 −9.7 ± 0.1 3 −6.45 ± 0.06 6
G6 −9.3 0.4 −8.9 ± 0.1 5 −8.34 ± 0.05 3
G7 −10.8 0.3 −10.6 ± 0.1 2 −10.0 ± 0.1 2
G8 −12.9 0.4 −12.5 ± 0.1 1 −13.50 ± 0.04 1
G10 −9.4 0.2 −9.1 ± 0.1 4 −8.22 ± 0.07 4

aFree energy terms (i.e., ΔGb, ΔGV, ΔG°b, and ΔG°b,exp) are reported in kcal/mol. Pearson correlation coefficient: 0.84. Bootstrap Pearson
correlation coefficient: 0.72 ± 4e-5 (bootstrap standard error and 10,000 samples). Spearman coefficient: 0.6. RMSE: 1.5 kcal/mol. ME: 0.7 kcal/
mol. The experimental data refer to Rizzi et al.43
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optimized principal path was sampled for 1 μs with WT-
MetaD combined with PCVs. Although the small size of the
CB8 complexes could have required shorter simulations, we
aimed to thoroughly inspect the statistics thanks to the
relatively limited computational cost.
The WT-MetaD convergence was primarily assessed by

looking at the downward trend of the Gaussian hills height as a
function of the simulation time and the diffusing behavior of
the S(x) variable over the simulation time. For the former, a
residual height of the hills of approximately 10% of the initial
height was considered an acceptable threshold to assess the
WT-MetaD convergence.56 Figure 4 reports the Gaussian
height and the progression of the S(x) variable as a function of
the simulation time for the CB8-G6 complex. For this system,
we established the convergence after 800 ns of simulation,
when both conditions were fulfilled. In the Supporting
Information, we also report the evolution of the ΔGb along
the simulation time, given its relevance when assessing the
convergence of metadynamics-based simulations.
3.2.1. Identification of the Bound/Unbound x* Frame. As

outlined in eqs 5 and 6, the computation of the binding free
energy requires the evaluation of the probability ratio between
the bound and unbound states of the ligand, which in turn

demands the identification of the S(x) frame discriminating the
two states.
To establish a transferrable strategy for semiautomatically

identifying the bound/unbound x frame (hereafter referred to
as x*) for every CB8 complex in the data set, we monitored
the behavior of the binding free energy, ΔGb, computed
following eqs 5 and 6, changing the x* frame.
Figure 5 reports the behavior of ΔGb as a function of x* for

the representative case of the CB8-G6 system, where the
rescaled x* equal to 0 corresponds to the docked state of the
GST molecule (point A). Proceeding to the solvated state, the
ΔGb smoothly decreases, displaying two main intermediate
inflection points corresponding to two intermediate states, that
is, one of the partially docked conformations (point B) and the
partially solvated states (point C) of the G6 molecule,
respectively. As expected, an almost constant ΔGb value is
observed when the GST molecule is fully solvated, because of
the energetically equivalent conformations adopted by the
solvated GST molecule (point D). To identify the x*
discriminating the bound and unbound states of the system,
we visually inspected the plot showing the ΔGb changing the
x* frame, and we picked the frame corresponding to the first
inflection point from the bound state showing the ligand
partially undocked from the binding site (point B in Figure 5).

Figure 4. Gaussian hills height (left) and S(x) progression (right) as a function of the simulation time for the CB8-G6 complex. For consistency,
the reaction coordinate was rescaled, setting S(x) = 0 (bound state) and S(x) = 1 (unbound state) for every complex reported in this study. The
shaded region refers to the portion of the WT-MetaD simulation considered in the computation of the binding free energy.

Figure 5. Sensitivity of the binding free energy, ΔGb, with varying x* frame for the CB8-G6 system.
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This criterion is similar in spirit to the “elbow criterion” used
in machine learning for selecting the “right” number of clusters
in k-means. The physical meaningfulness of x* is also
evaluated. Moreover, the relative position of x* is further
cross-checked versus the free energy profile. Indeed, the picked
x* has also to be compatible with a transition-state-like nature
on the PMF (see Figure 8a in the Discussion). If these checks
fail, in the general case, we search for the following inflection
point until these criteria are satisfied. At this stage, this
procedure is still manually curated, and further work is needed
to render it completely programmatic. Once x* is identified
and checked against the qualitative and quantitative criteria,
the probability ratio between the docked and solvated states of
the ligand and the binding free energy, ΔGb, can be computed
(eqs 5 and 6). In the Discussion section, we compare the result
obtained for CB8-G6 with another CB8 complex showing a
different behavior of ΔGb in terms of x*, thus further
discussing the strategy used to identify the x* frame, because
this aspect is critical for the final result.
3.2.2. Prioritization of the HST−GST Data Set on the

Standard Binding Free Energy. Table 1 and Figure 6 report

the prioritization of the GST molecules on the standard
binding free energy resulting from the WT-MetaD simulations
and the isothermal titration calorimetry (ITC) measurements
released for the SAMPL6 challenge.43 Each free energy term is
labeled according to eq 5. The predicted standard binding free
energy, ΔG°b, is reported together with the corresponding
standard error, namely, the rate between the standard deviation
and the square root of the sample size. With respect to the two
asymmetric GST molecules (i.e., G2 and G3), the ΔG°b values
are reported as the average of the binding free energy values of
both the exit directions, with the details for both exit directions
indicated in the Supporting Information. We evaluated the
Pearson correlation coefficient as a measure of the statistical
relationship between experimental and computational esti-
mates. From the data set in Table 1, it was equal to 0.84. By
running a bootstrap resampling procedure, we assessed the
statistical robustness of the correlation. Considering 10,000
bootstrap samples, we obtained an average Pearson correlation
coefficient equal to 0.72 ± 4e-5 (i.e., the bootstrap standard
error), confirming a good correlation between experimental
and computational data. The Spearman coefficient was
computed to assess the consistency of the prioritization of
the binding affinities from computations and experiments

(Spearman coefficient: 0.6), because absolute values are
important, but ranking is probably even more cogent in drug
discovery campaigns. The data were analyzed according to ref
66. The root mean square error (RMSE) of the predicted
binding free energy values with respect to the experimental
results is 1.5 kcal/mol. It is worth mentioning that we selected
a limited number of GST molecules from the original data set
presented in the SAMPL6 challenge. Thus, it is difficult to
provide a comprehensive comparison of the performance of
our method relative to those of the SAMPL6 challenge
reported in ref 43.
The computational ranking of the CB8 series reported in

Table 1 is in fairly good agreement with the experimental one,
although with some relevant deviations (see G3, G6, and
G10). However, G6 and G10 differ in experimental binding
free energy by less than 0.2 kcal/mol, a quantity challenging to
predict by computational methods and often within the
experimental error. As reported in Table 1, the computational
data tend to overestimate the binding free energy (mean error,
ME: 0.7 kcal/mol), except for G8. This observation is not
surprising, according to the SAMPL6 results obtained by
applying methods relying on empirical force fields (i.e., GAFF)
to predict the binding free energies of the HST−GST
complexes.43 The accuracy between the computational and
experimental datasets reported in Table 1 is around 1 kcal/mol
for all the GST molecules except G3 for which the predicted
and experimental ΔG°b values differ by more than 3 kcal/mol.
This deviation might be due to several aspects, such as G3’s
large chemical structure making convergence more difficult.67

G3 might also have access to a second probable protonation
state in water at the experimental pH,43 affecting the CB8-G3
binding affinity. Nevertheless, our binding free energy estimate
for CB8-G3 is in line with previous computational results
relying on other sampling methods, for example, double
decoupling method70 and umbrella sampling47,70 that system-
atically overestimated the CB8-G3 binding affinity. Our
approach reproduced the result for the CB8-G3 complex
(Supporting Information) previously reported by Sun et al.67

Here, the authors identified the presence of multiple free
energy minima corresponding to stable bound states of the G3
molecule in complex with CB8. This result was obtained using
WT-MetaD to sample the spherical coordinates, ρ, θ, and φ.
By validating this challenging result against the application of
different computational protocols to explore diverse CVs, we
increased our confidence in the predictions obtained for the
benchmark data set. In addition, we ensured their independ-
ence from the starting configuration of the system and the
peculiar dissociation path generated by an arbitrary enhanced
sampling technique. In the Discussion section, we report
additional considerations for the test case of CB8 in complex
with the asymmetric GST molecules (G2 and G3). In the
Supporting Information, we report all the PMFs, the ΔG°b as a
function of the x*, and the significant plots assessing the
convergence of the WT-MetaD simulations for all the CB8
systems.

3.3. GSK-3β Kinase System. We then applied the same
protocol to a real case study of pharmaceutical interest, the
protein kinase GSK-3β. The unbinding kinetics of a strictly
congeneric chemical series of pyrazine derivatives was
previously characterized by both experiments and computa-
tions (i.e., elABMD). Here, we complete the characterization
of those dissociation paths determined via elABMD by
computing the underlying free energy profiles, referring to

Figure 6. Scatter plot showing the experimental measurements for the
HST−GST data set against the affinity predictions. The two red lines
delimit the area within 2 kcal/mol from the diagonal (black line).
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the thermodynamic experimental data reported by Berg et al.44

The chemical structures of the selected ATP-competitive
inhibitors of GSK-3β are reported in Table 2. Compounds 1

and 4 display two positive and zero charges, respectively. For
the remaining inhibitors in the series, one positive charge was
assigned to the nitrogen of the 4-methylpiperazine group (R1).
3.4. Prioritization of the GSK-3β Data set on the

Standard Binding Free Energy. The dissociation paths for
the GSK-3β complexes were generated via adiabatic bias MD
coupled with an electrostatics-based CV, which provides a
realistic description of the unbinding processes while sampling
the metastable states of the system. This is particularly relevant
in this kind of application because we observed that the proper
sampling of the intermediate configurations facilitates the
identification of the x* frame, thus leading to more reliable
binding free energy estimates (see Section 4). Once the
principal path was identified and optimized in terms of spacing
between consecutive frames, we collected 1 μs of WT-MetaD
along the PCVs for each GSK-3β complex and assessed the
convergence of the WT-MetaD simulations as reported for the
CB8 systems (Supporting Information). Table 3 and Figure 7
show the prioritization of the GSK-3β chemical series on the
standard binding free energies. The Pearson correlation

coefficient between computational and experimental values
for the GSK-3β data set was 0.78. The bootstrapped estimate
of the correlation coefficient was 0.70 ± 3e-5 (bootstrap
standard error, 10,000 samples). In absolute terms, the most
critical cases in the data set are 2 and 7 followed by 4 and 6,
further analyzed in the Discussion section. Consequently, the
ranking of the GSK-3β series is not excellent, even though we
generally observed a good agreement between computations
and experiments (Spearman coefficient: 0.6). The RMSE for
the predicted binding free energies relative to the experimental
values is 2.2 kcal/mol; the ME results are equal to −1.3 kcal/
mol suggesting the general trend toward underestimating the
experimental binding free energies.

4. DISCUSSION AND CONCLUSIONS
This study devises a semiautomated approach, of broad
applicability, used here to compute the PMF and the standard
binding free energy for protein−ligand complexes. The
efficient and accurate estimation of the binding free energy
remains one of the major open issues in computational drug
discovery. In our protocol, a critical step was identifying the
S(x) frame that separated the bound from the unbound states
(here referred to as x*) to provide a realistic partition function
and thus an accurate standard binding free energy estimation.
We did not fully automatize the x* identification procedure
(this is currently in progress), and we used a collection of
cross-checked heuristics for analyzing the plot of the ΔGb
versus x*, the corresponding free energy profile, and the

Table 2. Chemical Structures of the Selected GSK-3β
Inhibitors (1−8)

Table 3. Prioritization of the GSK-3β Inhibitors on
Standard Binding Free Energies Obtained by WT-MetaD
and Experimentsa

CPD ID ΔGb ΔGV ΔG°b Rankcomp ΔG°b,exp Rankexp

1 −13.6 −0.2 −13.8 ± 0.1 1 −13.3 1
2 −7.1 −0.7 −7.8 ± 0.3 7 −11.4 3
3 −10.4 −0.5 −10.9 ± 0.0 3 −10.5 6
4 −10.1 −0.1 −10.2 ± 0.2 4 −12.6 2
5 −11.5 −0.2 −11.7 ± 0.1 2 −10.9 4
6 −7.6 −0.3 −8.0 ± 0.1 6 −9.7 7
7 −4.2 −0.4 −4.6 ± 0.8 8 −8.5 8
8 −9.9 −0.3 −10.2 ± 0.9 5 −10.6 5

aThe free energy terms (i.e., ΔGb, ΔGV, ΔG°b, and ΔG°b,exp) are
reported in kcal/mol. Pearson correlation coefficient: 0.78. Bootstrap
Pearson correlation coefficient: 0.70 ± 3e-5 (bootstrap standard error,
10,000 samples). Spearman coefficient: 0.6. RMSE: 2.2 kcal/mol. ME:
−1.3 kcal/mol. The experimental data refer to Berg et al.44

Figure 7. Scatter plot showing the experimental measurements for the
GSK-3β series against the affinity predictions. The two red lines
delimit the area within 2 kcal/mol from the diagonal (black line).
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physical path. For the CB8-G6 case, x* corresponds to a
configuration of the system showing the breaking of the key
HST−GST contacts together with the GST molecule partially
undocked from the binding site (Figure 5 and Figure 8b). The
x* frame should, in principle, correspond to the transition state
of the dissociation mechanism (Figure 8a), making our choice
of x* similar to the one proposed in previous studies.56,68 It is
worth mentioning that, even though our criterion to identify
the x* is valid in most cases, there are systems in which some
additional considerations may be required. For example, if the
first inflection point from the bound state on the ΔGb changing
x* plot was not compatible with a reasonable free energy
change in the free energy profile, we moved to the following
one until a transition-state-like free energy barrier was found.
This was the case of 4 reported in Section 4 in the Supporting
Information. Here, the first inflection point at S(x) = 0.2 did
not correspond to a significant free energy change, whereas this
criterion was fulfilled considering the inflection point at S(x) =
0.4, which was picked as x* for this system. Another critical
case is CB8-G8 investigated here. In Figure 8d, we report the
ΔGb for the CB8-G8 case, which shows a single fast
intermediate inflection point (F) separating the docked (E)
and solvated (G) states of the GST molecule. In these cases,

we heuristically observed that the average point between two
well-defined inflection points corresponding to the bound and
unbound states (E and F in Figure 8d) is an acceptable
approximation of the x* frame. We further highlight that
identifying the x* frame is far from trivial, and it is difficult to
detect it by looking at the free energy barriers along the PMF.
Thus, human intervention is needed to validate the choice of
the x* frame by visually inspecting the free energy path. Here,
we observed that the steered MD protocol used to generate
preliminary dissociation paths for all the HST−GST systems
might not have properly sampled the intermediate metastable
states for the CB8-G8 system. By failing to sample the
transition state region between bound and unbound states, the
principal path reconstructed for the CB8-G8 complex does not
include any significant intermediate configurations that WT-
MetaD can eventually sample. As such, the corresponding
PMF is very steep, making it challenging to define a proper x*
frame (Figure 8c). We emphasize that the x* frame
identification was far simpler with GSK-3β, where we used
adiabatic bias MD to generate preliminary dissociation paths.
To increase the GST molecules’ structural variability in the

data set and to challenge our approach with noncongeneric
compounds, two asymmetric GST molecules (G2 and G3)

Figure 8. Free energy profiles and evolution of the binding free energy, ΔGb, changing the x* frame for the CB8-G6 (a and b) and the CB8-G8 (c
and d) systems. For CB8-G6, the x* frame corresponds to the first inflection point encountered moving from the bound state (b, point B). In the
PMF (a), it identifies the first energy barrier. For CB8-G8, because only one inflection point (d, point F) is observed between the bound (d, point
E) and unbound (d, point G) states of the system, the x* frame is fixed between the two well-defined inflection points (d, points E and F). In this
case, in the PMF (c), the x* frame corresponds to a not-sampled intermediate state between the lowest energy minimum (bound state) and the
plateau corresponding to the solvated state of the system.
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were also investigated. G2 and G3 also display the lowest
binding affinities against the cucurbit[n]uril host molecule
CB8, which determines the partial dissociation of the G2 and
G3 GST molecules during NPT equilibration, before the
steered MD simulation. As anticipated in the Section 2, steered
MD was repeated twice for the CB8 in complex with the
asymmetric G2 and G3 to generate dissociation paths
involving both the exit directions. Concerning this point, we
observed that both G2 and G3 display different PMF profiles,
when the GST molecule unbinds in either exit direction,
suggesting possible kinetic barriers driving the system toward
the most energetically favorable dissociation path. As expected,
the different free energy profiles for the asymmetric G2 and G3
lead to binding affinity predictions that differ by less than 1
kcal/mol, thus increasing our confidence in the computational
estimates (see Table S1 in the Supporting Information).
For the GSK-3β system, we evaluated the accuracy of the

binding free energy estimations in absolute terms by
comparing the computational estimate with the experimental
reference for each complex. The most critical cases were 2 and
7 for which the free difference between the calculated and
experimental values was more than 3.5 kcal/mol. By looking at
the behavior of the S(x) variable, we observed that, after 1 μs
of WT-MetaD simulation, the bound state of 7 was not

correctly sampled (Figure 9c), possibly because of the
suboptimal definition of the prior dissociation path. We
would argue that the ABMD parameters that we selected for
generating the dissociation paths with all the GSK-3β ligands
were not appropriate for this compound. Indeed, we observed
unphysical (high energy) ligand conformations during the
unbinding event, probably because of the bias strength. We
further highlight that the accuracy of the binding free energy
estimates critically depends on how extensively the bound and
prebound (intermediate) states have been sampled by WT-
MetaD, as previously observed in several studies discussing
binding free energy estimations for real systems. In light of this,
we extended the WT-MetaD for 7 to 1.4 μs until a complete
transition along the S(x) path was detected, and the height of
the Gaussian hills was low to the point of not allowing further
exploration of the S(x) path (Figure 9c,d). In Table 3, the
computational free energy estimate for 7 refers to the extended
simulation. In Figure 9a,b, the free energy profile for the
dissociation of GSK-3β in complex with 7 is reported together
with the plot representing the behavior of the ΔGb against the
x* frame. Notably, the validation of the computational result
against the experimental data might be affected by the
experimental low solubility of 7 observed in references 44,
50, thus questioning the accuracy of the experimental

Figure 9. GSK-3β in complex with 7. (a) Free energy profile and (b) identification of the x* frame. The behavior of (c) S(x) variable and (d)
Gaussian hills against the simulation time. Looking at (c), we observe that the bound state (S = 0) for 7 is not properly sampled after 1 μs of WT-
MetaD simulation. The shaded regions highlight the converged portion of the WT-MetaD simulation considered in the computation of the binding
free energy reported in Table 3.
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thermodynamic data reported in ref 44. For comparison,
Figure 10 reports the GSK-3β/1, where standard binding free
energy was estimated with high accuracy.
By evaluating the exploration of the S(x) path for 2, we

again observed that 1 μs of WT-MetaD simulation was not
enough to let the system extensively explore the complex
bound state. However, in contrast to 7, the low height of the
Gaussian hills for 2 meant we did not expect that proceeding
further in the statistics would significantly change the
exploration of the S(x) path (Supporting Information). As
such, we did not extend the statistics for 2. Moreover, the gap
of approximately 2 kcal/mol observed for 4 and 6 was
evaluated by looking at the simulation convergence. Similarly
to 2, we considered both simulations to have reasonably
converged.
In conclusion, we introduced a semiautomated pipeline,

which combines enhanced sampling simulations with a
machine-learning method to predict standard binding free
energies. As discussed by Mobley et al.,69 validated benchmark
systems are crucial to understanding how different computa-
tional methods perform when attempting to compute the same
thermodynamic properties. As such, we tested our workflow on
one of the HST−GST systems suggested in the SAMPL6
challenge. Then, the method was applied to a system of
pharmaceutical relevance, namely, GSK-3β/ligand complexes.

In both cases, we obtained good binding affinity predictions in
both relative and absolute terms. According to the present
results, we were able to define the strengths and aspects that
need to be improved to make this approach widely and
routinely applicable to real drug discovery case studies. In
particular, we would suggest using elABMD as an enhanced
sampling technique to define the guess paths. This is because
elABMD can provide an accurate description of the metastable
conformations of the system when proper force constants are
applied. A straightforward definition of the principal path,
requiring minimum human intervention and negligible
computational time, can then be obtained in combination
with the equidistant waypoint algorithm, which prepares the
path for WT-MetaD coupled with PCVs. Moreover, the
system-independent procedure implemented to identify the x*
frame allows one to obtain robust and accurate binding free
energy estimates (through the partition function) provided
that WT-MetaD simulations are converged. We are working on
the automated identification of x* based on the finite
difference approximation of the derivative of the PMF and a
threshold free energy value. Finally, NanoShaper is a valuable
tool for computing the sampling volume of the unbound state,
thus allowing the accurate estimation of the binding free
energy correction. The only step of the workflow that needs to
be further investigated is the care in creating an “optimal”

Figure 10. GSK-3β in complex with 1. (a) Free energy profile and (b) identification of the x* frame. Behavior of (c) S(x) variable and (d)
Gaussian hills against the simulation time. Panel (c) shows the diffusive behavior of the S(x) variable after 1 μs of WT-MetaD simulation. The
shaded regions highlight the converged portion of the WT-MetaD simulation considered in the computation of the binding free energy reported in
Table 3.
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physical path that mimics a minimum free energy path as much
as possible. Steered MD is inadequate, and elABMD proves
much better. However, not all elABMD trajectories are
“optimal”, and it is always desirable to increase the “gentleness”
of ligand release. We mention here that predicting absolute
values via path-based free energy methods is far more
computationally expensive and challenging relative to
alchemical approaches widely applied in pharmaceutical
settings. As such, physical path-based methods may not
necessarily be more effective from the drug discovery
viewpoint if only a number, namely, the free energy difference,
is desired. The amount of information one extracts from the
full PMF is not comparable with the output of alchemical
methods. In the next future, we aim to apply the computational
workflow depicted in Figure 1 to characterize rare events
involving other chemical processes somewhat more complex
than ligand unbinding.
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