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Simple Summary: Three-dimensional bioprinting is a promising tool for the study of cancer devel-
opment and progression in bone, as it permits modeling the complexity of the microenvironment
and cell-to-cell interactions. To this aim, an ideal model should combine a proper structure design,
biomaterials selection, and the cellular counterpart. In this review, 3D-bioprinted bone systems
obtained by different bioinks, and strategies, are discussed, aimed at mimicking the bone cancer mi-
croenvironment. The main challenges and unmet needs to reach perfect biomimicry are highlighted.

Abstract: Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently,
available models lack in mimicking the complexity of bone, of cancer, and of their microenviron-
ment, leading to poor predictivity. Three-dimensional technologies can help address this need,
by developing predictive models that can recapitulate the conditions for cancer development and
progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and
bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials
into organized and complex structures that can reproduce the main characteristic of bone. The
challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interac-
tions and biological mechanics leading to tumor progression. In this review, existing approaches to
obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of
biomaterials selection in determining the behavior of the models and its degree of customization. To
obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of
ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and
cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to
solve existing shortcomings and to pave the way for potential development strategies.
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1. Introduction

Bone cancer can arise as primary (sarcomas) or metastatic lesions. Bone sarcomas,
including osteosarcoma and Ewing’s sarcoma, are highly aggressive tumors, mainly affect-
ing pediatric patients and young adults [1]. Although the advent of chemotherapy has
considerably prolonged life expectancy, bone sarcomas are still associated with a 5-year
survival rate of approximately 50-60% due to their resistant or recurrent nature, thus
representing a leading cause of cancer-related death in young people [2]. Bone is also
the third most common metastatic site in patients affected by breast, prostate, lung, and
renal carcinoma. Bone metastatic progression leads to 90% of death from cancer [3,4]
and is associated with a significant decrease in the 5-year survival rates [5-9] and severe
morbidities, including pain, fracture, hypercalcemia, and spinal cord compression [7,10,11].
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At this stage, the disease is usually considered incurable, and treatment is only palliative,
consisting of pain-relieving medication, radiation therapy, and surgery [12-14].

To date, the availability of tissue samples of bone cancers has been limited by the
difficulty of reaching the bone site. Furthermore, adjuvant therapy is often administered
prior to surgery. Because the therapy has some cytotoxicity, it may alter the integrity of
DNA, RNA, and proteins, or interfere with the metabolic and the proliferation activities
of cells of the tumor microenvironment, all prior to tissue sampling. As a consequence,
this may alter the native characteristics and behavior of cells, thus affecting the relative
molecular and morpho-histological analyses [15]. Consequently, the study of the biological
mechanisms underlying bone tumors and the development of successful strategies for
their treatment and prevention are very difficult. In this context, preclinical modeling of
bone microenvironment appears to be a crucial and promising challenge. For decades,
evaluation of cancer cell proliferation, migration, invasion, and drug response has relied
on two-dimensional (2D) in vitro cell culture systems. However, such models fail to mimic
the spatial, biochemical, and mechanical complexity of the native three-dimensional (3D)
tumor microenvironment, that is, tissue architecture, severely limiting their interpretation
in the study of primary and secondary bone cancer [2]. In vivo models overcome these
drawbacks by mimicking the physiological context of tumor growth and progression, thus
being more predictive of drug response compared to 2D cultures. Nevertheless, studies
on animals are limited by ethical concerns, species-specific differences, and high costs. In
addition, non-spontaneous cancer models, such as syngeneic, xenografts, or orthotropic
models, also fail to recapitulate the paracrine circuits by which the bone niche modulates
bone cancer progression and response to treatments. This is because they often develop
too rapidly, which impedes the establishment of the natural interactions between cancer
cells and stromal cells that occur in vivo [16-18].

Three-dimensional in vitro models can help to bridge the gap between preclinical
in vitro and in vivo models, as they are highly reproducible, affordable, support the use
of human cells, and can recapitulate the key features of the bone tumor niche, such as 3D
cell—cell and cell-extracellular matrix (ECM) interactions, therefore facilitating mechanistic
and drug response studies [19,20]. To this aim, to date, various 3D techniques have been
developed, including multicellular spheroids, microfluidic chips, cell patterning techniques,
and 3D printing [21]. Thanks to the combination of these advanced technologies with
different types of biomaterials, versatile approaches can be obtained to develop 3D cellular
constructs that can recapitulate the tumor microenvironment complexity.

To study bone tumors, the model shall mimic as closely as possible the composition
and properties of the native bone tissue, merging biological and materials science-related
requirements. Bone, however, is a complex tissue, composed of a mineral and an organic
phase, and by cells, all arranged in a highly hierarchical structure [22-24]. Therefore,
the model shall also possess a certain degree of complexity and fulfill several require-
ments. Among these, (i) excellent biocompatibility, (ii) suitable surface properties, (iii) ade-
quate mechanical properties, (iv) a porous structure that can allow cell colonization and
vascularization, and (v) tailored degradability are those identified as mandatory in the
literature [22,25,26].

In this scenario, 3D bioprinting offers new perspectives, as it allows easily producing
porous structures having finely tunable architecture, mechanical properties, and composi-
tion [27,28]. In these models, surface characteristics (morphology and roughness) can be
modulated from the macro to the submicrometric scale by tailoring the model shape and
porosity. By loading the models with nanoscale materials (nanocoatings or nanoparticles),
features at the nanoscale can also be obtained while creating a hybrid organic/inorganic
composition. The use of inorganic micro- or nano-fillers permits increasing printing fidelity,
and further modulates degradability, stability, mechanical properties, and interactions
with host cells [29-33]. However, in 3D printing, cells can be seeded onto the scaffolds
but cannot be incorporated in the fibers, hindering the study of cell-cell and cell-ECM
interactions [34,35]. To address these limitations, 3D bioprinting can be used to create



Cancers 2021, 13, 4065

30f23

complex in vitro cancer and bone models that can replicate different aspects of the 3D
tumor microenvironment [36-38] and may be useful for understanding tumor heterogene-
ity and identify those mechanisms responsible for tumor progression and resistance to
therapy [36,39]. More in detail, 3D bioprinting permits: (i) printing multiple cell types,
including cancer and normal cells associated with the tumor microenvironment [40]; (ii) en-
abling the formation of vessel-like structures that are crucial to study the metastatic process
and to assess anti-cancer drug delivery and responses [41]; (iii) modulating the composition
of the exogenous ECM for what regards both the inorganic matrix and the various growth
factors or signaling molecules [36,38]. This is important as it permits simulating the loose
or dense connective tissues surrounding the cells in the tumor microenvironment, thus
providing a reliable re-establishment of the existing crosstalk between cancer cells and
neighboring matrices [21,38]. Consequently, both 3D printing and bioprinting, combined
with nanoscale materials, appear promising to simulate specific properties of the bone
tissue and study cancer.

In summary, biofabrication technologies, combined with specifically engineered mate-
rials, enable the printing of biomimetic 3D structures with detailed morphological features,
from the millimeter to nanometer range [42], and fine control over the spatial positioning
of cells during the bioprinting process [43-46]. For this reason, 3D printing and bioprint-
ing have opened new routes, overcoming the limitations of overly simplified traditional
2D cultures in mimicking heterogeneity and complexity of both native [40] and tumor
tissues [36,38].

In this review, we will focus on new trends in the development and manufacturing of
3D osteomimetic scaffolds obtained through additive manufacturing techniques for the
study of osteosarcoma and bone metastases. The state of the art and advances regarding
novel organic/composite bioinks, inorganic fillers, and new strategies for biomimetic
scaffold development are systematically reviewed, and the main challenges, opportunities,
and future perspectives are highlighted.

2. The Bone Microenvironment: Key Features for 3D Modeling of Bone Cancer

Bone sarcomas and bone metastases share the same environment and niche. Once
established in bone, they interact with normal resident cells and with physical stimuli,
including mechanical stress and hypoxia [47]. When cancer cells colonize the bone com-
partment, they start to proliferate, invade, and disrupt the normal bone matrix and acquire
an osteomimetic phenotype, thereby interacting with bone cells [48-52].

2.1. Interaction with Normal Cells

The cellular environment of the bone tumor niche is comprised of complex and
dynamic interactions between tumor and normal resident cells, including osteoblasts,
osteoclasts, endothelial, immune, and hematopoietic cells, all of which are implicated in
the pathogenesis of bone cancers [48]. Invading cancer cells strongly affect the activity
of osteoblasts and osteoclasts (bone-forming cells and bone-resorbing cells, respectively),
thereby disrupting the physiological balance of bone remodeling. Therefore, abnormal bone
tissue formation and/or dysregulated bone resorption may occur, resulting in osteoblastic
or osteolytic lesions [53] (Figure 1).

In osteoblastic lesions (i.e., osteosarcoma and prostate cancer metastases), tumor-
derived growth factors (i.e., insulin growth factors (IGF)-1 and -2, transforming growth
factor-beta (TGF-f3), bone morphogenetic proteins (BMPs), platelet-derived growth factor
(PDGEF), endothelin-1 (ET-1), and fibroblasts growth factors (FGFs)) stimulate the differenti-
ation and bone-forming activity of osteoblasts. In turn, osteoblasts produce growth factors
that further stimulate tumor growth, such as interleukin-6 (IL-6), monocyte chemoattractant
protein 1 (MCP-1), or vascular endothelial growth factor (VEGF) [54].
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Figure 1. Schematic depiction of vicious cycle of bone metastasis involving the complex mutual interactions between
tumor cells and bone cells in osteoblastic and osteoclastic bone lesions. Tumor cells secrete pro-osteoblastic (i.e., IGF-1
and -2, TGF-$3, BMPs, PDGF, ET-1, and FGFs) or pro-osteoclastic (i.e., RANKL, IL-6, IL-8, IL-11, TNF-«, VEGE, and PTHrP)
mediators (blue arrows) that induce bone formation or bone resorption, respectively. In turn, in osteoblastic lesions,
osteoblasts produce pro-tumor growth factors (i.e., IL-6, MCP-1, and VEGF) that further stimulate the growth of cancer
cells (red arrows). In osteolytic lesions, osteoclast-mediated bone resorption induced by cancer cells triggers the release
of pro-tumor growth factors (i.e., IGFs and TGF-f) from the bone matrix, thus fueling the vicious cycle of cancer growth

(red arrows).

In cancer-induced osteolytic bone disease, such as breast cancer metastases, cancer cells
secrete a variety of cytokines and growth factors, including receptor activator of nuclear
factor kappa-B ligand (RANKL), IL-6, IL-8, interleukin 11 (IL-11), tumor-necrosis factor-
alpha (TNF-w), vascular endothelial growth factor (VEGF), and parathyroid hormone-
related protein (PTHrP) [32], which directly or indirectly stimulate osteoclasts to resorb
bone. The process of bone resorption, in turn, causes the release of additional growth
factors from the matrix, such as IGFs and TGF-f3, that can also favor cancer progression [48].
Among the paracrine pro-osteoclastogenic factors produced by cancer cells, RANKL,
PTHrP, IL-11, and VEGF have particular relevance [55]. Furthermore, in the acidic tumor
microenvironment, tumor-activated osteoblasts or mesenchymal stromal cells (MSCs) can
secrete inflammatory cytokines, such as IL-6 and IL-8, that, in turn, further boost bone
disruption and tumor progression [56].

However, only taking into consideration the interactions of osteoblasts and osteo-
clasts with tumor cells is an oversimplification. In fact, as for lung [57,58], brain [59-61],
colon [62,63], and breast cancer [41,59], tumor-induced vasculature is a critical factor for the
survival and proliferation of cancer cells in bone. During the uncontrolled growth of the
tumor, oxygen and nutrient deprivation strongly stimulate the pro-angiogenic activity of
tumors cells, inducing the secretion of angiogenic growth factors and cytokines, such VEGF
and IL-8, into the surrounding extracellular microenvironment. This dysregulated signal-
ing pathway activates the adjacent endothelial cells and perivascular cells, causing the
recruitment of new blood vessels, which further support the growth of the tumor [64,65].
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In summary, modeling the complex interactions between resident bone cells and
tumor cells by considering all the different cellular players is crucial to recapitulate the
molecular and cellular mechanisms of bone cancers in vitro.

2.2. Interaction with the Bone Matrix

Upon spreading to the skeleton, cancer cells not only interact with bone cells but
also with the ECM. The latter is a dynamic structure including both organic and inorganic
components that contribute to the functioning of the musculoskeletal system [66]. Although
it is mainly composed of type I collagen (~=90%) [67], bone ECM also comprises several
non-collagenous proteins, including fibronectin and lysyl oxidase (LOX). The inorganic
phase of bone (/275-80 wt.%), instead, is constituted by biogenic apatite (BA) nanocrystals
(also called biological hydroxyapatite, or bone apatite), which allow for mineral exchange.

Biophysical properties of bone ECM are crucial in determining cell phenotype and
behavior, both in normal and cancer cells. In fact, (i) the cell-matrix interactions in bone
can affect cell migration, proliferation, survival, and remodeling [68], and (ii) ECM cues
can promote tumor growth and decrease the response to therapeutics [69]. In addition,
(iif) ECM stiffness can modulate the stemness and the expression of epithelial-mesenchymal
transition (EMT) markers in osteosarcoma cells [70]. Finally, (iv) several studies have shown
that hydroxyapatite (HA, Ca;o(PO4)s(OH),) can affect the behavior of normal and cancer
cells [29,71], thereby validating the importance of including the ceramic counterpart in 3D
in vitro tumor models [72]. In conclusion, reproducing a composition as similar as possible
to that of native tissue is crucial to investigate how cues provided by the bone matrix can
modulate cancer cell phenotype, growth, and chemoresistance.

3. Additive Manufacturing for Printing Bone-like Tissues

In bone oncology, the development of 3D models by additive manufacturing is still
at its early stages, and several key issues are yet to be investigated. On the contrary, in
orthopedics, biomimetic 3D constructs have been largely applied for the regeneration and
repair of native bone tissue [44,73-78]. The knowledge acquired in this field can thus
be advantageously translated to create models and solutions for the study of cancer cell
development and progression in bone.

3.1. Printing Versus Bioprinting

Additive manufacturing is a very promising and versatile technique that allows the de-
velopment of 3D constructs through a layer-by-layer process in which various biomaterials
can be combined and possibly mixed with different cell types and /or growth factors [79,80].
Additive manufacturing is referred to as 3D bioprinting or printing, respectively, depend-
ing on whether cells are included in the printing process. Embedding the cells into the ink
has some advantages and drawbacks that depend on the tissue to model and its specific
characteristic. Models manufactured by 3D printing require the cell to be seeded on the
surface of 3D constructs, so the technique is also known as “indirect bioprinting”. These
models permit high freedom in the choice of the materials to be printed, so they better
mimic mechanical and structural properties of bone, as well as its degradation profile [80].
The so-obtained models may have long-term stability and can be inserted into bioreactors.
However, seeding cells onto the 3D constructs does not allow for homogeneous cell disper-
sion and scaffold colonization [81,82], thus partially allowing for the simulation of cell-cell
and cell-ECM interactions.

Instead, 3D bioprinting permits the creation of a defined distribution of cells and /or
biomolecules inside the ink and hence across the fibers of the whole scaffold [26,45,83],
which is necessary to mimic the biological complexity of cancer [44,84]. In addition, the
use of natural hydrogels, having high water content, guarantees high biocompatibility
and the possibility to tune the chemical and physical characteristics of the ink (including
viscosity, crosslinking, and concentration, all determining shear stress) by selecting the
appropriate polymeric matrix. As a consequence, they permit creating a microenvironment
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compatible with the medium-term survival of the cells embedded in the ink [85]. However,
different from 3D-printed scaffolds, 3D-bioprinted constructs show limited mechanical
properties and lower stability, so the models are not suitable for applications that require
mimicking mechanical stress or are for use in bioreactors. In bone 3D printing, the most
used synthetic polymers are polycaprolactone (PCL) [86-90], polyethylene glycol diacrylate
(PEGDA) [31,78], and polylactic acid (PLA) [41], because of their mechanical strength, struc-
tural properties, and biocompatibility, both in vitro and in vivo. These polymers, largely
used for 3D printing, have high rigidity and slow degradation rate [28,87,91]. However,
they need to be processed in aggressive conditions (dilution in acid/toxic solvents and/or
at high temperature) and cannot incorporate cell media [28,87]. Hence, cell loading of the
polymeric fibers is impeded, which makes them unsuitable for bioprinting.

An optimal ink for 3D bioprinting shall fulfill the needs of high printing fidelity, shape
maintenance, cell viability, and function [79]. These outcomes are affected by several pa-
rameters, both depending on the ink, such as: (i) chemical composition, including polymer
concentration and molecular weight [85,92]; (ii) viscosity (hydrogels with shear-thinning
characteristics are desired [92,93]), and cell density (suitable cell concentration in the or-
der of 10° cells/mL, corresponding to approximately 5% of the total bioink volume [44]).
The chemical composition of the ink is the main parameter regulating cells response, as
described in Section 3.3.2. However, the ink’s physical characteristics (i.e., polymer concen-
tration, viscosity, and crosslinking mechanism) also have importance in determining cells
viability in the short, medium, and long term [79,85,94,95].

More in detail: (i) high polymer concentrations permit obtaining dense polymer
chains, resulting in increased mechanical properties and stiffness. However, increased
density causes a lower diffusion rate of the nutrients, which reduces cell viability and
proliferation [79,96]. (ii) High viscosity increases printability and shape fidelity but also
shear stress, which negatively impacts cells viability [79,95,97]. Similarly, (iii) a high
degree of crosslinking increases mechanical properties but decreases cell viability [79,85,95].
Consequently, the bioink choice is not trivial, as it depends on multiple and opposing
parameters (Figure 2). For an extensive overview, see [68,69].

Based on these considerations, in 3D bone bioprinting, natural polymers are preferred,
such as alginate [73,98-101], gelatin [98,100,102], and gelatin methacrylate (GelMA) [103-106],
silk fibroin [107,108], chitosan [75,109,110], hyaluronic acid [76,111], fibrin [86,112], and
collagen [31,109,113]. Considering biomimicry, collagen and its denatured counterpart,
gelatin, are the most promising, although alginate is often preferred due to the easiness
of printing. The selection of the hydrogel is of paramount importance, as it determines
printability (shape fidelity and printing conditions), cell survival, and cell—cell interactions.
Furthermore, for the development of bone tumor models, it must be considered that 70-75%
of bone is composed of a mineralized phase [24,67,114,115], BA, which is a multi-substituted
nanocrystalline HA. This phase has a strong influence on tumor and bone cell behavior
(viability, morphology, differentiation, etc.) and promotes cancer cells’ proliferation and
release of IL-8 [29,71]. For this reason, a mineralized model can be more suitable than a
polymeric one for the study of bone cancer. As already reported, there are two ways to
include a mineralized fraction in 3D-printed and bioprinted scaffold: directly by adding
micro/nanoparticles in the osteomimetic ink [30,31,116,117] or by grafting on the surface
as a coating [117,118], the latter being more diffused in 3D printing technology [119].
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Figure 2. Trend of printability and shape maintenance depending on bioink viscosity (related to ink
concentration) and crosslinking degree. Bioink type and the reported parameters need evaluation
for each 3D bioprinting experiment. Generally, low/intermediate values of these parameters are
preferable to guarantee cell viability.

Although a wide and increasing number of studies investigate 3D printing of biomimetic
inks for applications in bone tissue regeneration, to date, only a few focus on 3D printing for
bone tumor modeling, and an even lower number takes into account bioprinted constructs
for tumor modeling (Figure 3). Moreover, not all the performed studies consider the
inclusion of a biomimetic or non-biomimetic ceramic phase. Detailed examples and results
will be reported in the next paragraphs. However, the increasing trend of research studies
on these topics clearly shows their relevance.
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Figure 3. Comparison of uses of 3D printing and 3D bioprinting approaches over time (based
on Web of Science, type of document was article, keywords for “3D printing” AND “bone” AND

“regeneration”, “3D printing” AND “bone” AND “cancer”, “3D bioprinting” AND “bone” AND
“regeneration” and “3D bioprinting” AND “bone” AND “cancer”).

3.2. Bioactive and Bioinert Bioceramic Fillers in Bioprinting

Bioceramic can be used to functionalize both natural and synthetic polymers and tune
mechanical properties, viscosity, and/or stability of the ink, as well as its architecture and
biological properties [74,120-122]. In particular, the addition of bioceramic fillers, inde-
pendently of their composition, provides increased mechanical properties [121,123,124],
partially overcoming the intrinsic limitations of the hydrogels. At the same time, they affect
the rheological characteristics of the inks and permit higher shape fidelity and stability
over time [31,125]. To these aims, both bioinert and bioactive compounds can be selected.

However, the use of bioactive compounds (calcium phosphates CaPs and/or bioactive
glasses—BG) can provide additional benefits: (i) the release of ions (such as Ca, P, Mg,
Na, etc.) that are present in bone, simulating the tissue environment and interacting with
healthy and tumor cells; (ii) topographical cues both at the micro- and the nano-scale, that
can support cells adhesion to the models surface and directly influence their behavior
(for instance, Nano-HA particles/coatings has been reported to direct early differentiation
of MSCs [126-128]). Increased adhesion, in turn, facilitates seeding, cell spreading, and
proper colonization of all parts of the model.

Among the most investigated bioceramic (for a detailed description of different types
of bioceramic, see [129,130]), hydroxyapatite [31,75,99] is the most used because of its
similarity to the inorganic phase of bone. However, although bone apatite is somehow
similar to pure HA, they differ in terms of composition, ion doping, stoichiometry, crys-
tallinity degree, crystal size/morphology, and, consequently, solubility and ions release
into the biological medium [131]. Indeed, BA is characterized by low crystallinity and
a high solubility and is ion-doped. In BA, carbonate ions substitute for hydroxide and
phosphate ions, changing into the formula Cajg.px/3(PO4)s-x(CO3) x(OH),. /3. Besides car-
bonates, BA contains a significant amount of foreign ions, such as magnesium, fluorine,
strontium, silicate, zinc, and manganese, all having specific and significant biological
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roles [72]. Thus, in comparison to pure or stoichiometric HA, ion-substituted or BA bet-
ter mimics normal bone tissue [72]. As a demonstration, a large number of studies on
bone tissue regeneration have confirmed that BA improves adhesion and proliferation
of osteoblast-like cells and osteogenic differentiation of osteoblast precursors, as demon-
strated by increased alkaline phosphatase (ALP) and mineralization activity, both in vitro
and in vivo [31,116,124,132-141].

Due to its putative pro-tumorigenic effect [142], HA has also been used to model bone
cancers, in particular, osteolytic bone metastases from breast carcinoma [106,116]. Typically,
secondary tumor formation in bone is considered a function of bone resorption because the
degradation of bone mineral matrix releases bioactive ions and soluble growth factors that,
in turn, are critical for the proliferation of both normal and cancer cells [143]. However,
insoluble cues inherent to the inorganic component of the bone mineral matrix may also
regulate metastatic growth by promoting adhesion, proliferation, and colonization of tumor
cells, as highlighted in [116] when comparing a mineralized and a non-mineralized scaffold
for breast cancer modeling. In the same study, the presence of HA in the mineralized
scaffolds also promoted the release of IL-8 from breast cancer cells that, in turn, exerted pro-
tumorigenic and pro-osteolytic effects [71], thereby supporting the vicious cycle of tumor
growth and bone resorption. Hence, incorporation of a bone-like mineralized component
into engineered cancer models may allow the study of the molecular mechanisms behind
HA-induced metastasis in bone or, possibly, the study of HA-promoted drug resistance of
cancer cells in bone. In another study on the same type of cancer [29], the effects of HA
particles were studied by varying their size, crystallinity, and synthesis route, and assessing
their effects on protein adsorption, cancer cells adhesion, growth, and IL-8 secretion. Protein
adsorption, cell adhesion, and proliferation increased with decreasing HA crystallinity and
crystal size. In contrast, IL-8 secretion reached the highest level in scaffolds with highly
crystalline HA [29]. Data obtained by this study are very interesting, and it would be
worthy to investigate the same behavior by using other cancer types that are prone to grow
or metastasize to bone. However, although a large body of literature is already available
on the use of functionalized nanoparticles and their biological role [31,117,124,144-146],
research on printing of ion-doped CaPs is only in its early infancy, and further development
is expected in the next years. Finally, of note, all the studied particles were used at one same
scale (e.g., nanoparticles as nanoscale cues to modulate cells colonization in the scaffolds,
but also to boost early differentiation and influence morphology), whereas the study of the
effects of multi-scale particles is still unexplored.

3.3. Bioprinting: Cells and Bioinks
3.3.1. Normal Cells Used in 3D Bioprinting for Mimicking the Bone Microenvironment

The most used cells for 3D bone bioprinting in orthopedics are murine or human
MSCs from either bone marrow or adipose tissue [87,110,113,147-151], murine calvarial
MC3T3-E1 pre-osteoblast cells [46,68,152], and human fetal osteoblasts [105,147,153]. Print-
ing of osteocytes has also been recently proposed [154]. These cells, when cultured in
osteoinductive media or in media added with growth factors (i.e., bone morphogenic
protein-2 BMP-2 [76,132,155-158], FGF-2 [112,159], VEGF [74,147]) and /or other additives
(i.e., Ca*") [102,107], express osteogenic markers (i.e., ALP, osteonectin (ON), osteopon-
tin (OPN), osteocalcin (OCN)) and markers of late osteocyte phenotype (i.e., podoplanin
(PDPN) and sclerostin (SOST)), and are able to mineralize.

3.3.2. Biomimetic Inks

An ideal biomimetic ink for cancer modeling should mimic the structural, physico-
chemical, and biological properties of ECM. Indeed, to study the mechanisms underlying
tumorigenesis and cancer progression, biomimetic inks should mimic the substrate on
which the tumor develops and grows. On the other hand, they should reproduce ECM-
cells interactions, thereby allowing the study of the mechanisms occurring in osteolytic or
osteoblastic lesions, both in primary and secondary bone tumors.
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Silk fibroin and chitosan [75,107,110,120,158,160,161], collagen [113,133,145,150,154]
and hyaluronic acid [76,78,116,148,151], chemically modified (i.e., methacrylation reaction)
or used in blends [98,105,116,161] are among the most widely natural hydrogels employed
to induce bone formation. These polymers have biological and chemical features resem-
bling the organic ECM components of bone native tissue. To best mimic bone ECM, the
addition of inorganic counterparts as bioceramic (i.e., bioactive glass [30,31,87,100,156], 3-
tricalcium phosphate (TCP) [89,130,162], HAs [31,73,75,99,122,149], and nanoclays in pow-
ders or micron (nanoparticles) [74,78]) has been fully investigated. Three-dimensional bio-
printing is promising in the obtainment of 3D cell-laden constructs based on osteomimetic
inks combining polymeric matrix and ceramic fillers. To date, positive results have already
been obtained regarding either the process, such as printability and extrudability, and
the properties resulting from the obtained constructs, such as mechanical strength and
stability maintenance. For instance, increased osteogenic ability and mineralization were
obtained by using Laponite nanosilicates [74,78], Poly-Ca?*complex (i.e., PolyP mixed with
CaClp) [30,98] and B-TCP particles [89,130,162], even in absence of an osteogenic medium.
These data offer important insights for the development of biomimetic models, as the same
technologies can be adapted to reproduce “synthetic bone” with mineralized fractions. To
this regard, the studies carried out for bone regeneration also stress the importance of an
accurate selection of the following material characteristics: (i) composition (for instance,
differences in biological behavior were assessed between scaffolds doped with different BG,
with higher mineralization for borate instead of silicate glasses [30,71,152]); (ii) morphology
(particle shape, dimensions, and surface features affect the overall behavior of the scaffold);
and (iii) mechanical properties.

Most of the studies focus on HA, as it more closely resembles the composition of bone.
HA positively influences mechanical and biological properties of the constructs, including
the extent of mineralization and collagen production exerted by host cells [73,75,99,156],
besides their osteogenic differentiation [19]. In these terms, HA shows more promising
results compared to BG nanoparticles [31]. It has also been observed that results in osteoin-
duction and mineralization may be affected by the hydrogel combination with HA and by
the specific characteristics of HA particles (for instance, carbonated HA nanoparticles show
increased solubility and hence bioactivity, compared to the stoichiometric counterpart [75];
see Section 3.2).

3.3.3. Vascularized 3D-Bioprinted Bone-like Constructs

Along with the addition of inorganic fillers, a bioprinted model of bone cancer should
incorporate vasculature, as it is essential to mimic both normal and cancer cell behavior. In
normal musculoskeletal development and regenerative processes, blood vessels have differ-
ent functions: (i) providing an efficient transport network for molecules and hematopoietic
cells, (ii) nourishing niches for hematopoietic stem cells that reside within the bone marrow,
and (iii) supporting bone formation and homeostasis [163]. On the other hand, during can-
cer progression, tumor-induced vascularization fosters tumor growth and dissemination
by providing oxygen and nutrients and by supporting the intravasation and extravasation
of cancer cells [164]. Tumor angiogenesis is initiated by environmental stresses, such as
hypoxia and acidosis, leading to a disequilibrium in the pro-/anti-angiogenic balance and
consequently to the increased expression of pro-angiogenic factors, including hypoxia-
induced factor (HIF) and VEGE. Although the formation of a tumor vascular network starts
from the existing healthy blood vessels, its expansion may be aided by additional processes,
such as vasculogenesis and vascular mimicry [165].

Therefore, the development of 3D-bioprinted bone-like constructs incorporating vas-
culature is essential to recapitulate and study the multistep process of cancer development
in bone, both for primary tumors and metastases. To reproduce the osteogenic and vas-
culogenic niches of bone in vascularized bone constructs, different approaches have been
reported [86,104,118,152,165-168]. These include different combinations of composite ma-
terials (i.e., natural hydrogels blended with rigid polymers and bioceramic fillers) and
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cell types (i.e., MSCs and human umbilical vein endothelial cell HUVEC). Hence, a func-
tional vascularized bone model should possess: (i) high mechanical stability and durability,
(ii) specific biological cues, and (iii) osteoconductive properties, which can be obtained by
the combined use of rigid /synthetic polymers, natural hydrogels, and bioceramic fillers,
respectively [169]. The fulfillment of these requirements has shown promising results in the
expression of osteogenic and angiogenic markers (i.e., Angiopoietin-1 (Ang-1), FGF-2 and
VEGEF). Furthermore, it has been reported that co-culturing HUVECs and MSCs boosted cell
proliferation and vascular network development [166]. Finally, dynamic perfusion culture
through a bioreactor system [168] can be beneficial for both bone and vascular regions, as
the combination of liquid flux and mechanical cues (e.g., shear stress) enhance osteogenic
differentiation, mineralization, and VEGF expression. The here-reported strategies, though
lacking in reproducing the complexity in the combination of the vascular and bone region,
are promising for the development of the vascular network in 3D bone construction.

4. 3D-Bioprinted Models of Bone Cancers

To date, only a few 3D-bioprinted in vitro cancer models have been proposed, and an
even lower number has been published on bone sarcomas and metastases (Table 1). Among
these, the majority exploits indirect 3D bioprinting, where cells (either tumor cells, bone
cells, or co-cultures) are not embedded in the scaffold fibers but seeded onto its surface.
These studies focus on: (i) the effects of scaffolds geometry and composition on cancer cells
proliferation, (ii) cancer cell chemoresistance compared to 2D cultures, and (iii) the effects
of the direct and indirect interplay between stromal and cancer cells.

Regarding bone sarcomas, a few studies have shown the effect of bioceramic fillers on prolif-
eration and mineralization of 3D-bioprinted Saos-2 osteosarcoma cell lines (Section 3.3.2) [30,98].
Notably, although these studies consider SaOS-2 as osteoblast-like cells for bone tissue
engineering applications, the obtained results can be directly translated to models for
osteosarcoma growth in bone.

Among the different types of carcinomas that metastasize to bone, breast cancer is the
most frequent and, hence, the most studied in the field of 3D bioprinting. In particular,
breast cancer cells are often co-cultured with stromal cells of the bone microenvironment,
such as the MSCs and the osteoblasts [19,78,147,170-174], since they support the key
events in breast carcinoma metastasization and progression, including migration and drug
resistance [175,176].

More in detail, Holmes et al. [173] used fused deposition modeling-based 3D bio-
printing for studying bone colonization by breast cancer cells. Three-dimensional bone
scaffolds were obtained by PLA, then modified through carboxyl nanocrystalline HA coat-
ings. Square and hexagon patterns (250 and 150 um size) were chosen because they mimic
the random orientations of ECM in bone. Among the chosen patterns, small hexagonal
pores were the ones that allowed the highest proliferation of breast cancer cells. This
study confirmed that the nanosurface texturization provided by HA offers a biomimetic
and tunable bone model that can effectively simulate bone invasion and colonization by
metastatic carcinoma cells [173].
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Table 1. Summary of reports on 3D bone bioprinting for the development of 3D bone tumor in vitro models.
3D Printing Technology Materials Type of Cells Results Ref.
PolyPCa”* enhanced structure
. . stability
o biobri Overl Alg}ﬁate, gelatin 4 Sa08-2 PolyPCa?* metabolic
Extrusion bioprinter PvTr ;y wﬂ agar?se iyer aMn (5 x 10° cells/mL) degradation by cells [98]
olyP-Ca™ complex (100 M) PolyPCa?* modulator of gene
expression in SaOS-2
Addi Algin?;)e, lgeI}at%? 51050 Formation of mineral nodules
: s e ition of PolyP, silica, or aLo- composed of Ca-phosphate,
Extrusion bioprinter biosilica +(]53§ na?oparticles (5 x 10° cells/mL) Ca—czrbonate phosp (301
nm
Young’s moduli between 30
and 50 MPa, suitable for
Fused deposition PLA’, MDA-MB-231, biomimetic mechanical cues
modeling HA coating MSCs Effective adhesion of breast [173]
(wet deposition) cancer cells on HA-coated
scaffolds
3D-printed scaffold retains
Polvethul Iycol (PEG) native characteristics of
olyethylene glyco , in vivo tumor
) PEG'DAO MDA-MB-231 (5 x 10° Homogenous dispersion of
Stereolithography nHA 10 wt% cells/scaffold, HA nanoparticles in the [146]
bioprinter (wet deposition) MSCs scaffold
Grain size: width = 25 nm, (1.5 x 10° cells/scaffold) Larger number of spheroids
length = 50-100 nm and enhanced migration when
HA was added to the scaffolds
Homogeneous dispersion of
PEG, PEG-DA MDA-MB-231 HA within the matrix
Stereolithoeraph nHA 10 wt% (5 x 10° cells/scaffold), nHA-PEG suitable
couthography (wet deposition) Human fetal osteoblasts microenvironment for cell [170]
bioprinter Grain size: width = 25 nm, (hFOBs) attachment and proliferation
length = 50-100 nm (5 x 10° cells/scaffold) Multicellular spheroids similar
to natural tumor structure
Uniform porosity and good
GelMA (different concentrations), dispersion of nHA within the
. nHA 10 wit% MSCs 01; osteoblasts (1 x scaffolds
Sterec?llthpgraphy (wet deposition) 10° cells/mL) GelMA + nHA suitable for [147]
bioprinter Grain size: width = 25 nm, MDAﬁ'MB'231 studying MSCs/breast cancer
length = 50-100 nm (1 % 10° cells/mL) and osteoblasts/breast cancer
cells in vitro
Multi-interaction of tri-culture
_ GelMA, ) (cancer-vessel-tissue)
PEGDA (dlfferlflr—llt I:oncentrahons) MDA-MB-231 Mechaninfll prqperties lower
Stereolithography diff . Endothelial cells than physiological range but 41
bioprinter (different concentrations) hFOBs suitable for bone cells growth [41]

(wet deposition)
Grain size: width = 25 nm,
length = 50-100 nm

(1 x 10* cells/mL)

Vascular environment
important for directional
migration of cancer cells

Conversely, Zhu et al. used stereolithography-based 3D printing to create 3D bone
models with 500 um and 250 um square and hexagonal pores and co-culture human
MSCs and MDA-MB-231 breast cancer cells on the scaffold. In this study, the authors
demonstrated that pattern geometry greatly influences cell proliferation. Small square
patterns produced the strongest mitogenic effect. In this study, PEG and PEGDA resins
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were functionalized by HA nanoparticles and printed. MDA-MB-231 cells cultured on
the 3D scaffolds were able to migrate and form distinct and spheroidal 3D structures
(Figure 4a(i)), which was not observed in 2D culture. The obtained spheroidal morphol-
ogy was emphasized when MDA-MB-231 were co-cultured with MSCs, thus showing
the effect of the tumor-associated mesenchymal stroma in regulating cancer cell behav-
ior (Figure 4a(ii)). Furthermore, the addition of HA nanoparticles promoted cell-matrix
interactions and the formation of MDA-MB-231 larger spheroids compared to the bare
3D matrix. Finally, MDA-MB-231 cultured on the 3D scaffold showed a phenotype more
resistant to the anti-cancer drug 5-fluorouracil compared to 2D matrices, possibly due
to a reduced drug penetration in the 3D in vitro tumor microenvironment [146]. These
findings further corroborate the existence of differences in the drug sensitivity of cancer
cells when cultured in 3D instead of 2D models. Indeed, it has been widely demonstrated
that 3D models recapitulate cell-matrix interactions and enhanced ECM synthesis, thereby
mimicking the in vivo tumor microenvironment. In turn, ECM deposition reduces the
penetration of drugs into the tumor mass [145], while 2D monolayered cell cultures are

directly exposed to drug treatment.

a) i b)

. GeIMAOnHA +
©) i wpawmBs231 Human osteoblats 11 10 MB-231 Semfmii MSC d)

E|||||||Iiiiﬁiii' ||||I||I ’E|||||||I
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R U,

Figure 4. Effect of tumor-healthy cell interactions in co-culture systems and in 3D vs. 2D models. (a) Morphology of breast
cancer cells cultured alone or with MSCs. (i) Confocal images of MDA-MB-231 alone, and (ii) in co-culture with MSCs;
green fluorescence represents Cell Tracker Green™ stained breast cancer cells. Reproduced with the permission of © 2015
Elsevier Inc. All rights reserved [146]. (b) Enhanced spheroid formation by direct co-culture of hRFOB and MDA-MB-231
cells on the 3D matrix in comparison to monolayer culture. hRFOB and MDA-MB-231 were pre-stained with cell tracker
green and orange, respectively. Reproduced with the permission of © IOP Publishing. All rights reserved [170]. (c¢) Confocal
micrographs of osteoblasts/breast cancer cells (i) and MSCSs/breast cancer cells (ii) co-cultured in the 3D-bioprinted matrix
after 1, 3, and 5 days. The middle columns represent the cross-sectional views. Osteoblasts and breast cancer cells were
stained by Cell Tracker Green CMFDA dye (green) and Orange CMTMR dye (red), respectively. Reproduced with the
permission of © 2016, American Chemical Society [147]. (d) Development of MDA-MB-231 cells metastasis and colonization
toward bone over 14 d of the culture period. Cell tracker imaging was conducted to monitor the BrCa invasive process,
including breast cancer growth, transendothelial migration, and colonization. The yellow arrows indicate the migration
of invasive breast cancer cells. (i) Immunofluorescent images of hFOB and MDA-MB-231 cells in a vascular environment
with DAPI staining after 14 d of culture. CD31 and vWF staining were used to identify both EC and breast cancer cells.
(ii) Osteogenesis of hFOB was characterized by OCN and OPN staining. Combining CD31 and Angl was used to distinguish
the breast cancer cells and endothelial cells. B: bone tissue, V: vessel, T: tumor tissue. Reproduced with the permission of
Wiley-VCH GmbH [41].
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Further confirmation of the possibility to modulate drug response by a 3D biomimetic
environment was shown by Han et al.,, who demonstrated the ability of a 3D-printed
biomimetic model of the bone niche to host metastatic breast cancer cells isolated from
patient-derived xenografts (PDX). These models showed a drug response to cisplatin
similar to the in vivo model, thus supporting the use of 3D printing for drug testing. This
possibility was also confirmed in other types of cancers, such as cervical [177], brain [60,178],
lung [179], and bladder [179,180]. The quick rising of novel bioprinted models of several
types of cancer for drug screening and personalized medicine approaches, as well as the
increasing trend of publications on bone models for oncology (Figure 3), clearly indicates
that numerous studies will be published in the upcoming years for bone tumors as well.

In another study, PEG/PEGDA + nHA scaffolds were investigated to assess the
interactions between hFOBs and MDA-MB-231 cells. The authors used a stereolithography-
based 3D bioprinter to create 3D bone models with square pore patterns and a transwell
culture system to evaluate the crosstalk between MDA-MB-231 and osteoblasts. In this
system, the two cell populations were physically separated but able to exchange medium
and secreted cytokines. This study aimed to recreate the microenvironment of bone
metastases and to study the effect of bone-invading breast cancer cells on osteoblast
activity, with a specific focus on their effect on cell proliferation, on the synthesis of proteins
necessary for bone repair, and on the secretion of inflammatory cytokines, which may
stimulate osteoclasts activity and are relevant to breast cancer progression in bone [15,181].
The co-culturing induced a significant effect on cells proliferation, increasing proliferation
of MDA-MB-231 cells and decreasing that of hFOBs, respectively. Furthermore, co-culturing
MDA-MB-231 and hFOB cells led to an increase in the secretion of IL-8, both by MDA-MB-
231 and by hFOBs, up to three-fold higher for hRFOBs, when in the presence of MDA-MB-231.
Comparing 2D and 3D direct co-culture models, differences were also observed in cancer
cell growth. While in 2D models, cancer cells grew in monolayer regardless of hFOBs
presence (data acquired at 7 days), in 3D-printed matrices, they arranged in spherical
aggregates, forming spheroid-like structures (=100 um diameter) even at early culture time
points (Figure 4b) [170]. Data reported enlightened the importance of both compositional
and morphological cues, alongside the possibility to tune cells response by patterning and
adding bio-and nano-bioceramic. These results pave the way for a systematic study of
these aspects in combination with 3D printing and bioprinting.

The interactions between cancer and stromal cells were also studied by Zhou et al.,
who used a 3D stereolithography-based bioprinting technique to fabricate a 3D biomimetic
bone matrix able to recreate a bone-like microenvironment. In this study, for the first time,
MSCs and osteoblasts were embedded in matrices composed of GeIMA and nanocrystalline
HA, later seeded with breast cells. The model’s aim was to develop a 3D bioprinting
bone tumor model. As for Zhu et al. [170], the addition of cancer cells in the model
reduced the proliferation of both osteoblasts (Figure 4c(i)) and MSCs (Figure 4c(ii)), while
the macromolecules that these two cell types secrete promote cancer cells growth [147].
Additionally, the secretion of VEGF, a crucial regulator of angiogenesis, was overexpressed
in tumor cells in co-cultures with MSCs and osteoblasts, whereas, in the same culture, ALP
activity, a marker of osteogenesis, was decreased for both MSCs and osteoblasts.

Finally, a further example of bioprinting for modeling and studying breast cancer
and the metastasization process to the bone is the study of Cui et al. [41], who used a 3D
stereolithography technology for the creation of a model with three distinct regions: (i) a
compartment enriched with breast cancer cells, (ii) a vessel with endothelial cells, and
(iii) a zone mimicking micro-vascularized bone. The model was developed to study the
metastatic process of carcinoma cells intravasating through the endothelial barrier and
then extravasating to the bone region. To create the distinct regions, GeIMA and PEGDA
were used in different concentrations for cancer and bone matrices, and nHA was added
to the latter to simulate the inorganic phase of bone. GelMA was also employed to print
the vessel interposed between the bone and the cancer matrix. To foster cell seeding on
the printed matrices (hFOBs/endothelial cells and MDA-MB-231 cell on bone and cancer
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matrices, respectively), 3D-printed matrices were mounted on GelMA, and then the vessel
was printed in the central part. It was observed that, over a 7-day culture period, MDA-
MB-231 cells migrated to the bone matrix. Migration was even accelerated by the presence
of endothelial cells in the central vessel, showing the crucial role of these cells in cancer pro-
gression. When MDA-MB-231 cells colonized the bone matrix, hFOBs showed a decreased
proliferation, while MDA-MB-231 were strongly stimulated to a mitogenic phenotype
possibly by the cytokines secreted by osteoblasts, as observed in [170]. Moreover, the
growth of endothelial cells in co-culture was slower than in monoculture, suggesting that
the factors secreted by MDA-MB-231 inhibited endothelial cell proliferation (Figure 4d(i)).
Furthermore, the upregulation of CD31 angiogenic marker and the downregulation of
OPN and OCN (Figure 4d(ii)) confirmed the pro-angiogenic activity and the osteogenic
inhibition of cancer cells [41].

Overall, the reported 3D models show accurate and reproducible results in terms of
mimicking cancer and stromal cell behavior in the bone metastasis microenvironment, thus
representing valuable research tools for bone cancer research.

5. Conclusions and Future Perspectives

Bone cancer (sarcoma and metastases) are associated with high mortality and compli-
cations rate, so more predictive models are needed to study the progression of the disease
and the efficacy of therapy.

Higher predictivity requires a better mimicry of the characteristics of the bone and
the tumor microenvironment, and new biomaterials-assisted strategies can help overcome
this unmet challenge. Among the new strategies, 3D-printed and bioprinted models
can offer new perspectives for mimicking the composition, architecture, and physicome-
chanical characteristics of bone. In addition, the recent development of multi-material
bioprinting systems appears promising to allow the simultaneous deposit of the desired
cell types (i.e., stromal cells, immune cells, cancer-associated fibroblasts, and microvascular
cells [21,36,44]) and the recapitulation of the cancer microenvironment at different stages
of cancer progression. Moreover, preliminary results regarding the inclusion of a vascular-
ization compartment indicate that this approach could significantly improve the biological
and physiological relevance of 3D in vitro cancer models.

However, the development of 3D models is still at its early stages, with very few results
being published. Although the different strategies and results obtained in bone tissue
engineering are a useful benchmark for a deeper understanding and further development
of in vitro bone models, many challenges are yet to be addressed:

Increased cell model complexity. The cellular environment of the bone tumor niche is
comprised of complex and dynamic interactions between tumor and normal resident cells,
but the available studies only consider the interactions of osteoblasts and osteoclasts with
tumor cells, which is an oversimplification.

Better mimicry of ECM complexity in terms of composition, stiffness, and complexity
of the organic and mineral phases. To this aim, the inclusion of HA in the models appears
important, as it dictates normal and tumor cells behavior. At the same time, biomimicry
could be further increased, by incorporating ion-substituted or BA in the models, to
recapitulate the crystallinity, solubility, and ion-availability of the bone environment.

Increased use of ceramic to merge nanoscale morphological cues and biomimetic
composition. This approach allows the model ions naturally present in bone to have
an important biological role. Ceramic permits increasing the stability and mechanical
properties of the models and guarantees higher adhesion of cells to the scaffold’s surface.
Thanks to the tunable (and not yet exploited) properties of CaPs, several parameters of the
model can be regulated, including printability, viscosity, and shear stress during printing
(depending on particles shape and dimensions, which can be determined by selecting the
specific CaP and its ion-doping), and CaPs stability /solubility (depending on CaP type
and ion-doping, crystallinity, and specific surface).
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For 3D printing, a more detailed study on the strategies for the incorporation of
ceramics in the model, for instance, by nanostructured coatings and /or more controlled
distribution of the nanoparticles. Coatings obtained by wet synthesis might lack homo-
geneity and adhesion to the substrate. On the other side, nanoparticles might unevenly
distribute and generally remain in the bulk of the fiber, with a few available on the surface
for interaction with the surrounding microenvironment.

A combination of 3D printing and bioprinting strategies merges the advantages of the
two techniques.

More detailed studies show pores’ shape/size and surface patterning. Available
studies show that patterning can improve the characteristics of the model, but a system-
atic investigation is needed to determine which are the best architectural parameters to
be selected.

Vascularization. This aspect is highly neglected, but it influences several parameters
that are of paramount importance in tumor progression and drug response, including
hypoxia, nutrients and oxygen diffusion, and shear stress.

Author Contributions: All authors listed have made a substantial, direct, and intellectual contribu-
tion to the work and approved it for publication. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Eranet-lac (PER-2012-ELAC2015/T07-0713 to N.B.), the
Italian Association for Cancer Research (AIRC IG n. 21403 to N.B.), the Ministry of Health (project
Starting Grant SG-2018-12367059, BANDO RICERCA FINALIZZATA 2018 to G.G.). Financial support
for Scientific Research 5xMille to N.B.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

2D Two-dimensional

3D Three-dimensional

Ang-1 Angiopoietin-1

ALP Alkaline phosphatase

BA Biogenic apatite

BG Bioactive glass

BMP-2 Bone morphogenic protein-2
CaPs Calcium phosphates

ET-1 Endothelin-1

EMT Epithelial-mesenchymal transition
ECM Extracellular matrix

FGF Fibroblast growth factor
GelMA Gelatin methacrylate

HA Hydroxyapatite

hFOB Human fetal osteoblasts

HIF Hypoxia-induced factor
HUVEC Human umbilical vascular endothelial cells
IGF Insulin growth factor
IL-6,8,11 Interleukin-6,8,11

LOX Lysyl oxidase

MSCs Mesenchymal stromal cells
nHA Hydroxyapatite nanoparticles
OCN Osteocalcin

ON Osteonectin

OPN Osteopontin

PCL Polycaprolactone

PDGF Platelet-derived growth factor
PDPN Podoplanin
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PEG Polyethylene glycol

PEGDA  Polyethylene glycol diacrylate

PTHrP  Parathyroid hormone-related protein

PLA Polylactic acid

RANKL  Receptor activator of nuclear factor-kappa B ligand
SOST Sclerostin

TCP Tricalcium phosphate

TGF-B Transforming growth factor-beta

VEGF Vascular endothelial growth factor
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