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Abstract. BPP nets, a subclass of finite Place/Transition Petri nets, are equipped with some
causal behavioral semantics, which are variations of fully-concurrent bisimilarity [3], inspired
by weak [28] or branching bisimulation [12] on labeled transition systems. Then, we introduce
novel, efficiently decidable, distributed semantics, inspired by team bisimulation [17] and h-team
bisimulation [19], and show how they relate to these variants of fully-concurrent bisimulation.
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1. Introduction

A BPP net is a simple type of finite Place/Transition Petri net [32, 6, 36, 16] whose transitions have
singleton pre-set. Nonetheless, as a transition can produce more tokens than the only one consumed,
the reachable markings of a BPP net can be infinitely many. BPP is the acronym of Basic Parallel
Processes [4], a simple CCS [28, 15] subcalculus (without the restriction operator) whose processes
cannot communicate. In [16] a variant of BPP, which requires guarded summation (as in Simple BPP
[7], SBPP [9] or BPPg [4]) and also that the body of each process constant is guarded (i.e., guarded
recursion), is actually shown to represent all and only the BPP nets, up to net isomorphism, and this
explains the name of this class of nets.

In recent papers [17, 19, 20], we have proposed novel behavioral equivalences for BPP nets, based
on a suitable generalization of the concept of bisimulation [31, 28], originally defined over labeled
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transition systems (LTSs, for short; see, e.g., [15]). A team bisimulation [17] R over the places of an
unmarked BPP net is a relation such that if two places s1 and s2 are related by R, then if (one token in
place) s1 performs a and reaches the marking m1, then (one token in place) s2 may perform a reaching
a marking m2 such that m1 and m2 are element-wise, bijectively related by R (and vice versa if s2
moves first). Team bisimilarity is the largest team bisimulation over the places of the unmarked BPP
net, and then such a relation is lifted to markings by additive closure: if place s1 is team bisimilar
to place s2 and the marking m1 is team bisimilar to m2 (the base case relates the empty marking to
itself), then also s1⊕m1 is team bisimilar to s2⊕m2, where ⊕ is the operator of multiset union.
Hence, team bisimilar markings have the same size. A slight weakening of this equivalence is h-team
bisimilarity [19, 20], which may equate markings with different size, that differ only for the number
of deadlock places.

These equivalences are sensible, indeed, as we proved in [19, 20] that h-team bisimilarity coin-
cides with (strong) fully-concurrent bisimilarity [3] (fc-bisimilarity for short), while team bisimilarity
coincides with a slight strengthening of fc-bisimilarity, called state-sensitive fc-bisimilarity, requiring
that the related markings have the same size. Moreover, these equivalences are decidable in poly-
nomial time. First, by using a (slight generalization of the) algorithm in [25], we can check, given
an equivalence relation R on the set of places, whether two markings m1 and m2 are element-wise,
bijectively related by R in O(n) time, where n is the number of places. Second, by adapting the clas-
sic Kanellakis-Smolka algorithm for standard bisimilarity over LTSs [23, 24], the equivalence classes
of (h-)team bisimulation equivalence over places can be computed in O(m · n2) time, where m is the
number of net transitions. Finally, once (h-)team bisimilarity on places has been computed, checking
whether two markings are (h-)team bisimilar can be done in O(n) time.

In this paper, we study the causal semantics of BPP nets in the presence of silent moves, taking
inspiration from weak bisimulation [28] and branching bisimulation [12] (originally defined on LTSs).
Therefore, starting from the definition of strong fully-concurrent bisimulation [3], we first define weak
fully-concurrent bisimulation and branching fully-concurrent bisimulation. These behavioral causal
semantics have been provided for BPP nets, but they can be easily adapted for general Place/Transition
nets [32, 6, 36, 16].

Then, we elaborate on the definitions of team [17] and h-team bisimulations [19, 20], in order to
define their weak/branching variants. It is interesting to observe that, for weak/branching (h-)team
bisimilarity, silent transitions are really unobservable only if they do not change the observable size
of the current marking, where by observable size of a marking m we mean either the total number
of tokens in m for weak/branching team bisimilarity, or the total number of tokens on the places in
m which are able to perform some observable action for weak/branching h-team bisimilarity. In-
deed, we consider as really interesting only the so-called τ-(h-)sequential BPP nets, i.e., BPP nets
whose silent transitions produce exactly the same number of observable tokens they consume, i.e.,
exactly one token for weak team bisimilarity (τ-sequential) or only one token in the only place of
the reached marking which is able to perform some observable action for weak h-team bisimilarity
(τ-h-sequential).

These equivalences can be checked in polynomial time. Weak (h-)team bisimilarity on places
can be computed by first saturating the net transitions and then checking strong (h-)team bisimilarity
on the saturated net. Moreover, by adapting the Groote-Vaandrager algorithm in [13] for computing
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branching bisimilarity on finite-state LTSs, branching (h-)team bisimilarity on the places of a BPP net
can be computed in O(l +m · n2), where n is the number of places, m the number of transitions and
l the number of labels. Finally, with the algorithm in [25], we can check whether two markings are
weak/branching (h-)team bisimilar in O(n) time.

Of course, we prove that weak team bisimilar markings respect the global behavior; in particular,
the sequential behavior (weak team bisimilarity implies weak interleaving bisimilarity) and the causal
behavior (weak team bisimilarity implies state-sensitive weak fc-bisimilarity for τ-sequential BPP
nets; and we also provide some argument supporting our conjecture that they are actually the same
on τ-sequential BPP nets). Moreover, we introduce rooted weak team bisimulation equivalence, in
the same line of rooted weak bisimilarity on LTSs [28, 15]. This equivalence is useful because it is
possible to prove that it is a congruence over the operators of the BPP calculus [4, 16].

Finally, we extend the approach to branching (h-)team bisimulation, following the intuition of
branching bisimulation on LTSs, proposed by van Glabbeek and Weijland in [12], proving that branch-
ing (h-)team bisimilarity implies branching interleaving bisimilarity and that branching team bisimi-
larity implies state-sensitive branching fc-bisimilarity; and we also provide an example showing that
the reverse implication does not hold. We argue, by means of examples, that branching (h-)team bisim-
ilarity is more appropriate than weak (h-)team bisimilarity for BPP nets with silent moves. Moreover,
we introduce rooted branching (h-)team bisimulation equivalence, because it is a congruence over all
the operators of the BPP calculus [4, 16].

The diagram in Figure 1 shows all the 21 behavioral equivalences studied in this paper, where
the top element is the most discriminating one (namely, team bisimilarity ∼⊕, which coincides with
state-sensitive fully-concurrent bisimilarity ∼s f c) and the bottom element is the coarsest one (namely,
weak interleaving bisimilarity ≈int). Each edge from high to low is an implication, where the two
dotted edges are for expressing a conditional implication; e.g., weak team bisimilarity ≈⊕ implies
state-sensitive weak fully-concurrent bisimilarity≈s f c only for τ-sequential BPP nets. These 21 equiv-
alences are roughly divided into three groups: five related to interleaving semantics are outlined in the
right part of the diagram; six related to the causal semantics of BPP nets in the middle; and ten related
to the various variants of strong/weak/branching (h-)team bisimilarity (eight of which are original of
this paper) are outlined in the left part of the diagram.

The paper is organized as follows. Section 2 introduces the basic definitions about BPP nets with
silent moves. Section 3 recalls the usual interleaving behavioral equivalences, i.e., strong, weak and
branching interleaving bisimilarities. Section 4 discusses the causal semantics of BPP nets. First, our
own variant definition of strong fully-concurrent bisimulation (sfc-bisimulation, for short) is recalled
from [20]. Then, weak fc-bisimulation and branching fc-bisimulation are introduced, together with
their novel, stronger variants, called state-sensitive, requiring additionally that all the related markings
have the same size. Section 5 recalls the main definitions and results about team/h-team bisimilarity
from [17, 19, 20]. We describe (a slight generalization of) the algorithm in [25] for checking whether
two markings are element-wise bijectively related by an equivalence place relation R and, moreover,
we state that team bisimilarity coincides with state-sensitive sfc-bisimilarity and that h-team bisimi-
larity coincides with sfc-bisimilarity for BPP nets.

Section 6 copes with the distributed weak equivalence checking problem; first, we discuss weak
team bisimulation over places of an unmarked BPP net, showing that the classic results of weak bisim-
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Legenda
∼int interleaving bisimilarity ∼s f c state-sensitive fully-concurrent bisimilarity ∼⊕ team bisimilarity
≈int weak interleaving bisimilarity ∼ f c fully-concurrent bisimilarity ∼⊕h h-team bisimilarity
≈c

int rooted weak interleaving bisimilarity ≈s f c state-sensitive weak fully-concurrent bisimilarity ≈⊕ weak team bisimilarity
≈bri branching interleaving bisimilarity ≈ f c weak fully-concurrent bisimilarity ≈⊕c rooted weak team bisimilarity
≈c

bri rooted branching interleaving bisimilarity ≈sb f c state-sensitive branching fully-concurrent bisimilarity ≈⊕h weak h-team bisimilarity
≈⊕br branching team bisimilarity ≈b f c branching fully-concurrent bisimilarity ≈⊕hc rooted weak h-team bisimilarity
≈⊕brc rooted branching team bisimilarity ≈⊕bh branching h-team bisimilarity ≈⊕bhc rooted branching h-team bisimilarity

Figure 1. The diagram with the 21 behavioral equivalences studied in this paper

ulation over LTSs also hold in this case; moreover, a few examples discussing its pros and cons are
presented. Section 6.3 discusses the lifting of weak team bisimilarity to markings and proves that weak
team bisimilarity is finer than state-sensitive weak fc-bisimilarity for τ-sequential BPP nets. Section
6.4 defines the minimization of BPP nets w.r.t. weak team bisimilarity on places. In Section 6.5
rooted weak team bisimilarity is introduced. Section 6.6 defines weak h-team bisimilarity on places
and show that its lifting to markings is finer than weak fully-concurrent bisimilarity for τ-h-sequential
BPP nets. Section 7 copes with the distributed branching equivalence checking problem; first, we dis-
cuss branching team bisimulation over the places of an unmarked BPP net, showing that the classic re-
sults of branching bisimulation over LTSs also hold in this case; moreover, a few examples discussing
its pros and cons are presented. In Section 7.2 we discuss the lifting of branching team bisimilar-
ity to markings, and we prove that branching team bisimilarity is finer than state-sensitive branching
fully-concurrent bisimilarity for BPP nets. Then, the minimization of BPP nets w.r.t. branching team
bisimilarity is defined in Section 7.3, while in Section 7.4, rooted branching team bisimilarity is also
introduced. Then, in Section 7.5 we present branching h-team equivalence on places and show that its
lifting to markings is finer than branching fully-concurrent bisimilarity for BPP nets. Finally, Section
8 discusses related literature, some future research and open problems.
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2. Basic Definitions

Definition 2.1. (Multiset) Let N be the set of natural numbers. Given a finite set S, a multiset over S
is a function m : S→ N. The support set dom(m) of m is {s ∈ S

∣∣ m(s) 6= 0}. The set of all multisets
over S, denoted by M (S), is ranged over by m. We write s ∈ m if m(s) > 0. The multiplicity of s in
m is given by the number m(s). The size of m, denoted by |m|, is the number ∑s∈S m(s), i.e., the total
number of its elements. A multiset m such that dom(m) = /0 is called empty and is denoted by θ . We
write m⊆ m′ if m(s)≤ m′(s) for all s ∈ S.

Multiset union ⊕ is defined as follows: (m⊕m′)(s) = m(s)+m′(s); it is commutative, asso-
ciative and has θ as neutral element. Multiset difference 	 is defined as follows: (m1	m2)(s) =
max{m1(s)−m2(s),0}. The scalar product of a number j with m is the multiset j ·m defined as
( j ·m)(s) = j · (m(s)). By si we also denote the multiset with si as its only element. Hence, a multiset
m over S = {s1, . . . ,sn} can be represented as k1 · s1⊕ k2 · s2⊕ . . .⊕ kn · sn, where k j = m(s j) ≥ 0 for
j = 1, . . . ,n. 2

Definition 2.2. (BPP net) A labeled BPP net is a tuple N = (S,A,T ), where

• S is the finite set of places, ranged over by s (possibly indexed),

• A is the finite set of labels, ranged over by ` (possibly indexed), and

• T ⊆ S×A×M (S) is the finite set of transitions, ranged over by t (possibly indexed).

Given a transition t = (s, `,m), we use the notation:

• •t to denote its pre-set s (which is a single place) of tokens to be consumed;

• l(t) for its label `, and

• t• to denote its post-set m (a multiset, possibly empty) of tokens to be produced.

Hence, a transition t can be also represented as •t
l(t)−→ t•. We also define pre-sets and post-sets for

places as follows: •s = {t ∈ T
∣∣ s ∈ t•} and s• = {t ∈ T

∣∣ s ∈ •t}. Note that while the pre-set
(post-set) of a transition is, in general, a multiset, the pre-set (post-set) of a place is a set. 2

Graphically, a place is represented by a little circle, a transition by a little box, which is connected
by a directed arc from the place in its pre-set and to the places in its post-set (if any); the arcs may be
labeled by a positive integer, called the weight, to denote the number of tokens consumed/produced
by the transition (if the number is omitted, then the weight default value of the arc is 1); for BPP nets,
only the arcs from transitions to places may have a weight larger than 1.

Definition 2.3. (Marking, BPP net system) A multiset over S is called a marking. Given a marking
m and a place s, we say that the place s contains m(s) tokens, graphically represented by m(s) bullets
inside place s. A BPP net system N(m0) is a tuple (S,A,T,m0), where (S,A,T ) is a BPP net and m0 is
a marking over S, called the initial marking. We also say that N(m0) is a marked net. 2
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a)

s1

inc

s2

dec

s3

inc

s4 s5

inc
dec

s6

dec

b)

Figure 2. The net representing a semi-counter in (a), and a variant in (b)

Definition 2.4. (Enabling, firing sequence, transition sequence, reachable marking) Given a BPP
net N = (S,A,T ), a transition t is enabled at marking m, denoted by m[t〉, if •t ⊆ m. The execution
(or firing) of t enabled at m produces the marking m′ = (m	 •t)⊕ t•. This is written m[t〉m′. A firing
sequence starting at m is defined inductively as follows:

• m[ε〉m is a firing sequence (where ε denotes an empty sequence of transitions) and

• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing sequence.

If σ = t1 . . . tn (for n ≥ 0) and m[σ〉m′ is a firing sequence, then there exist m1, . . . ,mn+1 such that
m = m1[t1〉m2[t2〉 . . .mn[tn〉mn+1 = m′, and σ = t1 . . . tn is called a transition sequence starting at m and
ending at m′. The definition of pre-set and post-set can be extended to transition sequences as follows:
•ε = θ , •(tσ) = •t⊕ (•σ	 t•), ε• = θ , (tσ)• = σ•⊕ (t•	 •σ). We say that a transition sequence σ is
sequential if |•σ | ≤ 1. The set of reachable markings from m is [m〉= {m′

∣∣ ∃σ .m[σ〉m′}. Note that
the reachable markings can be countably infinitely many. A BPP net system N(m0) = (S,A,T,m0) is
safe if each marking m reachable from the initial marking m0 is a set, i.e., ∀m ∈ [m0〉,m(s)≤ 1 for all
s ∈ S. The set of reachable places from s is reach(s) =

⋃
m∈[s〉 dom(m). Note that reach(s) is always a

finite set, even if [s〉 is infinite. 2

Example 2.5. By using the drawing convention mentioned above, Figure 2 shows in (a) the simplest
BPP net representing a semi-counter, i.e., a counter which cannot test for zero. Note that the number
represented by this semi-counter is given by the number of tokens which are present in place s2, i.e.,
in the place ready to perform dec; hence, Figure 2(a) represents a semi-counter holding number 0;
note also that the number of tokens which can be accumulated in s2 is unbounded. Indeed, the set of
reachable markings for a BPP net can be countably infinite. In (b), a variant semi-counter is outlined,
which holds number 2 (i.e., two tokens are ready to perform dec). 2

Proposition 2.6. Given a BPP net N =(S,A,T ) and a firing sequence m[σ〉m′, where m= s1⊕ . . .⊕sn,
we can find sequential transition sequences σ1, . . . ,σn and markings m1, . . . ,mn such that si[σi〉mi, for
i = 1, . . . ,n, σ is a permutation of σ1σ2 . . .σn and m′ = m1⊕m2⊕ . . .⊕mn.
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Proof:
By induction on the length of σ . If σ = ε , then σi = ε and mi = si for i = 1, . . . ,n. If σ = tσ ′,
then take s1 = •t and t• = p1⊕ . . .⊕ pk. In such a case, p1⊕ . . .⊕ pk⊕ s2⊕ . . .⊕ sn[σ

′〉m′. As σ ′

is shorter, by induction, there exist σ2, . . . ,σn, with m2, . . . ,mn, such that si[σi〉mi, for i = 2, . . . ,n;
and there also exist β1, . . . ,βk, with m′1, . . . ,m

′
k, such that pi[βi〉m′i, for i = 1, . . . ,k; and additionally,

m′ = m′1⊕ . . .⊕m′k⊕m2⊕ . . .⊕mn and σ ′ is a permutation of β1 . . .βkσ2 . . .σn. Therefore, the thesis
follows by choosing σ1 = tβ1 . . .βk. 2

Proposition 2.7. Given a BPP net N = (S,A,T ), a marking m = s1⊕ . . .⊕ sk, with k ≥ 1, and the
sequential transition sequences σi such that si[σi〉mi, for i = 1, . . . ,k, it follows that m[σ〉m′, where
σ = σ1σ2 . . .σk and m′ = m1⊕m2⊕ . . .⊕mk.

Proof:
By induction on the size of m. The base case is when m= s1, and thesis follows trivially. The inductive
case, by assuming that the thesis holds for m = s1⊕ . . .⊕ sk, demonstrates the thesis for m = m⊕ sk+1.
We know that there are sequential transition sequences σi such that si[σi〉mi, for i = 1, . . . ,k+ 1. We
also know, by induction, that m[σ〉m′, where σ = σ1σ2 . . .σk and m′ = m1⊕m2⊕ . . .⊕mk. Therefore,
it follows that m = m⊕ sk+1[σ〉m′⊕ sk+1[σk+1〉m′⊕mk+1 = m′, i.e., m[σσk+1〉m′, as required. 2

Definition 2.8. (BPP net with silent moves, observable label, h-observable submarking) A BPP
net N = (S,A,T ) such that Aτ = A\{τ}, where τ is the only invisible action that can be used to label
transitions, is called a BPP net with silent moves.

Given a transition sequence σ , its observable label o(σ) is computed inductively as follows.

o(ε) = ε o(tσ) =

{
l(t)o(σ) if l(t) 6= τ

o(σ) otherwise.

We also define the auxiliary function oτ(σ) as follows: In case o(σ) 6= ε or σ is empty, then oτ(σ) =
o(σ); in case o(σ) = ε and σ is not empty, then oτ(σ) = τ .

Let o(S) = {s ∈ S
∣∣ ∃σ .s[σ〉m′,o(σ) ∈ Aτ} be the set of observable places, i.e., places that can

perform some observable action. Then, given a marking m, we denote by o(m) the marking

o(m)(s) =

{
m(s) if s ∈ o(S)
0 otherwise.

For instance, let us consider the nets in Figure 3. Then, o(2 · s4⊕ s6⊕ s7) = 2 · s4, or o(s12⊕ s13) =
θ . Of course, o(m) is a multiset on o(S) and it is called the h-observable submarking of m. 2

Definition 2.9. (τ-simple, τ-sequential, τ-h-sequential) A net N = (S,A,T ) with silent moves is

• τ-simple if ∀s ∈ S and ∀σ such that o(σ) = ε , in case s[σ〉m and s ∈ m, then m = s;

• τ-sequential if ∀t ∈ T , l(t) = τ implies |t•|= |•t|;

• τ-h-sequential if ∀t ∈ T , l(t) = τ implies |o(t•)|= |o(•t)|. 2
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A τ-simple BPP net is a net where τ labeled transitions cannot form a cycle such that the effect of
traversing that cycle is the production of additional tokens: any existing silent cycle does not generate
new tokens. This property will be important in Section 6.2, when we will provide a characterization
of weak team bisimilarity in terms of strong team bisimilarity.

A τ-sequential BPP net is a net whose τ-labeled transitions produce exactly one token, so that their
execution does not change the size of the current marking. Of course, if a BPP net is τ-sequential,
then it is also τ-simple. The definition of τ-sequential can be weakened by requiring that the number
of the produced tokens may be more than one, but the number of observable places is preserved by
the transition (τ-h-sequential). We will argue that only silent transitions with these properties can be
really unobservable: if a τ-labeled transition changes the number of currently available tokens, then it
has a visible effect on the structure of the system.

3. Interleaving Semantics

In this section we survey some standard behavioural interleaving equivalences for BPP nets, inspired
by the original definitions [28, 12, 15] on LTSs.

Definition 3.1. (Interleaving Bisimulation) Let N = (S,A,T ) be a BPP net. An interleaving bisimu-
lation is a relation R⊆M (S)×M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′1, ∃t2 such that m2[t2〉m′2 with l(t1) = l(t2) and (m′1,m
′
2) ∈ R,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that m1[t1〉m′1 with l(t1) = l(t2) and (m′1,m
′
2) ∈ R.

Two markings m1 and m2 are interleaving bisimilar (or interleaving bisimulation equivalent), denoted
by m1 ∼int m2, if there exists an interleaving bisimulation R such that (m1,m2) ∈ R. 2

Interleaving bisimilarity ∼int , which is defined as the union of all the interleaving bisimulations,
is the largest interleaving bisimulation and also an equivalence relation.

Example 3.2. Continuing Example 2.5 about Figure 2, it is easy to realize that relation R = {(s1⊕ k ·
s2,s3⊕k1 · s5⊕k2 · s6)

∣∣ k = k1 +k2 and k,k1,k2 ≥ 0}∪{(s1⊕k · s2,s4⊕k1 · s5⊕k2 · s6)
∣∣ k = k1 +k2

and k,k1,k2 ≥ 0} is an interleaving bisimulation. 2

Definition 3.3. (Weak Interleaving Bisimulation) Let N = (S,A,T ) be a BPP net with silent moves.
A weak interleaving bisimulation is a relation R⊆M (S)×M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that l(t1) 6= τ , m1[t1〉m′1, ∃σ2 such that m2[σ2〉m′2 with l(t1) = o(σ2) and (m′1,m
′
2) ∈ R,

• ∀t1 such that l(t1) = τ and m1[t1〉m′1, ∃σ2 such that m2[σ2〉m′2 with o(σ2) = ε and (m′1,m
′
2) ∈ R,

• ∀t2 such that l(t2) 6= τ , m2[t2〉m′2, ∃σ1 such that m1[σ1〉m′1 with l(t2) = o(σ1) and (m′1,m
′
2) ∈ R,

• ∀t2 such that l(t2) = τ and m2[t2〉m′2, ∃σ1 such that m1[σ1〉m′1 with o(σ1) = ε and (m′1,m
′
2) ∈ R.
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Figure 3. Four weakly interleaving bisimilar BPP nets

Two markings m1 and m2 are weak interleaving bisimilar, denoted by m1 ≈int m2, if there exists a weak
interleaving bisimulation R such that (m1,m2) ∈ R. 2

Note that an invisible transition performed by one of the two markings may be matched by the
other one also by idling, i.e., by performing an empty sequence of transitions. Weak interleaving
bisimilarity≈int , which is defined as the union of all the weak interleaving bisimulations, is the largest
weak interleaving bisimulation and also an equivalence relation. Of course, (strong) interleaving
bisimilarity ∼int is finer than weak interleaving bisimilarity ≈int ; the two equivalences coincide if
the BPP net has no silent moves.

Example 3.4. Consider the four nets in Figure 3. It is not difficult to realize that s1 ≈int s4, because
R = {(s1,s4),(s2,s5⊕ s6),(s2,s5),(s3,s6⊕ s7),(s3,s7)} is a weak interleaving bisimulation. Similarly,
one can check that s1 ≈int s8 and s1 ≈int s11, by building suitable weak interleaving bisimulations. 2

Weak interleaving bisimilarity is not a congruence for the choice operator of the process algebra
BPP [4, 15]. The coarsest congruence relation included into ≈int is as follows.

Definition 3.5. (Rooted Weak Interleaving Bisimilarity) Let N = (S,A,T ) be a BPP net with silent
moves. Two markings m1 and m2 are rooted weak interleaving bisimilar, denoted m1 ≈c

int m2, if

• ∀t1 such that m1[t1〉m′1, ∃σ2 s.t. m2[σ2〉m′2 with l(t1) = oτ(σ2) and m′1 ≈int m′2,

• ∀t2 such that m2[t2〉m′2, ∃σ1 s.t. m1[σ1〉m′1 with l(t2) = oτ(σ1) and m′1 ≈int m′2. 2

Therefore, if two markings are rooted weak interleaving bisimilar, in case one of the two initially
performs an invisible transition (e.g., l(t1) = τ), then the other is able to respond with a nonempty
sequence of invisible transitions (e.g., oτ(σ2) = τ); since the reached markings are simply weakly
interleaving bisimilar (e.g., m′1 ≈int m′2), future invisible transitions performed by one of the two can
be matched by the other one also by idling. Hence, rooted weak interleaving bisimilarity ≈c

int is
slightly finer than weak interleaving bisimilarity ≈int . Nonetheless, if two weak interleaving bisimilar
markings cannot perform any silent transition initially, then these two markings are also rooted weak
interleaving bisimilar.
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Figure 4. Two non-branching bisimilar BPP nets

Example 3.6. Continuing Example 3.4 about the four BPP nets in Figure 3, it is not difficult to realize
that s1 ≈c

int s4, while s1 6≈c
int s8, even if s1 ≈int s8. 2

Definition 3.7. (Branching interleaving bisimulation) Let N = (S,A,T ) be a BPP net with τ-moves.
A branching interleaving bisimulation is a relation R⊆M (S)×M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′1,

– either l(t1)= τ and ∃σ2 such that o(σ2)= ε , m2[σ2〉m′2 with (m1,m′2)∈R and (m′1,m
′
2)∈R,

– or ∃σ , t2. o(σ) = ε , l(t1) = l(t2), m2[σ〉m[t2〉m′2 with (m1,m) ∈ R and (m′1,m
′
2) ∈ R,

• and, symmetrically, ∀t2 such that m2[t2〉m′2

– either l(t2) = τ and ∃σ1 such that o(σ1) = ε , m1[σ〉m′1 with (m′1,m2)∈ R and (m′1,m
′
2)∈ R,

– or ∃σ , t1. o(σ) = ε , l(t1) = l(t2), m1[σ〉m[t1〉m′1 with (m,m2) ∈ R and (m′1,m
′
2) ∈ R.

Two markings m1 and m2 are branching interleaving bisimilar, denoted m1 ≈bri m2, if there exists
a branching interleaving bisimulation R that relates them. 2

Note that a silent transition performed by one of the two markings may be matched by the other
one also by idling: this is due to the either case when σ2 = ε (or σ1 = ε). Branching interleaving
bisimilarity ≈bri, which is defined as the union of all the branching interleaving bisimulations, is the
largest branching interleaving bisimulation and also an equivalence relation. Of course, (strong) in-
terleaving bisimilarity ∼int is finer than branching interleaving bisimilarity ≈bri; the two equivalences
coincide if the BPP net has no silent moves: this is due to the or case. Branching interleaving bisimi-
larity is finer than weak interleaving bisimilarity ≈int because a branching interleaving bisimulation is
also a weak interleaving bisimulation.

Example 3.8. Consider the nets in Figure 4. It is not difficult to see that s1≈int s4. However, s1 6≈bri s4,
because to transition s4

a−→ s5, place s1 can only try to respond with s1
τ−→ s2

a−→ s3, but not all the
conditions required are satisfied; in particular, s2 6≈bri s4, because only s4 can do b. 2
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Figure 5. Two weakly interleaving bisimilar nets, which are not branching interleaving bisimilar

Remark 3.9. (Stuttering property) It is not difficult to prove that, given a silent firing sequence
m1[t1〉m2[t2〉m3 . . .mn[tn〉mn+1, with l(ti) = τ for i = 1, . . . ,n, if m1 ≈bri mn+1, then mi ≈bri m j for
i, j = 1, . . . ,n+1. This is sometimes called the stuttering property.

An important property holds for ≈bri. Consider the either case: since (m1,m2) ∈ ≈bri by hypoth-
esis, and m2[σ2〉m′2 with (m1,m′2) ∈ ≈bri and (m′1,m

′
2) ∈ ≈bri, it follows that (m2,m′2) ∈ ≈bri because

≈bri is an equivalence relation. This implies that all the markings in the silent path from m2 to m′2 are
branching interleaving bisimilar (by the stuttering property). Similarly for the or case: if m1[t1〉m′1
(with l(t1) that can be τ) and m2 responds by performing m2[σ〉m[t2〉m′2 with m1 ≈bri m, then, by
transitivity, m2 ≈bri m; hence, by the stuttering property, m1 is branching interleaving bisimilar to
each marking in the path from m2 to m. This stuttering property holds for all the branching-style
bisimulations we are going to define in the following.

These constraints are not required by weak interleaving bisimilarity ≈int (cf. Example 3.8):
given m1 ≈int m2, when matching m1[t1〉m′1 with m2[σ〉m′[t2〉m′′[σ ′〉m′2, where o(σ) = o(σ ′) = ε and
l(t1) = l(t2), weak bisimilarity only requires that m′1 ≈int m′2, but does not impose any condition on
the intermediate states; in particular, it is not required that m1 ≈int m′, or that m′1 ≈int m′′. 2

Example 3.10. To show that ≈bri does better respect the timing of choices, consider the nets in Fig-
ure 5. A weak interleaving bisimulation is R = {(s1,s4),(s2,s5), (s3,s6),(s3,s7)}, hence s1 is weak
interleaving bisimilar to s4. However, in the net (a), in each computation the choice between b and c
is made after the a-labeled transition, while in the net (b) there is a computation where c is already
discarded after a. In fact, s1 6≈bri s4: to transition s4

a−→ s6, place s1 can only try to respond with
s1

a−→ s2, but s2 and s6 are not equivalent, because only s2 can do c. 2

Branching interleaving bisimilarity is not a congruence for the choice operator of the process
algebra BPP [4, 15]. The coarsest congruence relation included into ≈bri is as follows.

Definition 3.11. (Rooted branching interleaving bisimilarity) Two markings m1 and m2 are rooted
branching interleaving bisimilar, denoted m1 ≈c

bri m2, if
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• ∀t1 such that m1[t1〉m′1, ∃t2 such that l(t1) = l(t2), m2[t2〉m′2 and m′1 ≈bri m′2,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that l(t1) = l(t2), m1[t1〉m′1 and m′1 ≈bri m′2. 2

Note that rooted branching interleaving bisimilarity is finer than branching interleaving bisimilar-
ity: in the first step, the two markings should be able to match their transitions as in strong interleaving
bisimilarity; after this first step, the reached markings have to be simply related by branching bisimilar-
ity. Nonetheless, if two branching interleaving bisimilar markings cannot perform any silent transition
initially, then these two markings are also rooted branching interleaving bisimilar. Note also that
interleaving bisimilarity ∼int is finer than rooted branching interleaving bisimilarity ≈c

bri.

Example 3.12. Consider again the nets in Figure 3. it is not difficult to realize that s1 ≈c
bri s4 and

s8 ≈c
bri s11; on the contrary, s1 6≈c

bri s8 and s4 6≈c
bri s11. 2

4. Causality-Based Behavioral Semantics

In order to define causality-based semantics for BPP nets, we need some auxiliary definitions, adapting
those in, e.g., [2, 3, 29, 11].

Definition 4.1. (Isomorphism) Given two BPP nets N1 = (S1,A,T1) and N2 = (S2,A,T2), we say that
N1 and N2 are isomorphic via f if there exists a bijection f : S1∪T1→ S2∪T2 such that f (S1) = S2 and
f (T1) = T2, satisfying the following condition: ∀t ∈ T1, if t = (•t, `, t•), then f (t) = ( f (•t), `, f (t•)),
where f is applied element-wise to each component of the marking. Two BPP net systems N1(m1)
and N2(m2) are rooted isomorphic if the isomorphism f ensures, additionally, that f (m1) = m2. 2

Definition 4.2. (Acyclic net) A BPP net N = (S,A,T ) is acyclic if there exists no sequence x1x2 . . .xn

such that n ≥ 3, xi ∈ S∪T for i = 1, . . . ,n, x1 = xn, x1 ∈ S and xi ∈ •xi+1 for i = 1, . . . ,n−1, i.e., the
arcs of the net do not form any cycle. 2

The concurrent semantics of a marked net is defined by a class of particular acyclic safe nets,
where places are not branched (hence they represent a single run) and all arcs have weight 1. This
kind of net is called causal net. We use the name C to denote a causal net, the set B to denote its places
(called conditions), the set E to denote its transitions (called events), and L to denote its labels.

Definition 4.3. (Causal net) A causal net is a marked BPP net C(m0) = (B,L,E,m0) satisfying the
following conditions:

1. C is acyclic;

2. ∀b ∈ B |•b| ≤ 1 ∧ |b•| ≤ 1 (i.e., the places are not branched);

3. ∀b ∈ B m0(b) =

{
1 if •b = /0
0 otherwise;

4. ∀e ∈ E e•(b)≤ 1 for all b ∈ B (i.e., all the arcs have weight 1).
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We denote by Min(C) the set m0, and by Max(C) the set {b ∈ B
∣∣ b• = /0}. 2

Note that a causal net, being a BPP net, is finite; as it is acyclic, it represents a finite computation.
Note also that any reachable marking of a BPP causal net is a set, i.e., this net is safe; in fact, the initial
marking is a set and, assuming by induction that a reachable marking m is a set and enables t, i.e.,
m[t〉m′, then also m′ = (m	 •t)⊕ t• is a set, because the net is acyclic and because of the condition on
the shape of the post-set of t (weights can only be 1). As the initial marking of a causal net is fixed by
its shape (according to item 3 of Definition 4.3), in the following, in order to make the notation lighter,
we often omit the indication of the initial marking, so that the causal net C(m0) is denoted by C.

Definition 4.4. (Moves of a causal net) Given two BPP causal nets C = (B,L,E,m0) and C′ =
(B′,L,E ′,m0), we say that C moves in one step to C′ through e, denoted by C[e〉C′, if •e ⊆Max(C),
E ′ = E ∪{e} and B′ = B∪ e•; in other words, C′ extends C by one event e. 2

Definition 4.5. (Folding and Process) A folding from a BPP causal net C = (B,L,E,m0) into a BPP
net system N(m0) = (S,A,T,m0) is a function ρ : B∪E → S∪T , which is type-preserving, i.e., such
that ρ(B)⊆ S and ρ(E)⊆ T , satisfying the following:

• L = A and l(e) = l(ρ(e)) for all e ∈ E;

• ρ(m0) = m0, i.e., m0(s) = |ρ−1(s)∩m0|;

• ∀e ∈ E,ρ(•e) = •ρ(e), i.e., ρ(•e)(s) = |ρ−1(s)∩ •e| for all s ∈ S;

• ∀e ∈ E, ρ(e•) = ρ(e)•, i.e., ρ(e•)(s) = |ρ−1(s)∩ e•| for all s ∈ S.

A pair (C,ρ), where C is a BPP causal net and ρ a folding from C to a BPP net system N(m0), is a
process of N(m0), written also as π . 2

Definition 4.6. (Isomorphic processes) Given a BPP net system N(m0), two of its processes (C1,ρ1)
and (C2,ρ2) are isomorphic via f if C1 and C2 are rooted isomorphic via f and ρ1 = ρ2 ◦ f . 2

Definition 4.7. (Moves of a process) Let N(m0) = (S,A,T,m0) be a net system and let (Ci,ρi), for
i = 1,2, be two processes of N(m0). We say that (C1,ρ1) moves in one step to (C2,ρ2) through e,
denoted by (C1,ρ1)

e−→ (C2,ρ2), if C1[e〉C2 and ρ1 ⊆ ρ2. This is also written as π1
e−→π2, where

πi = (Ci,ρi) for i = 1,2. We can extend the definition of move to transition sequences as follows:

• π
ε

=⇒π , where ε is the empty transition sequence, is a move sequence and

• if π
e−→π ′ and π ′

σ
=⇒π ′′, then π

eσ
=⇒π ′′ is a move sequence. 2

Definition 4.8. (Partial orders of events from a process) From a causal net C = (B,L,E), we can
extract the partial order of its events EC = (E,�), where e1� e2 iff there exists a sequence x1x2x3 . . .xn

such that n≥ 3, xi ∈ B∪E for i = 1, . . . ,n, e1 = x1,e2 = xn, and xi ∈ •xi+1 for i = 1, . . . ,n−1; in other
words, e1 � e2 if there is a path from e1 to e2. We can also extract the abstract partial order of its
observable events OC = (E ′,�′), where E ′ = {e ∈ E

∣∣ l(e) 6= τ} and �′=�� E ′.
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Two partial orders (E1,�1) and (E2,�2) are isomorphic if there is a label-preserving, order-
preserving bijection g : E1 → E2, i.e., a bijection such that l1(e) = l2(g(e)) and e �1 e′ if and only
if g(e)�2 g(e′). We also say that g is an abstract (or concrete) event isomorphism between the causal
nets C1 and C2 if it is an isomorphism between their associated abstract (or concrete) partial orders of
events OC1 and OC2 (or EC1 and EC2). 2

4.1. Strong (State-Sensitive) Fully-Concurrent Bisimulation

Fully-concurrent bisimulation (fc-bisimulation, for short) was originally proposed in [3], and its def-
inition was inspired by previous notions of equivalence on other models of concurrency: history-
preserving bisimulation, originally defined in [34] under the name of behavior-structure bisimulation,
and then elaborated on in [10] (who called it by this name) and [5] (who called it by mixed ordering
bisimulation). Besides (strong) fc-bisimulation equivalence, we define also a novel, slightly stronger
version, called state-sensitive fc-bisimulation equivalence, that is equivalent to a form of bisimulation
equivalence on the BPP causal nets, called causal-net bisimilarity, as proved in [20].

Definition 4.9. (Fully-concurrent bisimulation) Let N = (S,A,T ) be a BPP net. A (strong) fc-
bisimulation is a relation R, composed of triples of the form (π1,g,π2), where, for i = 1,2, πi = (Ci,ρi)
is a process of N(m0i) for some m0i and g is an event isomorphism between EC1 and EC2 , such that if
(π1,g,π2) ∈ R then

i) ∀t1,π ′1 such that π1
e1−→π ′1 with ρ ′1(e1) = t1, ∃t2,π ′2,g′ such that

1. π2
e2−→π ′2 with ρ ′2(e2) = t2;

2. g′ = g∪{(e1,e2)}, and finally,

3. (π ′1,g
′,π ′2) ∈ R;

ii) and symmetrically, if π2 moves first.

Two markings m1 and m2 of N are sfc-bisimilar, denoted by m1 ∼ f c m2, if there exists a fully-
concurrent bisimulation R containing a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), where C0

i contains no transitions,
g0 is empty and ρ0

i (Min(C0
i )) = ρ0

i (Max(C0
i )) = mi for i = 1,2. 2

Let us denote by ∼ f c
R = {(m1,m2)

∣∣ m1 is sfc-bisimilar to m2 thanks to R}. Of course, ∼ f c=⋃
{∼ f c

R

∣∣ R is a strong fully-concurrent bisimulation}=∼ f c
R , where relation R =

⋃
{R
∣∣ R is a strong

fully-concurrent bisimulation} is the largest strong fully-concurrent bisimulation.

Proposition 4.10. [19, 20] For each BPP net N = (S,A,T ), relation∼ f c⊆M (S)×M (S) is an equiv-
alence relation.

Example 4.11. Consider Figure 6. Of course, s1 6∼ f c s3, even if they generate the same causal nets.
In fact, transition s1

a−→ s2 might be matched by s3 either with s3
a−→ s4 or with s3

a−→ s5, so that
s2 ∼ f c s4 or s2 ∼ f c s5 must hold; but this is impossible, because only s2 can perform both b and c. 2
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Figure 6. Some BPP nets
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Figure 7. Two non-fully-concurrent bisimilar BPP nets

Proposition 4.12. (Fully-concurrent bisimilarity is finer than interleaving bisimilarity) Let N =
(S,A,T ) be a BPP net. If m1 ∼ f c m2, then m1 ∼int m2.

Proof:
If m1 ∼ f c m2, then there exists a fully-concurrent bisimulation R with a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )),

where C0
i contains no transitions, g0 is empty and ρ0

i (Max(C0
i )) = mi for i = 1,2. Relation R′ =

{(ρ1(Max(C1)),ρ2(Max(C2)))
∣∣ ((C1,ρ1),g, (C2,ρ2)) ∈ R} is an interleaving bisimulation. As the

pair (m1,m2) is in R′, it follows that m1 ∼int m2. 2

The implication above is strict. Consider the nets in Figure 7. Of course, s1 ∼int s4⊕ s5 because
both markings can generate the two traces ab and ba, but s1 6∼ f c s4⊕ s5 because the two markings
generate different partial orders.

Definition 4.13. (State-sensitive strong fully-concurrent bisimulation) A strong fc-bisimulation R
is state-sensitive if for each triple ((C1,ρ1),g,(C2,ρ2)) ∈ R, the maximal markings have equal size,
i.e., |ρ1(Max(C1))|= |ρ2(Max(C2))|.

Two markings m1 and m2 of N are ssfc-bisimilar, denoted by m1 ∼s f c m2, if there exists a state-
sensitive strong fc-bisimulation R containing a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), where C0

i contains no
transitions, g0 is empty and ρ0

i (Min(C0
i )) = ρ0

i (Max(C0
i )) = mi for i = 1,2. 2

Of course, also the above definition can be defined coinductively; moreover,∼s f c is an equivalence
relation, too. State-sensitive fc-bisimilarity is equivalent to a form of bisimulation equivalence on the
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BPP causal nets, called causal-net bisimilarity [19, 20]. Note that if m1 ∼s f c m2, then |m1|= |m2|.

Example 4.14. Consider Figure 6(c). Of course, s6 6∼s f c s8, because they do not generate the same
causal net. However, s6 ∼ f c s8 because still they generate an isomorphic concrete partial order of
events. Consider also Figure 3. Note that s8 6∼s f c s11, but s8 ∼ f c s11, because even if the two markings
generate different causal nets, the underlying concrete partial orders of events are isomorphic. 2

4.2. Weak (State-Sensitive) Fully-Concurrent Bisimulation

Definition 4.15. Let N = (S,A,T ) be a BPP net. A weak fully-concurrent bisimulation is a relation R,
composed of triples of the form (π1,g,π2), where, for i = 1,2, πi = (Ci,ρi) is a process of N(m0i) for
some m0i, and g is an abstract isomorphism between C1 and C2, such that if (π1,g,π2) ∈ R then

i) ∀t1,π ′1 such that π1
e1−→π ′1 with ρ ′1(e1) = t1, ∃σ2,π

′
2,g
′ such that

1. π2
σ2=⇒π ′2,

2. if l(e1) = τ , then o(σ2) = ε and g′ = g; otherwise, l(e1) = o(σ2) and there is a transition
e2 in σ2 such that l(e1) = l(e2) and g′ = g∪{(e1,e2)}; and finally,

3. (π ′1,g
′,π ′2) ∈ R;

ii) and symmetrically, if π2 moves first.

Two markings m1 and m2 of N are wfc-bisimilar, denoted by m1 ≈ f c m2, if there exists a weak
fully-concurrent bisimulation R containing a triple ((C0

1 ,ρ1),g0,(C0
2 ,ρ2)), where C0

i contains no tran-
sitions, g0 is empty and ρi(Min(C0

i )) = ρi(Max(C0
i )) = mi for i = 1,2. 2

Let us denote by≈ f c
R = {(m1,m2)

∣∣ m1 is wfc-bisimilar to m2 due to R}. Of course,≈ f c=
⋃
{≈ f c

R∣∣ R is a weak fully-concurrent bisimulation} = ≈ f c
R , where relation R =

⋃
{R

∣∣ R is a weak fully-
concurrent bisimulation} is the largest weak fully-concurrent bisimulation by item 4 of Proposition
4.17, based on the following lemma.

Lemma 4.16. Given a BPP net N = (S,A,T ), let R be a weak fc-bisimulation such that (π1,g,π2)∈ R.
Then, the following hold:

(i) For all σ1 such that π1
σ1=⇒π ′1 and o(σ1) = ε , there exist σ2,π

′
2 such that π2

σ2=⇒π ′2, o(σ2) = ε ,
and, finally, (π ′1,g,π

′
2) ∈ R.

(ii) Symmetrically, if π2 moves first.

Proof:
The proof is by induction on the length of σ1. We prove only case (i), as the other one is symmetric.
The base case is π1

ε
=⇒π1; in such a case, π2 replies by idling, π2

ε
=⇒π2, and (π1,g,π2) ∈ R, as

required. In general, we can assume that π1
e1−→π ′1

σ1=⇒π ′′1 , where l(e1) = τ and o(σ1) = ε . Since
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(π1,g,π2) ∈ R, for the move π1
e1−→π ′1, by Definition 4.15, we have that ∃σ2,π

′
2 such that π2

σ2=⇒π ′2,
o(σ2) = ε and (π ′1,g,π

′
2) ∈ R. Now, induction can be applied to π ′1

σ1=⇒π ′′1 as σ1 is a shorter path.

Hence, we can conclude that ∃σ ′2,π ′′2 such that π ′2
σ ′2=⇒π ′′2 , o(σ ′2)= ε and also (π ′′1 ,g,π

′′
2 )∈R. Summing

up, if π1
e1−→π ′1

σ1=⇒π ′′1 , with l(t1) = τ and o(σ1) = ε , then π2
σ2=⇒π ′2

σ ′2=⇒π ′′2 , o(σ2σ ′2) = ε and, finally,
(π ′′1 ,g,π

′′
2 ) ∈ R, as required. 2

Proposition 4.17. For each BPP net N = (S,A,T ), the following hold:

1. the identity relation I = {((C,ρ), id,(C,ρ))
∣∣ ∃m.(C,ρ) is a process of N(m) and id is the

identity abstract event isomorphism on C} is a weak fully-concurrent bisimulation;

2. the inverse relation R−1 = {((C2,ρ2),g−1,(C1,ρ1))
∣∣ ((C1,ρ1),g,(C2,ρ2))∈R} of a weak fully-

concurrent bisimulation R is a weak fully-concurrent bisimulation;

3. the relational composition, up to net isomorphism, R1◦R2 = {((C1,ρ1),g,(C3,ρ3))
∣∣ ((C1,ρ1),

g1, (C2,ρ2))∈ R1 ∧ ((C2,ρ2),g2,(C3,ρ3))∈ R2 ∧ (C2,ρ2) and (C2,ρ2) are rooted isomorphic
via f2 ∧ g = g2 ◦ ( f2 ◦g1)} of two weak fc-bisimulations R1 and R2 is a weak fc-bisimulation;

4. the union
⋃

i∈I Ri of a family of weak fully-concurrent bisimulations Ri is a weak fc-bisimulation.

Proof:
The proof of cases 1, 2 and 4 is trivial. The proof of 3, which exploits Lemma 4.16, is omitted because
it follows the same steps of the following Proposition 4.28. 2

Proposition 4.18. For each BPP net N = (S,A,T ), ≈ f c ⊆M (S)×M (S) is an equivalence relation.

Proof:
Similar to the proof of the following Proposition 4.29 and so omitted.

Proposition 4.19. (Strong fc-bisimilarity is finer than weak fc-bisimilarity) For each BPP net N =
(S,A,T ), if m1 ∼ f c m2, then m1 ≈ f c m2.

Proof:
If m1 ∼ f c m2, then there exists an sfc-bisimulation R containing a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), where

C0
i contains no transitions, g0 is empty and ρ0

i (Min(C0
i )) = mi for i = 1,2.

Relation R′ = {((C1,ρ1),g′,(C2,ρ2))
∣∣ ((C1,ρ1),g, (C2,ρ2)) ∈ R}, where g′ is the restriction of g

on the observable events, is a weak fully-concurrent bisimulation. As the triple ((C0
1 ,ρ

0
1 ),g0,(C0

2 ,ρ
0
2 ))

is in R′, it follows that m1 ≈ f c m2. 2

Example 4.20. Consider the nets in Figure 3. Of course, s1 6∼ f c s4 because the generated concrete
partial orders are not isomorphic. However, s1 ≈ f c s4 because the generated abstract partial orders are
isomorphic. For the same reason, s1 6∼ f c s8 but s1 ≈ f c s8, as well as s1 6∼ f c s11 but s1 ≈ f c s11. Finally,
note that s8 ∼ f c s11 and so s8 ≈ f c s11, too. 2
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Proposition 4.21. (Weak fc-bisimilarity is finer than weak interleaving bisimilarity) For each
BPP net N = (S,A,T ), if m1 ≈ f c m2, then m1 ≈int m2.

Proof:
Similar to the proof of Proposition 4.12. The implication is strict. Consider the nets in Figure 7: of
course, s1 ≈int s4⊕ s5, but s1 6≈ f c s4⊕ s5. 2

Definition 4.22. (State-sensitive weak fully-concurrent bisimulation) A weak fully-concurrent bisim-
ulation R is state-sensitive if for each triple ((C1,ρ1),g,(C2,ρ2)) ∈ R, the maximal markings have
equal size, i.e., |ρ1(Max(C1))|= |ρ2(Max(C2))|.

Two markings m1 and m2 of N are swfc-bisimilar, denoted by m1 ≈s f c m2, if there exists a state-
sensitive weak fully-concurrent bisimulation R containing a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), where C0

i
contains no transitions, g0 is empty and ρ0

i (Min(C0
i )) = ρ0

i (Max(C0
i )) = mi for i = 1,2. 2

Proposition 4.23. For each BPP net N = (S,A,T ), if m1 ∼s f c m2, then m1 ≈s f c m2. 2

Example 4.24. Consider the nets in Figure 3. We argued in Example 4.14 that s8 ∼ f c s11, because the
generated concrete partial orders are isomorphic. However, s8 6≈s f c s11 because the markings related
by ∼ f c do not always have the same size; in particular, the final markings 2 · s10 and s14, which are
reached after performing all the transitions, have different size. 2

4.3. Branching (State-Sensitive) Fully-Concurrent Bisimulation

Definition 4.25. Given a BPP net N =(S,A,T ), a branching fully-concurrent bisimulation is a relation
R, composed of triples of the form (π1,g,π2), where, for i = 1,2, πi = (Ci,ρi) is a process of N(m0i)
for some m0i, and g is an abstract isomorphism between C1 and C2, such that if (π1,g,π2) ∈ R then

i) ∀t1,π ′1 such that π1
e1−→π ′1 with ρ ′1(e1) = t1,

• either l(e1) = τ and ∃σ2 (with o(σ2) = ε), π ′2 such that π2
σ2=⇒π ′2, (π1,g,π ′2) ∈ R and

(π ′1,g,π
′
2) ∈ R;

• or ∃σ (with o(σ) = ε), e2,π
′
2,π
′′
2 ,g
′ such that

1. π2
σ

=⇒π ′2
e2−→π ′′2 ;

2. if l(e1) = τ , then l(e2) = τ and g′= g; otherwise, l(e1) = l(e2) and g′= g∪{(e1,e2)};
3. and finally, (π1,g,π ′2) ∈ R and (π ′1,g

′,π ′′2 ) ∈ R;

ii) symmetrically, if π2 moves first.

Two markings m1 and m2 of N are bfc-bisimilar, denoted by m1≈b f c m2, if there exists a branching
fully-concurrent bisimulation R with a triple ((C0

1 ,ρ1),g0,(C0
2 ,ρ2)), where C0

i contains no transitions,
g0 is empty and ρi(Min(C0

i )) = ρi(Max(C0
i )) = mi for i = 1,2. 2



R. Gorrieri / Causal Semantics for BPP Nets with Silent Moves 1019

Example 4.26. Consider the nets in Figure 5. We argued in Example 3.10 that s1 is weak interleaving
bisimilar to s4. It is not too difficult to prove that s1 ≈ f c s4, too. However, s1 6≈b f c s4, by the same
argument described in Example 3.10: indeed, branching fc-bisimilarity is more appropriate than weak
fc-bisimilarity as it does fully respect the timing of choices. 2

Let us denote by ≈b f c
R = {(m1,m2)

∣∣ m1 is bfc-bisimilar to m2 due to R}. Of course, ≈b f c=⋃
{≈b f c

R

∣∣ R is a branching fully-concurrent bisimulation} = ≈b f c
R , where relation R =

⋃
{R

∣∣ R
is a branching fully-concurrent bisimulation} is the largest branching fully-concurrent bisimulation
by item 4 of Proposition 4.28, based on the following lemma.

Lemma 4.27. Let N = (S,A,T ) be a BPP net and let R be a branching fc-bisimulation such that
(π1,g,π2) ∈ R. Then, the following hold:

(i) For all σ1 such that π1
σ1=⇒π ′1 and o(σ1) = ε , there exist σ2,π

′
2 such that π2

σ2=⇒π ′2, o(σ2) = ε ,
and, finally, (π ′1,g,π

′
2) ∈ R.

(ii) Symmetrically, if π2 moves first.

Proof:
The proof, by induction on the length of σ1, is very similar to that of Lemma 4.16, and so omitted. 2

Proposition 4.28. For each BPP net N = (S,A,T ), the following hold:

1. the identity relation I = {((C,ρ), id,(C,ρ))
∣∣ ∃m.(C,ρ) is a process of N(m) and id is the

identity abstract event isomorphism on C} is a branching fully-concurrent bisimulation;

2. the inverse relation R−1 = {((C2,ρ2),g−1,(C1,ρ1))
∣∣ ((C1,ρ1),g,(C2,ρ2)) ∈ R} of a branching

fully-concurrent bisimulation R is a branching fully-concurrent bisimulation;

3. the composition, up to isomorphism, R1◦R2 = {((C1,ρ1),g,(C3,ρ3))
∣∣ ((C1,ρ1), g1,(C2,ρ2))∈

R1 ∧ ((C2,ρ2),g2,(C3,ρ3)) ∈ R2 ∧ (C2,ρ2) and (C2,ρ2) are rooted isomorphic via f2 ∧ g =
g2 ◦ ( f2 ◦g1)} of two branching fc-bisimulations R1 and R2 is a branching fc-bisimulation;

4. the union
⋃

i∈I Ri of a family of branching fc-bisimulations Ri is a branching fc-bisimulation.

Proof:
The proof of 1, 2 and 4 is trivial and so omitted. For case 3, assume that ((C1,ρ1),g,(C3,ρ3))∈R1◦R2

and that (C1,ρ1)
e1−→ (C′1,ρ

′
1). Since (π1,g1, π2) ∈ R1, where πi = (Ci,ρi) for i = 1,2, and R1 is a

branching fully-concurrent bisimulation, we have that for the move π1
e1−→π ′1

• either l(e1) = τ and ∃σ2 (with o(σ2) = ε), π ′2 such that π2
σ2=⇒π ′2, (π1,g1,π

′
2) ∈ R1 and, more-

over, (π ′1,g1,π
′
2)) ∈ R1, where π ′i = (C′i ,ρ

′
i ) for i = 1,2;

• or ∃σ (with o(σ) = ε), e2,π
′
2,π
′′
2 ,g
′
1 such that

1. π2
σ

=⇒π ′2
e2−→π ′′2 ;
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2. if l(e1) = τ , then l(e2) = τ and g′1 = g1; otherwise, l(e1) = l(e2) and g′1 = g1∪{(e1,e2)};
3. and finally, (π1,g1,π

′
2) ∈ R1 and (π ′1,g

′
1,π
′′
2 ) ∈ R1.

Let us consider the either case, first. Since (C2,ρ2) and (C2,ρ2) are isomorphic via f2, it follows

that π2
σ2=⇒π

′
2, where π2 = (C2,ρ2) and π

′
2 = (C′2,ρ

′
2), such that π ′2 and π

′
2 are isomorphic via f ′2,

where f ′2 extends f2 in the obvious way (notably, by mapping the transitions of σ2 to the corresponding
transitions of σ2).

As (π2,g2,π3)∈ R2, where π3 = (C3,ρ3), and R2 is a branching fully-concurrent bisimulation, by

Lemma 4.27, for π2
σ2=⇒π

′
2, we have that there exist σ3,π

′
3 such that π3

σ3=⇒π
′
3, with (π ′2,g2,π

′
3)∈ R2.

Note that g is not modified, as g = g2 ◦ ( f ′2 ◦ g1) (no observable event has been added). Hence,
by (π1,g1,π

′
2)) ∈ R1 and (π ′2, g2, π

′
3) ∈ R2, we have (π1,g,π ′3) ∈ R1 ◦R2. Similarly, one can con-

clude that (π ′1,g,π
′
3) ∈ R1 ◦R2 because of (π ′1,g1,π

′
2)) ∈ R1 and (π ′2, g2, π

′
3) ∈ R2. Summing up, if

((C1,ρ1),g,(C3,ρ3))∈R1◦R2 and (C1,ρ1)
e1−→ (C′1,ρ

′
1), then ∃σ3,C

′
3,ρ
′
3 such that (C3,ρ3)

σ3=⇒ (C′3,ρ
′
3),

((C1,ρ1),g,(C
′
3,ρ
′
3)) ∈ R1 ◦R2 and ((C′1,ρ

′
1),g,(C

′
3,ρ
′
3)) ∈ R1 ◦R2, as required.

The or case is as follows. Since (C2,ρ2) and (C2,ρ2) are isomorphic via f2, it follows that

π2
σ

=⇒π
′
2

e2−→π
′′
2 such that π ′2 and π

′
2 are isomorphic via f ′2, where f ′2 extends f2 in the obvious

way (notably, by mapping the transitions of σ to the corresponding transitions of σ ), as well as π ′′2
and π

′′
2 are isomorphic via f ′′2 , where f ′′2 extends f ′2 in the obvious way (notably, by mapping e2 to the

corresponding event e2). As (π2,g2,π3) ∈ R2 and R2 is a branching fully-concurrent bisimulation, by

Lemma 4.27, for the move π2
σ

=⇒π
′
2, there exist σ

′,π ′3 such that π3
σ
′

=⇒π
′
3 with (π ′2,g2,π

′
3) ∈ R2.

Now, since (π ′2,g2,π
′
3) ∈ R2 and π

′
2

e2−→π
′′
2 , we have that

• either l(e2) = τ and ∃σ ′3 (with o(σ ′3) = ε), π
′′
3 such that π

′
3

σ
′
3=⇒π

′′
3 , (π ′2,g2,π

′′
3) ∈ R2 and,

moreover, (π ′′2,g2,π
′′
3)) ∈ R2;

• or ∃σ (with o(σ) = ε), e3,π
′′
3,π

′′′
3 ,g

′
2 such that

1. π
′
3

σ
=⇒π

′′
3

e3−→π
′′′
3 ;

2. if l(e2) = τ , then l(e3) = τ and g′2 = g2; otherwise, l(e2) = l(e3) and g′2 = g2∪{(e2,e3)};
3. and finally, (π ′2,g2,π

′′
3) ∈ R2 and (π ′′2,g

′
2,π
′′′
3 ) ∈ R2.

Summing up, if the either case applies, if ((C1,ρ1),g,(C3,ρ3))∈ R1 ◦R2 and (C1,ρ1)
e1−→ (C′1,ρ

′
1),

then there exist σ
′,σ ′3,C

′′
3,ρ

′′
3 such that (C3,ρ3)

σ
′
σ
′
3=⇒ (C′′3,ρ

′′
3), ((C1,ρ1),g,(C

′′
3,ρ

′′
3)) ∈ R1 ◦ R2 and

((C′1,ρ
′
1),g,(C

′′
3,ρ

′′
3)) ∈ R1 ◦R2, as required, where ((C1,ρ1),g,(C

′′
3,ρ

′′
3)) ∈ R1 ◦R2 because ((C1,ρ1),

g1,(C′2,ρ
′
2)) ∈ R1 and ((C′2,ρ

′
2),g2,(C

′′
3,ρ

′′
3)) ∈ R2, and, similarly, ((C′1,ρ

′
1),g,(C

′′
3,ρ

′′
3)) ∈ R1 ◦R2 be-

cause ((C′1,ρ
′
1),g

′
1,(C

′′
2 ,ρ

′′
2 )) ∈ R1 and ((C′′2,ρ

′′
2),g2,(C

′′
3,ρ

′′
3)) ∈ R2. The other sub-case (i.e., when the

or case applies) is similar and so omitted. The symmetric case when (C3,ρ3) moves first is analogous,
hence omitted. Therefore, R1 ◦R2 is a branching fully-concurrent bisimulation, indeed. 2

Proposition 4.29. For each BPP net N = (S,A,T ), ≈b f c ⊆M (S)×M (S) is an equivalence relation.
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Proof:
Reflexivity: The identity relation I = {((C,ρ), id,(C,ρ))

∣∣ ∃m.(C,ρ) is a process of N(m) and
id is the identity abstract event isomorphism on C} is a branching fully-concurrent bisimulation by
Proposition 4.28(1). Therefore, m≈b f c m for all m.

Symmetry: For any (m1,m2) ∈ ≈b f c, there exists a branching fully-concurrent bisimulation R
with a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), where C0

i contains no transitions, g0 is empty and ρ0
i (Min(C0

i )) =
ρ0

i (Max(C0
i )) = mi for i = 1,2. By Proposition 4.28(2), relation R−1 is a branching fully-concurrent

bisimulation containing the triple ((C0
2 ,ρ

0
2 ),g

−1
0 ,(C0

1 ,ρ
0
1 )), and so (m2,m1) ∈ ≈b f c.

Transitivity also holds for ≈b f c. Assume (m1,m2) ∈ ≈b f c and (m2,m3) ∈ ≈b f c; hence, there exist
two branching fully-concurrent bisimulations R1 and R2 such that R1 has a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )),

where C0
i contains no transitions, g0 is empty and ρ0

i (Min(C0
i )) = ρ0

i (Max(C0
i )) = mi for i = 1,2;

and R2 has a triple ((C0
2,ρ

0
2),g0, (C

0
3,ρ

0
3)), where C0

i contains no transitions and ρ
0
i (Min(C0

i )) =

ρ
0
i (Max(C0

i )) = mi for i = 2,3. Note tht (C0
2 ,ρ

0
2 ) and (C0

2,ρ
0
2) are isomorphic via some bijection

f . Hence, by Proposition 4.28(3), relation R1 ◦R2 is a branching fully-concurrent bisimulation con-
taining the triple ((C0

1 ,ρ
0
1 ),g0,(C

0
3,ρ

0
3)) so that (m1,m3) ∈ ≈b f c. 2

Proposition 4.30. For each BPP net N = (S,A,T ), if m1 ∼ f c m2, then m1 ≈b f c m2.

Proof:
If m1 ∼ f c m2, then there exists an fc-bisimulation R with a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), where C0

i
contains no transitions, g0 is empty and ρ0

i (Min(C0
i )) = mi for i = 1,2. R′ = {((C1,ρ1),g′,(C2,ρ2))

∣∣
((C1,ρ1),g, (C2,ρ2)) ∈ R}, where g′ is the restriction of g on the observable events, is a branching fc-
bisimulation. As R′ has the triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), it follows that m1 ≈b f c m2. 2

Proposition 4.31. (Branching fc-bisimilarity is finer than branching interleaving bisimilarity)
For each BPP net N = (S,A,T ), if m1 ≈b f c m2, then m1 ≈bri m2.

Proof:
Similar to the proof of Proposition 4.12. The implication is strict. Consider the nets in Figure 7: of
course, s1 ≈bri s4⊕ s5, but s1 6≈b f c s4⊕ s5. 2

Of course, we also have that ≈b f c is finer than ≈ f c because a branching fc-bisimulation is also a
weak fc-bisimulation.

Definition 4.32. (State-sensitive branching fully-concurrent bisimulation) A branching fully con-
current bisimulation R is state-sensitive if for each triple ((C1,ρ1),g,(C2,ρ2))∈ R, the maximal mark-
ings have equal size, i.e., |ρ1(Max(C1))|= |ρ2(Max(C2))|.

Two marking m1 and m2 of N are sbfc-bisimilar, denoted by m1 ≈sb f c m2, if there exists a state-
sensitive branching fully-concurrent bisimulation R containing a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), where

C0
i contains no transitions, g0 is empty and ρ0

i (Min(C0
i )) = ρ0

i (Max(C0
i )) = mi for i = 1,2. 2

Example 4.33. Consider the nets in Figure 3. We argued in Example 4.14 that s8 ∼ f c s11, because the
generated concrete partial orders are isomorphic. However, s8 6≈sb f c s11 because the markings related
by ∼ f c do not always have the same size; in particular, the final markings 2 · s10 and s14, which are
reached after performing all the transitions, have different size. 2
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Finally, to complete the picture, we have that ≈sb f c is obviously finer than ≈s f c because a sbfc-
bisimulation is also a swfc-bisimulation.

5. A Distributed Approach to Strong Equivalence Checking

In this section, we recall the main definitions and results about strong (h-)team bisimulation equiva-
lence, outlined in [17, 19, 20] and we also describe (a slight generalization of) the algorithm in [25].

5.1. Additive Closure and its Properties

Definition 5.1. (Additive closure) Given a BPP net N = (S,A,T ) and a place relation R⊆ S×S, we
define a marking relation R⊕ ⊆ M (S)×M (S), called the additive closure of R, as the least relation
induced by the following axiom and rule.

(θ ,θ) ∈ R⊕

(s1,s2) ∈ R (m1,m2) ∈ R⊕

(s1⊕m1,s2⊕m2) ∈ R⊕
2

It follows, by induction, that two markings are related by R⊕ only if they have the same size.

Proposition 5.2. For any BPP net N = (S,A,T ) and any place relation R ⊆ S× S, if (m1,m2) ∈ R⊕,
then |m1|= |m2|. 2

An alternative way to define that m1 and m2 are related by R⊕ is to state that m1 can be represented
as s1⊕ s2⊕ . . .⊕ sk, m2 can be represented as s′1⊕ s′2⊕ . . .⊕ s′k and (si,s′i) ∈ R for i = 1, . . . ,k.

Proposition 5.3. [17] For each BPP net N = (S,A,T ) and each place relation R,R1,R2 ⊆ S×S:

1. If R is an equivalence relation, then R⊕ is an equivalence relation.

2. If R1 ⊆ R2, then R⊕1 ⊆ R⊕2 , i.e., the additive closure is monotone.

3. If (m1,m2) ∈ R⊕ and (m′1,m
′
2) ∈ R⊕, then (m1⊕m′1,m2⊕m′2) ∈ R⊕.

4. If R is an equivalence, (m1⊕m′1,m2⊕m′2) ∈ R⊕ and (m1,m2) ∈ R⊕, then (m′1,m
′
2) ∈ R⊕. 2

Now we list some useful, and less obvious, properties of additively closed place relations.

Proposition 5.4. [17] For any BPP net N = (S,A,T ) and any family of place relations Ri ⊆ S×S, the
following hold:

1. /0⊕ = {(θ ,θ)}, i.e., the additive closure of the empty place relation is a singleton marking
relation, relating the empty marking to itself.

2. (IS)
⊕ = IM, i.e., the additive closure of the identity relation on places IS = {(s,s)

∣∣ s ∈ S} is
the identity relation on markings IM = {(m,m)

∣∣ m ∈M (S)}.
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3. (R⊕)−1 = (R−1)⊕, i.e., the inverse of an additively closed relation R is the additive closure of
its inverse R−1.

4. (R1 ◦R2)
⊕ = (R⊕1 )◦ (R

⊕
2 ), i.e., the additive closure of the composition of two place relations is

the compositions of their additive closures.

5.
⋃

i∈I(R
⊕
i )⊆ (

⋃
i∈I Ri)

⊕, i.e., the union of additively closed relations is included into the additive
closure of their union. 2

When R is an equivalence relation, it is rather easy to check whether two markings are related by
R⊕. An algorithm, described in [17], establishes whether an R-preserving bijection between the two
markings exists, by first implementing the equivalence relation R as an adjacency matrix A of size
n (the entry A[s,s′] is marked 1 if (s,s′) ∈ R, 0 otherwise), and then by checking whether for each
place/token s in m1 there exists a place/token s′ in m2 such that the entry A[s,s′] is marked 1. The
complexity of this algorithm is not very high: first, the generation of the adjacency matrix takes O(n2)
time, and then checking whether m1 ∼⊕ m2 takes O(k2) time, if k is the size of m1 and m2. Note that
if we want to perform additional team equivalence checks on the same net, we can reuse the already
computed matrix A, so that the new checks will take only O(k2) time from the second check on.

Algorithm 1 Algorithm for checking whether (m1,m2) ∈ R⊕

Let N = (S,A,T ) be an BPP, with S = {s1, . . . ,sn}.
Let m1 and m2 be two markings on S.
Let R⊆ S×S be an equivalence place relation.
Let P= {B1, . . . ,Bl}, 1≤ l≤ n, be the partition of S in the equivalence classes (called blocks) of R:
Bi∩B j = /0 for i 6= j,

⋃l
i=1 Bi = S, ∀s,s′ ∈ Bi.(s,s′)∈ R for i = 1, . . . , l and, finally, ∀s∈ Bi,∀s′ ∈ B j

if i 6= j, then (s,s′) 6∈ R.

1: Let count1,count2 be two integer variables
2: for all blocks in P do
3: count1,count2 = 0
4: for all places s in the current block do
5: count1 = count1 +m1(s)
6: count2 = count2 +m2(s)
7: end for
8: if not(count1 == count2) then
9: return f alse

10: end if
11: end for
12: return true

However, this algorithm can be improved. Algorithm 1 (which is a slight generalization of the
algorithm proposed originally in [25]) checks whether (m1,m2) ∈ R⊕ simply by checking if, for
each equivalence class of R, the number of places/tokens of m1 in that class equals the number of
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places/tokens of m2 in the same class. In this way, we are sure that there is an R-preserving, bijec-
tive mapping between the two markings. The complexity of this new algorithm is O(n), because we
have essentially to scan all the (equivalence classes and then the) places (in these classes), and this
complexity holds already for the first check. Therefore, this new algorithm is better than the old one
for the first check, while it may be less performant than the original one, from the second check on-
wards, only if the markings are small compared to the size of the net: more precisely, if k <

√
n. The

reason why Algorithm 1 usually outperforms the old one in [17] is that, by exploiting the partition of
S induced by R, there is no need to build any auxiliary data structure for representing R. As we will
check whether (m1,m2) ∈ R⊕ for equivalence relations that are computed by means of variations of
the Kanellakis-Smolka algorithm [23, 24] (whose output is directly a partition of S∪{θ}), we have
that Algorithm 1 can be really exploited successfully. Nonetheless, the old algorithm, if successful,
computes a set of pairs of matched places, while the new one simply gives a boolean result.

5.2. Team Bisimulation on Places

Definition 5.5. (Team bisimulation) Let N = (S,A,T ) be a BPP net. A team bisimulation is a place
relation R⊆ S×S such that if (s1,s2) ∈ R then for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and (m1,m2) ∈ R⊕.

Two places s and s′ are team bisimilar (or team bisimulation equivalent), denoted s∼ s′, if there exists
a team bisimulation R such that (s,s′) ∈ R. 2

Example 5.6. Continuing Example 2.5 about the semi-counters in Figure 2, it is easy to see that
relation R = {(s1,s3),(s1,s4),(s2,s5),(s2,s6)} is a team bisimulation. In fact, the pair (s1,s3) is a
team bisimulation pair because, to transition s1

inc−→ s1⊕ s2, s3 can respond with s3
inc−→ s4⊕ s5, and

(s1⊕ s2,s4⊕ s5) ∈ R⊕; symmetrically, if s3 moves first. Also the pair (s1,s4) is a team bisimulation
pair because, to transition s1

inc−→ s1⊕s2, s4 can respond with s4
inc−→ s3⊕s6, and (s1⊕s2,s3⊕s6)∈ R⊕;

symmetrically, if s4 moves first. Also the pair (s2,s5) is a team bisimulation pair: to transition s2
dec−→θ ,

s5 responds with s5
dec−→θ , and (θ ,θ) ∈ R⊕. Similarly for the pair (s2,s6). Hence, relation R is a team

bisimulation, indeed. The team bisimulation above is a very simple, finite relation, proving that s1∼ s3.
In Example 3.2, in order to show that s1 and s3 are interleaving bisimilar, we had to introduce a rather
complex relation, with infinitely many pairs. 2

Example 5.7. Consider Figure 8. It is easy to realize that relation R = {(s1,s4), (s2,s5), (s2,s6),
(s2,s7),(s3,s8),(s3,s9)} is a team bisimulation. 2

Proposition 5.8. [17] For any BPP net N = (S,A,T ), the following hold:

1. The identity relation IS = {(s,s)
∣∣ s ∈ S} is a team bisimulation;
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Figure 8. Two team bisimilar BPP nets

2. the inverse relation R−1 = {(s′,s)
∣∣ (s,s′) ∈ R} of a team bisimulation R is a team bisimulation;

3. the relational composition R1 ◦R2 = {(s,s′′)
∣∣ ∃s′.(s,s′)∈ R1∧(s′,s′′)∈ R2} of two team bisim-

ulations R1 and R2 is a team bisimulation;

4. the union
⋃

i∈I Ri of team bisimulations Ri is a team bisimulation. 2

Remember that s ∼ s′ if there exists a team bisimulation containing the pair (s,s′). This means
that ∼ is the union of all team bisimulations, i.e.,

∼=
⋃
{R⊆ S×S

∣∣ R is a team bisimulation}.

By Proposition 5.8(4), ∼ is also a team bisimulation, hence the largest such relation.

Proposition 5.9. For each BPP net N = (S,A,T ), relation ∼⊆ S×S is the largest team bisimulation
relation. 2

Proposition 5.10. For each BPP net N = (S,A,T ), relation ∼⊆ S×S is an equivalence relation. 2

Remark 5.11. (Complexity of ∼) It is well-known that the classic Kanellakis-Smolka algorithm for
computing bisimulation equivalence over a finite-state LTS with n states and m transitions has O(m ·n)
time complexity [23, 24]. This very same partition refinement algorithm can be easily adapted also
for computing team bisimilarity ∼ over BPP nets: it is enough to consider the empty marking θ as an
additional, special place which is team bisimilar to itself only, and to consider the little additional cost
due to the fact that the reached markings are to be related by the additive closure of the equivalence
relation induced by the current partition over places; this extra check can be done with Algorithm 1 in
O(n) time, so that the overall time complexity is O(m ·n2), where m is the number of the net transitions
and n is the number of the net places. 2
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5.3. Team Bisimilarity over Markings

Starting from team bisimulation equivalence ∼, which has been computed over the places of an un-
marked BPP net N, we can lift it over the markings of N in a distributed way: m1 is team bisimulation
equivalent to m2 if these two markings are related by the additive closure of ∼, i.e., if (m1,m2) ∈∼⊕,
usually denoted by m1 ∼⊕ m2.

Proposition 5.12. For any BPP net N = (S,A,T ), if m1 ∼⊕ m2, then |m1|= |m2|.

Proof:
By Proposition 5.2. 2

Proposition 5.13. For any BPP net N = (S,A,T ), ∼⊕⊆ M (S)×M (S) is an equivalence relation.

Proof:
By Proposition 5.3: since ∼ is an equivalence relation (Proposition 5.10), its additive closure ∼⊕ is
also an equivalence relation. 2

Remark 5.14. (Complexity of∼⊕) Once the place relation∼ has been computed once and for all for
the given net (in O(m ·n2) time; cf. Remark 5.11)), Algorithm 1 checks whether two markings m1 and
m2 are team bisimulation equivalent in O(n) time. 2

Example 5.15. Continuing Example 5.6 about the semi-counters, the marking s1⊕2 ·s2 is team bisim-
ilar to the following markings of the net in (b): s3⊕2 · s5, or s3⊕ s5⊕ s6, or s3⊕2 · s6, or s4⊕2 · s5, or
s4⊕ s5⊕ s6, or s4⊕2 · s6. 2

The following theorem provides a characterization of team bisimulation equivalence ∼⊕ as a suit-
able bisimulation-like relation over markings. It is interesting to observe that this characterization
gives a dynamic interpretation of team bisimulation equivalence, while Definition 5.1 gives a struc-
tural definition of team bisimulation equivalence ∼⊕ as the additive closure of ∼.

Theorem 5.16. [17] Let N = (S,A,T ) be a BPP net. Two markings m1 and m2 are team bisimulation
equivalent, m1 ∼⊕ m2, if and only if |m1|= |m2| and

• ∀t1 such that m1[t1〉m′1, ∃t2 such that •t1 ∼ •t2, l(t1) = l(t2), t•1 ∼⊕ t•2 , m2[t2〉m′2 and m′1 ∼⊕ m′2,

• and symmetrically, ∀t2 such that m2[t2〉m′2, ∃t1 such that •t1 ∼ •t2, l(t1) = l(t2), t•1 ∼⊕ t•2 ,
m1[t1〉m′1 and m′1 ∼⊕ m′2. 2

By the theorem above, it is clear that ∼⊕ is an interleaving bisimulation; hence, team bisimilarity
does respect the sequential behavior of BPP nets.

Corollary 5.17. (Team bisimilarity is finer than interleaving bisimilarity) Let N = (S,A,T ) be a
BPP net. If m1 ∼⊕ m2, then m1 ∼int m2. 2
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Moreover, team bisimilarity does respect the causal semantics of BPP nets, as it coincides with
state-sensitive strong fully concurrent bisimilarity, as proved in [20].

Theorem 5.18. (Team bisimilarity and ssfc-bisimilarity coincide) Let N = (S,A,T ) be a BPP net.
Then, m1 ∼s f c m2 if and only if m1 ∼⊕ m2. 2

Therefore, our characterization of ssfc-bisimilarity, which is, in our opinion, the intuitively correct
strong causal semantics for BPP nets (as it preserves the causal nets [2, 29], as proved in [19, 20]),
is quite appealing because it is based on the very simple technical definition of team bisimulation on
the places of the unmarked net, and, moreover, offers a very efficient algorithm to check whether two
markings are ssfc-bisimilar (see Remark 5.14).

5.4. H-Team Bisimilarity

In order to provide the definition of h-team bisimulation on places for unmarked BPP nets, adapting
the definition of team bisimulation on places (cf. Definition 5.5), we need first to extend the domain
of a place relation: the empty marking θ is considered as an additional place, so that a place relation
is defined not on S, rather on S∪{θ}. Therefore, the symbols p1 and p2 that occur in the following
definitions can only denote either the empty marking θ or a single place s.

First of all, we extend the idea of additive closure to these more general place relations, yielding
h-additive closure, still denoted by −⊕ with abuse of notation.

Definition 5.19. (H-additive closure) Given a BPP net N = (S,A,T ) and a place relation R ⊆ (S∪
{θ})× (S∪{θ}), we define a marking relation R⊕ ⊆M (S)×M (S), called the h-additive closure of
R, as the least relation induced by the following axiom and rule.

(θ ,θ) ∈ R⊕

(p1, p2) ∈ R (m1,m2) ∈ R⊕

(p1⊕m1, p2⊕m2) ∈ R⊕
2

Note that if two markings are related by R⊕ (i.e., by the h-additive closure of R), then they may
have different size; in fact, even if the axiom relates the empty marking to itself (so two markings with
the same size), as R ⊆ (S∪{θ})× (S∪{θ}), it may be the case that (θ ,s) ∈ R, so that, assuming
(m′1,m

′
2) ∈ R⊕ with |m′1| = |m′2|, we get (m′1,s⊕m′2) ∈ R⊕, as θ is the identity for the operator of

multiset union. Hence, Proposition 5.2, which is valid for place relations defined over S, is not valid
for place relations defined over S∪{θ}. However, the properties in Propositions 5.3 and 5.4 hold also
for these more general place relations. In particular, if R ⊆ (S∪{θ})× (S∪{θ}) is an equivalence
relation, then R⊕ is also an equivalence relation.

Remark 5.20. (Complexity of h-additive closure) Given an equivalence relation R ⊆ (S∪{θ})×
(S∪{θ}), the complexity of checking whether two markings m1 and m2 are related by R⊕ is still O(n),
where n is the size of S, because Algorithm 1 can be easily adapted to this case. First, P is a partition
of S∪{θ}, so that one of its blocks contains θ . Then, in line 2 of the algorithm, it is enough to state

2: forall blocks in P (except that of θ ) do
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so that, for each class (except for the class of θ ), it checks whether the number of tokens in the places
of m1 belonging to this class equals the number of tokens in the places of m2 in the same class; if this
holds for all the considered equivalence classes, then (m1,m2) ∈ R⊕. 2

Definition 5.21. (H-team bisimulation) Let N = (S,A,T ) be a BPP net. An h-team bisimulation is a
place relation R⊆ (S∪{θ})× (S∪{θ}) such that if (p1, p2) ∈ R then for all ` ∈ A

• ∀m1 such that p1
`−→m1, ∃m2 such that p2

`−→m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that p2
`−→m2, ∃m1 such that p1

`−→m1 and (m1,m2) ∈ R⊕.

p1 and p2 are h-team bisimilar (or h-team bisimulation equivalent), denoted p1 ∼h p2, if there exists
an h-team bisimulation R such that (p1, p2) ∈ R. 2

Since a team bisimulation is also an h-team bisimulation, we have that team bisimilarity∼ implies
h-team bisimilarity ∼h. This implication is strict as illustrated in the following examples.

Example 5.22. Consider the nets in Figure 6. It is not difficult to realize that s6 and s8 are h-team
bisimilar because R= {(s6,s8),(s7,θ)} is a h-team bisimulation. In fact, s6 can reach s7 by performing
a, and s8 can reply by reaching the empty marking θ , and (s7,θ) ∈ R. In Example 4.11 we argued
that s6 ∼ f c s8 and in fact we will state that h-team bisimilarity coincide with fc-bisimilarity. This
example shows that h-team bisimulation equivalence is not sensitive to the kind of termination of a
process: even if s7 is a stuck place, denoting a deadlock situation, it is equivalent to the empty marking
θ , i.e., the marking denoting a properly terminated process. This is in contrast with the definition of
team bisimulation on place (cf. Definition 5.5), which is sensitive to the kind of termination. In fact,
s6 � s8, and indeed s6 �s f c s8. 2

We now list some obvious properties.

Proposition 5.23. For any BPP net N = (S,A,T ), the following hold:

1. The identity relation IS = {(p, p)
∣∣ p ∈ S∪{θ}} is an h-team bisimulation;

2. the inverse relation R−1 = {(p′, p)
∣∣ (p, p′) ∈ R} of an h-team bisimulation R is an h-team

bisimulation;

3. the relational composition R1 ◦R2 = {(p, p′′)
∣∣ ∃p′.(p, p′) ∈ R1∧ (p′, p′′) ∈ R2} of two h-team

bisimulations R1 and R2 is an h-team bisimulation;

4. the union
⋃

i∈I Ri of h-team bisimulations Ri is an h-team bisimulation. 2

Relation ∼h is the union of all h-team bisimulations, i.e.,

∼h =
⋃
{R⊆ (S∪{θ})× (S∪{θ})

∣∣ R is an h-team bisimulation}.

By Proposition 5.23(4), ∼h is also an h-team bisimulation, hence the largest such relation. By direct
application of Proposition 5.23, the following follows.
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Proposition 5.24. For each BPP net N = (S,A,T ), ∼h ⊆ (S∪{θ})× (S∪{θ}) is an equivalence. 2

Starting from h-team bisimulation equivalence ∼h, which has been computed over the places (and
the empty marking) of an unmarked BPP net N, we can lift it over the markings of N in a distributed
way: m1 is h-team bisimulation equivalent to m2 if these two markings are related by the additive
closure of ∼h, i.e., if (m1,m2) ∈∼⊕h , usually denoted by m1 ∼⊕h m2.

Proposition 5.25. For each BPP net N = (S,A,T ), relation ∼⊕h ⊆ M (S)×M (S) is an equivalence
relation.

Proof:
By Proposition 5.3: since ∼h is an equivalence relation (Proposition 5.24), its additive closure ∼⊕h is
also an equivalence relation. 2

Remark 5.26. (Complexity of ∼⊕h ) About complexity, we note that computing ∼h is not more dif-
ficult than computing ∼ (cf. Remark 5.11). The Kanellakis-Smolka partition refinement algorithm
[23, 24] can be adapted also in this case. It is enough to consider the empty marking θ as an ad-
ditional, special place which is h-team bisimilar to each deadlock place. Hence, the initial partition
considers two sets: one composed of all the deadlock places and θ , the other one with all the non-
deadlock places. Therefore, the time complexity is also in this case O(m ·n2), where m is the number
of the net transitions and n is the number of the net places. Once ∼h has been computed once and
for all for the given net, the complexity of checking whether two markings m1 and m2 are h-team
bisimulation equivalent is O(n), where n is the number of places (cf. Remark 5.20). 2

The main motivation for introducing h-team bisimilarity is the following theorem stating that h-
team bisimilarity coincides with strong fully-concurrent bisimilarity for BPP nets.

Theorem 5.27. [20](Fully concurrent bisimilarity and h-team bisimilarity coincide) Given a BPP
net N = (S,A,T ), m1 ∼ f c m2 if and only if m1 ∼⊕h m2. 2

Therefore, our characterization of sfc-bisimilarity, which is considered by many [3, 10, 5, 34] the
intuitively correct strong causal semantics, is quite appealing because it is based on the very simple
technical definition of h-team bisimulation, and, moreover, offers a rather efficient algorithm to check
whether two markings of a BPP net are sfc-bisimilar (see Remark 5.26).

Remark 5.28. (Resource-aware behavioral equivalence) We think that state-sensitive strong fc-
bisimilarity (hence, also strong team bisimilarity) is more accurate than strong fc-bisimilarity (hence,
strong h-team bisimilarity) because it is resource-aware, in the following sense. In the implementation
of a system, a token is an instance of a sequential process, so that a processor is needed to execute it.
If two markings differ for the number of tokens, i.e., they have different size, then a different number
of processors are necessary for their execution. Hence, a semantics such as ssfc-bisimilarity which
relates only markings of the same size is more accurate as it equates distributed systems only if they
require the same amount of execution resources. 2
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6. A Distributed Approach to Weak Equivalence Checking

In this section, we extend the approach to BPP nets with silent moves, by introducing weak team
bisimilarity ≈ (as well as weak h-team bisimilarity ≈h) on places of an unmarked BPP nets and then
its additive closure ≈⊕ (and ≈⊕h ) on markings.

6.1. Weak Team Bisimulation on Places

In order to adapt the definition of weak bisimulation on LTSs [28, 15] for unmarked BPP nets, we
need some auxiliary notation.

We can define relation ε
=⇒ ⊆ S×M (S) as (a generalization of) the reflexive and transitive closure

of the silent transition relation; formally, for every place s ∈ S, we have that s ε
=⇒ s, denoting that

each place can silently reach itself with zero steps; moreover, if s ε
=⇒m, s′ ∈ m and s′ τ−→m′, then

s ε
=⇒ (m	s′)⊕m′. Note that s ε

=⇒m if and only if there exists a sequential transition sequence σ such
that s[σ〉m and o(σ) = ε . If s ε

=⇒m and the sequence of silent moves is not empty, we may also denote
this by s τ

=⇒m. Hence, this is the same as saying that there exists a nonempty, sequential transition
sequence σ such that s[σ〉m and oτ(σ)= τ . We also write m ε

=⇒m′ if there exists a transition sequence
σ such that m[σ〉m′ and o(σ) = ε . In particular, we have θ

ε
=⇒θ . Finally, for any ` ∈ Aτ = A\{τ},

we write m1
`−→m2 if there exists a transition t such that m1[t〉m2 and l(t) = `. We also write s `

=⇒m

if there exist two markings m1 and m2 such that s ε
=⇒m1

`−→m2
ε

=⇒m. Note that s `
=⇒m if and only

if there exists a sequential transition sequence σ such that s[σ〉m and o(σ) = `.

Definition 6.1. (Weak team bisimulation on places) Let N = (S,A,T ) be a BPP net with silent
moves. A weak team bisimulation is a relation R⊆ S×S such that if (s1,s2) ∈ R then for all ` ∈ Aτ

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`
=⇒m2 and (m1,m2) ∈ R⊕,

• ∀m1 such that s1
τ−→m1, ∃m2 such that s2

ε
=⇒m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`
=⇒m1 and (m1,m2) ∈ R⊕, and, finally,

• ∀m2 such that s2
τ−→m2, ∃m1 such that s1

ε
=⇒m1 and (m1,m2) ∈ R⊕.

Two places s and s′ are weakly team bisimilar, denoted by s ≈ s′, if there exists a weak team bisimu-
lation R such that (s,s′) ∈ R. 2

Example 6.2. Consider Figure 9. R1 = {(s1,s4),(s2,s4),(s3,s5), (s3,s6)} is a weak team bisimulation.
Also R2 = {(s7,s10),(s8,s11),(s8,s12),(s9,s12), (s9,s13)} is a weak team bisimulation. 2

Example 6.3. Consider Figure 3. Note that s1 6≈ s4 because s1 cannot match transition s4
τ−→ s5⊕ s6,

as it cannot reach silently any marking of size 2. For the same reason, it is not difficult to realize that
also s4 6≈ s8: the apparently silent transition s4

τ−→ s5⊕s6 cannot be matched silently by s8, as the only
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Figure 9. Two pairs of weakly team bisimilar BPP nets
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Figure 10. Two weakly team bisimilar BPP nets with different causal behavior

silent transition it can perform is s8
ε

=⇒ s8, but the size of the reached markings is different. Moreover,
s8 6≈ s11 because s9 6≈ s13; in fact, s9 cannot match transition s13

τ−→θ , because it cannot reach silently
the empty marking. These examples show that τ-labeled transitions changing the number of currently
available tokens, either by adding tokens (as in the first example) or by removing the token (as in the
last example), are not really unobservable. In order to support our claim, note that it is not possible
to find a τ-free net weak team bisimilar to s4, or to s13, while this is possible w.r.t. weak interleaving
bisimilarity. As discussed in Examples 3.4 and 4.20, s1,s4,s8 and s11 are all pairwise interleaving
bisimilar and also weak fully-concurrent bisimilar. However, we think that such silent transitions
cannot be considered as unobservable, as they do change the structure of the system. 2

Example 6.4. Consider Figure 10. R = {(s1,s4),(s2,s5),(s3,s6), (s3,s7)} is a weak team bisimula-
tion; in particular, if s4

a−→ s7, then s1
a

=⇒ s3 and (s3,s7) ∈ R⊕. However, s1 and s4 do not offer the
same causal behavior, as s4 may perform b caused by a, while for s1 actions a and b are always causally
independent. So, weak team bisimulation may not respect causality if the BPP net is not τ-sequential
(see Definition 2.9). However, as argued also in the previous example, we claim that a silent transition
that is not preserving the number of tokens is not really unobservable and so the step s1

a
=⇒ s3, which

passes through a marking of different size (i.e., s2⊕ s3) is not really acceptable. Indeed, this example
is one of the main motivation for introducing branching team bisimilarity in Section 7. 2
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We now list some useful properties of weak team bisimulation relations, one of which is based on
the following lemma.

Lemma 6.5. Let N = (S,A,T ) be a BPP net with silent moves and let R be a weak team bisimulation
such that (s,s′) ∈ R. Then, the following hold:

(i) For all m such that s ε
=⇒m, there exists m′ such that s′ ε

=⇒m′ and (m,m′) ∈ R⊕;

(ii) for all m, for all ` ∈ Aτ such that s `
=⇒m, there exists m′ such that s′ `

=⇒m′ and (m,m′) ∈ R⊕;

and symmetrically, if s′ moves first.

Proof:
The proof is by induction on the length of the computation. (i) The base case is s ε

=⇒ s; in such a case,
s′ ε
=⇒ s′ and (s,s′) ∈ R⊕, as required, because by assumption (s,s′) ∈ R. If the sequence is of length

one, then we can assume s τ−→m; since (s,s′) ∈ R, we have that s′ ε
=⇒m′ such that (m,m′) ∈ R⊕, as

required.
In general, we can assume that s τ−→m1

ε
=⇒m; since (s,s′) ∈ R, we have that s′ ε

=⇒m2 with
(m1,m2) ∈ R⊕. The move m1

ε
=⇒m is derivable if there exists a transition sequence σ such that

m1[σ〉m and o(σ) = ε . By Proposition 2.6, if m1 = s1⊕ . . .⊕ sk, then there exist silent sequential
transition sequences σi and markings m1

i such that si[σi〉m1
i , for i = 1, . . . ,k, and m = m1

1⊕ . . .⊕m1
k .

Therefore, si
ε

=⇒m1
i for i = 1, . . . ,k, and these sequences are all shorter, so that induction can be

applied. In fact, as (m1,m2) ∈ R⊕, marking m2 can be represented as s′1⊕ . . .⊕ s′k such that (si,s′i) ∈ R,
for i = 1, . . . ,k. Hence, by induction, as (si,s′i) ∈ R and si

ε
=⇒m1

i , we can conclude that s′i
ε

=⇒m2
i , with

(m1
i ,m

2
i ) ∈ R⊕ for i = 1, . . . ,k. By Proposition 2.7, m2

ε
=⇒m′ = m2

1⊕ . . .⊕m2
k and (m,m′) ∈ R⊕ by

Proposition 5.3, because (m1
i ,m

2
i ) ∈ R⊕ for i = 1, . . . ,k.

(ii) The base case is s `−→m. In such a case, since (s,s′)∈ R, we have s′ `
=⇒m′, with (m,m′)∈ R⊕,

as required. If the sequence is longer, then we can distinguish two subcases: either s `−→m1
ε

=⇒m or
s τ−→m1

`
=⇒m. In the former subcase, as (s,s′) ∈ R, we have that s′ `

=⇒m2 with (m1,m2) ∈ R⊕. The
move m1

ε
=⇒m is derivable if there exists a transition sequence σ such that m1[σ〉m and o(σ) = ε . By

Proposition 2.6, if m1 = s1⊕ . . .⊕ sk, then there exist sequential transition sequences σi and markings
m1

i such that si[σi〉m1
i , for i = 1, . . . ,k, and m = m1

1⊕ . . .⊕m1
k . Therefore, si

ε
=⇒m1

i for i = 1, . . . ,k. As
(m1,m2) ∈ R⊕, marking m2 can be represented as s′1⊕ . . .⊕ s′k such that (si,s′i) ∈ R, for i = 1, . . . ,k.
Hence, by item (i), as (si,s′i) ∈ R and si

ε
=⇒m1

i , we can conclude that s′i
ε

=⇒m2
i , with (m1

i ,m
2
i ) ∈ R⊕

for i = 1, . . . ,k. By Proposition 2.7, m2
ε

=⇒m′ = m2
1⊕ . . .⊕m2

k and (m,m′) ∈ R⊕ by Proposition 5.3,
because (m1

i ,m
2
i ) ∈ R⊕ for i = 1, . . . ,k.

In the latter case, since (s,s′) ∈ R, we have that s′ ε
=⇒m2 with (m1,m2) ∈ R⊕. The move m1

`
=⇒m

is derivable if there exists a transition sequence σ such that m1[σ〉m and o(σ) = `. By Proposition
2.6, if m1 = s1⊕ . . .⊕ sk, then there exist sequential transition sequences σi and markings m1

i such that
si[σi〉m1

i , for i= 1, . . . ,k, and m=m1
1⊕ . . .⊕m1

k . W.l.o.g., we can assume that o(σ1) = `, while o(σi) =

ε for i = 2, . . . ,k. Therefore, s1
`

=⇒m1
1 and si

ε
=⇒m1

i for i = 2, . . . ,k. As (m1,m2) ∈ R⊕, marking m2
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can be represented as s′1⊕ . . .⊕ s′k such that (si,s′i) ∈ R, for i = 1, . . . ,k. Therefore, as (s1,s′1) ∈ R

and s1
`

=⇒m1
1, by induction (as the computation is shorter), we have s′1

`
=⇒m2

1 and (m1
1,m

2
1) ∈ R⊕.

Moreover, by item (i), as (si,s′i)∈ R and si
ε

=⇒m1
i , we can conclude that s′i

ε
=⇒m2

i , with (m1
i ,m

2
i )∈ R⊕

for i = 2, . . . ,k. By Proposition 2.7, m2
`

=⇒m′ = m2
1⊕ . . .⊕m2

k and (m,m′) ∈ R⊕ by Proposition 5.3,
because (m1

i ,m
2
i ) ∈ R⊕ for i = 1, . . . ,k. 2

Proposition 6.6. For each BPP net N = (S,A,T ) with silent moves, the following hold:

1. the identity relation I = {(s,s)
∣∣ s ∈ S} is a weak team bisimulation;

2. the inverse relation R−1 = {(s′,s)
∣∣ (s,s′) ∈ R} of a weak team bisimulation R is a weak team

bisimulation;

3. the relational composition R1 ◦R2 = {(s,s′′)
∣∣ ∃s′.(s,s′) ∈ R1∧ (s′,s′′) ∈ R2} of two weak team

bisimulations R1 and R2 is a weak team bisimulation;

4. the union
⋃

i∈I Ri of weak team bisimulations Ri is a weak team bisimulation.

Proof:
The proof of (1) is immediate: (s,s)∈I is a weak bisimulation pair as whatever transition s performs

(say, s `−→m), the other s in the pair does exactly the same transition s `−→m and (m,m) ∈I ⊕.
The proof of (2) is also immediate: if (s2,s1) ∈ R−1, then (s1,s2) ∈ R; since R is a weak team

bisimulation, the third condition ensures that ∀m2 such that s2
`−→m2, ∃m1 such that s1

`
=⇒m1 and

(m1,m2)∈ R⊕, i.e., (m2,m1)∈ (R⊕)−1 = (R−1)⊕ by Proposition 5.4(3); similarly, the fourth condition
ensures that ∀m2 such that s2

τ−→m2, ∃m1 such that s1
ε

=⇒m1 and (m1,m2) ∈ R⊕, i.e., (m2,m1) ∈
(R⊕)−1 = (R−1)⊕ by Proposition 5.4(3); symmetrically, if s1 moves first. Hence, R−1 is a weak
bisimulation, too.

The proof of (3) is also easy, thanks to Lemma 6.5: given a pair (s,s′′) ∈ R1 ◦R2, there exists a

place s′ such that (s,s′) ∈ R1 and (s′,s′′) ∈ R2; as (s,s′) ∈ R1, if s `−→m1 (or s τ−→m1), there exists

m2 such that s′ `
=⇒m2 (or s′ ε

=⇒m2) with (m1,m2) ∈ R⊕1 . Since (s′,s′′) ∈ R2, we have also that there

exists m3 such that s′′ `
=⇒m3 (or s′′ ε

=⇒m3 ) with (m2,m3) ∈ R⊕2 (by Lemma 6.5). Summing up, for

any pair (s,s′′) ∈ R1 ◦R2, if s `−→m1 (or s τ−→m1), then there exists a marking m3 such that s′′ `
=⇒m3

(or s′′ ε
=⇒m3) with (m1,m3) ∈ R⊕1 ◦R⊕2 = (R1 ◦R2)

⊕ by Proposition 5.4(4), as required.
The proof of (4) is trivial, too: assume (s,s′) ∈

⋃
i∈I Ri; then, there exists j ∈ I such that (s,s′)

belongs to R j. If s `−→m1 (or s τ−→m1), then there must exist m2 such that s′ `
=⇒m2 (or s′ ε

=⇒m2)
with (m1,m2)∈ R⊕j . By Proposition 5.4(5), R⊕j ⊆ (

⋃
i∈I Ri)

⊕ and so (m1,m2)∈ (
⋃

i∈I Ri)
⊕, as required.

So
⋃

i∈I Ri is a weak team bisimulation, too. 2

Remember that s ≈ s′ if there exists a weak team bisimulation containing the pair (s,s′). This
means that ≈ is the union of all weak team bisimulations, i.e.,

≈=
⋃
{R⊆ S×S

∣∣ R is a weak team bisimulation}.

By Proposition 6.6(4), ≈ is also a weak team bisimulation, hence the largest such relation.
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Proposition 6.7. For each BPP net N = (S,A,T ), relation ≈⊆ S×S is the largest weak team bisimu-
lation relation. 2

Observe that a weak team bisimulation relation need not be reflexive, symmetric, or transitive.
Nonetheless, the largest weak team bisimulation relation ≈ is an equivalence relation. As a matter
of fact, as the identity relation I is a weak team bisimulation by Proposition 6.6(1), we have that
I ⊆ ≈, and so ≈ is reflexive. Symmetry derives from the following argument. For any (s,s′) ∈ ≈,
there exists a weak team bisimulation R such that (s,s′) ∈ R; by Proposition 6.6(2), relation R−1 is a
weak team bisimulation containing the pair (s′,s); hence, (s′,s) ∈ ≈ because R−1 ⊆ ≈. Transitivity
also holds for ≈. Assume (s,s′) ∈ ≈ and (s′,s′′) ∈ ≈; hence, there exist two weak team bisimulations
R1 and R2 such that (s,s′) ∈ R1 and (s′,s′′) ∈ R2; by Proposition 6.6(3), relation R1 ◦R2 is a weak team
bisimulation containing the pair (s,s′′); hence, (s,s′′) ∈ ≈, because R1 ◦R2 ⊆ ≈. Summing up, we
have the following.

Proposition 6.8. For each BPP net N = (S,A,T ), relation ≈⊆ S×S is an equivalence relation. 2

6.2. Saturated Net

Now we give a characterization of weak team bisimulation on a BPP net N as a (strong) team bisim-
ulation over a suitably enriched variant of N, called its saturated net. The saturated net of N may be
not a BPP net, because it may be infinite (more precisely, with infinitely many transitions); however,
if the net is τ-simple (see Definition 2.9), then the saturated net of a BPP net N is still a BPP net. A
τ-simple BPP net is such that it is not possible to have a silent cycle that produces new tokens; so if a
silent cycle is present, it may only be of the form s ε

=⇒ s, for some s ∈ S.

Definition 6.9. (Saturated net) Let N = (S,A,T ) be a BPP net, with Aτ = A\{τ}. Its saturated net

is the net N′ = (S,Aτ ∪{ε},T ′), where T ′ = {(s,δ ,m)
∣∣ δ ∈ Aτ ∪{ε} and s δ

=⇒m}. 2

This saturated net has the same set of places as N, but the transitions are computed by means of a

generalization of the (partial) reflexive/transitive closure δ
=⇒ of the transition relation −→ . Note that

the set T ′ can be countably infinite if the net is not τ-simple. For instance, if N contains a transition
t = (s1,τ,s1⊕s2), then T ′ contains the countably infinite set of transitions {(s1,τ,s1⊕k ·s2)

∣∣ k≥ 1}.
In general, if s ε

=⇒ s⊕m is a cycle in N, then also (s,ε,s⊕ k ·m) is a transition in T ′, for each k ≥ 1.

Proposition 6.10. Let N = (S,A,T ) be a BPP net, with Aτ = A\{τ}. Its saturated net N′ = (S,Aτ ∪
{ε},T ′) is a BPP net if and only if N is τ-simple.

Proof:
The transitions in T ′ are all with a singleton pre-set by construction. So, N′ is a BPP net iff T ′ is finite,
so that the thesis is actually: T ′ is finite iff N is τ-simple. As observed above, if N is not τ-simple, then
T ′ is infinite. The reverse implication (if N is τ-simple, then T ′ is finite) holds by construction. In fact,
since the net is τ-simple, the transitions of the form s ε

=⇒m are finitely many, as no cycle producing
new tokens is present and the net N is finite.



R. Gorrieri / Causal Semantics for BPP Nets with Silent Moves 1035

Similarly, if m = s1⊕ . . .⊕sk, one can conclude that the number of transitions of the form m ε
=⇒m

is finite, because, by Propositions 2.6 and 2.7, these are generated by transitions of the form si
ε

=⇒mi,
for i = 1, . . . ,k, such that m = m1 ⊕ . . .⊕mk, and these latter transitions are finitely many by the
argument above.

Finally, if s `
=⇒m, then there exist m1 and m2 such that s ε

=⇒m1
`−→m2

ε
=⇒m; the thesis follows

also in this case by observing that (i) the number of possible m1’s is finite, (ii) the number of `-labeled
transitions is finite, (iii) the number of possible m’s is finite as well, where (i) and (iii) hold by the
arguments above. 2

It is possible to offer an alternative, yet equivalent, definition of weak team bisimulation on places
over the net N as a strong team bisimulation on places over its saturated net N′.

Proposition 6.11. Let N = (S,A,T ) be a BPP net, with Aτ = A\{τ} and let R⊆ S×S be a weak team
bisimulation. If (s1,s2) ∈ R then for all δ ∈ Aτ ∪{ε}

• ∀m1 such that s1
δ

=⇒m1, there exists m2 such that s2
δ

=⇒m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that s2
δ

=⇒m2, there exists m1 such that s1
δ

=⇒m1 and (m1,m2) ∈ R⊕.

Proof:
Since R is a weak team bisimulation, if (s1,s2) ∈ R and s1

δ
=⇒m1, then, by Lemma 6.5, s2

δ
=⇒m2 and

(m1,m2) ∈ R⊕; symmetrically, if s2 moves first. 2

A consequence of this alternative characterization is that it is possible to define ≈ as the greatest
fixed point of a suitable functional over binary place relations, as done for (strong) team bisimulation
over BPP nets in [17].

Remark 6.12. (Complexity of ≈) Another consequence of Proposition 6.11 is that it is also possible
to check whether two places are weak team bisimilar on a τ-simple BPP net N by checking whether
they are strong team bisimilar on its saturated net N′. Hence, the two-step algorithm is as follows:

1. First compute the saturated net N′. We conjecture that T ′ can be computed in polynomial
time; our conjecture is based on the fact that the simplified problem of computing the (partial)
reflexive/transitive closure over automata can be solved in O(n3) time, where n is the number of
states of the automaton, if the classic Floyd-Warshall algorithm [8] is exploited.

2. Then check whether two places are strong team bisimilar on N′ in time complexity O(m′ · n2),
where m′ is the size of T ′.

Hence, we claim that ≈ can be computed in polynomial time. 2
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6.3. Lifting Weak Team Bisimilarity to Markings

Starting from weak team bisimilarity ≈, which has been computed over the places of an unmarked
BPP net N, we can lift it over the markings of N in a structural, distributed way: m1 is weak team
bisimulation equivalent to m2 if these two markings are related by the additive closure of ≈, i.e., if
(m1,m2) ∈≈⊕, usually denoted by m1 ≈⊕ m2. Hence, weak team bisimulation equivalent markings
have the same size.

Proposition 6.13. For each BPP net N = (S,A,T ), if m1 ≈⊕ m2, then |m1|= |m2|. 2

Proposition 6.14. For each BPP net N = (S,A,T ), ≈⊕⊆ M (S)×M (S) is an equivalence relation.

Proof:
Since ≈ is an equivalence relation, by Proposition 5.3, ≈⊕ is an equivalence relation, too. 2

Note that, once ≈ has been computed in polynomial time (cf. Remark 6.12), checking whether
two markings are weak team bisimulation equivalent takes only O(n) time with Algorithm 1.

The following theorem provides a characterization of weak team bisimulation equivalence as a
suitable bisimulation-like relation over markings, i.e., over a global model of the overall behavior.
Indeed, this result gives evidence of the fact that weak team bisimulation equivalence does respect
the global behavior of the net. It is interesting to observe that this characterization gives a dynamic
interpretation of weak team bisimulation equivalence, while the definition of weak team bisimulation
equivalence as the additive closure of ≈ gives a structural definition.

Theorem 6.15. Let N = (S,A,T ) be a BPP net. Two markings m1 and m2 are weak team bisimulation
equivalent, m1 ≈⊕ m2, if and only if |m1|= |m2| and

1. ∀t1 such that l(t1) 6= τ and m1[t1〉m′1, ∃σ2 such that σ2 is sequential, •t1 ≈ •σ2, l(t1) = o(σ2),
t•1 ≈⊕ σ•2 , m2[σ2〉m′2 and m′1 ≈⊕ m′2,

2. ∀t1 such that l(t1) = τ and m1[t1〉m′1, either ∃σ2 such that σ2 is nonempty and sequential, •t1 ≈
•σ2, o(σ2) = ε , t•1 ≈⊕ σ•2 , m2[σ2〉m′2 and m′1 ≈⊕ m′2, or ∃s2 ∈ m2 such that •t1 ≈ s2, t•1 ≈ s2 and
m′1 ≈⊕ m2,

3. ∀t2 such that l(t2) 6= τ and m2[t2〉m′2, ∃σ1 such that σ1 is sequential, •σ1 ≈ •t2, o(σ1) = l(t2),
σ•1 ≈⊕ t•2 , m1[σ1〉m′1 and m′1 ≈⊕ m′2,

4. ∀t2 such that l(t2) = τ and m2[t2〉m′2, either ∃σ1 such that σ1 is nonempty and sequential,
•σ1 ≈ •t2, o(σ1) = ε , σ•1 ≈⊕ t•2 , m1[σ1〉m′1 and m′1 ≈⊕ m′2, or ∃s1 ∈ m1 such that s1 ≈ •t2,
s1 ≈ t•2 and m1 ≈⊕ m′2.

Proof:
(⇒) If m1 ≈⊕ m2, then |m1|= |m2| by Proposition 6.13. Moreover, for each t1 such that m1[t1〉m′1, we
have that m1 = s1⊕m1, where s1 =

•t1. As m1 ≈⊕ m2, by Definition 5.1, it follows that there exist s2
and m2 such that m2 = s2⊕m2, s1 ≈ s2 and m1 ≈⊕ m2. Since s1 ≈ s2, by Definition 6.1, we have to
consider two cases for the shape of t1:
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(i) if t1 = s1
`−→m1, then there exists m2 such that s2

`
=⇒m2 and m1 ≈⊕ m2. This means that

for transition t1, there exists a sequential transition sequence σ2 such that o(σ2) = `= l(t1), •σ2 = s2,
σ•2 =m2, hence with •t1≈ •σ2 and t•1 ≈⊕ σ•2 . Hence, m′1 = t•1⊕m1 and m′2 =σ•2 ⊕m2, and so m′1≈⊕ m′2
by Proposition 5.3. Hence, this corresponds to item 1 of the bisimulation conditions.

(ii) if t1 = s1
τ−→m1, then there exists m2 such that s2

ε
=⇒m2 and m1 ≈⊕ m2. This means that

for transition t1, either there exists a nonempty sequential transition sequence σ2 such that o(σ2) = ε ,
•σ2 = s2 and σ•2 = m2, hence with •t1 ≈ •σ2 and t•1 ≈⊕ σ•2 ; or s2 responds by idling, i.e., •t1 ≈ s2 and
t•1 ≈ s2. The either case is analogous to the previous one, and so omitted; this ensures the first part
of item 2 of the bisimulation conditions. The or case, instead, accounts for the second part of item 2:
since m′1 = t•1 ⊕m1, m2 = s2⊕m2, m1 ≈⊕ m2 and t•1 ≈ s2, it follows that m′1 ≈⊕ m2.

The case when m2 moves first is symmetric, hence omitted. These cases accounts for items 3 and
4 of the bisimulation conditions.

(⇐) Let us assume that |m1| = |m2| and that the four bisimulation-like conditions hold; then, we
prove that m1 ≈⊕ m2. First of all, assume that no transition t1 is enabled at m1; in such a case, no
observable transition is enabled at m2; in fact, if m2[t2〉m′2 with l(t2) 6= τ , then, by the third condition,
a nonempty transition sequence σ1 must be executable at m1, contradicting the assumption that no
transition is enabled at m1. However, m2 may enable silent τ-sequential transitions: by the fourth
condition, m1 can reply by idling. This means that each place in m1 is a deadlock, and similarly each
place in m2 is weakly bisimilar to a deadlock; therefore, all the places in m1 and m2 are pairwise
weakly bisimilar; hence, the condition |m1|= |m2| is enough to ensure that m1 ≈⊕ m2.

Now, assume that m1[t1〉m′1 for some t1. If l(t1) 6= τ , then the first condition ensures that there
exists a sequential transition sequence σ2 such that •t1 ≈ •σ2, l(t1) = o(σ2), t•1 ≈⊕ σ•2 , m2[σ2〉m′2 and
m′1 ≈⊕ m′2. We have that m′1 = t•1⊕m1, m′2 = σ•2 ⊕m2, m1 =

•t1⊕m1, m2 =
•σ2⊕m2. Since m′1 ≈⊕ m′2

and t•1 ≈⊕ σ•2 , by Proposition 5.3, it follows that m1 ≈⊕ m2, and so m1 ≈⊕ m2, because •t1 ≈ •σ2. The
second condition, accounting for the case when l(t1) = τ , is analogous, and so omitted.

Symmetrically, if we start from a transition t2 enabled at m2. 2

By the theorem above, it is clear that≈⊕ is a weak interleaving bisimulation; hence, the following
corollary follows trivially.

Corollary 6.16. (Weak team bisimilarity is finer than weak interleaving bisimilarity) Let N =
(S,A,T ) be a BPP net with silent moves. If m1 ≈⊕ m2, then m1 ≈int m2. 2

The above implication is strict. In fact, considering Figure 3, we have that s1 ≈int s4, but s1 6≈ s4,
as discussed in Example 6.3.

Now we want to argue that weak team bisimilarity≈⊕ implies state-sensitive weak fully-concurrent
bisimilarity ≈s f c if the BPP net is τ-sequential. To this aim, we first propose a lemma stating that if
the BPP net is τ-sequential, then –(i) and (ii)– the execution of silent moves does not activate any
parallel activity and, by starting from a singleton marking, –(iii) and (iv)– in the execution of a visi-
ble, one-action step, the only visible transition causes all the future visible actions executable from the
reached marking.

Lemma 6.17. Let N = (S,A,T ) be a τ-sequential BPP net. The following hold:
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(i) If s[σ〉m and o(σ) = ε , then |m|= 1.

(ii) If m[σ〉m′ and o(σ) = ε , then |m|= |m′|.

(iii) If s[σ〉m and o(σ) = `, then there exist σ1, t,σ2,s′,m′ such that σ = σ1tσ2, l(t) = `, o(σ1) =
o(σ2) = ε and s[σ1〉s′[t〉m′[σ2〉m, where |m′|= |m|.

(iv) If s[σ1〉m[σ2〉m′, o(σ1) = `1 and o(σ2) = `2, then t1� t2, where, for i= 1,2, ti ∈ σi and l(ti) = `i.

Proof:
(i) By induction on the length of σ . The base case is s[ε〉s and the thesis follows trivially. For the
inductive case, σ = tσ ′; hence, s[t〉m′[σ ′〉m. Since the net is τ-sequential, |m′| = 1, i.e., m′ = s′ for
some s′ ∈ S. By induction, as the computation s′[σ ′〉m is shorter, we have that that |m|= 1, as required.

(ii) If m[σ〉m′ and m = s1⊕ . . .⊕ sk, by Proposition 2.6, there exist σ1 . . .σk such that si[σi〉mi for
i = 1, . . . ,k, where σ is a permutation of σ1 . . .σk and m′ = m1⊕ . . .⊕mk. By item (i) above, each mi

is such that |mi|= 1, so that |m|= |m′|.
(iii) By induction on the length of σ . The base case is s[t〉m, with o(t) = `, and the thesis follows

trivially by choosing σ1 = σ2 = ε . For the inductive case, σ = tσ ′ and s[t〉m1[σ
′〉m. We have two

subcases: either l(t) = τ and o(σ ′) = `, or l(t) = ` and o(σ ′) = ε .
In the former subcase, since the net is τ-sequential, m1 = s1 for some s1 ∈ S. By induction, as

the computation s1[σ
′〉m is shorter, we can conclude that there exist σ1,σ2, t ′ such that σ ′ = σ1t ′σ2,

l(t ′)= ` and s1[σ1〉s′[t ′〉m′[σ2〉m, where |m′|= |m|; summing up, s[tσ1〉s′[t ′〉m′[σ2〉m, where |m′|= |m|,
as required. In the latter subcase, by item (ii), the step m1[σ

′〉m is such that |m1|= |m|; summing up,
s[ε〉s[t〉m1[σ

′〉m, where |m1|= |m|, as required.
(iv) If s[σ1〉m, then by item (iii), there exist σ1

1 , t1,σ
1
2 such that σ1 = σ1

1 t1σ1
2 , l(t1) = `1, o(σ1

1 ) =
o(σ1

2 ) = ε and s[σ1
1 〉s′[t1〉m′[σ1

2 〉m, where |m′| = |m|. This means that the event t1 is causing each
transition that m can enable. Since m[σ2〉m′, the observable event t2 ∈ σ2 is such that t1 � t2. 2

Remark 6.18. Note that tem (iv) above does not hold if the BPP net is not τ-sequential. Example 6.4
shows the computation s1[tτta〉s3[tb〉θ , but the transitions ta and tb are causally independent. 2

Theorem 6.19. (Weak team bisimilarity implies state-sensitive weak fc-bisimilarity) Let N =
(S,A,T ) be a τ-sequential BPP. If m1 ≈⊕ m2, then m1 ≈s f c m2.

Proof:
Let R = {((C1,ρ1),g,(C2,ρ2))

∣∣ (C1,ρ1) is a process of N(m1), (C2,ρ2) is a process of N(m2) and g
is an abstract event isomorphism between C1 and C2, such that ρ1(Max(C1)) ≈⊕ ρ2(Max(C2))}. We
want to prove that R is a state-sensitive weak fc-bisimulation.

First, observe that the triple ((C0
1 ,ρ

0
1 ),g0,(C0

2 ,ρ
0
2 )) where g0 is empty and, for i = 1,2, C0

i is a
BPP causal net which contains no transitions and ρ0

i (Max(C0
i )) = mi , belongs to relation R because

m1 ≈⊕ m2 by hypothesis. Note also that if the relation R is a state-sensitive weak fc-bisimulation,
then this triple ensures that m1 ≈s f c m2. It is enough to check that R is a weak fc-bisimulation,
because, since for each triple ((C1,ρ1),g,(C2,ρ2)) ∈ R we have that ρ1(Max(C1)) ≈⊕ ρ2(Max(C2)),
Proposition 6.13 ensures that R is state-sensitive.
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Now assume (π1,g,π2)∈ R, where πi = (Ci,ρi) for i = 1,2. In order to be a weak fully-concurrent
bisimulation triple, it is necessary that

(i) ∀t1,π ′1 such that π1
e1−→π ′1 with ρ ′1(e1) = t1, ∃σ ′2,π ′2,g′ such that

1. π2
σ ′2=⇒π ′2,

2. if l(e1) = τ , then o(σ ′2) = ε and g′ = g; otherwise, l(e1) = o(σ ′2) and there is a transition
e2 in σ ′2 such that l(e1) = l(e2) and g′ = g∪{(e1,e2)}; and finally,

3. (π ′1,g
′,π ′2) ∈ R;

(ii) and symmetrically, if π2 moves first.

Let us consider any transition t1 such that ρ1(Max(C1))[t1〉m′1 and l(t1) 6= τ . Since ρ1(Max(C1))≈⊕
ρ2(Max(C2)), by Theorem 6.15, there exists a sequential σ2 such that •t1 ≈ •σ2, l(t1) = o(σ2),
t•1 ≈⊕ σ•2 , ρ2(Max(C2))[σ2〉m′2 and m′1 ≈⊕ m′2. Therefore, it is really possible to extend the causal
net C1 to the causal net C′1 through a suitable transition e1, as well as to extend the causal net C2 to
the causal net C′2 through a suitable transition sequence σ ′2, including the observable transition e2,
as required above: indeed, g′ = g∪{(e1,e2)}. Note that, by Lemma 6.17, since σ2 is sequential, it
can be represented as •σ2[σ

′〉s[t2〉m[σ ′′〉σ•2 , where |m| = |σ•2 |; hence, all the transitions enabled by
σ•2 are caused by t2; note also that t•1 ≈⊕ σ•2 , so that a future event, in the bisimulation game, which
is caused by t1 can only be matched by a future event caused by t2. Summing up, for the move
π1

e1−→π ′1 with ρ ′1(e1) = t1, we add the triple (π ′1,g
′,π ′2) ∈ R, where π ′i = (C′i ,ρ

′
i ) for i = 1,2, so that

ρ ′1(Max(C′1)) = m′1 ≈⊕ m′2 = ρ ′2(Max(C′2)) and |m′1|= |m′2|, as required.
A similar argument is necessary when l(t1) = τ . As ρ1(Max(C1))≈⊕ ρ2(Max(C2)), by Theorem

6.15, either ∃σ2 such that σ2 is nonempty and sequential, •t1 ≈ •σ2, o(σ2) = ε , t•1 ≈⊕ σ•2 , m2[σ2〉m′2
and m′1 ≈⊕ m′2, or ∃s2 ∈ m2 such that •t1 ≈ s2, t•1 ≈ s2 and m′1 ≈⊕ m2. The either case is very similar
to the above, and so omitted; we simply observe that |t•1 | = 1 = |σ•2 |, so that the causality relation is
strictly respected. For the or case, it is really possible to extend the causal net C1 to the causal net C′1
through a suitable transition e1, while the causal net C2 is not modified. Summing up, for the move
π1

e1−→π ′1 with ρ ′1(e1) = t1, we add the triple (π ′1,g,π2) to R, so that ρ ′1(Max(C′1)) = m′1 ≈⊕ m2 =
ρ2(Max(C2)) and |m′1|= |m2|, as required.

Symmetrically, if ρ2(Max(C)) moves first. 2

Now we want to expose an informal argument in favor of the following conjecture: for each τ-
sequential BPP net, if m1 ≈s f c m2, then m1 ≈⊕ m2.

Let R be a state-sensitive weak fc-bisimulation. We want to argue that for each triple ((C1,ρ1), g,
(C2,ρ2)) in R, we have that ρ1(Max(C1)) ≈⊕ ρ2(Max(C2)). Let us assume, towards a contradiction,
that a triple ((C1,ρ1),g,(C2,ρ2)) in R is such that ρ1(Max(C1)) 6≈⊕ ρ2(Max(C2)). By Theorem 6.15,
this implies that for some t1 such that ρ1(Max(C))[t1〉m′1,

1. either l(t1) 6= τ and does not exist a sequential σ2 such that •t1 ≈ •σ2, l(t1) = o(σ2), t•1 ≈⊕ σ•2 ,
m2[σ2〉m′2 and m′1 ≈⊕ m′2;
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2. or l(t1) = τ and does not exist σ2 such that σ2 is nonempty and sequential, •t1 ≈ •σ2, o(σ2) = ε ,
t•1 ≈⊕ σ•2 , m2[σ2〉m′2 and m′1 ≈⊕ m′2, nor does exist s2 ∈ m2 such that •t1 ≈ s2, t•1 ≈ s2 and
m′1 ≈⊕ m2.

Let us consider item 1), i.e., the case l(t1) 6= τ . (The other case is similar, and so omitted.) Of
course, if ρ1(Max(C1))[t1〉m′1, then for all π ′1 such that π1

e1−→π ′1 with ρ ′1(e1) = t1, by Definition 4.15,
there exist σ2,π

′
2,g
′ such that

1. π2
σ2=⇒π ′2, with π ′2 = (C′2,ρ

′
2);

2. if l(e1) = τ , then o(σ2) = ε and g′ = g; otherwise, l(e1) = o(σ2) and there is a transition e2 in
σ2 such that l(e1) = l(e2) and g′ = g∪{(e1,e2)};

3. and finally, (π ′1,g
′,π ′2) ∈ R;

However, among the possibly many σ2’s satisfying the condition above, since R is state sensitive
and the net is τ-sequential, it seems necessary that one of them is a sequential transition sequence
such that |•t1| = |•σ2| and |t•1 | = |σ

•
2|. Actually, it seems even necessary that such a sequential σ2 is

such that •t1 ≈ •σ2, l(t1) = o(σ2), t•1 ≈⊕ σ
•
2, ρ2(Max(C2))[σ2〉m′′2 and m′1 ≈⊕ m′′2 , thus contradicting

the nonexistence of such a transition sequence postulated above. In fact, if this is not the case, it
seems that otherwise ((C1,ρ1),g,(C2,ρ2)) would not satisfy the state-sensitive weak fc-bisimulation
requirements. Of course, this argument is not a formal proof as a characterization of all the possible
transition sequences σ2 is lacking, in order to really prove that one of them has the required property.

If m1 ≈s f c m2, then there exists a state-sensitive weak fully-concurrent bisimulation R containing
a triple ((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )), where C0

i is a BPP causal net which has no transitions, g0 is empty
and ρ0

i (Max(C0
i )) = mi for i = 1,2. By the argument above, m1 ≈⊕ m2. The conclusion of this

informal argument is that state-sensitive weak fc-bisimilarity implies weak team bisimilarity, so that
we conjecture that these two equivalences do coincide for τ-sequential BPP nets.

Corollary 6.20. Let N = (S,A,T ) be a τ-sequential net. If m1 ≈⊕ m2, then m1 ≈ f c m2.

Proof:
By Theorem 6.19 and the fact that ≈s f c⊆≈ f c. 2

The inclusion, proved in this corollary, is strict, i.e., the converse does not hold in general. E.g.,
the τ-free (hence also τ-sequential) BPP net in Figure 6(c) is such that s6 ≈ f c s8, but s6 6≈⊕ s8.

If the BPP net is not τ-sequential, then weak team bisimilarity is incomparable to (state-sensitive)
weak fully-concurrent bisimilarity. On the one hand, Example 6.4 discusses the two nets in Figure 10,
such that s1 ≈ s4 but s1 6≈ f c s4, because the partial order of observable events they generate are not
isomorphic. On the other hand, consider the nets in Figure 3(c) and (d), which are not τ-sequential.
Note that s8 6≈ s11: transition s8

a−→2 ·s9 cannot be matched by s11, as, by doing a weakly, it can reach
only either s12, or s14, or s12⊕ s13, or s14⊕ s13, but none of these markings is weak team bisimilar to
2 · s9, because either they have a different size or s9 6≈ s13. Nonetheless, s8 ≈ f c s11, as the partial order
of observable events they generate are isomorphic.
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As discussed in Example 6.4, only τ-sequential nets are intuitively correct, as a silent transition
whose execution does not preserve the number of tokens cannot be considered as unobservable. There-
fore, for correct nets, weak team bisimilarity seems an alternative characterization of the resource-
aware (as it is sensitive to the size of the involved markings) strengthening of weak fully-concurrent
bisimilarity, which is more easily defined and more easily computable.

6.4. Minimizing Nets w.r.t. ≈

In [17], we showed how to compute, for a given BPP net N, its reduced net N∼, i.e., the minimized
net according to (strong) team bisimilarity ∼ on places (see Definition 5.5), where the places of the
reduced net N∼ are equivalence classes of the places of N. We proved that this reduction is correct,
i.e., it relates, via∼, each place s in N to its corresponding place [s]∼ in N∼, and similarly for markings
of the two nets, via team equivalence ∼⊕. Moreover, we argued that N∼ is really the net with the least
number of places exhibiting the same behavior.

By Proposition 6.11 we noted that weak team bisimilarity on the places of a τ-simple net N can be
equivalently characterized as strong team bisimulation on the places of the saturated net N′. Therefore,
it is possible to minimize the net N w.r.t. the weak team bisimulation equivalence ≈ over places by
minimizing the saturated net N′ w.r.t. ∼. Since N and its saturated net N′ have the same set of places,
the equivalence classes computed over N′ w.r.t. ∼ are the same equivalence classes over N w.r.t. ≈.

A direct construction of the reduced net w.r.t. ≈, which minimizes the number of places and the
number of transitions, can be also defined as follows.

Definition 6.21. (Reduced net) Let N = (S,A,T ) be a BPP net and let ≈ be the weak team bisimula-
tion equivalence relation over its places. The reduced net N≈ = (S≈,A,T≈) is defined as follows:

• S≈ = {[s]
∣∣ s ∈ S}, where [s] = {s′ ∈ S

∣∣ s≈ s′};

• T≈ = {([s], `, [m])
∣∣ (s, `,m) ∈ T, ` 6= τ}∪{([s],τ, [m])

∣∣ (s,τ,m) ∈ T, [s] 6= [m]},

where [m] is defined as follows: [θ ] = θ and [m1⊕m2] = [m1]⊕ [m2]. If the net N has initial marking
m0 = k1 · s1⊕ . . .⊕ kn · sn, then N≈ has initial marking [m0] = k1 · [s1]⊕ . . .⊕ kn · [sn]. 2

Lemma 6.22. Let N = (S,A,T ) be a BPP net and let N≈ = (S≈,A,T≈) be its reduced net w.r.t. ≈.
Relation R = {(s, [s])

∣∣ s ∈ S} is a weak team bisimulation.

Proof:
If s `−→m with ` 6= τ , then also [s] `−→ [m] by definition of T≈ and, as required, (m, [m]) ∈ R⊕. If
s τ−→m and [s] = [m], then [s] replies by idling, and (m, [s]) ∈ R⊕, because [s] = [m]. Finally, if s τ−→m
and [s] 6= [m], then [s] τ−→ [m] by definition of T≈ and (m, [m]) ∈ R⊕, as required.

The case when [s] moves first is slightly more complex for the freedom in choosing the representa-

tive in an equivalence class. Transition [s] `−→ [m] is possible, by Definition of T≈, if there exist s′ ∈ [s]
and m′ ∈ [m] such that s′ `−→m′; as s ≈ s′, there must exists a transition s `

=⇒m′′ (in case ` 6= τ) or

s ε
=⇒m′′ (in case ` = τ) such that m′ ≈⊕ m′′; summing up, if [s] `−→ [m], then s `

=⇒m′′ (or s ε
=⇒m′′,

in case `= τ) with (m′′, [m]) ∈ R⊕, as required, because [m] = [m′] = [m′′]. 2
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Figure 11. A BPP net in (a) and its reduced net w.r.t. ≈ in (b)

Theorem 6.23. Let N = (S,A,T ) be a BPP net and let N≈ = (S≈,A,T≈) be its reduced net w.r.t. ≈.
For any m ∈M (S), we have that m≈⊕ [m].

Proof:
By induction on the size of m. If m = θ , then [m] = θ and the thesis follows trivially. If m = s⊕m′,
then [m] = [s]⊕ [m′]; by Lemma 6.22, s ≈ [s] and, by induction, m′ ≈⊕ [m′]; therefore, by the rule in
Definition 5.1, m≈⊕ [m]. 2

As a consequence of this theorem, we would like to point out that the reduced net w.r.t. ≈ is indeed
the least net offering the same weak team bisimilar behavior as the original net: no further fusion of
places can be done, as there are not two places in the reduced net which are weak team bisimilar.
Moreover, silent transitions relating weak team bisimilar places in the original net do not generate any
silent transition in the reduced net, so that the number of transitions is minimized, too.

As an example, consider the net in Figure 11(a). The equivalence classes w.r.t. ≈ are {s1,s2},
{s3} and {s4,s5}. Hence, the reduced net has only three places and is actually isomorphic to the net
in (b). Note that the transitions s1

τ−→ s2, s2
τ−→ s1 and s4

τ−→ s5, which connect weak team bisimilar
places, do not originate any silent transition in the reduced net. The marking s1⊕ s2⊕ s3 is weak team
bisimilar to 2 · s6⊕ s7.

6.5. Rooted Weak Team Bisimilarity

Definition 6.24. (Rooted weak team bisimilarity on places) Let N = (S,A,T ) be a BPP net with
silent moves. Two places s1 and s2 are rooted weakly team bisimilar, denoted s1 ≈c s2, if for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`
=⇒m2 and m1 ≈⊕ m2,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`
=⇒m1 and m1 ≈⊕ m2.

2

Note that if s1
τ−→m1, then s2 must be able to respond with a nonempty sequence of silent moves:

s2
τ

=⇒m2. However, after this initial step, the reached markings are to be related by weak team
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bisimilarity, so that future silent moves of one of the two can be matched by the other one also by
idling. Therefore, rooted weak team bisimilarity is a slightly finer variant of weak team bisimilarity.

Proposition 6.25. Let N = (S,A,T ) be a BPP net with silent moves. If s1 ≈c s2, then s1 ≈ s2. 2

Nonetheless, if two weakly team bisimilar places cannot perform any silent transition initially,
then these two places are also rooted weakly team bisimilar.

Example 6.26. Consider the nets in Figure 12. Of course, s1 ≈ s2, but s1 6≈c s2; however, s1 ≈c s6 as
well as s2 ≈c s4. 2

Proposition 6.27. Let N = (S,A,T ) be a BPP net with silent moves. Relation ≈c is an equivalence.

Proof:
Reflexivity is easy: for any move that s performs, the other s does the same transition and so the
reached marking m is the same; hence, the condition is satisfied because m≈⊕ m, which holds because
≈⊕ is reflexive. Symmetry derives from the fact that ≈⊕ is symmetric and that the two conditions in
Definition 6.24 are symmetric.

Transitivity: if s1 ≈c s2 and s2 ≈c s3, then s1 ≈c s3, because≈⊕ is transitive. In fact, since s1 ≈c s2,
for all m1 such that s1

`−→m1, there exists m2 such that s2
`

=⇒m2 and m1 ≈⊕ m2. Since s2 ≈c s3, we
have also that s2 ≈ s3 by Proposition 6.25; hence, by Lemma 6.5, s3

`
=⇒m3 and m2 ≈⊕ m3. Summing

up, if s1
`−→m1, there exists m3 such that s3

`
=⇒m3 and m1 ≈⊕ m3, as≈⊕ is transitive. The case when

s2 moves first is symmetric, hence omitted. Summing up, s1 ≈c s3. 2

We can also define rooted weak team bisimulation equivalence on markings as the additive closure
of rooted weak team bisimilarity on places, i.e., ≈⊕c . Of course, by Proposition 5.2, rooted weak team
bisimulation equivalence relates markings of the same size only; moreover, ≈⊕c is an equivalence
relation, by Proposition 5.3, as ≈c is an equivalence relation (by Proposition 6.27). Also in this case,
once ≈c has been computed, checking whether two markings of size k are related by ≈⊕c takes only
O(n) time, where n is the number of places.

Proposition 6.28. (Rooted weak team bisimilarity is finer than weak team bisimilarity) Let N =
(S,A,T ) be a BPP net. If m1 ≈⊕c m2, then m1 ≈⊕ m2.

Proof:
By Proposition 6.25, we have that ≈c ⊆ ≈. Since the additive closure is monotone (by Proposition
5.3(4)), the thesis follows trivially. 2

The following theorem provides a characterization of rooted weak team bisimilarity as a suitable
bisimulation-like relation over markings, i.e., over a global model of the overall behavior.

Theorem 6.29. Let N = (S,A,T ) be a BPP net. If two markings m1 and m2 are rooted weak team
bisimulation equivalent, m1 ≈⊕c m2, then |m1|= |m2| and

1. ∀t1 such that m1[t1〉m′1, ∃σ2 such that σ2 is sequential, •t1 ≈c
•σ2, l(t1) = oτ(σ2), t•1 ≈⊕ σ•2 ,

m2[σ2〉m′2 and m′1 ≈⊕ m′2,
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Figure 12. Some weak team bisimilar BPP nets

2. ∀t2 such that m2[t2〉m′2, ∃σ1 such that σ1 is sequential, •σ1 ≈c
•t2, oτ(σ1) = l(t2), σ•1 ≈⊕ t•2 ,

m1[σ1〉m′1 and m′1 ≈⊕ m′2.

Proof:
If m1 ≈⊕c m2, then |m1| = |m2| by Proposition 5.2. Moreover, for any t1 such that m1[t1〉m′1, we have
that m1 = s1⊕m1, where s1 =

•t1. As m1 ≈⊕c m2, by Definition 5.1, it follows that there exist s2 and
m2 such that m2 = s2⊕m2, s1 ≈c s2 and m1 ≈⊕c m2.

Since s1 ≈c s2, by Definition 6.24, we have that for transition t1 = s1
`−→m1, there must exist m2

such that s2
`

=⇒m2 and m1 ≈⊕ m2. This means that for transition t1, there exists a sequential transition
sequence σ2 such that oτ(σ2) = ` = l(t1), •σ2 = s2, σ•2 = m2, hence with •t1 ≈c

•σ2 and t•1 ≈⊕ σ•2 .
Therefore, m′1 = t•1 ⊕m1 and m′2 = σ•2 ⊕m2, and so m′1 ≈⊕ m′2 by Proposition 5.3.

The case when m2 moves first is symmetric, hence omitted. 2

Note that, contrary to Theorem 6.15, we do not have an if-and-only-if condition. As a matter
of fact, it is not true that if two markings m1 and m2 of the same size are such that they satisfy
the two bisimulation conditions of Theorem 6.29, then they are rooted weak team bisimilar. As a
counterexample, consider the net in Figure 12 and the two markings 2 · s1⊕ s2 and s1⊕ 2 · s2. As
s1 cannot perform any silent transition, we have that s1 6≈c s2, even if s1 ≈ s2, and so 2 · s1⊕ s2 6≈⊕c
s1⊕2 · s2, even if 2 · s1⊕ s2 ≈⊕ s1⊕2 · s2. However, the two bisimulation conditions are satisfied for
these markings. In one direction, to transition 2 · s1⊕ s2

a−→2 · s1⊕ s2, the other marking can reply
with s1⊕ 2 · s2

a−→ s1⊕ 2 · s2, where s1 ≈c s1 and 2 · s1⊕ s2 ≈⊕ s1⊕ 2 · s2. Similarly, to transition
2 · s1⊕ s2

τ−→2 · s1⊕ s3, the other marking can reply with s1⊕ 2 · s2
τ−→ s1⊕ s2⊕ s3, where s2 ≈c s2,

s3 ≈ s3 and 2 · s1⊕ s3 ≈⊕ s1⊕ s2⊕ s3. Symmetrically, if s1⊕2 · s2 moves first.

Corollary 6.30. (Rooted weak team bisimilarity is finer than rooted weak interleaving bisimilar-
ity) Let N = (S,A,T ) be a BPP net. If m1 ≈⊕c m2, then m1 ≈c

int m2.

Proof:
We want to prove that if m1 ≈⊕c m2, then

• ∀t1 such that m1[t1〉m′1, ∃σ2 s.t. m2[σ2〉m′2 with l(t1) = oτ(σ2) and m′1 ≈int m′2,
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• ∀t2 such that m2[t2〉m′2, ∃σ1 s.t. m1[σ1〉m′1 with oτ(σ1) = l(t2) and m′1 ≈int m′2,

so that m1 ≈c
int m2 follows directly by Definition 3.5. However, this implication is obvious, due to

Theorem 6.29 and Corollary 6.16. 2

6.6. Weak H-team Bisimilarity

We provide the definition of weak h-team bisimulation on places, adapting the definition of weak
team bisimulation on places (cf. Definition 6.1). In this definition (and in the following ones), the
empty marking θ is considered as an additional place, so that the relation is defined not on S, rather
on S∪{θ}; therefore, the symbols p1 and p2 that occur in the definition below can only denote either
the empty marking θ or a single place, because of the shape of BPP net transitions.

Definition 6.31. (Weak h-team bisimulation on places) Let N = (S,A,T ) be a BPP net with silent
moves, such that Aτ = A\{τ}. A weak h-team bisimulation (or wh-team bisimulation, for short) is a
relation R⊆ (S∪{θ})× (S∪{θ}) such that if (p1, p2) ∈ R then for all ` ∈ Aτ

• ∀m1 such that p1
`−→m1, ∃m2 such that p2

`
=⇒m2 and (m1,m2) ∈ R⊕,

• ∀m1 such that p1
τ−→m1, ∃m2 such that p2

ε
=⇒m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that p2
`−→m2, ∃m1 such that p1

`
=⇒m1 and (m1,m2) ∈ R⊕, and, finally,

• ∀m2 such that p2
τ−→m2, ∃m1 such that p1

ε
=⇒m1 and (m1,m2) ∈ R⊕.

p and p′ are weakly h-team bisimilar (or wh-team bisimulation equivalent), denoted by p ≈h p′, if
there exists a weak h-team bisimulation R such that (p, p′) ∈ R. 2

Of course, the definition of weak h-team bisimulation is coinductive and it is possible to prove,
following the same steps done for ≈ in Section 6.1, that also ≈h is an equivalence relation. Moreover,
since a weak team bisimulation is a weak h-team bisimulation, we have that ≈ implies ≈h. This
implication is strict, as illustrated in the following example.

Example 6.32. Consider the nets in Figure 3. Note that s6 ≈h θ because R1 = {(s6,θ), (θ ,θ)} is a
wh-team bisimulation. Therefore, we also have that s1 ≈h s4 because R2 = {(s1,s4), (s2,s5),(θ ,s6),

(θ ,θ),(s3,s7)} is a weak h-team bisimulation. In fact, if s4 moves with s4
τ−→ s5⊕ s6, s1 can reply

with s1
τ−→ s2 and (s2,s5⊕ s6) ∈ R⊕2 . For the same reason, s8 ≈h s11 because s9 ≈h s13; in fact, s9

can match transition s13
τ−→θ , because s10 ≈h θ . More intriguing is the following case: s4 ≈h s8. If

s8
a−→2 · s9, then s4 can reply with s4

a
=⇒ s6⊕ s7 and 2 · s9 ≈⊕h s6⊕ s7. Moreover, the silent transition

s4
τ−→ s5⊕ s6 can be matched silently by s8 (the only silent transition it can perform is s8

ε
=⇒ s8), and

s5⊕ s6 ≈⊕h s8 because s5 ≈h s8 and s6 ≈h θ . These examples show that, contrary to what happens
for weak team bisimilarity (cf. Example 6.3), τ-labeled transitions changing the number of currently
available tokens may be really unobservable. 2
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Example 6.33. Consider the two nets in Figure 10. Relation R = {(s1,s4),(s2,s5),(s3,s6), (s3,s7)} is
a weak h-team bisimulation, as we already argued in Example 6.4 that R is a weak team bisimulation.
However, s1 and s4 do not offer the same causal behavior, because s4 may perform b caused by a,
while for s1 actions a and b are always causally independent. This example shows that weak h-team
bisimulation may not respect causality if the BPP net is not τ-h-sequential (see Definition 2.9). As
a matter of fact, the main difference w.r.t. the example above, is that here the silent transition is not
preserving the number of tokens on places that can perform some observable action, i.e., it is not
τ-h-sequential, while the silent transitions of the previous example are all τ-h-sequential. 2

As done for weak team bisimilarity, also weak h-team bisimilarity can be characterized by means
of strong h-team bisimilarity, as explained by the following proposition.

Proposition 6.34. Let N = (S,A,T ) be a BPP net, with Aτ = A\{τ} and let R⊆ (S∪{θ})×(S∪{θ})
be a weak h-team bisimulation. If (p1, p2) ∈ R then for all δ ∈ Aτ ∪{ε}

• ∀m1 such that p1
δ

=⇒m1, there exists m2 such that p2
δ

=⇒m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that p2
δ

=⇒m2, there exists m1 such that p1
δ

=⇒m1 and (m1,m2) ∈ R⊕.

Proof:
As R is a wh-team bisimulation, if (p1, p2) ∈ R and p1

δ
=⇒m1, then p2

δ
=⇒m2 and (m1,m2) ∈ R⊕, by

(the analogous of) Lemma 6.5; symmetrically, if p2 moves first. 2

Remark 6.35. (Complexity of ≈h) A consequence of Proposition 6.34 is that it is possible to check
whether two places are weak h-team bisimilar on a τ-simple BPP net N by checking whether they are
strong h-team bisimilar on its saturated net N′ (cf. Remark 6.12). 2

Starting from weak h-team bisimilarity ≈h, we can lift it over the markings of N in a structural,
distributed way: m1 is weak h-team bisimulation equivalent to m2 if these two markings are related
by the h-additive closure of ≈h, i.e., if m1 ≈⊕h m2. Note that weak h-team bisimulation equivalent
markings may not have the same size. Once ≈h has been computed, checking whether two markings
are weak h-team bisimulation equivalent takes only O(n) time. Of course, since ≈⊆≈h, we have that
≈⊕⊆≈⊕h , by Proposition 5.3.

The following theorem provides a characterization of weak h-team bisimulation equivalence as a
suitable bisimulation-like relation over markings.

Theorem 6.36. Let N = (S,A,T ) be a BPP net. Two markings m1 and m2 are weak h-team bisimula-
tion equivalent, m1 ≈⊕h m2, if and only if

1. ∀t1 such that l(t1) 6= τ and m1[t1〉m′1, ∃σ2 such that σ2 is sequential, •t1 ≈h
•σ2, l(t1) = o(σ2),

t•1 ≈
⊕
h σ•2 , m2[σ2〉m′2 and m′1 ≈

⊕
h m′2,

2. ∀t1 such that l(t1) = τ and m1[t1〉m′1, either ∃σ2 such that σ2 is nonempty and sequential, •t1 ≈h
•σ2, o(σ2) = ε , t•1 ≈

⊕
h σ•2 , m2[σ2〉m′2 and m′1 ≈

⊕
h m′2, or ∃s2 ∈ m2 such that •t1 ≈h s2, t•1 ≈h s2

and m′1 ≈
⊕
h m2,
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3. ∀t2 such that l(t2) 6= τ and m2[t2〉m′2, ∃σ1 such that σ1 is sequential, •σ1 ≈h
•t2, o(σ1) = l(t2),

σ•1 ≈
⊕
h t•2 , m1[σ1〉m′1 and m′1 ≈

⊕
h m′2,

4. ∀t2 such that l(t2) = τ and m2[t2〉m′2, either ∃σ1 such that σ1 is nonempty and sequential,
•σ1 ≈h

•t2, o(σ1) = ε , σ•1 ≈
⊕
h t•2 , m1[σ1〉m′1 and m′1 ≈

⊕
h m′2, or ∃s1 ∈ m1 such that s1 ≈h

•t2,
s1 ≈h t•2 and m1 ≈⊕h m′2.

Proof:
The proof follows the same steps of Theorem 6.15. 2

By the theorem above, it is clear that≈⊕h is a weak interleaving bisimulation; hence, the following
corollary follows trivially.

Corollary 6.37. (Weak h-team bisimilarity is finer than weak interleaving bisimilarity) Let N =
(S,A,T ) be a BPP net. If m1 ≈⊕h m2, then m1 ≈int m2. 2

This implication is strict. In Figure 7, we have that s1 ≈int s4⊕ s5 (actually, they are even strong
interleaving bisimilar), but s1 6≈⊕h s4⊕ s5 because the two markings have different observable size.

Now we want to argue that weak h-team bisimilarity ≈⊕h implies weak fully-concurrent bisimilar-
ity ≈ f c if the BPP net is τ-h-sequential. To this aim, we first propose a lemma stating that if the BPP
net is τ-h-sequential, then –(i) and (ii)– the execution of silent moves does not activate any parallel
observable activity and, starting from a singleton marking, –(iii) and (iv)– in the execution of a visi-
ble, one-action step, the only visible transition causes all the future visible actions executable from the
reached marking.

Lemma 6.38. Let N = (S,A,T ) be a τ-h-sequential BPP net. The following hold:

(i) If s[σ〉m and o(σ) = ε , then |o(m)|= |o(s)|.

(ii) If m[σ〉m′ and o(σ) = ε , then |o(m)|= |o(m′)|.

(iii) If s[σ〉m and o(σ) = `, then there exist σ1, t,σ2 such that σ = σ1tσ2, l(t) = `, o(σ1) = o(σ2) = ε

and s[σ1〉m′′[t〉m′[σ2〉m, where o(m′′) = •t, |o(m′)|= |o(m)|.

(iv) If s[σ1〉m[σ2〉m′, o(σ1) = `1 and o(σ2) = `2, then t1� t2, where, for i= 1,2, ti ∈ σi and l(ti) = `i.

Proof:
Similar to the proof of Lemma 6.17 and so omitted. 2

Theorem 6.39. (Weak h-team bisimilarity implies weak fc-bisimilarity) Let N = (S,A,T ) be a
τ-h-sequential BPP net with silent moves. If m1 ≈⊕h m2, then m1 ≈ f c m2.

Proof:
Very similar to the proof of Theorem 6.19 and so omitted. 2
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We actually conjecture that for each τ-h-sequential BPP net, if m1 ≈ f c m2, then m1 ≈⊕h m2. The
argument exposed at the end of Section 6.3 can be adapted to support this claim. Therefore, we
conjecture that these two equivalences do coincide for τ-h-sequential BPP nets.

However, if the net is not τ-h-sequential, then the two equivalences are different. On the one hand,
if m1 ≈ f c m2, then it may happen that m1 6≈⊕h m2: an example illustrating this fact is described in the
conclusions (see Figure 16). On the other hand, if m1 ≈⊕h m2, then it may happen that m1 6≈ f c m2:
Example 6.4 illustrates this fact.

A BPP net can be minimized w.r.t. weak h-team bisimilarity, too. The h-reduced net w.r.t. ≈h,
which minimizes the number of places and the number of transitions, can be defined as follows, where
by o(S) we denote the set of places that can perform some observable action (cf. Definition 2.8).

Definition 6.40. (H-reduced net) Let N = (S,A,T ) be a BPP net and let ≈h be the weak h-team
bisimulation equivalence relation over its places. The h-reduced net Nh = (Sh,A,Th) is defined as:

• Sh = {[s]
∣∣ s ∈ o(S)}, where [s] = {s′ ∈ o(S)

∣∣ s≈h s′};

• Th = {([s], `, [o(m)])
∣∣ (s, `,m) ∈ T, ` 6= τ}∪{([s],τ, [o(m)])

∣∣ (s,τ,m) ∈ T, [s] 6= [o(m)]},

where [m] is defined as follows: [θ ] = θ and [m1⊕m2] = [m1]⊕ [m2]. If the net N has initial marking
m0, then Nh has initial marking [o(m0)]. 2

Given a BPP net N = (S,A,T ) with silent moves, it is an easy exercise to prove that relation
R = {(s, [s])

∣∣ s ∈ o(S)} is a weak team bisimulation between the net o(N) = (o(S),A,o(T )), where
o(T ) = {(s, `,o(m))

∣∣ s ∈ o(S),(s, `,m) ∈ T}, and the net Nh. Indeed, the h-reduced net Nh of N w.r.t.
≈h is isomorphic to the reduced net o(N)≈ of o(N) w.r.t. ≈ (cf. Definition 6.21).

Of course, also weak h-team bisimilarity ≈h is not a congruence for the choice operator of BPP,
so that it is necessary to define a slight strengthening of this equivalence.

Definition 6.41. (Rooted weak h-team bisimilarity on places) Let N = (S,A,T ) be a BPP net. We
have that p1 and p2 are rooted weakly h-team bisimilar, denoted p1 ≈hc p2, if for all ` ∈ A

• ∀m1 such that p1
`−→m1, ∃m2 such that p2

`
=⇒m2 and m1 ≈⊕h m2,

• ∀m2 such that p2
`−→m2, ∃m1 such that p1

`
=⇒m1 and m1 ≈⊕h m2. 2

Of course, we lift rooted weak h-team bisimilarity to markings by additive closure, yielding ≈⊕hc,
which is slightly coarser than rooted weak team bisimilarity ≈⊕c . E.g., consider Figure 3: s1 ≈⊕hc s4
because s2 ≈⊕h s5⊕ s6, but s1 6≈⊕c s4 because s2 6≈⊕ s5⊕ s6.

The following theorem provides a characterization of ≈⊕hc as a suitable bisimulation-like relation
over markings, whose proof is omitted as it is very similar to that of Theorem 6.29.

Theorem 6.42. Let N = (S,A,T ) be a BPP net. If two markings m1 and m2 are rooted weak h-team
bisimulation equivalent, m1 ≈⊕hc m2, then

1. ∀t1 such that m1[t1〉m′1, ∃σ2 such that σ2 is sequential, •t1 ≈hc
•σ2, l(t1) = oτ(σ2), t•1 ≈

⊕
h σ•2 ,

m2[σ2〉m′2 and m′1 ≈
⊕
h m′2,
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2. ∀t2 such that m2[t2〉m′2, ∃σ1 such that σ1 is sequential, •σ1 ≈hc
•t2, oτ(σ1) = l(t2), σ•1 ≈

⊕
h t•2 ,

m1[σ1〉m′1 and m′1 ≈
⊕
h m′2. 2

Corollary 6.43. (Rooted weak h-team bisimilarity implies rooted weak interleaving bisimilarity)
Let N = (S,A,T ) be a BPP net. If m1 ≈⊕hc m2, then m1 ≈c

int m2.

Proof:
We want to prove that if m1 ≈⊕hc m2, then

• ∀t1 such that m1[t1〉m′1, ∃σ2 s.t. m2[σ2〉m′2 with l(t1) = oτ(σ2) and m′1 ≈int m′2,

• ∀t2 such that m2[t2〉m′2, ∃σ1 s.t. m1[σ1〉m′1 with oτ(σ1) = l(t2) and m′1 ≈int m′2,

so that m1 ≈c
int m2 follows directly by Definition 3.5. However, this implication is obvious, due to

Theorem 6.42 and Corollary 6.37. 2

7. A Distributed Approach to Branching Equivalence Checking

In this section, we introduce a novel behavioral semantics for BPP nets with silent moves, by introduc-
ing branching team bisimilarity ≈br on places of an unmarked BPP nets (and then its additive closure
≈⊕br on markings), by adapting the definition of branching bisimulation on LTSs [12, 15].

7.1. Branching Team Bisimulation on Places

In order to define this new relation on places, we need an auxiliary notation: by sV s′ we mean
that there exists a silent path s = s0

τ−→ s1
τ−→ s2 . . .sn−1

τ−→ sn = s′ (with n ≥ 0), i.e., a τ-sequential
transition sequence from s to s′.

Definition 7.1. (Branching team bisimulation on places) Let N = (S,A,T ) be a BPP net. A branch-
ing team bisimulation is a relation R⊆ S×S such that if (s1,s2) ∈ R then for all ` ∈ A

• ∀m1 such that s1
`−→m1,

– either `= τ and ∃s′2 such that s2V s′2 with (s1,s′2) ∈ R and (m1,s′2) ∈ R,

– or ∃s,m2 such that s2V s `−→m2 with (s1,s) ∈ R and (m1,m2) ∈ R⊕,

• and, symmetrically, ∀m2 such that s2
`−→m2,

– either `= τ and ∃s′1 such that s1V s′1 with (s′1,s2) ∈ R and (s′1,m2) ∈ R,

– or ∃s,m1 such that s1V s `−→m1 with (s,s2) ∈ R and (m1,m2) ∈ R⊕.

Two places s and s′ are branching team bisimilar (or branching team bisimulation equivalent),
denoted by s≈br s′, if there exists a branching team bisimulation R such that (s,s′) ∈ R. 2
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Figure 13. Two pairs of branching team bisimilar BPP nets

This definition is not a rephrasing of the original definition on LTS in [12], rather of a slight variant
called semi-branching bisimulation [12, 1, 15], which gives rise to the same equivalence as the original
definition but has better mathematical properties; in particular it ensures [1] that the composition of
branching bisimulation on places is a branching bisimulation on places (see Proposition 7.11(3)).

Example 7.2. Consider Figure 13. R1 = {(s1,s4),(s2,s4),(s3,s5), (s3,s6)} is a branching team bisim-
ulation. R2 = {(s7,s10), (s8,s11), (s8,s12),(s9,s13)} is also a branching team bisimulation. 2

Example 7.3. Consider Figure 5. Note that s1 6≈br s4. In fact, to transition s4
a−→ s6, place s1 can only

try to respond with s1
a−→ s2, but s2 and s6 are clearly not equivalent, because only s2 can do c. 2

Example 7.4. Consider the nets in Figure 3. Note that s1 6≈br s4 because s1 cannot match transition
s4

τ−→ s5⊕s6, as it cannot reach silently any marking of size 2. For the same reason, it is not difficult to
realize that also s4 6≈br s8. Moreover, s8 6≈br s11 because s9 6≈br s13; in fact, s9 cannot match transition
s13

τ−→θ , because it cannot reach silently the empty marking. These examples show that τ-labeled
transitions that change the number of currently available tokens are not really unobservable. However,
s1,s4,s8 and s11 are all pairwise branching interleaving bisimilar and also branching fully-concurrent
bisimilar (but not state-sensitive bfc-bisimilar). However, we think that such silent transitions do
change the structure of the system and so they cannot be considered as unobservable. 2

Example 7.5. (Branching team bisimilarity is better than weak team bisimilarity) Consider the
two nets in Figure 10. We argued that s1 ≈ s4, even if s1 and s4 do not offer the same causal behavior.
However, note that s1 6≈br s4 because if s4

a−→ s7, then s1 can try to respond with s1
τ−→ s2⊕ s3

a−→ s3,
but s4 6≈br s2⊕ s3 as a place cannot be branching team bisimilar to a marking of size 2. 2

Remark 7.6. (Stuttering Property, again) It is not difficult to prove that, given a τ-sequential tran-
sition sequence s1

τ−→ s2
τ−→ s3 . . .sn

τ−→ sn+1, if s1 ≈br sn+1, then si ≈br s j for i, j = 1, . . . ,n+1. This
is the stuttering property, also discussed in Remark 3.9.

An important property holds for ≈br. Consider s1 ≈br s2. Then, suppose s1
τ−→m1 and that s2

responds by performing the τ-sequential path s2 V s′2 with s1 ≈br s′2 and m1 ≈br s′2. By transitivity
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Figure 14. Two branching team bisimilar BPP nets

(this will be proved in Proposition 7.13), we have that also s2 ≈br s′2. Hence, by the stuttering property,
s1 is branching team bisimilar to each place in the path from s2 to s′2, and so all the places traversed

in the τ-sequential path from s2 to s′2 are branching team bisimilar. Similarly, if s1
`−→m1 and s2

responds with s2V s `−→m2 (with s1 ≈br s and m1 ≈⊕br m2), then by transitivity s2 ≈br s, so that all the
places traversed in the τ-sequential path from s2 to s are branching team bisimilar. 2

A branching team bisimulation is also a weak team bisimulation, and so ≈br is finer than ≈.

Proposition 7.7. Let N = (S,A,T ) be a BPP net with silent moves. If s1 ≈br s2, then s1 ≈ s2. 2

Example 7.8. Consider the nets in Figure 4. It is not difficult to see that s1 ≈ s4. However, s1 6≈br s4,
because to transition s4

a−→ s5, place s1 can only try to respond with s1
τ−→ s2

a−→ s3, but not all the
conditions required are satisfied; in particular, s2 6≈br s4, because only s4 can do b. Hence, contrary to
weak team bisimilarity, branching team bisimilarity does respect the timing of choices. 2

Example 7.9. Consider the nets in Figure 14. It is easy to realize that R = {(s1,s4),(s2,s5), (s3,s5)}
is a branching team bisimulation. Note that to transition s2

τ−→ s3, place s5 responds by idling. Note
also that to move s5

c−→θ , place s2 responds with s2
τ−→ s3

c−→θ and, indeed, by performing the τ

move, the system passes through branching team bisimilar places only, i.e., s2 ≈br s3. 2

We now list some useful properties of branching team bisimulation relations, one of which is based
on the following lemma.

Lemma 7.10. Let N = (S,A,T ) be a BPP net with silent moves and let R be a branching team bisim-
ulation such that (s1,s2) ∈ R. Then, the following hold:

(i) For all s′1 such that s1V s′1, there exists s′2 such that s2V s′2 and (s′1,s
′
2)∈ R; and symmetrically,

(ii) For all s′2 such that s2V s′2, there exists s′1 such that s1V s′1 and (s′1,s
′
2) ∈ R.
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Proof:
The proof is by induction on the length of the computation. We prove only case (i), as the other one is
symmetric. The base case is when the sequence is of length zero, i.e., s1V s1; in such a case, s2V s2
and (s1,s2) ∈ R, as required.

In general, we can assume that s1
τ−→ s′1 V s′′1; since (s1,s2) ∈ R, we have that either ∃s′2 such

that s2V s′2 with (s′1,s
′
2) ∈ R, or ∃s,m2 such that s2V s τ−→m2, with (s′1,m2) ∈ R⊕; note that, since

R⊕ relates marking of the same size only, this means that m2 must be a place and so (s′1,m2) ∈ R. In
any case, induction can be applied to either (s′1,s

′
2) ∈ R or (s′1,m2) ∈ R, as s′1V s′′1 is a shorter path;

hence, in the former case, we can conclude that ∃s′′2 such that s′2V s′′2 with (s′′1,s
′′
2) ∈ R; and, similarly,

in the latter case, we can conclude that ∃s′′2 such that m2 V s′′2 with (s′′1,s
′′
2) ∈ R. Summing up, if

s1
τ−→ s′1V s′′1 , then s2V s′′2 such that (s′′1,s

′′
2) ∈ R, as required. 2

Proposition 7.11. For each BPP net N = (S,A,T ) with silent moves, the following hold:

1. the identity relation I = {(s,s)
∣∣ s ∈ S} is a branching team bisimulation;

2. the inverse relation R−1 = {(s′,s)
∣∣ (s,s′)∈R} of a branching team bisimulation R is a branching

team bisimulation;

3. the relational composition R1 ◦R2 = {(s,s′′)
∣∣ ∃s′.(s,s′) ∈ R1∧ (s′,s′′) ∈ R2} of two branching

team bisimulations R1 and R2 is a branching team bisimulation;

4. the union
⋃

i∈I Ri of branching team bisimulations Ri is a branching team bisimulation.

Proof:
The proof of (1) is immediate: (s,s) ∈ I is a branching team bisimulation pair because whatever

transition s performs (say, s `−→m), the other s in the pair does exactly the same transition s `−→m and
(m,m) ∈I ⊕. This is ensured by the or condition in Definition 7.1.

The proof of (2) is also immediate: if (s2,s1) ∈ R−1, then (s1,s2) ∈ R; since R is a branching team

bisimulation, the second condition ensures that ∀m2 such that s2
`−→m2,

– either `= τ and ∃s′1 such that s1V s′1 with (s′1,s2)∈ R and (s′1,m2)∈ R, (i.e., with (s2,s′1)∈ R−1

and (m2,s′1) ∈ R−1)

– or ∃s,m1 such that s1 V s `−→m1 with (s,s2) ∈ R and (m1,m2) ∈ R⊕, (i.e., with (s2,s) ∈ R−1

and (m2,m1) ∈ (R⊕)−1 = (R−1)⊕ by Proposition 5.4(3)).

And symmetrically, if s1 moves first. Hence, R−1 is a branching team bisimulation, too.
The proof of (3) is less immediate, but not too difficult, thanks to Lemma 7.10. Given a pair

(s1,s3) ∈ R1 ◦R2, there exists a place s2 such that (s1,s2) ∈ R1 and (s2,s3) ∈ R2. If s1
`−→m1, since

(s1,s2) ∈ R1, it follows that either `= τ and ∃s′2 such that s2V s′2 with (s1,s′2) ∈ R1 and (m1,s′2) ∈ R1,

or ∃s,m2 such that s2V s `−→m2 with (s1,s) ∈ R1 and (m1,m2) ∈ R⊕1 .
In the former case, since (s2,s3)∈R2 and s2V s′2, by Lemma 7.10, there exists s′3 such that s3V s′3

with (s′2,s
′
3) ∈ R2; in such a case, we have that, to transition s1

τ−→m1, s3 replies with s3 V s′3 such
that (s1,s′3) ∈ R1 ◦R2 and (m1,s′3) ∈ R1 ◦R2, as required.
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In the latter case, since (s2,s3) ∈ R2 and s2V s, by Lemma 7.10, there exists s′ such that s3V s′

with (s,s′) ∈ R2. Now, since (s,s′) ∈ R2 and s `−→m2, we have two subcases: either ` = τ and ∃s′3
such that s′V s′3 with (s,s′3) ∈ R2 and (m2,s′3) ∈ R2, or ∃s,m3 such that s′V s `−→m3 with (s,s) ∈ R2

and (m2,m3) ∈ R⊕2 . In the former subcase, to transition s1
τ−→m1, s3 replies with s3 V s′3 such that

(s1,s′3) ∈ R1 ◦R2 and (m1,s′3) ∈ R1 ◦R2
1, as required. In the latter subcase, to transition s1

`−→m1, s3

replies with the sequence s3 V s `−→m3 such that (s1,s) ∈ R1 ◦R2 and (m1,m3) ∈ (R1)
⊕ ◦ (R2)

⊕ =
(R1 ◦R2)

⊕ by Proposition 5.4(4), as required. The case when s3 moves first is symmetric, and so
omitted. Hence, R1 ◦R2 is a branching team bisimulation, too.

The proof of (4) is trivial, too: assume (s1,s2) ∈
⋃

i∈I Ri; then, j ∈ I exists such that (s1,s2)

belongs to R j. If s1
`−→m1, then either ` = τ and ∃s′2 such that s2 V s′2 with (s1,s′2) ∈ R j and

(m1,s′2) ∈ R j, or ∃s,m2 such that s2 V s `−→m2 with (s1,s) ∈ R j and (m1,m2) ∈ R⊕j . In the for-
mer case, {(s1,s′2),(m1,s′2)} ⊆

⋃
i∈I Ri as R j ⊆

⋃
i∈I Ri. In the latter case, we have that (s1,s) ∈

⋃
i∈I Ri

because R j ⊆
⋃

i∈I Ri; moreover, also (m1,m2) ∈ (
⋃

i∈I Ri)
⊕ as R⊕j ⊆ (

⋃
i∈I Ri)

⊕ by Proposition 5.4(5).
So
⋃

i∈I Ri is a branching team bisimulation, too. 2

Remember that s ≈br s′ if there exists a branching team bisimulation containing the pair (s,s′).
This means that ≈br is the union of all branching team bisimulations, i.e.,

≈br =
⋃
{R⊆ S×S

∣∣ R is a branching team bisimulation}.

By Proposition 7.11(4), ≈br is also a branching team bisimulation, hence the largest such relation.

Proposition 7.12. For each BPP net N = (S,A,T ), relation ≈br ⊆ S×S is the largest branching team
bisimulation relation. 2

The largest branching team bisimulation relation ≈br is an equivalence relation. As a matter of
fact, as the identity relation I is a branching team bisimulation by Proposition 7.11(1), we have that
I ⊆≈br, and so ≈br is reflexive. Symmetry derives from Proposition 7.11(2). Transitivity also holds
for ≈br by Proposition 7.11(3). Summing up, we have the following.

Proposition 7.13. For each BPP net N = (S,A,T ), relation ≈br ⊆ S×S is an equivalence relation. 2

Remark 7.14. (Complexity of ≈br) From a complexity point of view, branching team bisimilarity is
the easiest equivalence to decide over BPP nets with silent moves. According to [13, 12], it can be
checked on finite-state LTSs with time complexity O(l+n ·m) and space complexity O(n+m), where
l is the number of labels, n the number of states and m the number of transitions, by means of a coarsest
partition refinement algorithm in the style of [23, 24]. Therefore, essentially the same complexity is
necessary to compute branching team bisimilarity on places of an unmarked BPP net, with the usual
adaptation of counting the empty marking as an additional, dummy place and with the extra cost due
to the fact that the reached markings are to be related by the additive closure of the current partition
over places (by means of Algorithm 1). Hence, the overall time complexity is O(l +n2 ·m), where n
is the number of places, m the number of transitions and l the number of labels. 2

1As (m2,s′3) ∈ R2, this means that m2 is a place; hence, the condition (m1,m2) ∈ R⊕1 is equivalent to (m1,m2) ∈ R1.
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7.2. Lifting Branching Team Bisimilarity to Markings

Starting from branching team bisimilarity over the places of an unmarked BPP net, we can define
branching team bisimulation equivalence over its markings in a structural, distributed way, as the
additive closure of ≈br, i.e., ≈⊕br. Hence, branching team bisimilar markings have the same size.

Proposition 7.15. For each BPP net N = (S,A,T ), if m1 ≈⊕br m2, then |m1|= |m2|. 2

Proposition 7.16. For each BPP net N = (S,A,T ), ≈⊕br⊆ M (S)×M (S) is an equivalence.

Proof:
By Proposition 7.13, ≈br is an equivalence relation. Hence, by Proposition 5.3, ≈⊕br is an equivalence
relation, too. 2

Note that, once ≈br has been computed in O(l + n2 ·m), where n is the number of places, m the
number of transitions and l the number of labels (cf. Remark 7.14), checking whether two markings
are branching team bisimulation equivalent takes only O(n) time with Algorithm 1. Of course, since by
Proposition 7.41 we have that≈br⊆≈, then by Proposition 5.3 we have that≈⊕br⊆≈⊕. This implication
is strict (cf., e.g., Example 7.8).

The following theorem provides a characterization of branching team equivalence as a suitable
bisimulation-like relation over markings. Indeed, this result gives evidence of the fact that branching
team bisimulation equivalence does respect the global behavior of the net.

Theorem 7.17. Let N = (S,A,T ) be a BPP net with silent moves. Two markings m1 and m2 are
branching team bisimilar, m1 ≈⊕br m2, if and only if |m1|= |m2| and

1. ∀t1 such that m1[t1〉m′1,

– either l(t1) = τ and

(i) either ∃σ2 nonempty and τ-sequential, such that •t1 ≈br
•σ2, o(σ2) = ε , t•1 ≈br σ•2 ,

•t1 ≈br σ•2 , m2[σ2〉m′2 with m1 ≈⊕br m′2 and m′1 ≈
⊕
br m′2,

(ii) or ∃s2 ∈ m2 such that •t1 ≈br s2, t•1 ≈br s2, with m′1 ≈
⊕
br m2,

– or ∃σ , t2 such that σt2 is sequential, σ is τ-sequential, o(σ) = ε , l(t1) = l(t2), •t1 ≈br
•σt2,

•t1 ≈br
•t2, t•1 ≈

⊕
br t•2 , m2[σ〉m[t2〉m′2 with m1 ≈⊕br m and m′1 ≈

⊕
br m′2;

2. and, symmetrically, ∀t2 such that m2[t2〉m′2,

– either l(t2) = τ and

(i) either ∃σ1 nonempty and τ-sequential, such that •σ1 ≈br
•t2, o(σ1) = ε , σ•1 ≈br t•2 ,

σ•1 ≈br
•t2, m1[σ1〉m′1 with m′1 ≈

⊕
br m2 and m′1 ≈

⊕
br m′2,

(ii) or ∃s1 ∈ m1 such that s1 ≈br
•t2, s1 ≈br t•2 , with m1 ≈⊕br m′2,

– or ∃σ , t1 such that σt1 is sequential, σ is τ-sequential, o(σ) = ε , l(t1) = l(t2), •σt1 ≈br
•t2,

•t1 ≈br
•t2, t•1 ≈

⊕
br t•2 , m1[σ〉m[t1〉m′1 with m≈⊕br m2 and m′1 ≈

⊕
br m′2.
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Proof:
(⇒) If m1 ≈⊕br m2, then |m1|= |m2| by Proposition 7.15. Moreover, for any t1 such that m1[t1〉m′1, we
have that m1 = s1⊕m1, where s1 =

•t1. As m1 ≈⊕br m2, by Definition 5.1, it follows that there exist
s2 and m2 such that m2 = s2⊕m2, s1 ≈br s2 and m1 ≈⊕br m2. Since s1 ≈br s2, by Definition 7.1, if

t1 = s1
`−→ p1, we have to consider two cases:

(i) either `= τ and ∃p2 such that s2V p2 with s1 ≈br p2 and p1 ≈br p2,

(ii) or ∃p, p2 such that s2V p `−→ p2, with s1 ≈br p and p1 ≈⊕br p2.

Case (i): We have to consider two subcases: (a) Either there exists a nonempty τ-sequential
transition sequence σ2 such that o(σ2) = ε , •σ2 = s2, σ•2 = p2, hence with •t1 ≈br

•σ2, •t1 ≈br σ•2 and
t•1 ≈br σ•2 . (b) Or s2 replies by idling, i.e., p2 = s2; in such a case, •t1 ≈br s2 and t•1 ≈br s2.

In subcase (a), m′1 = t•1 ⊕m1 and m′2 = σ•2 ⊕m2, and so m′1 ≈
⊕
br m′2 by Definition 5.1. For the same

reason, m1 ≈⊕br m′2, as •t1 ≈br σ•2 .
Similarly, in subcase (b), m′1 = t•1 ⊕m1, m2 = s2⊕m2 and so m′1 ≈

⊕
br m2.

Case (ii): This means that for transition t1, there exists a (possibly empty) τ-sequential transition
sequence σ and a transition t2 such that •σt2 = s2, o(σ) = ε , l(t1) = l(t2), •t2 = p = σ•, t•2 = p2, and
so •t1 ≈br

•t2 = σ• and t•1 ≈
⊕
br t•2 . Now, m = p⊕m2 and so m1 ≈⊕br m by Definition 5.1. Similarly,

m′1 = t•1 ⊕m1 and m′2 = t•2 ⊕m2, and so m′1 ≈
⊕
br m′2 by Proposition 5.3.

The case when m2 moves first is symmetric, hence omitted.
(⇐) Let us assume that |m1|= |m2| and that the bisimulation-like conditions hold; then, we prove

that m1 ≈⊕br m2. First of all, assume that no transition t1 is enabled at m1; in such a case, no observable
transition is enabled at m2; in fact, if m2[t2〉m′2 with l(t2) 6= τ , then, by the (2-or) condition, a nonempty,
sequential transition sequence σt1 must be executable at m1, contradicting the assumption that no
transition is enabled at m1. However, m2 may enable τ-sequential transitions: by the (2-either-(ii))
condition, m1 can reply by idling. This means that each place in m1 is a deadlock, and similarly
each place in m2 is branching team bisimilar to a deadlock; therefore, all the places in m1 and m2
are pairwise branching team bisimilar; hence, the condition |m1| = |m2| is enough to ensure that
m1 ≈⊕br m2.

Now, assume that m1[t1〉m′1 for some t1. Let us consider first the (1-either) condition, i.e., with
l(t1) = τ . This case is actually composed of two subcases.

In subcase (i), we know that there exists a nonempty τ-sequential transition sequence σ2 such that
•t1 ≈br

•σ2, o(σ2) = ε , t•1 ≈br σ•2 , m2[σ2〉m′2 and m′1 ≈
⊕
br m′2. Therefore, we have that m′1 = t•1 ⊕m1,

m′2 =σ•2 ⊕m2, m1 =
•t1⊕m1, m2 =

•σ2⊕m2. Since m′1≈
⊕
br m′2 and t•1 ≈br σ•2 , it follows that m1≈⊕br m2

by Proposition 5.3, and so m1 ≈⊕br m2, because •t1 ≈br
•σ2.

In subcase (ii), we have that ∃s2 ∈ m2 such that •t1 ≈br s2, t•1 ≈br s2, with m′1 ≈
⊕
br m2. Note

that m′1 = t•1 ⊕m1, m1 = •t1⊕m1 and m2 = s2⊕m2. Since m′1 ≈
⊕
br m2 and t•1 ≈br s2, it follows that

m1 ≈⊕br m2, and so m1 ≈⊕br m2, because •t1 ≈br s2.
Let us now consider the (1-or) condition. This means that ∃σ , t2 such that σt2 is sequential, σ

is τ-sequential, o(σ) = ε , l(t1) = l(t2), •t1 ≈br
•σt2, •t1 ≈br

•t2 = σ•, t•1 ≈
⊕
br t•2 , m2[σ〉m[t2〉m′2 with

m1 ≈⊕br m and m′1 ≈
⊕
br m′2. Note that m1 =

•t1⊕m1, m′1 = t•1 ⊕m1, m2 =
•σt2⊕m2 and m′2 = t•2 ⊕m2.
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Since t•1 ≈
⊕
br t•2 and m′1≈

⊕
br m′2, by Proposition 5.3, we have that m1≈⊕br m2. Hence, m1≈⊕br m2, because

•t1 ≈br
•σt2.

Symmetrically, if we start from a transition t2 enabled at m2. 2

By the theorem above, it is clear that ≈⊕br is a branching interleaving bisimulation; hence, the
following corollary follows trivially.

Corollary 7.18. (Branching team equivalence is finer than branching interleaving bisimilarity)
Let N = (S,A,T ) be a BPP net. If m1 ≈⊕br m2, then m1 ≈bri m2, i.e., we have that ≈⊕br⊆≈bri. 2

Example 7.19. The containment in the above corollary is strict. Consider the nets in Figure 3. Clearly,
the markings s1 and s4 are branching interleaving bisimilar; however, they are not branching team
equivalent: to the transition s4

τ−→ s5⊕ s6, place s1 can try to respond only with s1
τ−→ s2, however

s2 6≈⊕br s5⊕ s6, because they have different size. 2

Now we want to prove that branching team bisimilarity is finer than state-sensitive, branching
fully-concurrent bisimilarity.

Theorem 7.20. (Branching team bisimilarity is finer than state-sensitive branching fully concur-
rent bisimilarity) Let N = (S,A,T ) be a BPP net with silent moves. If m1 ≈⊕br m2, then m1 ≈sb f c m2.

Proof:
Let R = {((C1,ρ1),g,(C2,ρ2))

∣∣ (C1,ρ1) is a process of N(m1), (C2,ρ2) is a process of N(m2) and
g is an abstract event isomorphism between C1 and C2, such that ρ1(Max(C1)) ≈⊕br ρ2(Max(C2))}.
We want to prove that R is a state-sensitive branching fc-bisimulation. First, observe that the triple
((C0

1 ,ρ
0
1 ),g0,(C0

2 ,ρ
0
2 )) where g0 is empty and, for i = 1,2, C0

i is a BPP causal net which contains no
transitions and ρ0

i (Max(C0
i )) = mi , belongs to relation R because m1 ≈⊕br m2 by hypothesis. Note

also that if the relation R is a state-sensitive branching fc-bisimulation, then this triple ensures that
m1 ≈sb f c m2. It is enough to check that R is a branching fc-bisimilarity, because, since for each triple
((C1,ρ1),g,(C2,ρ2)) ∈ R we have that ρ1(Max(C1)) ≈⊕br ρ2(Max(C2)), Proposition 7.15 ensures that
R is state-sensitive. Now assume (π1,g,π2) ∈ R, where πi = (Ci,ρi) for i = 1,2. In order to be a
branching fully-concurrent bisimulation triple, it is necessary that

i) ∀t1,π ′1 such that π1
e1−→π ′1 with ρ ′1(e1) = t1,

• either l(e1) = τ and ∃σ ′2 (with o(σ ′2) = ε), π ′2 such that π2
σ ′2=⇒π ′2, (π1,g,π ′2) ∈ R and

(π ′1,g,π
′
2) ∈ R;

• or ∃σ ′ (with o(σ ′) = ε), e2,π
′
2,π
′′
2 ,g
′ such that

1. π2
σ ′
=⇒π ′2

e2−→π ′′2 ;
2. if l(e1) = τ , then l(e2) = τ and g′= g; otherwise, l(e1) = l(e2) and g′= g∪{(e1,e2)};
3. and finally, (π1,g,π ′2) ∈ R and (π ′1,g

′,π ′′2 ) ∈ R;

ii) symmetrically, if π2 moves first.
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s1 τ

s2

s3

τ

b

a

τ

s4 τ

b

Figure 15. A BPP net with s1 ≈sb f c s3

Let us consider any transition t1 such that ρ1(Max(C1))[t1〉m′1 and l(t1) 6= τ . Since ρ1(Max(C1)) ≈⊕br
ρ2(Max(C2)), by Theorem 7.17, ∃σ , t2 such that σt2 is sequential, σ is τ-sequential, o(σ) = ε , l(t1) =
l(t2), •t1 ≈br

•σt2, •t1 ≈br
•t2, t•1 ≈

⊕
br t•2 , m2[σ〉m[t2〉m′2 with m1 ≈⊕br m and m′1 ≈

⊕
br m′2. Therefore, it

is really possible to extend the causal net C1 to the causal net C′1 through a suitable event e1, as well
as to extend the causal net C2 to the causal net C′2 through a suitable transition sequence σ ′, followed
by the observable event e2, as required above: indeed, g′ = g∪{(e1,e2)}. Summing up, for the move
π1

e1−→π ′1 with ρ ′1(e1) = t1, we add the triples (π1,g,π ′2) and (π ′1,g
′,π ′′2 ) to R, so that ρ1(Max(C1)) =

m1 ≈⊕br m = ρ ′2(Max(C′2)) and ρ ′1(Max(C′1)) = m′1 ≈
⊕
br m′2 = ρ ′′2 (Max(C′′2 )), as required. A similar

argument is necessary when l(t1) = τ . As ρ1(Max(C1))≈⊕br ρ2(Max(C2)), by Theorem 7.17, besides
the case similar to the above (omitted), it also possible that

(i) either ∃σ2 nonempty and τ-sequential, such that •t1 ≈br
•σ2, o(σ2) = ε , t•1 ≈br σ•2 , •t1 ≈br σ•2 ,

m2[σ2〉m′2 with m1 ≈⊕br m′2 and m′1 ≈
⊕
br m′2,

(ii) or ∃s2 ∈ m2 such that •t1 ≈br s2, t•1 ≈br s2, with m′1 ≈
⊕
br m2.

The either case (i) ensures that it is possible to extend the causal net C1 to the causal net C′1 through
a suitable silent transition e1, as well as to extend the causal net C2 to the causal net C′2 through a
suitable τ-sequential transition sequence σ ′2, as required above. Summing up, for the move π1

e1−→π ′1
with ρ ′1(e1) = t1, we add the two triples (π1,g,π ′2) and (π ′1,g,π

′
2) to R, so that ρ1(Max(C1)) = m1 ≈⊕br

m′2 = ρ ′2(Max(C′2)) and ρ ′1(Max(C′1)) = m′1 ≈
⊕
br m′2 = ρ ′2(Max(C′2)), as required. For the or case (ii),

it is really possible to extend the causal net C1 to the causal net C′1 through a suitable transition e1,
while the causal net C2 is not modified. Summing up, for the move π1

e1−→π ′1 with ρ ′1(e1) = t1, we add
(π ′1,g,π2) to R, so that ρ ′1(Max(C′1)) = m′1 ≈⊕ m2 = ρ2(Max(C2)), as required.

Symmetrically, if ρ2(Max(C)) moves first. 2

However, the reverse implication of Theorem 7.20 does not hold in general: it may happen that if
m1 ≈sb f c m2, then m1 6≈⊕br m2, as the following example shows.
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Example 7.21. Consider the net in Figure 15. It is not difficult to realize that s1 ≈sb f c s3. Informally,
if s1

τ−→ s2⊕ s3, s3 can reply with s3
τ−→ s3⊕ s4 and s2⊕ s3 ≈sb f c s3⊕ s4, as required. Symmetrically,

besides the move above, s3 can also do s3
a−→θ , and s1 can reply with s1

τ
=⇒ s3

a−→θ with s3 ≈sb f c s3

and θ ≈sb f c θ . However, s1 6≈⊕br s3: if s3
a−→θ , then s1 responds with s1

τ−→ s2⊕ s3
τ−→ s3

a−→θ , but
the silent path s1

τ−→ s2⊕ s3
τ−→ s3 is not composed of τ-sequential transitions, so that s1 6V s3. 2

However, if the BPP net is τ-sequential, we conjecture that also the reverse implication holds, so
that the two equivalences coincide for τ-sequential BPP nets.

Corollary 7.22. (Branching team bisimilarity is finer than branching fully-concurrent bisimi-
larity) Let N = (S,A,T ) be a BPP net with silent moves. If m1 ≈⊕br m2, then m1 ≈b f c m2.

Proof:
Since ≈sb f c⊆≈b f c, the thesis follows by Theorem 7.20. 2

The reverse implication of Corollary 7.22 does not hold in general. For instance, the BPP nets in
Figure 3(c) and (d) are such that s8 ≈b f c s11, but s8 6≈⊕br s11. In fact, after the execution of action a, the
two reached markings are 2 · s9 and s12⊕ s13, but s9 6≈br s13, because s10 6≈br θ .

7.3. Minimizing Nets w.r.t. ≈br

In this section, we propose the construction of a reduced net, i.e., a net obtained by merging together
branching team bisimilar places. We will show that this technique is correct: a marking of the original
net is branching team bisimilar to the corresponding marking of the reduced net.

Definition 7.23. (Reduced net) Let N = (S,A,T ) be a BPP net and let ≈br be the branching team
bisimulation equivalence relation over its places. The reduced net Nbr = (Sbr,A,Tbr) is defined as:

• Sbr = {[s]
∣∣ s ∈ S}, where [s] = {s′ ∈ S

∣∣ s≈br s′};

• Tbr = {([s], `, [m])
∣∣ (s, `,m) ∈ T, ` 6= τ}∪{([s],τ, [m])

∣∣ (s,τ,m) ∈ T, [s] 6= [m]},

where [m] is defined as follows: [θ ] = θ and [m1⊕m2] = [m1]⊕ [m2]. If the net N has initial marking
m0 = k1 · s1⊕ . . .⊕ kn · sn, then Nbr has initial marking [m0] = k1 · [s1]⊕ . . .⊕ kn · [sn]. 2

Lemma 7.24. Let N = (S,A,T ) be a BPP net and let Nbr = (Sbr,A,Tbr) be its reduced net w.r.t. ≈br.
Relation R = {(s, [s])

∣∣ s ∈ S} is a branching team bisimulation.

Proof:
If s `−→m with ` 6= τ , then [s] `−→ [m] by definition of Tbr and (m, [m]) ∈ R⊕, as required. If s τ−→m
and [s] = [m], then [s] replies by idling, and (m, [s]) ∈ R⊕, because [s] = [m]. Finally, if s τ−→m and
[s] 6= [m], then [s] τ−→ [m] by definition of Tbr and (m, [m]) ∈ R⊕, as required.

The case when [s] moves first is slightly more complex for the freedom in choosing the representa-

tive in an equivalence class. Transition [s] `−→ [m] is possible, by Definition of Tbr, if there exist s′ ∈ [s]
and m′ ∈ [m] such that s′ `−→m′; as s≈br s′ and s′ `−→m′, then
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– either `= τ and ∃p1 such that sV p1 with p1 ≈br s′ and p1 ≈br m′,

– or ∃s,m1 such that sV s `−→m1 with s≈br s′ and m1 ≈⊕br m′.

Summing up, if [s] `−→ [m], then

– either ` = τ and ∃p1 such that sV p1 with p1 ∈ [s′] and p1 ∈ [m′] (i.e., with (p1, [s]) ∈ R and
(p1, [m]) ∈ R, because [s] = [s′] = [p1] = [m′] = [m]);

– or ∃s,m1 such that sV s `−→m1 with s ∈ [s′] (i.e., with (s, [s]) ∈ R, as [s] = [s′] = [s]) and
m1 ∈ [m′] (i.e., with (m1, [m]) ∈ R⊕, as [m1] = [m′] = [m]).

Hence, R = {(s, [s])
∣∣ s ∈ S} is a branching team bisimulation. 2

Theorem 7.25. Let N = (S,A,T ) be a BPP net and let Nbr = (Sbr,A,Tbr) be its reduced net w.r.t. ≈br.
For any m ∈M (S), we have that m≈⊕br [m].

Proof:
By induction on the size of m. 2

As a consequence of this theorem, we would like to point out that the reduced net w.r.t. ≈br is
indeed the least net offering the same branching team bisimilar behavior as the original net: no further
fusion of places can be done, as there are not two places in the reduced net which are branching team
bisimilar. Moreover, silent transitions relating branching team bisimilar places in the original net do
not generate any silent transition in the reduced net, so that the number of transitions is minimized,
too.

7.4. Rooted Branching Team Bisimilarity

Definition 7.26. (Rooted branching team bisimilarity on places) Let N = (S,A,T ) be a BPP net.
Two places s1 and s2 are rooted branching team bisimilar, denoted s1 ≈brc s2, if for all ` ∈ A

• ∀m1 such that s1
`−→m1, there exists m2 such that s2

`−→m2 and m1 ≈⊕br m2,

• ∀m2 such that s2
`−→m2, there exists m1 such that s1

`−→m1 and m1 ≈⊕br m2.
2

The peculiar feature of rooted branching team bisimilarity is that initial moves are matched as in
strong team bisimulation, while subsequent moves are matched as for branching team bisimilarity.
Therefore, rooted branching team bisimilarity is a slightly finer variant of branching team bisimilarity.

Proposition 7.27. if s1 ≈brc s2, then s1 ≈br s2. 2

Nonetheless, if two branching team bisimilar places cannot perform any silent transition initially,
then these two places are also rooted branching team bisimilar.
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Example 7.28. Considering again Figure 14, we have that s1 ≈brc s4 because s2 ≈br s5; however, note
that s2 6≈brc s5. 2

Proposition 7.29. Let N = (S,A,T ) be a BPP net. Relation ≈brc is an equivalence relation.

Proof:
Standard: it follows from the fact that ≈br and ≈⊕br are equivalence relations. 2

Proposition 7.30. If s1 ≈brc s2, then s1 ≈c s2.

Proof:
Trivial, as ≈br⊆≈. 2

Example 7.31. Consider Figure 4. It is easy to see that s1 ≈c s4, however s1 6≈brc s4. 2

Proposition 7.32. If s1 ∼ s2, then s1 ≈brc s2.

Proof:
Trivial, as ∼⊆≈br. 2

We can also define rooted branching team bisimulation equivalence on markings as the additive
closure of rooted branching team bisimilarity on places, i.e., ≈⊕brc. Of course, by Proposition 5.2,
rooted branching team bisimulation equivalence relates markings of the same size only; moreover,
≈⊕brc is an equivalence relation, by Proposition 5.3, as ≈brc is an equivalence relation (by Proposition
7.29). Also in this case, once ≈brc has been computed, checking whether two markings are related by
≈⊕brc takes O(n) time.

Proposition 7.33. (Rooted branching team bisimilarity is finer than branching team bisimilar-
ity) Let N = (S,A,T ) be a BPP net. If m1 ≈⊕brc m2, then m1 ≈⊕br m2.

Proof:
By Proposition 7.27, we have that ≈brc ⊆≈br. Since the additive closure is monotone (by Proposition
5.3(4)), the thesis follows trivially. 2

Proposition 7.34. (Rooted branching team bisimilarity is finer than rooted weak team bisimilar-
ity) Let N = (S,A,T ) be a BPP net. If m1 ≈⊕brc m2, then m1 ≈⊕c m2.

Proof:
Similar to the previous one, as by Proposition 7.30, we have that ≈brc ⊆≈c. 2

Proposition 7.35. (Strong team bisimilarity is finer than rooted branching team bisimilarity) Let
N = (S,A,T ) be a BPP net. If m1 ∼⊕ m2, then m1 ≈⊕brc m2.

Proof:
Similar to the previous one, as by Proposition 7.32, we have that ∼⊆≈brc. 2
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The following theorem provides a characterization of rooted branching team bisimilarity as a suit-
able bisimulation-like relation over markings, i.e., over a global model of the overall behavior.

Theorem 7.36. Let N = (S,A,T ) be a BPP net. If two markings m1 and m2 are rooted branching team
bisimulation equivalent, m1 ≈⊕brc m2, then |m1|= |m2| and

1. ∀t1 such that m1[t1〉m′1, ∃t2 such that •t1 ≈brc
•t2, l(t1) = l(t2), t•1 ≈

⊕
br t•2 , m2[t2〉m′2 and m′1 ≈

⊕
br m′2,

2. ∀t2 such that m2[t2〉m′2, ∃t1 such that •t1 ≈brc
•t2, l(t1) = l(t2), t•1 ≈

⊕
br t•2 , m1[t1〉m′1 and m′1 ≈

⊕
br m′2.

Proof:
If m1 ≈⊕brc m2, then |m1|= |m2| by Proposition 5.2. Moreover, for any t1 such that m1[t1〉m′1, we have
that m1 = s1⊕m1, where s1 =

•t1. As m1 ≈⊕brc m2, by Definition 5.1, it follows that there exist s2 and
m2 such that m2 = s2⊕m2, s1 ≈brc s2 and m1 ≈⊕brc m2. Since s1 ≈brc s2, by Definition 7.26, we have

that for transition t1 = s1
`−→ p1, there must exist p2 such that s2

`−→ p2 and p1 ≈⊕br p2. This means
that for transition t1, there exists a transition t2 such that l(t2) = `= l(t1), •t2 = s2, t•2 = p2, hence with
•t1 ≈brc

•t2 and t•1 ≈
⊕
br t•2 . Note that m′1 = t•1 ⊕m1 and m′2 = t•2 ⊕m2, and so m′1 ≈

⊕
br m′2 by Proposition

5.3. The case when m2 moves first is symmetric, hence omitted. 2

Note that, contrary to Theorem 7.17, we do not have an if-and-only-if condition. In fact, it is not
true that if two markings of the same size are such that they satisfy the two bisimulation conditions of
Theorem 7.36, then they are rooted branching team bisimilar. As counterexample, consider the net in
Figure 12 and the two markings 2 · s1⊕ s2 and s1⊕2 · s2 (cf. the discussion after Theorem 6.29).

Corollary 7.37. (Rooted branching team bisimilarity is finer than rooted branching interleaving
bisimilarity)
Let N = (S,A,T ) be a BPP net. If m1 ≈⊕brc m2, then m1 ≈c

bri m2.

Proof:
We want to prove that if m1 ≈⊕brc m2, then

• ∀t1 such that m1[t1〉m′1, ∃t2 s.t. m2[t2〉m′2 with l(t1) = l(t2) and m′1 ≈bri m′2,

• ∀t2 such that m2[t2〉m′2, ∃t1 s.t. m1[t1〉m′1 with l(t1) = l(t2) and m′1 ≈bri m′2,

so that m1 ≈c
bri m2 follows directly by Definition 3.11. However, this implication is obvious, due to

Theorem 7.36 and Corollary 7.18. 2

7.5. Branching H-team Bisimilarity

We provide the definition of branching h-team bisimulation on places for unmarked BPP nets, adapt-
ing the definition of branching team bisimulation on places (cf. Definition 7.1), as a relation not on S,
rather on S∪{θ} (cf. Definition 6.31).

The auxiliary notation sV s′, meaning a τ-sequential transition sequence from place s to place
s′, is here relaxed to s⇒ m, meaning a τ-h-sequential transition sequence from s to marking m, i.e.,
a transition sequence s = s1[t1〉m2[t2〉m3 . . .mn[tn〉mn+1 = m (with n ≥ 0) such that l(ti) = τ and ti is
τ-h-sequential, for i = 1, . . . ,n.
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Definition 7.38. (Branching h-team bisimulation on places) Let N = (S,A,T ) be a BPP net. A
branching h-team bisimulation is a relation R ⊆ (S∪{θ})× (S∪{θ}) such that if (p1, p2) ∈ R then
for all ` ∈ A

• ∀m1 such that p1
`−→m1,

– either `= τ and there exists m2 such that p2⇒m2 with (p1,m2) ∈ R⊕ and (m1,m2) ∈ R⊕,

– or ∃m,m2 such that p2⇒ m `−→m2 with (p1,m) ∈ R⊕ and (m1,m2) ∈ R⊕,

• and, symmetrically, ∀m2 such that p2
`−→m2,

– either `= τ and there exists m1 such that p1⇒m1 with (m1, p2) ∈ R⊕ and (m1,m2) ∈ R⊕,

– or ∃m,m1 such that p1⇒ m `−→m1 with (m, p2) ∈ R⊕ and (m1,m2) ∈ R⊕.

p and p′ are branching h-team bisimilar (or bh-team bisimulation equivalent), denoted by p≈bh p′, if
there exists a branching h-team bisimulation R such that (p, p′) ∈ R. 2

Since a branching team bisimulation is a branching h-team bisimulation, we have that ≈br implies
≈bh. This implication is strict, as illustrated in the following example.

Example 7.39. Consider the nets in Figure 3. In Example 6.32 we observed that s6 ≈h θ because
R1 = {(s6,θ), (θ ,θ)} is a wh-team bisimulation. Actually, R1 is also a bh-team bisimulation (but not
a br-team bisimulation) so that s6 ≈bh θ . Therefore, we also have that s1 ≈bh s4 because R2 = {(s1,s4),

(s2,s5),(θ ,s6),(θ ,θ),(s3,s7)} is a bh-team bisimulation. In fact, if s4 moves with s4
τ−→ s5⊕ s6, s1

can reply with s1
τ−→ s2 and (s2,s5⊕ s6) ∈ R⊕2 . For the same reason, s8 ≈bh s11 because s9 ≈bh s13; in

fact, s9 can match transition s13
τ−→θ , because s10 ≈bh θ . Similarly, one can observe that s4 ≈bh s8:

the silent transition s4
τ−→ s5 ⊕ s6 can be matched silently by s8 with s8 ⇒ s8, and s5 ⊕ s6 ≈⊕bh s8

because s5 ≈bh s8 and s6 ≈bh θ . These examples show that, contrary to what happens for branching
team bisimilarity, τ-labeled transitions changing the number of currently available tokens are really
unobservable if they are τ-h sequential. 2

Remark 7.40. (Stuttering property revisited) It is not difficult to prove that, given a τ-h-sequential
transition sequence s1[t1〉m2[t2〉m3 . . .mn[tn〉mn+1 (with n≥ 0) such that l(ti)= τ and ti is τ-h-sequential
for i = 1, . . . ,n, so that s1⇒ mn+1, if s1 ≈⊕bh mn+1, then s1 ≈⊕bh m j for all j = 2, . . .n.

To show that this holds, let us prove the thesis for n = 2, i.e., if s1[t1〉m2[t2〉m3 and s1 ≈⊕bh m3, then
s1 ≈⊕bh m2. First note that, since s1 ≈⊕bh m3, we have two cases: either s1 ≈bh θ , or there exists s3 such
that m3 = s3⊕m3, s1 ≈bh s3 and θ ≈⊕bh m3. In the former case, the thesis follows trivially, because
m2 must be equivalent to θ . In the latter case, since t1 is τ-h-sequential, we have that |s1| = |o(m2)|;
hence, there exists s2 such that m2 = s2⊕m2, and θ ≈⊕bh m2. Now, we have two subcases: either
s2 = s3, or s2

τ−→ s3⊕m′2 so that m3 = m2⊕m′2. In the former subcase, the thesis follows trivially,

as we already know that s1 ≈bh s3 and θ ≈⊕bh m2. In the latter subcase, if s1
`−→m1, then s2 can

respond by first performing s2
τ−→ s3 ⊕m′2 and then the corresponding move of s3, as we already
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know that s1 ≈bh s3; on the other side of the bisimulation game, if s2
`−→m, then s1 can respond with

s1
τ−→ s2⊕m2

`−→m⊕m2, so that s2 ≈⊕bh s2⊕m2 and m≈⊕bh m⊕m2, because θ ≈⊕bh m2.
Therefore, by requiring that the silent transitions be τ-h-sequential, we have that branching h-team

bisimilarity ≈bh enjoys the stuttering property. In fact, assuming p1 ≈bh p2 and that p1
`−→m1, then,

e.g., in the either case, p2 responds with p2⇒ m2 with p1 ≈⊕bh m2, so that, by transitivity, p2 ≈⊕bh m2;
hence, by the stuttering property, we are sure that, in passing from place p2 to marking m2, we traverse
only markings that are all bh-team equivalent to p2 and m2. 2

It is easy to observe that a branching h-team bisimulation is also a weak h-team bisimulation, and
so ≈bh is finer than ≈h.

Proposition 7.41. Let N = (S,A,T ) be a BPP net with silent moves. If s1 ≈bh s2, then s1 ≈h s2. 2

Example 7.42. (Branching h-team bisimilarity is better than weak h-team bisimilarity) Consider
the two nets in Figure 10. In Example 6.4 we observed that s1 and s4 are weak (h-)team bisimilar, even
if s1 and s4 do not offer the same causal behavior. In Example 7.5 we argued that s1 6≈br s4 because
if s4

a−→ s7, then s1 can try to respond with s1
τ−→ s2⊕ s3

a−→ s3, but s4 6≈br s2⊕ s3 as a place cannot
be branching team bisimilar to a marking of size 2. Of course, also the coarser bh-team bisimilarity
cannot equate s1 and s4 because the τ-labeled transition is not τ-h-sequential. 2

We now list some useful properties of branching h-team bisimulation relations, one of which is
based on the following lemma.

Lemma 7.43. Let N = (S,A,T ) be a BPP net with silent moves and let R be a branching h-team
bisimulation such that (s1,s2) ∈ R. Then, the following hold:

(i) For all m1 such that s1⇒ m1, there exists m2 such that s2⇒ m2 and (m1,m2) ∈ R⊕.

(ii) For all m2 such that s2⇒ m2, there exists m1 such that s1⇒ m1 and (m1,m2) ∈ R⊕.

Proof:
The proof is by induction on the length of the path s1⇒ m1. We prove only case (i), as the other one
is symmetric. The base case is the empty path: if s1⇒ s1, then s2⇒ s2 and (s1,s2) ∈ R⊕, as required.
In general, we can assume s1

τ−→m′1
ε

=⇒m1, where all the transitions in the path are τ-h-sequential,
so that |o(s1)|= |o(m′1)|= |o(m1)|. Since (s1,s2) ∈ R, we have that either ∃m′2 such that s2⇒m′2 with
(m′1,m

′
2) ∈ R⊕, or ∃m,m′2 such that s2⇒ m τ−→m′2, with (s1,m) ∈ R⊕ and (m′1,m

′
2) ∈ R⊕.

In the former case, by Proposition 2.6, assuming k = max{|m′1|, |m′2|} and m′1 = p′1⊕ . . .⊕ p′k
(where p′i can also be θ ), the path m′1

ε
=⇒m1, composed only of τ-h-sequential transitions, can be

decomposed in p′i ⇒ mi, for i = 1, . . . ,k, so that m1 = m1⊕ . . .⊕mk. Since (m′1,m
′
2) ∈ R⊕, we have

that there exist p′′1, . . . , p′′k (where p′′i can also be θ ) such that m′2 = p′′1⊕ . . .⊕ p′′k and (p′i, p′′i ) ∈ R, for
i = 1, . . . ,k. Therefore, induction can be applied to (p′i, p′′i ) and p′i⇒ mi, to conclude that there exists
mi such that p′′i ⇒ mi with (mi,mi) ∈ R⊕. Summing up, if s1

τ−→m′1
ε

=⇒m1, then s2 ⇒ m2, where
m2 = m1⊕ . . .⊕mk, so that (m1,m2) ∈ R⊕, as required.
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In the latter case, as |o(s1)| = |o(m)| and |o(m′1)| = |o(m′2)|, we can conclude that also m τ−→m′2
is due to a τ-h-sequential transition because |o(m)| = |o(m′2)| by transitivity, so that we can write
s2 ⇒ m′2. Moreover, by an argument similar to the above, we can assume that m′1 = p′1⊕ . . .⊕ p′k
(where p′i can also be θ ) and that the path m′1

ε
=⇒m1 can be decomposed in p′i⇒ mi, for i = 1, . . . ,k,

so that m1 = m1⊕ . . .⊕mk. Since (m′1,m
′
2) ∈ R⊕, we have that there exist p′′1, . . . , p′′k (where p′′i can

also be θ ) such that m′2 = p′′1⊕ . . .⊕ p′′k and (p′i, p′′i ) ∈ R, for i = 1, . . . ,k. Therefore, induction can be
applied to (p′i, p′′i ) and p′i⇒mi, to conclude that there exists mi such that p′′i ⇒mi with (mi,mi) ∈ R⊕.
Summing up, if s1

τ−→m′1
ε

=⇒m1, then s2⇒ m2, where m2 = m1⊕ . . .⊕mk, so that (m1,m2) ∈ R⊕, as
required. 2

Proposition 7.44. For each BPP net N = (S,A,T ) with silent moves, the following hold:

1. the identity relation I = {(p, p)
∣∣ p ∈ S∪{θ}} is a branching h-team bisimulation;

2. the inverse relation R−1 = {(p′, p)
∣∣ (p, p′) ∈ R} of a branching h-team bisimulation R is a

branching h-team bisimulation;

3. the relational composition R1 ◦R2 = {(p, p′′)
∣∣ ∃p′.(p, p′) ∈ R1∧ (p′, p′′) ∈ R2} of two branch-

ing h-team bisimulations R1 and R2 is a branching h-team bisimulation;

4. the union
⋃

i∈I Ri of branching h-team bisimulations Ri is a branching h-team bisimulation.

Proof:
The proofs of (1), (2) and (4) are immediate. The proof of (3) is less immediate, but not too difficult,
thanks to Lemma 7.43. Given a pair (p1, p3) ∈ R1 ◦R2, there exists a p2 such that (p1, p2) ∈ R1 and

(p2, p3) ∈ R2. If p1
`−→m1, since (p1, p2) ∈ R1, it follows that

either `= τ and ∃m2 such that p2⇒ m2 with (p1,m2) ∈ R⊕1 and (m1,m2) ∈ R⊕1 ,

or ∃m,m2 such that p2⇒ m `−→m2 with (p1,m) ∈ R⊕1 and (m1,m2) ∈ R⊕1 .
In the former case, since (p2, p3) ∈ R2 and p2 ⇒ m2, by Lemma 7.43, there exists m3 such that

p3 ⇒ m3 with (m2,m3) ∈ R⊕2 ; in such a case, we have that, to transition p1
τ−→m1, p3 replies with

p3⇒ m3 such that (p1,m3) ∈ R⊕1 ◦R⊕2 = (R1 ◦R2)
⊕ by Proposition 5.4(4), and (m1,m3) ∈ R⊕1 ◦R⊕2 =

(R1 ◦R2)
⊕, as required.

In the latter case, since (p2, p3) ∈ R2 and p2 ⇒ m, by Lemma 7.43, there exists m′ such that
p3 ⇒ m′ with (m,m′) ∈ R⊕2 . Since (p1,m) ∈ R⊕1 , it follows that m = s2⊕m with (p1,s2) ∈ R1 and
(θ ,m) ∈ R⊕1 . Since (m,m′) ∈ R⊕2 , it follows that m′ = s3⊕m′ with with (s2,s3) ∈ R2 and (m,m′) ∈ R⊕2 .

Now, since m `−→m2, this step must be due to transition s2
`−→m2, so that m2 = m⊕m2. Since

(s2,s3) ∈ R2, to transition s2
`−→m2, s3 may respond in two ways:

either `= τ and ∃m′′ such that s3⇒ m′′ with (s2,m′′) ∈ R⊕2 and (m2,m′′) ∈ R⊕2 ,

or ∃m′′,m3 such that s3⇒ m′′ `−→m3 with (s2,m′′) ∈ R⊕2 and (m2,m3) ∈ R⊕2 .
In the former subcase, to transition p1

τ−→m1, p3 replies with p3⇒ m′′⊕m′ such that (p1,m′′⊕
m′) ∈ R⊕1 ◦R⊕2 = (R1 ◦R2)

⊕ and (m1,m′′⊕m′) ∈ R⊕1 ◦R⊕2 = (R1 ◦R2)
⊕ as required. In fact, (p1,m′′⊕

m′)∈ R⊕1 ◦R⊕2 follows by the fact that (p1,s2⊕m)∈ R⊕1 and, moreover, as (s2,m′′)∈ R⊕2 and (m,m′)∈
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R⊕2 , by the fact that (s2⊕m,m′′⊕m′) ∈ R⊕2 by additivity. Similarly, (m1,m′′⊕m′) ∈ R⊕1 ◦R⊕2 follows
by the fact that (m1,m2) ∈ R⊕1 , m2 = m2⊕m, (m2,m′′) ∈ R⊕2 and (m,m′) ∈ R⊕2 .

In the latter subcase, to p1
`−→m1, p3 replies with p3⇒ m′′⊕m′ `−→m3⊕m′ such that (p1,m′′⊕

m′)∈ (R1)
⊕ ◦(R2)

⊕ = (R1 ◦R2)
⊕ and (m1,m3⊕m′)∈ (R1)

⊕ ◦(R2)
⊕ = (R1 ◦R2)

⊕ as required. In fact,
(m1,m3⊕m′) ∈ (R1)

⊕ ◦ (R2)
⊕ follows by the fact that (m1,m2) ∈ R⊕1 , m2 = m2⊕m, (m2,m3) ∈ R⊕2

and (m,m′) ∈ R⊕2 .
The case when p3 moves first is symmetric, and so omitted. Hence, R1 ◦R2 is a branching h-team

bisimulation, too. 2

Remember that p≈bh p′ if there exists a branching h-team bisimulation containing the pair (p, p′).
This means that ≈bh is the union of all branching h-team bisimulations, i.e.,

≈bh =
⋃
{R⊆ (S∪{θ})× (S∪{θ})

∣∣ R is a branching h-team bisimulation}.

By Proposition 7.44(4), ≈bh is also a branching h-team bisimulation, hence the largest such relation.
Another direct consequence of Proposition 7.44 is that ≈bh is an equivalence relation.

Remark 7.45. (Complexity of ≈bh) From a complexity point of view, branching h-team bisimilarity
≈bh is not harder than ≈br (cf. Remark 7.14). The partition refinement algorithm checking ≈br (by
extending the LTS algorithm in [13] to BPP nets) can be adapted to consider an initial partition of
S∪{θ} in two blocks: one composed of o(S) and the other with {θ}∪ (S \o(S)). Hence, also in this
case the time complexity is essentially O(l + n2 ·m), where n is the number of places, m the number
of transitions and l the number of labels. 2

Once branching h-team bisimilarity ≈bh over the places of an unmarked BPP net has been com-
puted, checking whether two markings are branching h-team bisimulation equivalent ≈⊕bh can be done
in O(n) time. Of course, ≈⊕bh is coarser than ≈⊕br, while it is finer than ≈⊕h .

The following theorem provides a characterization of branching h-team equivalence as a suitable
bisimulation-like relation over markings.

Theorem 7.46. Let N = (S,A,T ) be a BPP net with silent moves. Two markings m1 and m2 are
branching h-team bisimilar, m1 ≈⊕bh m2, if and only if

• ∀t1 such that m1[t1〉m′1,

– either l(t1) = τ and

(i) either ∃σ2 nonempty and τ-h-sequential, such that •t1 ≈bh
•σ2, o(σ2) = ε , t•1 ≈

⊕
bh σ•2 ,

•t1 ≈⊕bh σ•2 , m2[σ2〉m′2 with m1 ≈⊕bh m′2 and m′1 ≈
⊕
bh m′2,

(ii) or ∃p2 ∈ m2 such that •t1 ≈bh p2, t•1 ≈
⊕
bh p2, with m′1 ≈

⊕
bh m2,

– or ∃σ , t2 such that σt2 is sequential, σ is τ-h-sequential, o(σ) = ε , l(t1) = l(t2), •t1 ≈bh
•σt2, •t1 ≈⊕bh σ•, •t1 ≈bh

•t2, t•1 ≈
⊕
bh t•2 , t•1 ≈

⊕
bh σt•2 , m2[σ〉m[t2〉m′2 with m1 ≈⊕bh m and

m′1 ≈
⊕
bh m′2;

• and, symmetrically, if m2 moves first.
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Proof:
Similar to the proof of Theorem 7.17 and so omitted. 2

A consequence of this theorem is that branching h-team bisimilarity is finer than branching fully-
concurrent bisimilarity.

Theorem 7.47. (Branching h-team bisimilarity is finer than branching fully-concurrent bisimi-
larity) Let N = (S,A,T ) be a BPP net with silent moves. If m1 ≈⊕bh m2, then m1 ≈b f c m2.

Proof:
Similar to the proof of Theorem 7.20 and so omitted. 2

However, the reverse implication of Theorem 7.47 does not hold: if m1 ≈b f c m2, then it may
happen that m1 6≈⊕bh m2. The same example discussed in Example 7.21 applies also to this case.
Nonetheless, if the BPP net is τ-h-sequential, we conjecture that also the reverse implication holds, so
that the two equivalences coincide for τ-h-sequential BPP nets.

Corollary 7.48. (Branching h-team bisimilarity is finer than branching interleaving bisimilar-
ity) Let N = (S,A,T ) be a BPP net with silent moves. If m1 ≈⊕bh m2, then m1 ≈bri m2.

Proof:
It follows from Theorem 7.47 and Proposition 4.31. 2

The implication above is strict. Consider again the nets in Figure 7: of course, s1 ≈bri s4⊕ s5,
however s1 6≈⊕bh s4⊕ s5.

A BPP net can be minimized w.r.t. branching h-team bisimilarity, too. The bh-reduced net w.r.t.
≈bh, which minimizes the number of places and the number of transitions, can be defined as follows.

Definition 7.49. (Bh-reduced net) Let N =(S,A,T ) be a BPP net and let≈bh be the branching h-team
bisimulation equivalence relation over its places. The bh-reduced net Nbh = (Sbh,A,Tbh) is defined as
follows:

• Sbh = {[s]
∣∣ s ∈ o(S)}, where [s] = {s′ ∈ o(S)

∣∣ s≈bh s′};

• Tbh = {([s], `, [o(m)])
∣∣ (s, `,m) ∈ T, ` 6= τ}∪{([s],τ, [o(m)])

∣∣ (s,τ,m) ∈ T, [s] 6= [o(m)]},

where [m] is defined as follows: [θ ] = θ and [m1⊕m2] = [m1]⊕ [m2]. If the net N has initial marking
m0, then Nbh has initial marking [o(m0)]. 2

Given a BPP net N = (S,A,T ) with silent moves, it is an easy exercise to prove that relation
R = {(s, [s])

∣∣ s ∈ o(S)} is a branching team bisimulation between the net o(N) = (o(S),A,o(T )),
where o(T ) = {(s, `,o(m))

∣∣ s ∈ o(S),(s, `,m) ∈ T}, and the net Nbh. Indeed, the bh-reduced net Nbh
of N w.r.t. ≈bh is isomorphic to the reduced net o(N)≈br of o(N) w.r.t. ≈br (cf. Definition 7.23).

Of course, also branching h-team bisimilarity ≈bh is not a congruence for the choice operator of
BPP, so that it is necessary to define a slight strengthening of this equivalence.
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Definition 7.50. (Rooted branching h-team bisimilarity on places) Let N = (S,A,T ) be a BPP net.
p1 and p2 are rooted branching h-team bisimilar, denoted p1 ≈bhc p2, if for all ` ∈ A

• ∀m1 such that s1
`−→m1, there exists m2 such that s2

`−→m2 and m1 ≈⊕bh m2,

• ∀m2 such that s2
`−→m2, there exists m1 such that s1

`−→m1 and m1 ≈⊕bh m2. 2

Of course, not only ≈bhc⊆≈bh, but also ≈bhc⊆≈hc, and even ≈brc⊆≈bhc, and these inclusions are
preserved by additive closure (by Proposition 5.3), so that≈⊕bhc⊆≈

⊕
bh,≈⊕bhc⊆≈

⊕
hc as well as≈⊕brc⊆≈

⊕
bhc.

The following theorem provides a characterization of rooted branching h-team bisimilarity as a
suitable bisimulation-like relation over markings, i.e., over a global model of the overall behavior.

Theorem 7.51. Let N = (S,A,T ) be a BPP net. If two markings m1 and m2 are rooted branching
h-team bisimulation equivalent, m1 ≈⊕bhc m2, then

1. ∀t1 such that m1[t1〉m′1, ∃t2 such that •t1≈bhc
•t2, l(t1) = l(t2), t•1 ≈

⊕
bh t•2 , m2[t2〉m′2 and m′1≈

⊕
bh m′2,

2. ∀t2 such that m2[t2〉m′2, ∃t1 such that •t1≈bhc
•t2, l(t1) = l(t2), t•1 ≈

⊕
bh t•2 , m1[t1〉m′1 and m′1≈

⊕
bh m′2.

Proof:
Similar to the proof of Theorem 7.36 and so omitted. 2

Corollary 7.52. (Rooted branching h-team bisimilarity implies rooted branching interleaving
bisimilarity) Let N = (S,A,T ) be a BPP net. If m1 ≈⊕bhc m2, then m1 ≈c

bri m2.

Proof:
We want to prove that if m1 ≈⊕bhc m2, then

• ∀t1 such that m1[t1〉m′1, ∃t2 s.t. m2[t2〉m′2 with l(t1) = l(t2) and m′1 ≈bri m′2,

• ∀t2 such that m2[t2〉m′2, ∃t1 s.t. m1[t1〉m′1 with l(t1) = l(t2) and m′1 ≈bri m′2,

so that m1 ≈c
bri m2 follows directly by Definition 3.11. However, this implication is obvious, due to

Theorem 7.51 and Corollary 7.48. 2

8. Conclusion, Related Literature and Future Research

The ten team-style bisimulation-based behavioral equivalences proposed in this paper are truly con-
current equivalences which seem the most natural, intuitive and simple extension to BPP nets with
silent moves of the corresponding interleaving bisimulation-based behavioral equivalences on LTSs.
Each of these equivalences has rather low complexity, actually much lower than the corresponding
interleaving behavioral equivalence for BPP nets. For instance, (strong) interleaving bisimilarity ∼int

is PSPACE-complete [22] on BPP nets, while (strong) (h-)team bisimilarity ∼⊕ can be checked in
polynomial time. Moreover, they have a clear correspondence with causality-based semantics for BPP
nets:
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• Strong team bisimilarity ∼⊕ coincides with state-sensitive strong fully-concurrent bisimilarity
∼s f c (Theorem 5.18).

• Strong h-team bisimilarity∼⊕h coincides with strong fully-concurrent bisimilarity∼ f c (Theorem
5.27);

• Weak team bisimilarity ≈⊕ implies state-sensitive weak fully-concurrent bisimilarity ≈s f c for
τ-sequential BPP nets (Theorem 6.19). We also conjecture that the converse implication holds
for τ-sequential BPP nets.

• Weak h-team bisimilarity ≈⊕h implies weak fully-concurrent bisimilarity ≈ f c for τ-h-sequential
BPP nets (Theorem 6.39). We also conjecture that the reverse implication holds for τ-h-
sequential BPP nets.

• Branching team bisimilarity ≈⊕br implies state-sensitive branching fully-concurrent bisimilarity
≈sb f c for BPP nets (Theorem 7.20). We also conjecture that the reverse implication holds for
τ-sequential BPP nets.

• Branching h-team bisimilarity≈⊕bh implies branching fully-concurrent bisimilarity≈b f c for BPP
nets (Theorem 7.47). We also conjecture that the reverse implication holds for τ-h-sequential
BPP nets.

From a technical point of view, these very simple (and decidable in polynomial time) team-style
bisimulation-based behavioral equivalences seem a sort of egg of Columbus: a simple (actually, a bit
surprising in its simplicity) solution for a presumedly very hard problem.

Our definitions of the causal semantics for BPP nets, described in Section 4, were inspired by pre-
vious work on fully-concurrent bisimilarity [3], history-preserving bisimilarity [10, 33] and structure-
preserving bisimilarity [11].

The research outlined in Sections 6 and 7 is a generalization of the our previous work [18], where
we approached the problem of defining weak team bisimilarity and branching team bisimilarity for
the simpler Petri net class of finite-state machines (nets whose transitions have singleton pre-set and
singleton or empty post-set). There we also showed that rooted weak team bisimilarity ≈⊕c and rooted
branching team bisimilarity≈⊕brc are congruences for the operators of CFM [16], a process algebra that
can represent all the finite-state machines, up to net isomorphism, and, moreover, we provide a sound
and complete, finite axiomatization of these congruences. Similarly, in [20] we provided a sound and
complete, finite axiomatization of strong h-team bisimilarity ∼⊕h for BPP.

As a future work, it would be interesting to investigate a (possibly finite) axiomatization of rooted
weak (h-)team bisimilarity and rooted branching (h-)team bisimilarity over the process algebra BPP.
These axiomatizations might be obtained by adding, to the sound and complete set of axioms of rooted
weak/branching bisimilarities for finite-state CCS [26, 27, 12, 15], the expected axioms for the parallel
operator, stating that it is associative, commutative, with 0 as its identity. We conjecture that the same
set of axioms in [18, 20] can be slightly adapted also for BPP.

However, note that these axiomatizations would be sound only for τ-sequential BPP, i.e., the frag-
ment of BPP where a τ action can be used to prefix sequential terms only. For instance, the first
τ-law a.τ.p ≈ a.p is not sound if p is not a sequential term. In Figure 16 we show an instance
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a)

a.τ.(b.0 |c.0)

a

τ.(b.0 |c.0)

τ

b.0 c.0

b c

b)

a.(b.0 |c.0)

a

b.0 c.0

b c

Figure 16. The first τ-law is invalid for non-τ-sequential BPP nets

of this law when p = b.0 |c.0, where the nets are defined according to the semantics in [16]. If
a.τ.(b.0 |c.0) a−→ τ.(b.0 |c.0), then a.(b.0 |c.0) cannot reply because its only possibility is the move
a.(b.0 |c.0) a

=⇒b.0⊕ c.0, but then τ.(b.0 |c.0) 6≈⊕ b.0⊕ c.0, as the two markings have different size.
Note that the net for a.τ.(b.0 |c.0) is weak fully-concurrent bisimilar to the net for a.(b.0 |c.0); hence,
this example shows that, for general (i.e., non-τ-h-sequential) BPP nets, weak fully-concurrent bisim-
ilarity ≈ f c does not imply weak h-team bisimilarity ≈⊕h .

Another line of open problems is related to better investigate the algorithmics of the ten team-style
behavioral equivalences we have discussed in this paper.

For instance, we have mentioned in Remark 5.11 that the classic Kanellakis-Smolka algorithm can
be easily adapted to compute strong team bisimilarity on places ∼ in O(m ·n2), where n is the number
of places and m the number of transitions. Further study is necessary to see whether the Paige-Tarjan-
Valmari algorithm [30, 37] for computing bisimilarity on LTSs in O(m · logn), where n is the number
of states and m of transitions, can be generalized to BPP nets in order to compute ∼.

Similarly, in Remark 7.14 we have mentioned that the Groote-Vaandrager algorithm [13] (based
on a partition refinement algorithm in Kanellakis-Smolka style) can be easily adapted to compute
branching team bisimilarity on places ≈br in O(l + n2 ·m), where n is the number of places, m the
number of transitions and l the number of labels. Further study is necessary to see whether the more
efficient algorithm in [14, 21] for branching bisimulation on LTSs, which runs in O(m · logn) (where
n is the number of states and m of transitions), can be adapted to BPP nets in order to compute ≈br.

Finally, further work is necessary to define a precise algorithm for computing, given a BPP net N,
its saturated net N′ (cf. Remark 6.12), in order to substantiate our claim that weak team bisimilarity on
places≈ can be computed in polynomial time. Moreover, further work is necessary to see whether the
more efficient algorithm in [35] for computing weak bisimulation equivalence over a finite-state LTS
(which does not require to explicitly compute the whole transitive closure beforehand and has O(m ·n)
time complexity, where n is the number of the states and m of the transitions) can be generalized to
BPP nets in order to compute ≈.
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