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Abstract

We investigate the relationship between market concentration and

industry innovative effort within a familiar two-stage model of R&D

race in which firms compete à la Cournot in the product market.

With the help of numerical simulations, we show that such a setting

is rich enough to generate Arrovian, Schumpeterian and inverted-U

curves. We interpret these different patterns on the basis of the rela-

tive strength of the technological incentive and the strategic incentive.

We then bridge our theoretical results and some recent empirical re-

search.
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1 Introduction

In a seminal paper, Aghion et al. (2005) collect empirical evidence about

the relationship between product market concentration and the intensity of

innovative activity at the aggregate economy level. They show that such

relationship follows an inverted-U shape pattern with respect to market con-

centration as measured by a modified Lerner index. They then go on to ratio-

nalize such curve by means of a model in which technologically asymmetric

firms strive for improving their cost gap in R&D races under uncertainty.

Innovations occur step-by-step and the effect of market competition on R&D

investment results from the balance between what they call the “Schumpete-

rian” effect and the “escaping competition” incentive. Their panel of firms

comes from UK industries, 1973-94. As for the indicator of innovation inten-

sity, they select the average number of patents (weighted by citations) taken

out in the U.S. patent office. Incidentally, it is worth noting that the number

of patents underestimates the R&D effort, as it records only successful and

patented inventions. While derived in an elegant general equilibrium model,

their conclusions rely upon severe assumptions: all industries are homoge-

neous duopolies, no entry, spillovers are such that the leader has no benefit

from innovating. Hence, “it is not entirely clear why even lagging firms can-

not catch up to or even leapfrog the current best technology through their

innovative efforts” (Gilbert 2006, p. 199).

Aghion et al. (2005) have then revitalized the old debate about the rela-

tionship between market structure and innovation. Such debate1 was mostly

focussed on a binary menu contrasting the arguments behind Schumpeter

(1942) well-known alleged superiority of monopoly in driving innovative ac-

1See Reinganum (1989), for an excellent survey of the early literature. More recent

surveys tackling also competition policies are Gilbert (2006) and Shapiro (2012). Whether

competitive pressure fosters innovation depends also on competition modes. On this, see

the interesting results in Vives (2008).
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tivity and the opposite conclusion by Arrow (1962). By showing that the

relationship may exhibit an inverted-U shape, they provide an important

empirical contribution; moreover, their model offers a theoretical frame ac-

commodating such pattern.2 An exhaustive view of the debate about the

inverted-U pattern in industrial organization and growth theory is in Aghion

et al. (2015a,b, 2019).

The traditional debate on innovation races that started towards the end

of the 1970s looked for monotone relationships between industry structure

(or the intensity of market competition) and aggregate innovation efforts (or

incentives), since the issue at stake was whether the Schumpeterian view

or the Arrovian one was correct, with controversial results (cf. Reinganum,

1989, inter alia). The very fact that the attention of researchers focussed on

monotone patterns might have caused the possible arising of non-monotone

ones to remain overlooked.

While “to the best of our knowledge, no existing model of product market

competition and innovation predicts an inverted-U pattern” (Aghion et al.,

2005, p. 722), our aim is to illustrate that models belonging to the backbone

of the literature on this matter may indeed generate concave and single-

peaked patterns under plausible conditions. In this paper, we revisit those

models of product market competition and innovation to show that they

2On the inverted-U shape relationship, see the empirical evidence collected by Mansfield

et al. (1968). To the best of our knowledge, the first scholars hinting at such shape within a

theoretical model are Kamien and Schwartz (1976). They “address the reported empirical

finding that the rate of innovative activity increases with the intensity of rivalry up to a

point, peaks, and declines thereafter with further increase in the competitiveness of the

industry” (Kamien and Schwartz, 1976, p. 247). However, they do not explicitly model

the R&D race as a game, and the prize to the winner is independent of the intensity of

rivalry. Also Spence (1984, p. 110) shows numerically that the market incentive for cost

reductions, for low levels of spillover in the R&D activity, initially rises and then falls

w.r.t. the number of firms.
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may also predict the presence of an inverted-U shape curve. We borrow

from the game-theoretic literature utilized in the ‘90s and follow Lee and

Wilde (1980). However, we do not blackbox - as they do - the nature of

market competition, but we model it explicitly as a homogeneous oligopoly à

la Cournot. In such a static two-stage game of R&D, firms participate in an

uncertain race to get a non-drastic cost-reducing innovation which will allow

the winner to compete with a cost advantage in the market game. There is no

spillover and Cournot competition in the product market allows all (initially

identical) firms to be active also in the asymmetric post-innovation non-

cooperative equilibrium. For sake of tractability, we adopt a linear-quadratic

specification of the R&D technology and the market game of Lee and Wilde

(1980) as in Delbono and Denicolò (1991), where it is shown that, under

Cournot competition in the product market,3 aggregate R&D may respond

both ways to increases in market concentration. However, the large number

of parameters prevents us from deriving clear-cut analytical conclusions as

for the existence of an inverted-U shape relationship. Hence, we resort to

numerical simulations and show the emergence of such a shape. Moreover,

albeit simple, our model is rich enough to generate also an Arrovian as well

as a Schumpeterian behaviour in the relationship between aggregate R&D

effort and the numerosity of firms.

Specifically, it turns out that, for a given market size, if the innovation is

non-drastic:

1. A low productivity of the R&D technology (and/or a high level of

the discount rate) yields a Schumpeterian relationship, e.g. the equilibrium

aggregate R&D effort is maximised under monopoly and then monotonically

3The first attempt of modelling the market game as a Cournot one to investigate the

relationship between innovation and concentration is Horowitz (1963). Stewart (1983)

drops the “winner-takes-all” assumption in Lee and Wilde’s model, but he does not model

explicitly the market game.
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decreases with the number of firms. This holds irrespective of the size of the

innovation.

2. When the productivity of the R&D technology is high (and/or the

level of the discount factor is low), then two scenarios emerge, depending on

the magnitude of the cost reduction reached by the winning firm.

2a. If such a reduction is small w.r.t. the given market size, then we

detect an inverted-U shape curve between aggregate R&D and the number

of firms.

2b. If the cost reduction is large - making the innovation almost dras-

tic - then we observe an Arrovian pattern, e.g., the aggregate investment

monotonically grows with the number of firms.

The shapes of aggregate R&D emerging from the model find their coun-

terparts in recent empirical analysis to which we will come back later. While

simpler than Aghion et al. (2005)’s, our model , which is partial equilibrium

in nature, succeeds to generate a richer set of patterns. Moreover, as in the

vast majority of the literature, our conclusions hold at the industry level,

and not at the aggregate one as in their general equilibrium framework.

The ensuing analysis also has some bearings for horizontal merger policy,

an issue which has been lively debated in recent literature.4 This discussion

has been spurred by the Dow-DuPont merger case faced by the European

Commission, in which the impact of the merger on the pace of technological

progress played a central role in the assessment of the Commission.

The paper is organized as follows. In section 2 we set the background. In

section 3 we specialise the general model and summarize the findings from

a large number of numerical simulations by providing some intuition behind

different patterns. Section 4 aims at assessing concordance between theory

and some empirical research. Section 5 concludes.

4For a detailed account of the debate started by Federico et al. (2017), see see Haucap

et al. (2019) and Marshall and Parra (2019).

5



2 The background

Consider n identical firms investing in R&D to be first in getting a techno-

logical improvement.5 Firms act noncooperatively and choose an investment

expenditure x to maximise the discounted stream of expected profits. Tech-

nological uncertainty is of the exponential type, i.e., the discovery time is

described by an exponential (or Poisson, or ‘memoryless’) distribution func-

tion. Firm i = 1, 2, ...n then maximises the following payoff

Ωi =
∫ ∞

0
e−(r+H)t [h (xi)Vi +Hivi + πi − xi] dt (1)

where r > 0 is the common discount rate, h (xi) is i’s hazard rate (i.e., the

instantaneous probability of innovating conditional upon not having inno-

vated before), H =
∑n
i=1 h (xi) , Hi = H − h (xi) , πi are i’s current gross

profits, Vi (vi) is the discounted continuation value of the game if i wins

(loses) the race. This is the formulation of Lee and Wilde (1980) which mod-

ifies Loury’s (1979) as for the specification of the R&D cost. Here, they are

non-contractual, that is, a fixed rate of spending xi until a firm succeeds.6

As for the hazard function, as in Loury (1979) and its follow-ups, it is

assumed that it is strictly concave, with h′ (xi) > 0, h′′ (xi) < 0, h(0) = 0,

limxi→0 h
′ (xi) = ∞ and limxi→∞ h

′ (xi) = 0. These are the so-called Inada

conditions ensuring the existence of an interior solution and the satisfaction

of the second order condition.

The specification of the nature of the R&D cost matters as for the com-

parative statics properties of the model. Indeed, while Loury (1979) proves

5Should firms differ in terms of their innovation technologies, credit constraints would

enter the picture and might contribute to the arising of an inverted-U pattern, as shown

in Bonfatti and Pisano (2020).
6In Marshall and Parra (2019), the reference setup is similar, except that firms are

heterogeneous, as some of them are innovators without productive facilities and therefore

must auction their inventions.
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that, in the Nash equilibrium, the optimal individual R&D effort decreases

in the number of firms, Lee and Wilde (1980) prove the opposite.7

Slightly later, a parallel debate started on the relationship between market

power and the incentive to get an exogenous innovation, with Gilbert and

Newbery (1982, 1984) and Reinganum (1983), reaching opposite conclusions

about the persistence of monopoly. This discussion echoes the old dichotomy

between Schumpeter (1942) and Arrow (1962). The subsequent literature

focusses on the impact of industry structure or the intensity of competition

(e.g., Bertrand vs Cournot) for a given market structure on the aggregate

investment in R&D, and is accurately accounted for in Tirole (1988) and

Reinganum (1989), inter alia. On the basis of the original contraposition

between Schumpeterian and the Arrovian views, the main concern dealt with

the sign of the monotonicity of the aggregate innovative effort w.r.t. industry

structure. Aghion et al. (2005), instead, show the emergence of a concave and

single-peaked relationship from the data and rationalise it with a theoretical

model.

In this paper, we aim at showing that the early approach using stochastic

race models along the lines of Loury (1979), Dasgupta and Stiglitz (1980), Lee

and Wilde (1980) and Reinganum (1983) may indeed generate both monotone

patterns as well as the inverted-U shape one.

To do so, we make a further step by specifying the nature of prizes in

7In Loury’s (1979) formulation, the firm’s maximand is:

Ωi =

∫ ∞
0

e−(r+H)t [h (xi)Vi +Hivi + πi] dt− xi

where xi is a lump-sum paid by firm i at the outset. “The intuition behind these con-

clusions is simple. In the Dasgupta and Stiglitz (1980) and Loury model, an increase in

the number of firms reduces the expected benefit to investment... leaving expected costs

unchanged. The firm responds by reducing investment. In the Lee and Wilde model, both

expected benefits and expected costs are reduced by the addition of another firm... and

the net effect is to enhance incentives to invest” (Reinganum, 1984, p. 62).
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the race, following Delbono and Denicolò (1991) who consider firms striving

for a non drastic cost-reducing innovation and Cournot competition in the

market game. The expected stream of discounted profits for firm i becomes:

Ωi =
h (xi)π

∗
W/r +Hiπ

∗
L/r + πC − xi

r +Hi + h (xi)
(2)

where π∗W is the instantaneous profit accruing forever to the winner of the

R&D race, π∗L is the instantaneous profit accruing forever to each loser, and

πC is the instantaneous profit in the pre-innovation symmetric Cournot equi-

librium. In the symmetric equilibrium, the following condition must hold:

(π∗W − π∗L) (n− 1)h (xi)h
′ (xi)

r
+
(
π∗W − πC

)
h′ (xi)−r−nh (xi)+xh′ (xi) = 0

(3)

It can be shown (Beath et al., 1989; and Delbono and Denicolò, 1990)

that the equilibrium R&D effort is increasing in both π∗W −πC and π∗W −π∗L.

Let us label the former as technological incentive and the latter as strategic

incentive. Notice that π∗W − πC is the difference between the profit of the

winner and the current profit. Such a difference captures what has been called

the ‘profit incentive’ by Beath et al. (1989), the ‘stand alone incentive’ by

Katz and Shapiro (1987) and it is related to - but it doesn’t coincide with -

the ‘replacement effect’ in Fudenberg and Tirole (1986) who follow Arrow’s

(1962) expression.

On the other hand, π∗W − π∗L is the difference in profits between winning

and losing the race, and it captures what has been named as the ‘competitive

threat’ by Beath et al. (1989), the ‘incentive to pre-empt’ by Katz and

Shapiro (1987) and the ‘efficiency effect’ by Fudenberg and Tirole (1986)

and Tirole (1988).

From the standpoint of the debate inaugurated by Aghion et al. (2005),

we can single out an elementary property of the aggregate R&D effort which

was first underlined in Delbono and Denicolò (1991, p. 959). Writing the
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individual symmetric equilibrium effort as x∗ (n) , we clearly have8

∂ (nx∗ (n))

∂n
= x∗ (n) + n · ∂x

∗ (n)

∂n
= x∗ (n)

[
1 +

n

x∗ (n)
· ∂x

∗ (n)

∂n

]
(4)

which, if ∂x∗ (n) /∂n < 0, may be nil for some n (possibly more than once, as

the expression in square brackets will not be linear w.r.t. n, in general). This

amounts to saying that ∂x∗ (n) /∂n < 0 is a necessary (but not sufficient) con-

dition for the arising of inverted U’s. This fact could have triggered a deeper

investigation of the relationship between aggregate effort and market struc-

ture in the vein of the debate between Schumpeter (1942) and Arrow (1962),

possibly spotting a non-monotone behaviour as in Aghion et al. (2005). If

this idea had emerged at the time, one should have tried to sign the following

expression:
∂2 (nx∗ (n))

∂n2
= 2 · ∂x

∗ (n)

∂n
+ n · ∂

2x∗ (n)

∂n2
(5)

In (5), the sign of ∂x∗ (n) /∂n was established, on the basis of various speci-

fications of the model.9 Conversely, the sign of ∂2x∗ (n) /∂n2 has never been

discussed, as (5), in itself, was not considered.

What we are setting out to do in the remainder of the paper is to specify

all of the components of (2) as in Delbono and Denicolò (1991) to show the

8Wherever useful, we follow this literature by treating n as a continuous variable.
9If the winner takes all, under contractual R&D costs as in Loury (1979) and Dasgupta

and Stiglitz (1980), the sign is negative. Therefore, in their setting, one might have

envisaged a peak in industry effort w.r.t. concentration, because (4) may vanish for some

values of n. Under non-contractual costs, as in Lee and Wilde (1980), it is positive. Under

non-contractual R&D costs and Cournot competition, as in Delbono and Denicolò (1991),

the sign may change, because both pre- and post-innovation profits are all decreasing in n.

Hence the sign of ∂x∗ (n) /∂n is ambiguous - and so is the sign of ∂ (nx∗ (n)) /∂n without

further specification of cost and demand. Of course, this ambiguity would persists also

outside Cournot rules as long as profits are decreasing in n. This was already noted in

Delbono and Denicolò (1991, p. 955).
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arising of both Schumpeterian and Arrovian patterns of aggregate R&D as

well as an inverted-U shaped curve as in Aghion et al. (2005).

3 The specialised model

We consider the homogeneous Cournot model with a linear demand p = a−Q
and a constant marginal production cost initially equal to c ∈ (0, a). If one

defines the initial market size as s ≡ a−c and the cost reduction as d ≡ c−c∗,
where c∗ is the new marginal cost patented by the winner of the R&D race

(s > d because we focus on non-drastic innovation), then the relevant profits

to be substituted into (2) are

π∗W =
(s+ nd)2

(n+ 1)2 ; π∗L =
(s− d)2

(n+ 1)2 ; πC =
s2

(n+ 1)2 (6)

As for the hazard function, we stipulate that h (xi) = 2µ
√
xi, where µ is a

positive parameter measuring the efficiency of R&D expenditure. In what

follows, we consistently use θ ≡ µ/r to save on notation.

Given the triple of profits in (6) and the above specification of the haz-

ard function, the first order condition (FOC) taken on (2) w.r.t. xi, under

symmetry, is

−θ (2n− 1)x+ [2θ2 (n− 1) (π∗W − π∗L)− 1]
√
x+ θ

(
π∗W − πC

)
[2nθ
√
x+ 1]

2√
x

= 0 (7)

which yields:

x± =
Φ + 2θ2 [π∗W + 2 (n− 1) π∗L −Ψ]± Ξ

√
Φ + 4θ2 [Ψ + nπ∗W + (n− 1)π∗L]

2θ2 (2n− 1)2

(8)

where Ψ ≡ (2n− 1) πC , Φ ≡ 1 + 4θ4 (n− 1)2 (π∗W − π∗L)2 and Ξ ≡ 1 −
2θ2 (n− 1) (π∗W − π∗L). Notice that

sign (x+ − x−) = sign (Ξ) (9)
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and Ξ = 0 at

θ± = ±
√

n+ 1

2d (n− 1) [2s+ d (n− 1)]
(10)

which, considering that θ > 0, implies

Ξ > 0 ∀ θ ∈
(
0, θ+ ≡

√
n+1

2d(n−1)[2s+d(n−1)]

)
Ξ < 0∀ θ > θ+

(11)

Before proceeding, it is worth noting that limn→1 θ+ = ∞, limn→∞ θ+ = 0,

∂θ+/∂n < 0 and ∂2θ+/∂n
2 > 0. That is, (i) θ+ is decreasing and convex in

n; (ii) in monopoly, Ξ > 0 surely; and finally (iii) under perfect competition,

Ξ < 0 surely.

Since the numerator of the expression on the l.h.s. in (7) is concave in x,

the foregoing analysis proves

Proposition 1 The equilibrium individual R&D effort is x∗ = max {x−, x+},
with

max {x−, x+} = x+ ∀ θ ∈ (0, θ+)

max {x−, x+} = x− ∀ θ > θ+

This Proposition, in combination with the limit properties of θ+, entails

that when n = 1, the relevant R&D effort is x∗M = x+|n=1 ; if instead n

becomes infinitely large, the equilibrium R&D effort is limn→∞ x−.

We are now in a position to assess the impact of industry structure on

the aggregate R&D effort.

3.1 Schumpeter, Arrow, and inverted-U’s

Define the aggregate equilibrium investment as X∗ = nx∗. Despite the use

of an extremely simplified specification of the model, X∗ remains highly non

linear in n, which prevents the analytical treatment of the problem under
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scrutiny and calls for numerical simulations.10 We distinguish two cases,

depending on the size of θ = µ/r.11 Hence, what follows lends itself to a

twofold interpretation, which can focus either on the productivity of R&D

for a given level of impatience, or the opposite. In both scenarios, we set

parameter values so that (2) be positive.

Scenario I: θ ≤ θ+ In this case, µ and r are set so as to identify values of

θ ∈ (0, θ+] . Hence, by Proposition 1, aggregate effort is X∗+ = nx+.

First of all, we evaluate the behaviour of X∗+ w.r.t. n in n = 1. Were the

aggregate effort be increasing in n under monopoly, this would exclude

a Schumpeterian pattern. To see that this is not the case, note that

the following derivative:

∂X∗+
∂n

∣∣∣∣∣
n=1

= −6 (1 + Λ) + dθ2 [4d2sθ2 + d (8s2θ2 + 3) + 2s (8 + 5Λ)]

4θ2Λ
(12)

where Λ ≡
√

1 + d (d+ 2s) θ2, is clearly negative. Moreover, the limit

values of X∗+ are:

X∗+
∣∣∣
n=1

= d(d+2s)θ2+2(1+Λ)
4θ2

> 0

limn→∞X
∗
+ = 0

(13)

These properties, of course, do not exclude a non-monotone behaviour

of industry investment in some range of n greater than one but not

arbitrarily large. For this reason we switch to numerical simulations,

fixing once and for all s = 1. We have performed simulations using the

following parameter constellations:

n ∈ [1, 100] ; d ∈ [1/100, 10] ; θ ∈ [1/100, 1] (14)

10We have performed simulations using the ManipulatePlot device in Wolfram’s Math-

ematica 10.1.
11In Delbono and Denicolò (1991), only one solution is considered because attention

is focussed on low values of θ, in particular so low that the second-order effects of R&D

efficiency (or impatience, as measured by r) can be neglected.

12



focussing on cases where s > d, x∗+ > 0 and Ωi

(
x∗+
)
≥ 0. The quali-

tative properties of the pattern emerging from this simulation are de-

picted in Figure 1, displaying a Schumpeterian behaviour of aggregate

investment w.r.t. industry structure, as X∗+ consistently looks decreas-

ing and convex in n.12

Figure 1 The Schumpeterian case

6

-

X∗

n(1, 0)

The curve appearing in Figure 1 has been obtained by setting d = 1/50

and θ = 3/2. These values describe a situation in which the cost

reduction is very small and the efficiency of R&D (time discounting)

12If θ = θ+, the aggregate industry effort is nx∗+ = nx∗− and its expression is

X∗ =
dn2 (2s+ nd)

(n+ 1)
2

(2n− 1)

which is decreasing and convex in n for all s > d.
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is very low (high). This amounts to saying that the winner gains a

very small profit increase and the remaining n− 1 firms lose very little

as compared to the ex ante symmetric equilibrium. This drives the

Schumpeterian outcome.

Some intuition behind the Schumpeterian pattern may rely upon the

technological incentive vis à vis the strategic one. A necessary condi-

tion for the aggregate effort to be decreasing in n is that x∗M > x∗+, and

this inequality certainly holds if both incentives are greater for the mo-

nopolist than for the generic oligopolist. Straightforward calculations

show that the strategic incentive is always greater for the monopolist,

whereas the technological incentive is greater for the monopolist when

the cost reduction is small.

The same argument can be spelled out, perhaps more explicitly, in the

following terms. This is a situation in which the efficiency of the inno-

vative process is low and/or firms are highly impatient: the two factors

have the same effect, as - for any given µ, even a high one - an extremely

high discount rate shrinks any future gain; conversely, given r, a negli-

gible efficiency level of the R&D technology delivers equally negligible

cost advantages. Furthermore, the size of the cost advantage driven

by the innovation is small. Hence, the monopolist invests more than

oligopolists because the latter (very impatient, for any given R&D pro-

ductivity level) have little to gain from winning the race and becoming

the lowest cost firm in the asymmetric post-innovation Cournot-Nash

equilibrium. As competition intensifies, each individual investment in

R&D shrinks and so does the aggregate investment. On the opposite,

even for a small cost reduction, the (equally impatient) monopolist will

fully appropriate the extra profit caused by the cost reduction and will

find it profitable to invest so as to replace itself in the monopolistic

position.

14



Scenario II: θ > θ+ In this case, µ and r are set so as to identify values of

θ > θ+. Hence, by Proposition 1, aggregate effort is now X∗− = nx− for

n ≥ 2, while x∗M = x+|n=1.

To begin with, observe that

sign
∂X∗−
∂n

∣∣∣∣∣
n=1

= signΥ (15)

where

Υ ≡ 6 + dθ2
[
3d+ 16s+ 4ds (d+ 2s) θ2

]
− (16)

2
√

1 + dθ2 (d+ 2s)
(
3 + 5dsθ2

)
> 0

This clearly rules out a Schumpeterian pattern, while leaving open both

possibilities for an Arrovian behaviour or an inverted-U shape curve.

Making ourselves sure again that s > d, x∗− > 0 and Ωi

(
x∗−
)
≥ 0, our

numerical simulations illustrate that an Arrovian pattern emerges when

the cost reduction is large vis à vis market size, whereby the model is

close to a ‘winner-takes-all’ setup, while a concave and single-peaked

pattern may obtain if the innovation is small.

The fact that X∗− is monotonically increasing in n when θ is large and

the innovation is almost drastic is intuitively due to the fact that, in

such a case, the prize to the winner is very close to the pure monopoly

profits associated with the new technology. Notice that a sufficient

condition to obtain an Arrovian pattern is that both the technological

and the strategic incentives are greater for the oligopolist than for the

monopolist. Suppose the innovation is drastic (d = s) ; then, the tech-

nological incentive is greater for the oligopolist, whereas the strategic

incentive is identical across firms. By continuity, if d is lower than s but

close to it, also the strategic incentive is greater for the oligopolist.13

13Incidentally, this is precisely the setting considered by Reinganum (1983) in her reply

to Gilbert and Newbery (1982).
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For instance, keeping s at 1 and taking as a reference set of intervals

the following:

n ∈ [1, 100] ; d ∈ [1/100, 10] ; θ ∈ [1/100, 100] , (17)

one has to take into account the constraint θ > θ+, which depends on

{d, n}. A pair which surely satisfies this constraint is {d = 1/2, θ = 50}
and this generates the Arrovian graph appearing in Figure 2, where

the curve starts at n = 2 and the optimal monopoly effort x+|n=1 is

identified by the flat line.

To clarify the details of what is behind the curve in Figure 2, remember

that θ now is “large”, meaning that the productivity of R&D is high

as relative to any given level of the discount factor. Increasing mar-

ket competition, as measured by n, spurs the individual effort because

in this case the cost reduction is large enough to grant a substantial

profit increase to any oligopolist, whereas the monopolist is penalised

from being already reaping high profits (this is the so-called replace-

ment effect). The resulting pattern, unsurprisingly, echoes Arrow’s

original conclusions, obtained by looking at perfect (or Bertrand) com-

petition under which, in the asymmetric post-innovation equilibrium,

each oligopolist would gain a substantial increase in profit, as compared

to the pre-innovation equilibrium. Hence, an increase in the number of

firms increases also the aggregate R&D effort of the industry.
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Figure 2 The Arrovian case
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The remaining pattern, which is in Figure 3, reflects the inverted-U

shape we know from Aghion et al. (2005). In our setting, such a curve

emerges when the cost reduction is very small as compared to market

size. Taking as a general reference (17), then fixing {d = 1/100, θ = 50} ,
and accounting for the integer constraint on n, the peak of X∗− is in

correspondence of n = 3, with X∗− ' 0.122, while xM ' 0.007.
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Figure 3 The inverted-U case
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The intuition behind this non monotonic pattern relies upon the con-

trast between the small technological gain and the price effect driven by

the numerosity of rivals. The situation is like the one in Scenario 2, ex-

cept for the size of the cost reduction which is now small (d = 1/100).

Hence, the efficiency of the R&D productivity (and/or the high pa-

tience) pushes firms to behave à la Arrow as long as the number of

rivals is not too large. However, there is a critical threshold of n be-

yond which the effect of the limited size of the innovation is more than

offset by the impact of a greater number of firms on the market equi-

librium price in the asymmetric post-innovation Cournot-Nash equilib-

rium. Hence, as market competition intensifies and erodes profits, the

curve slopes downwards as in the Schumpeterian setting.
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4 Bridging theory and evidence

The conflicting conclusions emerged in the theoretical literature has not

helped the empirical research aimed at detecting the relationship between the

intensity of competition, somehow measured,14 and firms’ innovative effort.

In the pessimistic words of Cohen (1995, p. 234), “game-theoretic models of

R&D rivalry do not provide clear, testable empirical implications”. However,

usually without a formal theoretical model, a growing number of empirical

papers has tackled the issue at stake.

The contribution by Peneder and Woerter (2014), which contains also a

rich survey of the relevant empirical research, seems among the most relevant

ones to our purposes. We might claim that our model could provide a the-

oretical support to their empirical findings, especially as for the inverted-U

shaped curve. Using a large panel of Swiss firms observed in the periods be-

tween 1999 and 2008, they estimate a simultaneous system of three equations

and obtain indeed a robust non linear inverted-U relationship between the

impact of competition and firms’ R&D investment. Moreover, by modelling

the patterns of dynamic adjustment, they identify three stable outcomes

(equilibria) corresponding to: (i) an uncontestable monopoly with negligi-

ble R&D effort; (ii) an Arrovian pattern in which increasing competition

increases the innovative effort, and (iii) low innovative effort with intensive

market competition. The sequence of these patterns correspond empirically

14Some authors choose the HHI, others the Lerner index; results are sensible to the

choice, as reported by Peneder and Woerter (2014), who choose the number of competi-

tors to capture the intensity of competition. In their estimates, the number of firms is

endogenous, as they identify two different mechanisms. The first going from the inten-

sity of competition to firms’ incentive to invest in R&D; the second going from successful

innovation to the intensity of market competition. The system is then closed by a third

mechanism linking the research investment and the innovative outcome. In our model,

the assumption of Cournot competition allows one to consider the number of firms as a

reasonable statistics for the intensity of competition.
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to the inverted-U shape curve investigated in the third case considered in our

model (high productivity of the R&D technology and small cost reduction).

Using a detailed dataset from a yearly survey of the Bank of Italy, Bon-

tempi et al. (2020) analyse a large number of observations stemming from

3,138 firms operating in different industries in the period 2003-2012. While

the focus of their paper mostly differs from ours, their working sample allows

them to investigate also the relationship between aggregate R&D investment

and different measures of market power.

The inverted-U shape curve emerges for a subset of the Italian panel

data, for example in industries as Computer, Pharmaceutical, Shipbuild-

ing and most of Low Tech sectors as Textile. For other industries, their

study indicates different patterns, including the U shape, the Arrovian and

the Schumpeterian ones. Importantly, relying upon data at firms’ level, the

econometric analysis of Bontempi et al. (2020) indicates a route to estimate

the nature and shape of aggregate innovative effort w.r.t. different measures

of competitive pressure. Therefore, such estimates could provide crucial in-

formation whenever horizontal merger proposals have to be assessed within

an industry. Indeed, “For merger enforcement, we need a framework to eval-

uate the effects of a proposed merger on innovation. In practice, the relevant

mergers are those between two of a small number of firms who are best placed

to innovate in a given area ... I argue here that we do not need a universal

theory of the relationship between competition and innovation ...” (Shapiro,

2012, p. 363). Clearly, if aggregate R&D monotonically decreases in n as

in the Schumpeterian case, then any horizontal merger fosters industry-wide

innovative effort, while the opposite applies under an Arrovian pattern. In

the case of inverted-U pattern, the evaluation of the merger needs estimating

the relative position of actual aggregate R&D w.r.t. the peak of the curve.

Our simple model, then, allowing the emergence of all three patterns in

correspondence of different combinations of parameters constellations, may
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provide a framework for econometric estimates to be used by competition

policy makers.

While Aghion et al. (2005) illustrate the emergence of an inverted-U

curve at the overall economy level, other contributions detect an analogous

pattern on the basis of data at firm level, sometimes complemented by data

at the industry level. Among those belonging to the first group, Gustavsson

Tingvall and Poldahl (2006) use firm-level with data from Swedish industries

(1990-2000) to detect a concave and single-peaked relation between R&D ex-

penditure and the HHI; while Negassi et al. (2019), using a French database

ranging from 1990 to 2006, find an analogous relationship between the num-

ber of patents and the Lerner index, but only in industries hosting public

enterprises. Interesting examples of studies belonging to the second group are

those of Polder and Veldhuizen (2012) and Michiyuky and Shunsuke (2013).

The first paper relies on data from the Dutch National Accounts to detect

the inverted-U pattern at both industry and the firm level, while the second

uses Japanese firm level and industry average data from 1964 to 2006 to find

out an analogous relationship between patents and the Lerner index. Ad-

ditionally, the same shape emerges from numerical simulations carried out

by Bento (2014), in an endogenous growth model under perfect competition,

between firm-level innovations and the number of firms.

To the best of our knowledge, the only attempt at taking the same route

as in Aghion et al. (2005) is in Hashmi (2013), modifying two assumptions.

First, he adopts a partial equilibrium approach, focussing on a single indus-

try ; second, he allows the maximum technological gap between the laggard

and the leader to be more than one step. Then, using US patent data, he

obtains an inverted-U curve that would not emerge in the original model.

All of this may suggest that non-monotone patterns could hide themselves

in the large theoretical literature starting from the late 1970s, which could

have been overlooked because the debate pivoted around the exact nature of
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monotonicity implied by either the Schumpeterian position or the Arrovian

one. This is precisely what we have done in the present paper.

5 Concluding remarks

The long-standing debate about the impact of industry structure on aggre-

gate innovative activity has been revitalised by Aghion et al. (2005) putting

in evidence a concave non-monotone behaviour in sharp contrast with Schum-

peter (1942) and Arrow (1962). This has triggered a new stream of research

aimed at modelling this inverted-U shape relationship emerging from empir-

ical evidence.

We have participated in this research by revisiting the model in Delbono

and Denicolò (1991), where a hint in this direction was already suggested.

Although the complexity of the model requires resorting to numerical sim-

ulation, it is nonetheless true that the conclusions we reach are robust to

the specification of parameters and, more importantly, lend themselves to

an interpretation in line with the intuition inherited from a well established

tradition.

We have sketched some implications of our results. In summary, our

findings can be spelled out as follows. If innovations are non-drastic, (i)

a Schumpeterian pattern is generated by a low productivity of the R&D

technology, or, equivalently, high discounting, regardless of the innovation

size; (ii) the Arrovian and non-monotone patterns arise when R&D efficiency

is high, or discounting is low. The Arrovian (respectively, concave) case is

driven by large (respectively, small) innovations.

Finally, we have linked our conclusions and a number of empirical studies,

especially the econometric analysis of Peneder and Woerter (2014) and Bon-

tempi et al. (2020). Of course, we are aware that the testable predictions

delivered by our model depend on a number of exogenous variables often
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different from those considered in the literature in which, unsurprisingly,

results rely upon alternative measures of market power and innovative activ-

ity, in addition to the econometric methods employed in the various studies.

However, it remains true that our simple model may provide a preliminary

support to many empirical findings, including the inverted-U pattern between

the intensity of product market competition and the innovative activity at

the industry level.
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