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Abstract: Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-
relevant targets due to their master regulatory role in different signal transduction cascades in the
neuroscience space. Among them, GSK-3β, FYN, and DYRK1A play a crucial role in the neurodegen-
eration context, and the deregulation of all three PKs has been linked to different CNS disorders with
unmet medical needs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal
lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these
diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval
process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-
decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with
synthetic efforts to develop potent and selective GSK-3β, FYN, and DYRK1A inhibitors as disease-
modifying agents. In this review, we described both structural and functional aspects of GSK-3β,
FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling
pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target
drug design strategies applied to overcome some limitations of known PKs inhibitors and discover
improved modulators with suitable blood–brain barrier (BBB) permeability and drug-like properties.

Keywords: protein kinases (PKs); central nervous system (CNS); blood-brain barrier (BBB); tauopathies;
PKs modulation; crosstalk; multi-target

1. The Neurokinome in Drug Discovery

The human kinome plays a crucial role in many physiological events, and its dys-
regulation is associated with a large portion of multifactorial disorders, including cancer
and neurodegenerative diseases. Among these latter ones, neurodegeneration has a dra-
matic impact on the aging population. Protein kinases (PKs) represent very attractive and
challenging drug targets for industry and academia to tackle complex disorders affecting
peripheral and central tissues [1,2]. However, the development of PK-targeted therapies
in neuroscience has not been primarily investigated due to several issues, including the
multifactorial nature of the central nervous system (CNS) diseases, the failure of many
advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug by the
U.S. Food and Drug Administration (FDA) [3,4].

CNS drug discovery places unique challenges linked to the blood–brain barrier (BBB)
and the paucity of translational animal models to test new drug candidates [5,6]. The
BBB has been extensively investigated as a dynamic and selectively protective membrane
responding to changes in its environment and as part of a more complex neurovascular unit
in which endothelial cells, astrocytes, pericytes, and neurons interact to restrict the flow
of native and foreign agents between the blood and the CNS. BBB reflects the properties
of two components: one forms a structural/physical barrier composed of endothelial
cells and extremely tight intercellular junctions that regulate diffusion of solutes between
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blood and brain; the other is a biochemical/selective barrier due to the presence of specific
transport proteins expressed on the luminal (blood-facing) and abluminal (brain-facing)
plasma membranes of the endothelial cells able to act as important CNS gatekeepers,
selectively increasing brain permeability to essential nutrients or effectively preventing
foreign compounds’ permeation [5]. A key element of the BBB is P-glycoprotein (P-gp),
which is an ATP-driven efflux pump localized to the luminal (blood side) plasma membrane,
which handles a vast range of substrates, in the range of 300 to 4000 Da in mass. It restricts
the penetration of drugs of the brain, greatly influencing CNS pharmacotherapy, and
contributes to cross-resistance to commonly prescribed drugs, including multiple classes of
chemotherapeutics [7,8].

CNS drugs must penetrate the BBB, reaching a brain concentration adequate for target
engagement and modulation. Therefore, particular attention must be devoted to the factors
that hinder the passive BBB penetration of a molecule in the CNS drug discovery, including
large size, high topological polar surface area, and a high degree of hydrogen bonding.
Size and lipophilicity are two crucial properties influencing the brain exposure and efficacy
of a CNS drug candidate. Often, a balance must be found between decreasing size and
increasing lipophilicity to make a drug more penetrating while simultaneously avoiding
both efflux mechanisms (e.g., P-gp-mediated efflux) and drug sequestration elsewhere in
the body (e.g., plasma proteins, fatty tissue) [6].

Ghose et al., analyzing the physicochemical property and the chemical structural pro-
files of several CNS and non-CNS oral drugs in a comparative fashion, provided guidelines
for designing high-quality CNS drugs. According to their property distribution study and
the classification tree, a compound with an ideal property profile should possess a topo-
logical molecular polar surface area of <76 Å2 (25–60 Å2), at least one nitrogen (including
one aliphatic amine), fewer than seven (two to four) linear chains outside of rings, less
than three (preferred zero or one) polar hydrogen atoms, the volume of 740–970 Å3, the
solvent accessible surface area of 460–580 Å2, and a positive QikProp (QP) CNS parameter
(https://www.schrodinger.com/products/qikprop, accessed on 26 July 2021) [9]. An ad-
ditional approach toward assessment of drug-likeness properties affecting overall brain
permeability and very useful in prioritizing lead candidates consists in the Pfizer’s CNS
multiparameter optimization [10], which takes into account calculated partition coefficient
(ClogP), calculated distribution coefficient at pH 7.4 (ClogD), molecular weight (MW), acid
dissociation constant (pKa) of ionizable groups, together with total polar surface area and
the number of hydrogen bond donors.

The safety and efficacy of a CNS drug candidate must be tested in an animal model
that displays relevant disease characteristics before proceeding to human clinical trials.
However, the development of validated animal models for CNS-related disorders is ham-
pered by their complex and least understood etiologies and the difficulty of reproducing in
the same model all the disease hallmarks. In the past 20 years, several efforts have been
devoted to developing animal models for Alzheimer’s disease (AD), and extensive research
has been focused on “curing” animals genetically predisposed to generate amyloid β (Aβ)
plaques or neurofibrillary tangles (NFTs) of τ protein. Unfortunately, no results have been
translated from models into human clinical trials so far [6].

A cost-effective and reduced-risk strategy widely exploited in the last decade to
overcome the trickiness of CNS drug discovery is drug repurposing. The rediscovery of
“old molecules” fits with the need for poorly addressed therapeutic areas in which the
CNS-related pathologies represent a leading field [11,12]. Great examples in this scenario
are saracatinib (1) and masitinib (2), which are two well-known inhibitors of FYN kinase
firstly developed as anti-cancer agents. Compound 1 (Figure 1), also known as AZD0530,
is a highly selective Src family kinases (SFKs) inhibitor developed by AstraZeneca in
2006 [13]. Unfortunately, it failed in phase II clinical trials because of its limited therapeutic
benefits. The excellent pharmacokinetic properties and high BBB permeability of saracatinib
encouraged its repurposing as a promising CNS agent for AD treatment [14]. Likewise,
compound 2 (Figure 1) is a potent and selective tyrosine kinase inhibitor targeting mainly
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wild-type and mutated c-Kit receptor (c-KitR). It is the first anti-cancer therapy approved
in veterinary medicine for the treatment of unresectable canine mast cell tumors (CMCTs)
and currently is under study for the treatment of mild to moderate AD [15,16]. Both cases
will be discussed more deeply in Section 10 on inhibition of FYN kinase.
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The multifactorial nature of CNS-related diseases requires innovative strategies, which
may help to overcome some limits of single-target small-molecule ligands. Against this
scenario, multi-target compounds are emerging as promising approaches to CNS-related
pathologies, bearing other levels of complexity, such as balancing the multi-target pro-
file [17]. Moreover, this approach can reduce the possibility of developing drug resistance.
Several multi-target agents have been rationally designed by applying a multi-target drug
design approach. Others, such as single kinase inhibitors, were subsequently found to be
multi-target inhibitors because of the structural homology among the ATP-binding site of
other kinases [18].

2. GSK-3β, FYN, and DYRK1A, Emerging Targets in the Neurokinome

GSK-3β, FYN, and DYRK1A represent three closely related PKs widely investigated
within the neurokinome context due to their pivotal roles in both the onset and devel-
opment of complex CNS-related diseases, including neurodegenerative (e.g., AD, Pick’s
disease (PiD), frontotemporal lobar degeneration (FTLD), Parkinson’s disease (PD), amy-
otrophic lateral sclerosis (ALS)) and neuromuscular disorders (e.g., spinal muscular atrophy
(SMA) and myotonic dystrophy type 1 (DM1)) [19–26]. Despite the different clinical mani-
festations, common pathogenic mechanisms, including oxidative stress, abnormal protein
deposition, mitochondrial deficit, glutamate excitotoxicity, and neuroinflammation have
been observed, pointing to converging pathways in neurodegeneration [27,28]. In this mul-
tifaceted pathological scenario, the deregulation of all three kinases has been recognized as
a key event. Regulatory crosstalk by these PKs on different pathological signaling pathways
has been elucidated, suggesting the great potential of the simultaneous modulation of
different nodes of the neurodegeneration network to achieve disease-modifying effects.

2.1. GSK-3β

Glycogen synthase kinase-3 (GSK-3, Figure 2) is a multitasking Ser/Thr kinase pri-
marily expressed in CNS and involved in regulating several cellular processes, including
cellular division, proliferation, differentiation, and adhesion. It is intimately implicated in
the control of apoptosis, synaptic plasticity, axon formation, and neurogenesis in neurons. This
enzyme phosphorylates more than a hundred different substrates, and several homologs have
been identified in different organisms such as fungi, microorganisms, etc. [19,29].

In 1980, it was isolated from rabbit skeletal muscle and recognized as one of the five
enzymes involved in glycogen synthase phosphorylation. In mammalian cells, this PK
exists in two different isoforms, namely GSK-3α (51 kDa) and GSK-3β (47 kDa), which are
ubiquitously expressed in the brain, with high levels of expression in the hippocampus,
cerebral cortex, and the Purkinje cells of the cerebellum, even if the expression ratio of these
two isoforms favors GSK-3β. The first crystal structures of the last-mentioned isoform
were published in 2001 and have assisted in showing this enzyme made by a typical
two-domain kinase fold composed of a β-strand domain (residues 25–138) and a α-helical
domain (residues 139–343) at the N- and C-terminal ends, respectively. The ATP-binding
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site is positioned at the interface of the α-helical and β-strand domains and is bordered
by the glycine-rich loop and the hinge. The activation loop (residues 200–226) runs along
the surface of the substrate binding groove, and the β-strand domain includes a short
helix (residue 96–102), which is highly conserved in all kinases and encompasses two
residues, Arg96 and Glu97, which are mainly involved in the catalytic activity of the
protein. Moreover, at the entrance of the GSK-3β ATP binding site, Cys199 has been
recognized to play a key role in the irreversible or pseudo-irreversible inactivation of the
enzyme by covalent interaction (via sulfur–carbon bond formation) [30].
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(3) (purple) PDB ID: 1Q3D [31]. The β-strand domain at the N-terminal end is depicted in light green,
the α-helical domain at the C-terminal end is depicted in pink, and the activation loop is depicted
in blue.

In 2011, Palomo et al., searching for new druggable sites on the enzyme, identified
seven well-conserved cavities on the surface of 25 PDB different structures of GSK-3β by
employing the free geometry-based algorithm fpocket and hpocket programs. Three of
these pockets correspond to the known binding sites of the enzyme: ATP (1), substrate (2),
and peptides axin/fratide (3), while the other four are new cavities situated on the N-
terminal lobe of the kinase (5), in the hinge region between the C- and N-terminal lobes (6),
and finally two on the C-lobe of the enzyme (4 and 7, Figure 3) [32].
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In general, the phosphorylation of specific amino acid residues such as Tyr216 within
the activation loop of GSK-3β induces a conformational change and consequent increase of
the enzyme activity. However, this PK can also achieve a catalytically active conformation
without a specific phosphorylation [33,34]. Concerning the functional aspects, GSK-3β
requires previous phosphorylation of its substrates by priming kinases and, unlike other
PKs, is constitutively active in resting conditions and is inhibited in response to upstream
signals [35]. Post-translational phosphorylation at Ser9 is associated to enzyme inhibition,
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while dephosphorylation at specific inhibitory sites by different phosphatases such as
protein phosphatase 1 (PP1) leads to PK activation [33,36].

Abnormal regulation of GSK-3β has been linked to both the onset and progression
of different chronic conditions such as diabetes, cancer, neurodegenerative (e.g., AD,
PD, ALS), and behavioral diseases (e.g., bipolar disorder (BD), major depression (MD),
schizophrenia). In CNS-related disorders, aberrant GSK-3β activity is associated with the
dysregulation of different proteins, namely microtubule-associated protein τ, presenilins,
amyloid precursor protein (APP), collapsin response mediator proteins, components of the
Wnt signaling pathway, β-catenin, and heat shock proteins [37]. Moreover, several lines
of evidence have reported GSK-3β as a mediator of neuroinflammatory processes. These
contribute to the progressive impairment of cognitive and/or motor functions associated
with neurodegenerative diseases such as AD, PD, and Huntington’s disease (HD) [36,38].

2.2. FYN

FYN is a non-receptor Tyr kinase (TK) identified and characterized in 1988 [39]. It
belongs to the SFKs as part of the subfamily SrcA, together with Yes and Src enzymes. It
is a 59 kDa protein consisting of 537 amino acids and is encoded by a gene located on
chromosome 6q21. FYN mediates various cellular processes, including the T-cell receptor
signaling pathway, regulation of brain function, adhesion-mediated signaling, and cell
survival [40]. It prevails in many brain areas and is involved in both development and
adult brain physiology. Moreover, the same PK plays a unique role in CNS myelination by
coupling with cell surface proteins, including myelin-associated glycoprotein. Consistent
with these functions, FYN knockout mice have significantly reduced brain myelination,
disrupting hippocampal architecture, impaired spatial learning, and increased sensitivity
to ethanol [41].

Three different FYN isoforms have been identified: FYN-B is mainly expressed in
the CNS, FYN-T is mainly expressed in hematopoietic cells (T-cells), and FYN-Delta7 is
mainly expressed in peripheral blood mononuclear cells [42]. As all SFK members, the
FYN structure is characterized by six different domains [24,43,44]: the Src homology (SH)
domains SH1 (catalytic domain), SH2, SH3, SH4, the so-called unique domain, and a
C-terminal regulatory region (Figure 4). All FYN isoforms share the catalytic domain SH1;
however, FYN-B and FYN-T differ in the linker sequence between SH1 and SH2, while
FYN-Delta7 presents a deletion of residues 233–287 when compared to FYN-B [42,45].
SH3 interacts with proline-rich sequences on target substrates and is involved in the
autoinhibition regulatory mechanism. At the same time, the unique domain is specific for
each SFK member and is responsible for particular proteins interactions.
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FYN activity is regulated through interdomain interactions, which in turn is influenced
by Tyr residues phosphorylation and dephosphorylation processes. The phosphorylation
of a specific C-terminal domain Tyr residue (Tyr531 for FYN-B and Tyr528 for FYN-T)
induces a global close protein conformation due to the SH2 domain engagement, leading
to the non-accessibility of the catalytic domain. On the other hand, the phosphorylation
of a distinct Tyr residue in the catalytic domain (Tyr420 for FYN-B and Tyr417 for FYN-T)
improves the enzyme activity (Figure 4).

FYN overexpression has been widely correlated with cancer onset due to the enzyme
pivotal role in the morphogenetic transformation and cell growth; nevertheless, recent
studies and preclinical evidence have reported the same protein kinase involvement in
different neurodegenerative disorders, including AD and PD [43,46].
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2.3. DYRK1A

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A, Figure 5)
belongs to a family of dual-specificity protein kinases (DYRK kinases) that possess Ser and
Thr phosphorylation activity as well as autophosphorylation activity on Tyr residues [25,47].
DYRKs family is part of the CMGC group of Ser/Thr kinases, which also includes cyclin-
dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase
kinases (GSKs), and CDC2-like kinases (CLKs). DYRK members participate in critical
signaling pathways that control postembryonic neurogenesis, developmental processes,
cell survival, differentiation, and death [48].

DYRK1A plays a key role in the neural proliferation and neurogenesis of the develop-
ing brain, and its gene is located on chromosome 21 (21q22.2), which is a region known as
the Down syndrome critical region (DSCR). Due to its location, triplication of the DYRK1A
locus in Down syndrome (DS) results in a 1.5-fold increase of DYRK1A mRNA and protein
levels in the fetal and adult brain. Under-/over-expression in mammals of DYRK1A gene
or mutations in the orthologous gene minibrain (mnb) of Drosophila have been associated
with severe retardation of CNS development and maturation [48,49]. Moreover, the upreg-
ulation of DYRK1A has been reported to contribute to altered neuronal proliferation in DS
through the specific phosphorylation of p53 at Ser15 [50].
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green; the DH box is depicted in red; Phe238 is depicted in orange; the DFG pocket is depicted
in magenta.

As all DYRKs, the DYRK1A isoenzyme contains a conserved catalytic kinase domain,
which is centrally located in its primary structure, preceded by the N-terminal motif DYRK-
characteristic known as DYRK homology (DH) box. It rapidly autoactivates during folding
by phosphorylation on Tyr321, the second Tyr residue of the conserved activation loop YxY
motif [48]. The kinase domain comprises an N-terminal lobe (N-lobe) with five antiparallel
β-strands and a conserved regulatory α C-helix and a larger C-terminal (C-lobe) consisting
of α-helices. The N and C-lobes are connected by the hinge region [25]. Interestingly,
DYRK1A possesses Phe238 as a gatekeeper residue at the narrow channel, bridging the
ATP binding pocket and the DFG (aspartate-phenylalanine-glycine)-pocket [52] significant
for its allosteric modulation [53].

DYRK1A has attracted interest in cancer therapy given its crucial role in several
pathways, including cell proliferation, apoptosis, malignant cells survival [54], and the
regulation of cell cycling and differentiation [55]. Starting from the last decade, different hu-
man neurodegenerative pathologies and impaired neurogenesis have also been associated
with DYRK1A dysregulation [56,57].
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3. τ Hyperphosphorylation

Abnormal phosphorylation of microtubule-associated protein τ at different sites,
including Ser/Thr residues in Ser/Thr-Pro sequences, is one of the major pathological
events in AD and other related neurodegenerative diseases, such as FTLD and additional
tauopathies [58,59]. The abnormal phosphorylation of τ is the key driver of neurofibrillary
degeneration in AD. In vitro kinetic studies of the binding between hyperphosphorylated
and normal τ suggested Ser202/396 and Thr205 among the critical phosphorylation sites,
which lead to the sequestration of hyperphosphorylated τ into microtubule-associated
proteins and its self-aggregation into NFTs [60]. These aggregates trigger a cascade of
biological processes, τ cascade, among others, ultimately culminating in neuronal cell
death, brain atrophy, and cognitive decline [61].

In this context, while GSK-3β induces human τ phosphorylation mainly at Ser199,
Ser396, and Ser413 [62], DYRK1A phosphorylates 11 different Ser/Thr sites of τ, including
Thr212 as the predominant one [26], and FYN, physically linked to the amino-terminal
projection domain of τ, is responsible for its phosphorylation at Tyr18 (Figure 6) [63].
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Phosphorylation at Thr212 primes τ for phosphorylation by GSK-3β at Ser208 in vitro,
suggesting a more general role for DYRK1A in priming phosphorylation of GSK-3β sub-
strates [32]. Additionally, DYRK1A, by phosphorylation of the alternative splicing factor
(ASF) at Ser227, Ser234, and Ser238, causes dysregulation of alternative splicing of τ, lead-
ing to NFTs formation [64]. Remarkably, τ overexpression has been reported to promote
GSK-3β activation and mediate GSK-3β toxicity whereas, in τ absence, the neurodegen-
erative and cognitive phenotype observed in GSK-3β overexpressing mice proved to be
ameliorated [65].

4. Aβ Neurotoxicity

In addition to NFTs, extracellular aggregates of Aβ peptide, called senile plaques
(SPs), represent the most relevant histopathological hallmarks of AD [44].

Aβ peptide is generated through sequential proteolysis of the APP catalyzed by β- and
γ-secretases. The first enzyme is an aspartyl protease, which is also known as β-site APP
cleaving enzyme (BACE-1) and regulates the first and rate-limiting step of APP processing.
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Interestingly, a molecular interplay between Aβ and τ in causing synergic toxicity has
been found, and GSK-3β has been recognized as the molecular linker between Aβ and
τ. Indeed, the GSK-3β pathological activation by Aβ, by preventing the inhibitory phos-
phorylation of this PK, leads to an increase of τ phosphorylation, and GSK-3β inhibition
decreases Aβ production and Aβ-induced neurotoxicity by reducing the BACE-1 cleavage
of APP (Figure 6) [61]. Additionally, soluble oligomers of the Aβ peptide (AβOs) interfere
with nMDA receptor (NMDAR) function, induce abnormal calcium influx and neuronal
oxidative stress, and promote aberrant activation of GSK-3β [66].

DYRK1A phosphorylates APP at Thr668, enhancing its cleavage by both β- and
γ-secretases [67], and increases the proteolytic activity of this latter enzyme by phosphory-
lation of its subunit called presenilin 1 (PS1) [68,69]. Likewise, the Aβ peptide has been
reported to induce an increment of DYRK1A mRNA levels and to lead to τ phosphorylation
at Thr212 under τ overexpression in neuroblastoma cells, suggesting DYRK1A as a key
molecule bridging Aβ production and τ phosphorylation in AD (Figure 6) [70].

Lines of evidence have also documented the implication of FYN in Aβ-induced
neuronal dysfunction and the existence of Aβ, τ, and FYN cooperation in AD-related
pathogenesis [71]. Although the molecular mechanism underlying Aβ-mediated activation
of FYN is still unclear, recent studies have demonstrated the formation of a ternary complex
among soluble Aβ, the membrane-anchored protein known as cellular prion protein (PrPc),
and FYN at the plasma membrane, resulting in τ missorting and hyperphosphorylation at
Tyr18 (Figure 6) [23,71,72].

5. Nrf2 Signaling Pathway

Oxidative stress appears to be a major determinant of the pathogenesis and pro-
gression of different neurodegenerative diseases, including AD. Commonly, oxidative
stress is caused by an imbalance between reactive radical species, among other reactive
oxygen species (ROS), and a loss of function of many antioxidant defense enzymes, result-
ing in a disequilibrium between the formation of cellular oxidants and the antioxidative
processes [73,74].

Nrf2 is one of the major regulators of cytoprotective responses to endogenous and
exogenous stresses caused by ROS and electrophiles. In basal conditions, it is bound
to its endogenous inhibitor Kelchlike ECH-associated protein 1 (Keap1), a cysteine-rich
zinc-metalloprotein, that promotes Nrf2 degradation. In response to stress insults, such
as ROS, this factor is released from Keap1, and upon translocation to the nucleus, it
binds to the antioxidant response element (ARE), promoting the expression of some phase
II detoxifying enzymes and antioxidant stress genes, namely NQO1, heme oxygenase-
1, glutathione S-transferase, and aldo-keto reductase. Moreover, Nrf2 ameliorates the
inflammation response by inhibiting the translocation of the nuclear factor-κB (NF-κB) and
activating anti-inflammatory genes.

A linkage between GSK-3β/Nrf2 signaling pathway dysregulation and the reduction
of oxidative stress defenses in both AD and PD has been demonstrated. Activated GSK-
3β plays a pivotal role in the downregulation of Nrf2 through direct phosphorylation at
Ser338 and Ser335 of Neh6 domain of Nrf2 and consequent proteasomal degradation of
this latter in a Keap1-independent manner [36,75,76]. Notably, GSK-3β phosphorylation at
two priming sites Ser342 and 347 by additional PKs including DYRK1A boosts GSK-3β
activity toward Nrf2 (Figure 6) [76].

It is noteworthy that activated GSK-3β phosphorylates Src A subfamily members,
including FYN, that enter the nucleus, leading to the phosphorylation of Nrf2 at Tyr568,
nuclear export, and subsequent degradation of Nrf2 (Figure 6) [77–82].

6. α-syn Phosphorylation

PD is neuropathologically characterized by the presence of α-synuclein (α-syn)-
containing Lewy bodies and loss of dopaminergic neurons in the substantia nigra, manifest-
ing as reduced facilitation of voluntary movements. In this scenario, different investigations
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suggested that α-syn neurotoxicity in PD and related synucleinopathies may result from an
imbalance between the detrimental oligomer-promoting effect of α-syn phosphorylation at
Ser129 and the neuroprotective action of α-syn phosphorylation at Tyr125, which inhibits
toxic oligomer formation [83,84].

In addition to τ protein, GSK-3β phosphorylates α-syn at Ser129. Interesting coopera-
tion between α-syn and τ in increasing the magnitude or rate of phosphorylation of the
other by GSK-3β has been demonstrated, establishing a novel upstream role for GSK-3β as
one of several PKs associated with aberrant post-translational modifications (PTMs) of key
proteins known to be causal in PD (Figure 6) [85].

Several in vitro and in vivo evidence have supported a potential neuroprotective ac-
tivity of FYN due to its capability to phosphorylate α-syn at Tyr125 (Figure 6). However, it
has been demonstrated in microglial cell lines treated with aggregated α-syn, which may in-
duce FYN downregulation at the transcriptional level as a compensatory negative feedback
loop, potentially “aiming” to protect the cell against FYN overactivation. Nevertheless, the
final effects of FYN-mediated α-syn phosphorylation has yet to be elucidated [24,86].

DYRK1A also plays an important role in PD and additional synucleinopathies. Its
capability to bind to α-syn and phosphorylate the same protein at the Ser87 residue
facilitates intracellular inclusion formation (Figure 6) [87].

7. NMDAR-LTP and LTD Impairment

The activation of N-methyl-D-Aspartate receptors (NMDARs) has been recently impli-
cated in AD and related to synaptic dysfunction. While synaptic nMDARs are neuroprotec-
tive, overactivation of those located outside of the synapse cause a loss of mitochondrial
membrane potential and cell death.

Most native nMDARs are heterotetramers containing two glycine-binding NR1 and
two glutamate-binding NR2 subunits, and the majority ones comprise the obligatory
subunit GluN1 plus either GluN2B or GluN2A or a mixture of the two. nMDARs are the
primary channel that mediates Ca2+ signals in hippocampal neurons and contribute to the
expression of long-term potentiation (LTP) and long-term depression (LTD), which are
two major forms of long-lasting synaptic plasticity, by employing both NR2A and NR2B
subunits [88]. LTP is characterized by increased synaptic efficacy and is thought to be one
of the neurophysiological process correlates of learning and memory.

GSK-3β has been firmly established as a key player in synaptic plasticity, since its
activity blocks nMDAR-LTP and induces nMDAR-LTD (Figure 6) [89]. In detail, it has
been demonstrated that during LTD, GSK-3β activity is increased as a result of its de-
phosphorylation at Ser9 by phosphatase PP1; whereas, during LTP, the activation of nM-
DARs leads to stimulation of the PI3K-Akt pathway, which inhibits GSK-3β by Ser9
phosphorylation [90,91].

Several pieces of evidence supported an upstream regulator role for FYN on nMDA
receptors [23] and the involvement of the same non-receptor tyrosine kinase in LTP [92].
Activated FYN phosphorylates both NR2A and NR2B subunits of the nMDARs, selectively
elevates NR2B trafficking and membrane stabilization, resulting in an increment of synaptic
expression and receptor transmission [93]. Three major Tyr residues in the GluN2B C-
terminal tail of nMDARs have been identified as FYN phosphorylation sites: Tyr1252,
Tyr1336, and Tyr1472, among which the latter is the most prominently phosphorylated
site in vitro (Figure 6). Moreover, the phosphorylation of GluN2 subunits by exogenous
FYN is dependent on its binding to the postsynaptic density (PSD) proteins 93 and 95
(PSD-93 and -95) [94].

DYRK1A can also regulate neural development and synaptic plasticity through the
phosphorylation of the nMDARs subunit GluN2A at Ser1048 (Figure 6) [95].

8. Neuromuscular Alterations in MND

Motor neuron disease (MND) represents a wide and heterogeneous group of neuro-
muscular disorders, including ALS, SMA, and DM1, resulting in the loss of motor neurons
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and progressive muscle wasting. The most common hereditary forms of SMA are caused
by large deletions that inactivate the SMN1 gene, leading to low levels of the ubiqui-
tously expressed protein survival of motor neuron (SMN) with a predominant function
in neuronal development and synapse formation [21,96]. In skeletal muscle, GSK-3β is
a negative regulator of growth through dysregulation of the myogenic regulator factors.
Indeed, GSK-3β inhibition in C2C12 myoblasts and C57BL/6 mice enhanced the myo-
genic regulator factor activity, myotube formation, and muscle growth [96]. Moreover,
potent and reasonably selective GSK-3β inhibition proved to prolong the median survival
of a transgenic ∆7 SMA KO mouse model of SMA and showed neuroprotective effects
in a cell-based SMA-related model of oxidative stress-induced neurodegeneration [21].
Increased expression and activity of GSK-3β have also been reported in the skeletal muscle
of patients with DM1, which is a complex disease linked to the reduction of cyclin D3 due
to its phosphorylation at Thr283 by active GSK-3β (Figure 6) [20,97].

9. GSK-3βModulation

Over the last two decades, the increased interest in GSK-3β led to the discovery
of many inhibitors based on chemically different molecular scaffolds and acting with
diverse mechanisms of action namely ATP and non-ATP competition, and allosteric mod-
ulation [98]. Most inhibitors reported in the literature are ATP competitive agents; some
of them have synthetic origin, whereas others have been derived directly or indirectly
from small molecules of natural origin (e.g., paullones, maleimides, indirubins, arylin-
dolemaleimides, thiazoles). Several of these GSK-3β inhibitors have been evaluated in
preclinical studies (e.g., 6-bromoindirubin-3′-oxime (6-BIO, 5), hymenialdisine (6), ken-
paullone (7), alsterpaullone (8), cazpaullone (9), and SB216763 (10), Figure 7 and Table 1),
and some of them showed promising CNS-related preclinical data, namely neuroprotec-
tion, decrease of τ phosphorylation, therapeutic benefits in AD, and schizophrenic models.
Among them, the arylindolemaleimide 10 (Table 1) is a highly selective nanomolar GSK-3
inhibitor developed by GlaxoSmithKline that showed neuroprotective effects against a
variety of pro-apoptotic conditions, including inhibition of the PI3 kinase/Akt survival
pathway, trophic deprivation, Aβ toxicity, heat shock, ethanol, nMDA excitotoxicity, and
polyglutamine toxicity caused by the HD protein. Interestingly, in an AD model of mice
injected with Aβ peptide, 10 reduced Aβ neurotoxic effects, including reduction in τ
phosphorylation, caspase-3, and the activity of the stress-activated kinase JNK (c-Jun N-
terminal kinase). However, the same inhibitor produced neurodegenerative-like effects
and behavior deficits in healthy mice, suggesting how over-inhibition of GSK-3 may result
in conditions that prevent neurons from operating normally [19].
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AZD1080 (11, Table 1) has been reported by AstraZeneca as a potent, orally active and
brain permeable GSK-3 inhibitor, which proved to inhibit both recombinant human GSK-3α
and GSK-3β in the nanomolar range (Ki = 6.9 nM and 31 nM, respectively) and showed
selectivity toward CDK2 (Ki = 1150 nM; 37-fold), CDK5 (Ki = 429 nM; 14-fold), CDK1
(Ki = 1980 nM; 64-fold), and Erk2 (Ki > 10 µM; >323-fold), as well as 23 different kinases
and 65 diverse receptors, enzymes, and ion channels. Notably, sub-chronic treatment
with 11 prevented disruption of LTP induction caused by an acute challenge with MK-801,
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an nMDA blocker, suggesting a protective effect of this inhibitor in dysfunctional systems.
Additionally, the same compound was able to reduce τ phosphorylation at Ser396 in 3T3
fibroblasts engineered to stably express 4-repeat human τ protein (IC50 = 324 nM) [91]. The
high permeability (8 × 10−3 cm min−1) of 11 predicted using an in vitro bovine endothelial
cell assay suggested a significant brain exposure in vivo. The same derivative was in phase
I clinical trial targeting AD; unfortunately, further development of this inhibitor was halted
due to the observed nephrotoxicity [99].

One of the main limitations for the therapeutic use of ATP-competitive inhibitors of
PKs is the lack of kinase selectivity due to the high homology degree of their catalytic sites.
In this respect, the involvement of the GSK-3β in essential molecular pathways (e.g., the
oncogenic β-catenin signaling) suggested the potential risks associated to GSK-3 inhibition
in a chronic treatment and the need for developing selective subtle modulators to offer
a safer homeostasis recovery effect without interfering in other cellular signaling [100].
Therefore, several efforts have been devoted to developing different chemical families of
non-ATP competitive GSK-3β inhibitors able to bind unique regions of the enzyme and act
by various mechanisms of action: covalent inhibition, modulation of key residues in the
GSK-3β active site, substrate competitive inhibition, and binding of the ribose region of the
ATP site [19].

9.1. Covalent Inhibitors

Halomethylketone (HMK) derivatives have been described as the first GSK-3β irre-
versible inhibitors. They can form an irreversible covalent sulfur–carbon bond between
the critical Cys199, which is located at the entrance to the ATP site, and their HMK moiety.
Since Cys199 in this PK is not conserved in other structurally related kinases, such as
CDK-1, CDK-2, or CDK-5, covalent modification of this key residue could offer promises
to achieve specificity. In this scenario, Perez et al., aimed at developing useful pharma-
cological tools to explore physiological and pathological processes related to GSK-3β,
designed and synthesized novel phenylhalomethylketones as bioisosters of the irreversible
inhibitors previously reported [101,102]. The authors confirmed the essential role of the
halomethylketone (HMK) moiety for the enzyme inhibition, since the replacement of the
halide atom in the α position of the carbonyl moiety and/or the carbonyl group substi-
tution with an oxime function produced detrimental effects on the affinity. Among all
derivatives, analogs 12–14 (Table 1) proved to be low micromolar inhibitors (IC50 = 2.5 µM
for derivatives 12 and 14, and 0.5 µM for compound 13) and at 10 µM showed GSK-3β
selectivity versus several PKs, namely Abl-K, EGFR-K, IR-K, MAP-K, MEK-1 K, PK p56,
and Src-K and neurotransmitter receptors (e.g., hD2 and hD3, nMDA, AMPA, α2, 5-HT,
etc.). Interestingly, in a chemical reactivity study, in which UPLC-MS was employed to
detect the formation of S-adducts, derivative 12 displayed high susceptibility to react with
thiol groups, and an enhancement of the compound reactivity upon addition of a suitable
base as trimethylamine was observed. Moreover, analog 14 showed cell permeability and
at 25 µM concentration, similarly to lithium chloride, proved to interfere with GSK-3β-
mediated phosphorylation of PHF-1, which is an epitope specifically phosphorylated at
Ser396 by the enzyme on the τ protein after 16 h of treatment [103].

Yang et al. developed a series of (aza)indolyl maleimide covalent inhibitors by utilizing
mild reactive groups such as acrylamido or α-fluoroacetamido onto the maleimide scaffold.
Among all derivatives, compound 15 (Table 1) showed nanomolar potency against the en-
zyme (IC50 = 17 nM) and high GSK-3β selectivity versus TAK1 and CDK2 (IC50 = 2753 nM
and 639 nM, respectively). In addition, the same inhibitor in human SH-SY5Y neurob-
lastoma cells reduced τ phosphorylation at Ser396 in a dose-dependent manner and in
hMDRI-MDCK cells proved to permeate the BBB (Papp = 41.9 × 10−6 cm s−1) and to not
be a P-gp substrate [104].

The small heterocyclic thiadiazolidindiones (TDZDs) represent the first non-ATP com-
petitive GSK-3 inhibitors reported by Martinez et al. in 2002 as novel disease-modifying
agents with both good selectivity and excellent therapeutic effects on neurodegenerative
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disorders associated with τ hyperphosphorylation. Although the exact mechanism of action
of these inhibitors has not yet been experimentally confirmed, an irreversible interaction
with Cys199 of GSK-3β has been recognized at the basis of their enzyme inhibition [105].
Within this group, Tideglusib (16, Table 1), a brain-permeable irreversible nanomolar in-
hibitor of GSK-3β (IC50 = 50 nM), was able to decrease τ phosphorylation and reduce brain
amyloid plaques in preclinical models [106,107]. The same inhibitor proved to not have
safety concerns in phase II clinical trials for AD and progressive supranuclear palsy (PSP),
a rare tauopathy, after long-term treatments of 12 and 6 months, respectively [108,109].
Since participants did not show improvement on either of the primary outcome measures
and some secondary exploratory endpoints, further drug development was stopped for
both two diseases [109,110].

9.2. Substrate Competitive Inhibitors

Substrate competitive inhibitors (SCIs) represent a different class of GSK-3β modu-
lators able to engage the substrate domain of GSK-3β, which is a less conserved binding
site with a unique folding different from other PKs. Although the great potential of these
agents in terms of selectivity and specificity has been recognized, they have not been so
extensively investigated.

Palomo et al. developed novel 5-imino-1,2,4-thiadiazoles (ITDZs) as brain-permeable
SCI small compounds to potentially modify the neurodegeneration course by decreasing
neuronal injury and repairing the damaged brain. The majority of these ITDZs showed
GSK-3β inhibition in the low-submicromolar range. Among them, 17–21 (Table 1) were
selected to assess their capability to affect the production of nitrites from primary cultured
glial cells, astrocytes, and microglia after treatment with LPS and to protect neurons from
the injury induced by the cell-free supernatant from LPS-activated microglia, which is a
cellular model for the damage caused by brain environment in neurodegenerative diseases.
Remarkably, all three derivatives decreased the nitrile production emerging as promising
anti-inflammatory and neuroprotective agents and displayed the ability to differentiate
neural stem cells to mature neurons [111].

Liang and Li developed selective, substrate-competitive, and passive membrane per-
meable GSK-3β inhibitors based on the 6-C-glycosylflavone isoorientin (22, Table 1) as
valuable chemical probes and drug leads with therapeutic potential to tackle AD and other
GSK-3β relevant diseases. Among these inhibitors, 23 (Table 1) showed brain permeability
(Pe = 2.23 × 10−6 cm·s−1, parallel artificial membrane permeability assay (PAMPA)-BBB),
submicromolar inhibitory potency against GSK-3β (IC50 = 0.59 µM), and effectively attenu-
ated τ hyperphosphorylation at Ser 396 in a dose-dependent manner in an in vitro assay
using a whole-cell lysate of human SHSY5Y neuroblastomas. Moreover, 23 at 5 µM showed
a good selectivity as it effectively inhibited GSK-3β by decreasing 92.3% kinase activity
compared to the control (100% kinase activity). In contrast, only marginal or weak inhibi-
tion against 40 out of 41 PKs relevant for AD and other CNS disorders was observed. In a
cellular model of AD where Aβ42 oligomers were administrated in human SH-SY5Y neu-
roblastomas, 23 displayed a good tolerability profile similar to 22, as no cytotoxicity up to
1000 µM dose was observed. Moreover, pretreatment of SH-SY5Y cells with 23 (1.25–20 µM)
for 1 h followed by coincubation with 10 µM Aβ42 for 72 h recovered cell viability from
40% to 100% in a dose-dependent manner. The neuroprotective potency of compound 23
(EC50 = 8.7 µM) was 5.4-fold higher compared to that of 22 (EC50 = 47 µM) [112].

In 2020, Rippin et al. developed a novel series of GSK-3 SCI compounds as promis-
ing leads for future drug development. The authors took advantage of their previously
described structural models of GSK-3 bound to short phosphorylated SCI peptides, in-
cluding a phosphorylated residue (usually Ser) in the context of SXXXS(p) (where S is
the target Ser, S(p) is phosphorylated Ser, and X is any amino acid) [113–115]. Among
all derivatives, 24 and 25 (Table 1) were identified as the most potent inhibitors showing
IC50 values of ≈1–4 µM. Both compounds exhibited a similar affinity for GSK-3α due to
the high similarity of its substrate’s binding site with that of GSK-3β, and analog 25 demon-
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strated GSK-3 selectivity over a panel of 30 PKs. Remarkably, the same compound proved
to inhibit GSK-3β in human neuroblastoma SH-SY5Y cells at 1–5 µM concentrations and
reduce τ phosphorylation at Ser396 in mouse hippocampal primary neurons at 20 µM [115].

Table 1. GSK-3β inhibitors and their applications.

Chemical Structure pKi/IC50 Values Purpose/Biological Activities
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ety, emerged as cell-permeable GSK-3 inhibitor able to decrease τ phosphorylation in cell
cultures. Moreover, inhibition studies of 24 against five different GSK-3β related kinases,
including CDK-1, PKA, CDK-5, MAPK, and GSK-3α confirmed the compound specificity
in inhibiting GSK-3β and CDK-5, suggesting manzamine framework as a promising scaf-
fold for developing more potent and selective GSK-3β/CDK5 as anti-AD agents. In SAR
exploration studies, Peng et al. described the promising anti-neuroinflammatory properties
of 26 and some analogs 27–31 (Table 1) in terms of the capability of reducing the phorbol 12-
myristate 13-acetate-stimulated generation of superoxide anion (O2

−) and thromboxane B2
(TXB2) from activated rat neonatal microglia (IC50 = 0.03–0.4 µM). Further molecular mod-
eling studies revealed a potential allosteric site on GSK-3 for these inhibitors corresponding
with the “phosphate-binding pocket” (Arg96, Arg180, and Lys205), near the activation site
and proposed to be the binding pocket for TDZDs by Martinez et al. [32,105,116,117].

Bidon-Chanal et al. reported the isolation and biochemical characterization of the
sesquiterpene palinurin (32, Table 1), an NP extracted from the marine sponge Ircinia
variabilis, as the first non-ATP/substrate modulator of GSK-3β able to bind to an allosteric
site at the N-terminal lobe of the enzyme, which was previously discovered as pocket no. 5.
Interestingly, MD simulations confirmed a novel allosteric mechanism of action for this
compound based on the modulation of the accessibility of the ATP γ-phosphate of the
enzyme by constraining the conformation of its glycine-rich loop. The same mechanism
was recognized responsible for conferring to 32 a high degree of GSK-3β (IC50 = 1.9 µM)
selectivity over different kinases (e.g., CDK-5: IC50 > 25 µM; CDK1, MAPK, and CK2:
IC50 > 100 µM). In the light of these promising results, 32 was identified as a promising
candidate for the development of new selective and more potent drugs for the treatment of
GSK-3β-mediated diseases [118].

Within the allosteric modulation context, in 2011, Palomo et al., during an in vitro
screening activity assay on GSK-3β of their in-house chemical library, identified the quino-
line derivative VP0.7 (33, Table 1) as an interesting low micromolar inhibitor (IC50 = 3.01 µM)
able to bind an allosteric site on the enzyme according to the results of different kinetic
experiments. Docking studies considering the whole protein surface allowed the authors
to recognize pocket no. 7 as the allosteric binding site of 33 and hypothesize a change in the
activation loop of GSK-3β as responsible for the allosteric modulation of the enzyme [32].
The same compound, along with different derivatives, was patented by Martinez et al.
as a low micromolar allosteric GSK-3β inhibitor (IC50 = 2.85 µM) with promising anti-
inflammatory properties in cellular models to treat neurodegenerative and inflammatory
diseases [119]. Remarkably, 33 at various concentrations (1.25, 2.5, 5, and 10 µM) showed a
dose-dependent effect on the decrease of nitrite release after LPS stimulation. In further
studies, the same quinolone derivative showed safety and great efficacy in preclinical mod-
els of multiple sclerosis and fragile X syndrome, pointing to potential use in the chronic
treatment of such neurological diseases [120,121].

In 2017, Palomo et al., considering the emergent role of GSK-3β in neuromuscular
degenerative diseases, designed and synthesized novel quinoline-3-carbohydrazide-based
compounds as specific GSK-3β inhibitors to treat chronic diseases such as congenital
myotonic dystrophy type 1 (CDM1) and SMA. Several efforts were directed at developing
selective subtle modulators of GSK-3β to provide a safe enzyme homeostasis recovery
effect without interfering in the oncogenic β-catenin signaling. Among all compounds,
two halogen derivatives of 33, 34 and 35 (Table 1) with low micromolar inhibitory activity
against GSK-3β (IC50 = 2.01 and 2.48 µM, respectively) showed a selectivity profile and a
mechanism of action similar to those of 33. In detail, both analogs displayed a consistent
and robust selectivity versus a panel of 50 protein kinases at a fixed concentration of 10 µM,
and in molecular modeling studies induced a conformational change in the GSK-3β active
site by modification of the enzyme activation loop flexibility.

A challenge for potent GSK-3 (α- or β-) inhibitors is the reduction of the abnormal
enzyme activity while not promoting oncogenesis through aberrant β-catenin signaling.
GSK-3 (α- and β-isoforms) mediates a phosphorylation event that retains low the β-
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catenin levels by promoting its ubiquitylation and proteosomal degradation. When this
phosphorylation event is blocked, β-catenin is stabilized and accumulated in the cytosol
and translocates to the nucleus, where it coactivates the transcription of different oncogenes.
To corroborate the great potential of allosteric modulators in overcoming the great challenge
in GSK-3β targeting, the effect of 33 and 34 on β-catenin localization was evaluated in
two different human cell lines of glioblastoma and neuroblastoma, LN-18 and SH-SY5Y,
respectively. Encouragingly, in cells cultured for 72 h in the presence of both inhibitors
at a concentration of 10 µM immunofluorescence analysis of subcellular distribution of
β-catenin revealed the localization of β-catenin in the cytosol. Moreover, in human samples
from patients with CDM1 and SMA, quinoline 34 improved delayed myogenesis in primary
myoblasts from skeletal muscle of patients with CDM1 and, as well as 33, proved to have
neuroprotective properties in SMA-derived cells [20].

10. FYN Inhibition

Given the above-mentioned crucial role of FYN in the CNS, the development of FYN-
targeted agents could offer promises to achieve effective therapies for neurodegenerative
diseases. FYN modulation could be accomplished by interaction with different binding
sites on specific enzyme domains. Since SH2 and SH3 domains interact with target proteins,
chemical entities able to disrupt that protein–protein interaction could regulate the kinase
activity. However, most FYN inhibitors reported so far are ATP-competitive agents able to
interact with crucial residues of the enzyme catalytic site [43]. Unfortunately, due to the
strict similarity of most SFKs in their catalytic domains, no compounds selective for FYN
have been reported. Indeed, all the published inhibitors showed inhibitory potency toward
other members of SFKs or some TKs. Moreover, because of the high degree of similarity of
the FYNB and FYNT isoforms’ catalytic domain [122], some FYN inhibitors developed as
non-CNS agents, such as 1 and 2 (Table 2), have been repurposed to treat CNS disorders. It
is worth mentioning that the lack of selectivity combined with the high potency of most
ATP-competitive FYN inhibitors requires intensive efforts and new strategies including
a multi-target approach to developing agents with a higher safety profile to avoid the
potential interference with relevant physiological pathways, such as myelination. In this
context, it would be necessary again to take into consideration a selective subtle modulation
of FYN kinase.

Compound 1 (AZD0530) is an SFKs inhibitor based on a quinazoline heterocycle
(Table 2) and able to inhibit Src, FYN, Yes, and Lyn with IC50 values ranging from 2 to
10 nM [13]. Although limited benefits in phase II clinical studies were observed as an
anti-cancer agent, the excellent pharmacokinetic properties (oral bioavailability >90%;
half-life of approximately 40 h [14]) combined with the good BBB permeability encouraged
1 repurposing as a CNS agent. Recent studies supported the potential employment of 1 in
tauopathies treatment due to its ability to reduce τ hyperphosphorylation. Yadikar et al.
evaluated in a tauopathy cell-based model the effect of different PKs inhibitors, including 1,
which displayed a substantial reduction of τ phosphorylated in both monomeric (40%) and
oligomeric (46–75%) forms [123].

Tang et al. also studied the compound efficacy in PS19 transgenic mice and traumatic
tauopathy models. After oral administration (5 mg/kg/d) for 9 months, 1 crossed the BBB,
inhibited FYN, and reduced τ phosphorylation in mice brain without altering both proteins
expression. As a result, an improvement of the mice cognitive functions was observed.
Notably, in an additional investigation, the same authors revealed no change in pTyr18
τ levels in PS19 mice treated with 1 (5 mg/kg/d) for 7 months. However, the reduction
of τ phosphorylation at Ser202, Ser396, Ser404, and Thr205 was observed, suggesting a
suspension of FYN-mediated mislocalization of τ to the post-synaptic area and prevention
of further τ spreading between neurons as a result of 1 binding to FYN [124]. A phase
Ib study was also launched in 2013 to assess the safety and tolerability of 1 in mild-to-
moderate AD patients with a daily oral dosing of 100–125 mg during 4 weeks. Compound 1
proved to be in general safe, well-tolerated, and reached good levels in cerebrospinal fluids,



Int. J. Mol. Sci. 2021, 22, 9098 17 of 35

although no beneficial effect was observed on measures of cognitive and neuropsychiatric
function, activities of daily living, or cerebral glucose metabolism [125]. A further phase IIa
study finished in 2018 confirmed a not-relevant effect on cerebral metabolic rate of glucose
in AD patients after 52 weeks of treatment [126]. An early phase I study to explore the
effect of 1 on brain activity associated with visual processing in patients with PD psychosis
is still ongoing (NCT03661125) [127].

Derivative 2 is a phenylaminothiazole derivative (Table 2) first developed as a C-Kit
receptor inhibitor for the treatment of tumors in animals and currently under evaluation
to treat human cancer. The same compound has been also investigated as a potential
agent for treating inflammatory diseases such as rheumatoid arthritis. In the context of
CNS therapies, 2 has been repurposed as a promising anti-AD agent able to reduce τ
hyperphosphorylation and prevent NFTs formation, taking into account its nanomolar
inhibitory potency against FYN (IC50 = 240 nM) [23]. In a phase II study, 2 was administered
twice a day (3 or 6 mg/kg/d) with a cholinesterase inhibitor and/or memantine (an nMDA
antagonist) for 24 weeks to mild-to-moderate AD patients [128]. A relevant slower cognitive
decline was observed in patients treated with the FYN inhibitor compared with the placebo
group providing evidence for the great potential of 2 as an AD-modifying agent. Moreover,
in an ongoing phase III study, the safety and efficacy of 2 for the treatment of mild to
moderate AD are under investigation [15].

With the aim to discover new selective FYN inhibitors as promising drug candidates
or useful tools for studying the complex biological pathways modulated by FYN in CNS,
several virtual screening campaigns have been carried out. Poli et al., combining a Finger-
prints for Ligands and Proteins (FLAP) ligand-based similarity analysis with docking and
MD simulations, identified a few hit compounds endowed with low micromolar inhibitory
potency against FYN from a commercially available Asinex library of 305,625 chemical
entities. Among them, compound 36 (Table 2), proved to be the most potent FYN inhibitor
(IC50 = 4.8µM) and was selected for docking simulations to elucidate the crucial binding in-
teractions of its 3-amino-1,2,4-triazin-5(2H)-one scaffold at the ATP binding pocket of FYN.
A preliminary hit-to-lead optimization campaign allowed identifying a new derivative (37,
Table 2) six-fold more active (IC50 = 0.76 µM) than compound 36 [46,129].

Tintori et al. identified by a virtual screening three micromolar ATP-competitive FYN
inhibitors (38–40, Table 2) as promising hit compounds for both tauopathies and cancer
treatment (Ki = 2.1, 2.25 and 0.9 µM, respectively). Starting from hit 40, a racemic compound
bearing a pyrazolo[3,4-d]pyrimidine core structurally related with that of well-known non-
selective Src inhibitors PP1 (41) and PP2 (42, Figure 8), a hit-to-lead optimization campaign
was carried out allowing the identification of analogs 43 and 44 (both racemates, Table 2)
as the most potent FYN inhibitors (Ki = 70 and 95 nM, respectively).
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Among the latter ones, derivative 43 did not significantly inhibit at 10 µM any of the
Ser/Thr kinases tested (PIM-1, mTOR, JNK, CDK5, CHL1), showing selectivity for Src
family members over Ser/Thr kinases, including DYRK1A and GSK-3β, which were also
implicated in AD pathology. Further studies evidenced the ability of both 43 and 44 to
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reduce Tyr18-τ phosphorylation mediated by FYN. In detail, in SH-SY5Y cells treated with
Aβ 1–42 (Aβ42) oligomer/protofibril to induce AD-like neurotoxicity, both compounds
reduced τ phosphorylation at Tyr18 in a dose-dependent manner. Although solubility
issues were observed for both 43 and 44 inhibitors in ADME in vitro studies, good values
of metabolic stability in human liver microsomes, passive membrane permeability, and
BBB permeability in PAMPA assays suggested the great potential of these derivatives as
promising agents to tackle tauopathies such as AD [130].

Lau developed new FYN inhibitors with potential therapeutic application in sev-
eral diseases including AD and PD within the CNS space. Among them, the inventor
mainly claimed derivatives based on 3,5-disubtituted 2-amino pyridine, 3,6-disubtituted
imidazo[l,2-a]pyrazine, 3,6-disubtituted imidazo[l,2-b]pyridazine, N- and 5-disubtituted
imidazo[2,1-b][l,3,4]thiadiazol-2-yl)-amine, and 3,4-disubstituted 1H-pyrazolo[3,4-b]pyridine
heterocycles (Figure 9). Extensive decoration with moieties of different chemical nature
(e.g., alkyl, heterocyclyl, aryl or heteroaryl substituents) were explored for all these differ-
ent heterocycles exemplified in compounds 45–49 (Figure 9 and Table 2), which showed
submicromolar inhibitory potency against FYN [131].
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Likewise, Paraselli et al. presented new small molecules based on 4-amine-imidazo[1,2-a]
quinoxalin scaffold and bearing different substituents (Figure 10) as FYN inhibitors for
PD treatment. The inventors explored different ether substituents at 6 and 7 positions
of the imidazo[1,2-a]quinoxalin core (Figure 10, cyan) such as pyrazole and piperidine
heterocycles or 3-aminopropyl alkyl chain. Furthermore, different aryl or heteroaryl
substituents namely 3-chlorophenyl or N-isopropyl-4-pyrazoyl were also installed on the
4 amino group. Among all the derivatives described, compound 50 (Figure 10 and Table 2)
has been selected as a representative inhibitor of this series that endowed high nanomolar
activity against FYN kinase [132].
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11. DYRK1A Inhibitors

DYRK1A involvement in cognitive deficits associated with various neurodegenerative
disorders brought medicinal chemists to a long-standing interest in developing selective
DYRK1A inhibitors to treat complex and unmet medical needs.

Different NPs such as compound 4 [134], epigallocatechin-gallate (EGCG, 51) [135], and
meridianins [136] and synthetic derivatives like leucettine L41 (52) [137] and INDY (53) [51]
have been extensively explored within the DYRK1A inhibition space (Figure 11).
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These structurally unrelated compounds were remarkably reported, first by Pathak et al. [138]
and afterward by Arbones et al. [25], as major representatives of DYRK1A inhibitors
with nanomolar potency and significant cross-reactivity toward additional members of
the DYRK family and other phylogenetically similar PKs, such as GSK-3, CLKs, and
CDKs. Several optimization campaigns have been carried out from these representative
inhibitors aimed at developing novel agents endowed with improved inhibitory potency
and selectivity for DYRK1A as described in a recent patent overview by Nguyen et al. [139].

Frost et al. demonstrated the capability of 4 (Figure 11, IC50 = 33 nM), which
is one of the most potent and selective ATP-competitive DYRK1A inhibitors presently
available [140–142], to consistently interfere with τ protein phosphorylation. On one side,
this nanomolar inhibitor proved to significantly reduce the DYRK1A-dependent phospho-
rylation at Ser396, Ser262/Ser356 (12E8 epitope), and Thr231 in both H4-tau cells at 0.8 µM
and 8 µM and in vitro assays; on the other side, it blocked the direct phosphorylation of τ
protein by DYRK1A on Ser396 with an IC50 value of 0.7 µM [134].

The employment of β-carboline alkaloids as 4 and derivatives as CNS tools has been
hampered by their high affinity for multiple targets, namely the 5-hydroxytryptamine receptor
substypes 5-HT2 and 5-HT1A, the nMDA receptor, monoamine oxidase (MAO-A) [134,143],
and dopaminergic signaling pathways. Therefore, improved 4 analogs have been devel-
oped to overcome these limitations. Among them, AnnH75 (54, Table 3), maintaining a
nanomolar potency against DYRK1A (IC50 = 181 nM), displayed a low affinity for MAO-A
(IC50 > 10,000 nM), therefore resulting in less side effects in comparison with the parent
compound. Moreover, 54 inhibited Tyr autophosphorylation of DYRK1A during trans-
lation at concentrations >1 µM and inhibited DYRK1A activity with an IC50 of 1 µM in
cellular assays [144].

Compound 51 (Figure 11) is one of the main polyphenolic constituents of green tea.
It proved to inhibit DYRK1A with IC50 = 0.33 µM in a non-ATP competitive manner and
did not show DYRK1A selectivity over a vast panel of PKs, as reported by Bain et al. [145].
Remarkably, in a double-blind, randomized, placebo-controlled phase II trial (TESDAD),
administration of a green tea extract containing 45% 51 in DS patients (600 mg/day in
participants weighing 50–75 kg and 800 mg/day in participants weighing 75–100 kg)
was significantly more effective than placebo and cognitive training at improving visual
recognition memory, inhibitory control, and adaptive behavior [146].

Meridianin derivatives are marine alkaloids isolated from the south Atlantic tunicate
Aplidium meridianum possessing kinase inhibitory activity [147,148]. Giraud et al., by
addressing substitutions at specific positions of the indole ring system of these marine
alkaloids, identified compound 55 (Table 3) as the most potent inhibitor of DYRK1A and
CDC Like Kinase 1 (CLK1, IC50 = 0.034 µM and 0.032 µM, respectively), which are two PKs
involved in alternative mRNA splicing and neurodegenerative pathologies [149].
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Ogawa et al. discovered 53 (Figure 11), a novel ATP-competitive inhibitor of DYRK1A
bearing a benzothiazole moiety with IC50 and Ki values of 0.24 µM and of 0.18 µM, respec-
tively. It was substantially free of MAOA inhibitory activity but showed submicromolar
inhibitory activity against DYRK1B (IC50 = 0.23 µM) and, in an in vitro assay screening
using a panel of 66 PKs, displayed >90% inhibition at 10 µM concentration on DYRK2,
DYRK3, CLK1, CLK4, casein kinase 1 (CSNK1D), and PIM1. Notably, 53 and its acetylated
derivative proINDY (56) effectively reversed the aberrant τ-phosphorylation at Thr212 in
COS7 cells (a dose-dependent effect was observed for 53 in the 0.3–30 µM concentrations
range), suggesting the useful role of these chemical tools in investigating the DYRK1A
implication in τ-aggregate formation [51].

FINDY (57, Table 3) is a small molecule selected by Kii et al. among compounds
of an internal chemical library by using a cell-based assay, named SPHINKS (substrate
phosphorylation by sequential induction of kinase and substrate), to identify compounds
able to selectively inhibit transitional intermediates of DYRK1A. In the folding process
of this PK, an intermediate autophosphorylates Tyr319/321 and subsequently Ser97 in
an intramolecular manner, which prevents DYRK1A degradation. Autophosphorylated
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DYRK1A takes on a mature conformation. Notably, 57 at 10 µM proved to suppress Ser97
autophosphorylation of a folding intermediate by preventing the incorporation of ATP,
leading to DYRK1A degradation and decreasing the endogenous DYRK1A amount in a
primary culture of cortical neurons. However, this compound did not inhibit substrate
phosphorylation catalyzed by the mature kinase. Remarkable, 57 at 10 µM showed good
DYRK1A selectivity over a panel of 275 kinases, since only five additional kinases (GSK-3β,
MARK4, PIM1, PIM3, PLK3) were inhibited by over 75%, and none of these showed over
85% inhibition. Furthermore, no inhibitory effect was observed on DYRK1B and DYRK2 in
an in vitro kinase assay [150].

CX-4945 (58, Table 3) is an ATP-competitive DYRK1A inhibitor (IC50 = 6.8 nM) with
an in vitro potency much higher (about 20-fold) than that of 4, 53, or 56. Compound 58,
due to its inhibitory activity against CDC2like kinases (CLKs), has been also involved
in phase I and II clinical trials for cancer treatment and showed a safe profile. However,
this agent proved to potently inhibit additional DYRK-family proteins (IC50 = 6.4, 18, and
1500 nM for DYRK1B, DYRK3, and DYRK4, respectively). Remarkably, 58 at 75 mg/Kg
effectively reversed the aberrant phosphorylation of τ at Thr212 in DYRK1A-overexpressing
mice and inhibited DYRK1A-mediated APP and PS1 phosphorylation in 293T cells with
estimated IC50 values of ≈80 and 100 nM for APP and PS1, respectively. Moreover, 58
significantly restored the neurological and phenotypic defects in an AD-like Drosophila
model, demonstrating the great potential of this inhibitor as a disease-modifying agent for
AD [151].

EHT1610 and EHT5372 (59 and 60, respectively, Table 3), two methyl 9-anilinothiazolo[5,4-f ]
quinazoline-2-carbimidates derivatives identified by Chaikuad et al., present subnanomolar
and selective DYRK1A/B inhibitory activity with a noncanonical binding mode at the ATP
pocket of both enzymes [152]. Derivative 60 with an IC50 of 0.22 nM proved to be more
potent than 4, 51, and 52 and displayed a high degree of selectivity over 339 kinases. The
same compound inhibited DYRK1A-induced τ phosphorylation at multiple AD-relevant
sites, including Ser396, Thr212, and Thr231 in biochemical assays, cell lines (e.g., HEK293
cells), and primary cortical neurons without affecting cell viability. Moreover, it normal-
ized Aβ-induced τ phosphorylation in neuronal cells at 5 and 10 µM concentrations and
DYRK1A-induced Aβ production in APP over-expressing cells (IC50 = 1.06 µM) emerging
as a promising τ and amyloid-directed agent to alter the onset or progression of AD and
other tauopathies [153].

The substituted 1,6-phenanthroline core of AC27 (JWC-055, 61, Table 3) was identified
by Czarna et al., as an interesting chemical scaffold to support the design of optimized and
novel DYRK1A inhibitors to block τ phosphorylation. It was selected among twenty-two
different compounds, in turn selected among 1000 compounds of an internal library, and
tested for their ability to inhibit and bind to DYRK1A. Compound 61 was found to strongly
inhibit the phosphorylation of DYRKtide by DYRK1A with Ki and IC50 values of 252 nM
and 532 nM, respectively. According to X-ray data, the same compound did not establish
hydrogen bonds with the hinge of the enzyme, since bridging water between the hinge
and the inhibitor was observed. In the pT212-τ phosphorylation assay, 61 proved to inhibit
DYRK1A in NCI-H1299 cells, however, with a potency lower than in vitro activity. Finally,
100 nM concentration of 61 proved to be nearly 50 times more active than 4 in a NFAT Luc
reporter assay [154].

Similar to 61, and additional PKs inhibitors reported in this review, ALGERNON
(altered generation of neurons, 62, Table 3) emerged as the most promising derivative
within a focused library of compounds promoting the growth of neural stem cells (NSCs)
through DYRK1A inhibition. This compound, able to restore the proliferative capacity
of NSCs derived from DS model mice, proved to inhibit DYRK1A in the mid-nanomolar
range (IC50 = 76.9 nM) without the promiscuity of 51 or side effects of 4 due to low
inhibition of MAO-A (IC50 = 2273.91 µM). Remarkably, 62 in the range of concentrations
of 0.2–5 µM suppressed τ phosphorylation in DYRK1A-overexpressing cells in a dose-
dependent manner and the phosphorylation of endogenous τ in primary hippocampal
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neurons, confirming its therapeutic potential for a wide range of disorders involving
progressive or permanent neuronal loss such as neurodegenerative diseases and traumatic
brain injury [57].

12. Multi-Target Compounds with Potential CNS Application

Almost twenty years ago, a few pioneering groups reported the possibility of efficiently
exploiting the multi-target profiles of small organic molecules to tackle several complex and
incurable pathologies as CNS-related diseases [155]. In this context, polypharmacology-
based strategies and primarily multi-target-directed ligands (MTDLs) have triggered the
interest of drug discovery community, both in academia and pharmaceutical companies,
offering new paradigms with the potential to overcome some of the major limitations
of classic “one target, one drug” strategies [156,157]. Several GSK-3β and DYRK1A-
directed MTDLs have been developed as disease-modifying agents to combat different
neurodegenerative and neuromuscular disorders.

In the context of AD, Holzer et al. developed benzofuropyridine-based triple in-
hibitors of GSK-3β, CDK1, and CDK5, which are three prominent kinases related to τ
pathology [58]. Among these PKs, CDK-5 has been found to be abnormally activated in
AD. In contrast to the majority of cyclin-dependent kinases (CDKs), which promote cell
cycle progression in proliferating cells, CDK5 is activated in post-mitotic neurons via the
neuron-specific activator p35 to form the complex CDK5-p35, which plays a critical role in
brain development and physiological synaptic activity.

In AD brains, p25, the N-terminal truncated form of p35 generated by cleavage with
calpain, is responsible for CDK5 overactivation, thus contributing to τ hyperphosphoryla-
tion [59]. Moreover, recent lines of evidence have demonstrated the crucial role of hyperacti-
vated CDK5 in promoting aberrant CDK1 activation, which in turn induces neuronal death
and potentiates the AD pathology. Among all synthetized triple GSK-3β/CDK1/CDK5
ATP-competitive inhibitors, the best results were obtained with analogs 63–65 (Figure 12),
which showed submicromolar or nanomolar affinity toward two kinases and nanomolar or
submicromolar affinity toward the third selected target. In detail, the 3-ethoxy derivative
63 displayed submicromolar affinities for CDK1 and CDK5 (Ki = 0.17 µM for CDK1 and
0.46 µM for CDK5) and nanomolar affinity for GSK-3β (Ki = 0.083 µM); the 3-hydroxy ana-
log 64 emerged as the most interesting triple inhibitor, reaching affinities in the nanomolar
range for CDK1 and GSK-3β (Ki = 0.013 and 0.024 µM, respectively) and in the submi-
cromolar one for CDK5 (Ki = 0.11 µM); the best nanomolar affinities toward CDK5 and
GSK-3βwere obtained with compound 65 (Ki = 0.073 and 0.012 µM, respectively), which
also showed submicromolar affinity for CDK1 (Ki = 0.77 µM).

Among them, 64 showed selectivity versus several PKs, since an absence of activity
was observed against members of the PKA family (PKC-α, -γ, -ε, -iota), the receptor tyr
kinase family (VEGFR2, ErBB2 and TIE2), WEE1, and CK1α; meanwhile, high micromolar
values of activities ranging from 230 to 829 µM were shown against CDK6, EGFR of the
receptor tyr kinase, and Src of the SRC family. Notably, derivative 63 proved to reduce τ
phosphorylation by 61% at 8 µM concentration in a τ protein phosphorylation assay, in
which AT180 monoclonal antibody was used to detect phosphorylated Thr231 and Ser235
sites in τ transfected COS-7 cells. In a split-luciferase assay, developed in house to study
the effect of the novel triple inhibitors on the τ self-interaction in a human liver cell line
(HuH-7), 64 and 65 showed a significant reduction of luminescence and therefore of τ
interaction (38% and 29% inhibition at 1 µM, respectively; 71% and 84% inhibition at 10 µM,
respectively). Derivative 63 caused only a mild inhibition of τ interaction at 1 µM (22%)
and a higher inhibition up 65% at 10 µM [58].
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Di Martino et al. developed dual BACE-1/GSK-3β inhibitors based on the curcumin
scaffold having recognized both enzymes as two validated AD targets, whose concurrent
inhibition could offer promise to achieve effective treatments. Among all compounds,
derivatives 66–68 (Figure 12) emerged as well-balanced dual-target inhibitors with potency
in the low micromolar range and proved to be brain permeable in the PAMPA-BBB assay,
showing predictive penetration values in the CNS greater than or equal to 7 × 10−6 cm s−1.
Among these derivatives, 66 emerged as a promising AD-modifying drug candidate to
further develop due to its antioxidant effect by induction of NAD(P)H: quinone oxidore-
ductase 1 (NQO1 enzyme), which was accompanied by the absence of evident neurotoxic
effects up to 20 µM and favorable pharmacokinetic behavior [61].

Redenti et al. developed triazolotriazine-based dual GSK-3β/CK-1δ ligands as po-
tential neuroprotective agents useful to treat PD, taking into account the involvement
of GSK-3β in microglial-mediated inflammation and of the delta isoform of CK1 family
of Ser/Thr kinases (CK-1δ) in the neuroinflammatory process, mainly through the Wnt
and Hedgehog pathways, along with the crucial role of both PKs in the hyperphospho-
rylation of τ, α-syn, and parkin. Among all derivatives, 2-cyanoacrylamide compound
69 (Figure 12) showed a submicromolar inhibitory activity against both selected targets
(IC50 (GSK-3β) = 0.17 µM; IC50 (CK-1δ) = 0.68 µM). While a classical ATP competition was
observed against CK-1δ, a covalent interaction between the cyanoacrylamide warhead
of 69 and Cys199 of GSK-3β was confirmed by X-ray. In a PAMPA/BBB test, the same
compound, due to the highly polar moieties, showed a permeability close to the limit of
passively BBB-permeating compounds (Pe = 1.34 × 10−6 cm s−1). Remarkably, 69 did
not display cytotoxicity up to 10 µM and prevented neurotoxin-induced cell death in a
concentration-dependent manner in an in vitro models of PD (rat PC12 pheochromocytoma
cells in the presence of neurotoxins 4-phenyl-1-methyl-1,2,3,6-tetrahydropyridine (MPTP)
or 6-hydroxydopamine (6-OHDA)). In additional in vitro studies, in line with compelling
evidence for a linkage between Wnt/β-catenin signaling and inflammatory events during
PD progression, as well as GSK-3β upregulation and β-catenin degradation, compound
69 prevented 6-OHDA-induced cell death by inhibiting GSK-3β, and promoted β-catenin
stabilization, thus restoring its neuroprotective potential [158].

Gameiro et al. designed and synthetized a new family of 2,4-dihydropyrano[2,3-c]
pyrazoles as the first dual GSK-3β inhibitors/Nrf2 inducers considering the inverse cor-
relation between the aberrant activation of GSK-3β and the decrease of antioxidant gene
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expression and cell defense effects due to Nrf2 downregulation. Among all derivatives, 70
(Figure 12) proved to be the most potent ATP-competitive GSK-3β inhibitor (IC50 = 3.77 µM)
and one of the most potent Nrf-2 inducers. In a Nrf2-dependent luciferase reporter assay,
70 was able to increase luciferase activity in AREc32 cells with a CD (concentration required
to double the basal luciferase reporter activity) value of 9.37 µM. Interestingly, cellular
experiments in which GSK-3βwas inhibited by a lithium salt (10 mM) and was silenced
using siRNA demonstrated the independence of Nrf2 induction properties of compound
70 from its GSK-3β inhibitory activity. Moreover, fluorescence polarization and differential
scanning fluorimetry assays indicated that the same compound was not able to inhibit
the Nrf2-Keap1 interaction. Remarkably, in SH-SY5Y cells treated with okadaic acid (OA,
20 nM) to induce τ-hyperphosphorylation and aggregation through the selective inhibition
of protein phosphatases PP1 and PP2A and cell death for oxidative stress increase (an
in vitro AD model), 70 showed at 1 µM concentration a neuroprotection percentage over
50% [75].

Di Martino et al. by applying a hybridization strategy consisting of the introduction
of a diethyl fumarate (DEF) fragment at the 4-position of the curcumin scaffold discovered
compound 71 (Figure 12) as a brain permeable (Pe = 4.8 × 10−6 cm s−1 in a PAMPA-BBB
Assay) dualistic GSK-3β inhibitor/Nrf2 inducer for PD treatment. In the Kinase-Glo assay,
71 showed low micromolar inhibitory activity against GSK-3β (IC50 = 8.39 µM), and kinetic
studies suggested a non-ATP competitive mechanism of action. Moreover, the incubation
of SH-SY5Y cells with curcumim-DEF hybrid 71 (5 µM) for 1, 3, and 6 h produced an
increase of p-GSK-3α/β (Ser21/9) levels, suggesting an inhibition of GSK-3α/β activation.
Concerning Nrf2 induction, the same hybrid derivative at 5 µM proved to induce the
nuclear translocation of Nrf2 both after short-term (1 and 3 h) and long-term treatments
(6 h) and showed superior effects to DMF, a well-known Nrf2 inducer, in augmenting
Nrf2/ARE binding activity. Furthermore, in SH-SY5Y cells, 5 µM concentration of 71
significantly increased the mRNA levels of NQO1, a Nrf2 target gene, after 12 and 24 h of
treatment. The same hybrid compound both in vitro and in vivo models of PD recorded
very encouraging neuroprotective effects. In detail, pretreatment of SH-SY5Y cells with 71
(5 µM) mitigated the 6-OHDA-induced decrease in cell viability and significantly decreased
the levels of toxic α-syn aggregates elicited by 6-OHDA in TagGFP2-α-syn SH-SY5Y cells.
Furthermore, in a transgenic C. elegans model of PD, cotreatment with hybrid derivative 71
(5 µM) provided a partial rescue of the toxic effects induced by 6-OHDA with a decreased
degeneration percentage (55%) of chefalic (CEP) neurons [36].

Similarly, to GSK-3β, the multi-target approach has been recently exploited to ratio-
nally design and synthetize multifunctional DYRK1A inhibitors.

Barré et al. designed and synthetized dihydroquinoline 72 (Figure 13) as a promising
bio-oxidizable prodrug to delivery both cholinesterase (ChE) and DYRK1A inhibitors for
AD treatment [159]. Acetylcholinesterase (AChE) is a key enzyme in the CNS responsible
for the hydrolytic metabolism of the neurotransmitter acetylcholine (ACh) into choline and
acetic acid. It has proven to be a validate therapeutic target for symptomatic improvement
in AD, since cholinergic deficit is a consistent and early finding in AD [160]. Accordingly,
several inhibitors such as tacrine, donepezil, rivastigmine, and galantamine have been
approved as symptomatic anti-AD agents. In this context, hybrid molecule 72 was de-
vised by connecting through a carbonate linker the potent DYRK1A inhibitor 53 with a
brain-penetrant bio-oxidative prodrug of a potent pseudo-irreversible AChE carbamate-
based inhibitor, bearing an amino-PEG chain. This dihydroquinoline-based compound
having demonstrated the ability to diffuse moderately in the CNS in the PAMPA BBB assay
(Pe = 2.41 × 10−6 cm s−1) should be able to reach the brain, generating the corresponding
quinonilium salt after bio-oxidation and 53 after carbonate linker hydrolysis. As expected,
the bioprecursor 72 showed only a modest inhibitory activity against hAChE with micro-
molar IC50 value (1023.1 nM). On the contrary, the oxidized form displayed nanomolar
potency on the same enzyme (IC50 = 81.4 nM). Moreover, the same compound did not
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display inhibitory activity against DYRK1A at 1 µM (10 µM ATP concentration) compared
to 53 [159].
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Lechner et al. starting from KuFal194 (73, Figure 13), a potent DYRK1A inhibitor
(IC50 = 6 nM) with reasonable selectivity versus DYRK1B (IC50 = 600 nM) and CLK1
(IC50 = 500 nM), undertook an optimization campaign to identify improved DYRK1A
inhibitors. Among all derivatives, particular attention was focused on [b]-annulated in-
dole 74 (Figure 13), which emerged as well-balanced dual CLK1/DYRK1A submicromolar
inhibitor (IC50 (CLK1) = 0.17 µM; IC50 (DYRK1A) = 0.20 µM) [161].

Melchior et al. identified SM07883 (75, Figure 13) as an interesting brain-penetrant
dual DYRK1A/GSK-3β inhibitor (IC50 = 1.6 nM for DYRK1A and 10.8 nM for GSK-3β)
in a kinase panel screen. Notably, this multi-target compound showed a reduction of
phosphorylation of multiple τ epitopes, especially Thr12 site (EC50 = 16 nM) in cell-based
assays, and in an anesthesia-induced transient τ hyperphosphorylation mouse hypothermia
model, it showed reduced τ phosphorylation by 47% with the lowest dose of 1.25 mg/kg.
Moreover, compared to the vehicle, a significant reduction of τ phosphorylation and
aggregation was observed with alternative dose regimen of 75 leading to significantly
lower numbers of τ-positive inclusions in brain stem and spinal cord samples [162]. The
safety and tolerability of increasing doses of 75 have been also evaluated in a phase I
clinical trial (ACTRN12619000327189) in healthy volunteers [163].

Ultimately, Mariano et al. reported the application of a focused multi-target approach
to develop a novel class of selective dual inhibitors of DYRK1A and Aβ aggregation
based on the bis(hydroxphenyl)thiophene scaffold. Among all derivatives, compound 76
(Figure 13) exhibited the best biological profile with a well-balanced inhibitory potency
toward the selected targets (IC50 = 5 µM for DYRK1A) with Aβ40 inhibition (Aβ40 %
inhibition at 100 µM = 91%; IC50 = 11 µM in a cell-free assay). The same compound proved
to inhibit DYRK1A-catalyzed τ phosphorylation in stably transfected HEK293 cells and
due to its favorable physicochemical properties might be potentially applicable to in vivo
AD models [164].

13. Conclusions

Developing drugs for CNS remains the most challenging area in drug discovery, which
is accompanied with the long timelines and high attrition rates. Nowadays, there is an
ever-growing need to find drugs able to reach the brain in an adequate concentration for
engaging CNS targets and modulating complex and interconnected signaling pathways
linked to different neurological disorders. There is a plethora of CNS-related diseases
with more complex pathological mechanisms, for which rationally designed multi-target
compounds could offer higher efficacy and safety compared with single-target small-
molecule ligands and overcome the same limits of mono-target drugs. In this scenario,
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GSK-3β, FYN, and DYRK1A are three attractive closely related PKs widely investigated
within the neurokinome context due to their involvement in the pathophysiology of both
neurodegenerative and neuromuscular disorders. Herein, we reported an overview of
the most common neuronal pathological events and the crucial roles of all three PKs in
different neurodegeneration pathways. We also included a deep analysis of the last decade
from 2010 to 2020 literature focused on the development of novel mono- and multi-target
GSK-3β, FYN, and DYRK1A inhibitors to overcome some limitations of known inhibitors
and discover improved brain permeable modulators with drug-like properties.
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Abbreviations

AChE acetylcholinesterase
AD Alzheimer’s disease
ALS amyotrophic lateral sclerosis
APP amyloid precursor protein
ARE antioxidant response element
ASF alternative splicing factor
Aβ amyloid-β
BACE-1 β-site APP cleaving enzyme
BBB blood–brain barrier
CDKs cyclin-dependent kinases
CEP chefalic
CLKs CDC2-like kinases
ClogD calculated distribution coefficient at pH 7.4
ClogP calculated partition coefficient
CMCTs canine mast cell tumors
CNS central nervous system
DM1 myotonic dystrophy type 1
DSCR Down syndrome critical region
DYRK1A dual-specificity tyrosine phosphorylation-regulated kinase 1A
FDA Food and Drug Administration
FTLD frontotemporal lobar degeneration
GSK-3 glycogen synthase kinase-3
HD Huntington’s disease
HMK halomethylketone
ITDZs 5-imino-1,2,4-thiadiazoles
Keap1 Kelch-like ECH-associated protein 1
LTD long-term depression
LTP long-term potentiation
MAPKs mitogen-activated protein kinases
MND motor neuron disease
MTDLs multi-target-directed ligands
MW molecular weight
NF-kB nuclear factor-kB
NFTs neurofibrillary tangles
NMDARs N-methyl-D-Aspartate receptors
PAMPA parallel artificial membrane permeability assay
PD Parkinson’s disease
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P-gp P-glycoprotein
PiD Pick’s Disease
Pka acid dissociation constant
PKs protein kinases
PP1 protein phosphatase 1
PrPc cellular prion protein
PS1 presenilin 1
PSD postsynaptic density
PSP progressive supranuclear palsy
PTMs post-translational modifications
SCIs substrate competitive inhibitors
SFKs Src family kinases
SH Src homology
SMA spinal muscular atrophy
SMN protein survival of motor neuron
TDZDs thiadiazolidindiones
TK tyrosine kinase
α-syn α-synuclein
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