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Abstract

How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and

genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how

mitochondrial epigeneticsandgeneticsmechanisms, suchasmtDNAmethylation,mtDNA-derivednoncodingRNAs,micropeptides,

mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in

assessing mtDNA adaptiveevolution. In sum, this reviewcoversnew advances in thefieldof mitochondrial genomics, manyof which

are still controversial, anddiscussesprocesses still somewhatobscure,andsomeofwhichare still quite speculativeandrequire further

robust experimentation.
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Introduction

In the light of global warming and climate change, it is be-

coming of general interest to understand the mechanisms by

which animal species face changing environments. Animals

respond to environmental factors over time in different ways:

1) for motile species by migrating to more favorable condi-

tions but also 2) through plasticity, namely short-term

changes during their lifetime (e.g., epigenetic modifications

and gene expression changes) and 3) through adaptation,

namely long-term changes across generations, that is, herita-

ble evolutionary responses, resulting in genetically distinct

populations—potentially even new species. Genetic diversity

thus fundamentally serves as a way for animal populations to

adapt to changing environments, and mutation is the ultimate

mechanism generating genetic variability.

Although empirical examples of rapid responses and evolu-

tionary adaptations involving nuclear epigenetic (e.g., in the

form of DNA methylation and noncoding RNAs) and genetic

mechanisms (e.g., through the evolution of lineage-specific or

adaptive mutations and genes) exist from a range of animal

species (Smith and Eyre-Walker 2002; Bamshad and Wooding

2003; Jaenisch and Bird 2003; Khalturin et al. 2009; Smith

et al. 2016; Cavalli and Heard 2019), the importance of mito-

chondria and their genomes (mtDNAs) in promoting adapta-

tion to both short- and long-term environmental changes

using the same mechanisms remain largely unexplored (e.g.,

Breton et al. 2014; James et al. 2016; Riggs et al. 2019).

Experimental evolution studies have started to test capacity

for mtDNA variation to respond to selection (e.g., Lajbner

et al. 2018; Immonen et al. 2020) but such research is still
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in its infancy. This major knowledge gap is surprising given the

pivotal role of mitochondria in cell survival and functions, age-

ing, and human health.

In this article, we review the advances in our understand-

ing of the mitochondrial epigenetics and genetics mecha-

nisms that allow animals to survive in a changing world.

There have been excellent recent reviews on the evolutionary

relevance of mitonuclear interactions and coevolution con-

tributing to the dynamics of mtDNA regulation and evolution

(e.g., Matilainen et al. 2017; Sloan et al. 2018; Mottis et al.

2019; Hill et al. 2019; Hill 2020), and many processes over-

viewed in this paper might be moderated by mitonuclear

interactions. Here, we focus on the diversity of forms of

regulation from within the mitochondria, that is, the proxi-

mate mechanisms involved in short-term mitochondrial plas-

tic responses, and also on long-term mitochondrial

evolutionary dynamics, that is, mtDNA mutations and adap-

tations. Specifically, the paper contains two main sections in

which we respectively discuss aspects of 1) how mtDNA ex-

pression and mitochondrial function are internally regulated

via mtDNA methylation, mtDNA-derived noncoding RNAs

and micropeptides, and 2) the sources of mtDNA mutations,

mtDNA adaptations as well as the challenges we face in

assessing mtDNA adaptive evolution due to the complexity

of mitochondrial biology. Many of these aspects are still con-

troversial and need to be further clarified both experimentally

and theoretically.

Mitochondrial Plasticity: Short-Term
Response of Animals to Changing
Environments

Mitochondrial plasticity refers to mitochondrial adjustments

to different environmental cues and metabolic alterations to

meet the bioenergetic demands of the cell. One main mech-

anism by which animal mitochondria may respond to acute

or longer term environmental changes, such as seasonal var-

iation, is by modulating gene expression. In mammals, for

example, in altered thermal environments, transcriptional

regulation of mitochondrial capacities implicates thermal

sensing proteins, which provide a thermosensory input to

the hypothalamus, which in turn modulates the expression

of the transcriptional coactivator 1-alpha (PGC-1a). PGC-1a
is a nuclear-encoded protein that interacts with the nuclear

respiratory factors NRF1 and NRF2 that control transcription

of nuclear and mitochondrial genes involved in mitochondrial

respiratory function, including the mitochondrial transcrip-

tion factor TFAM for the regulation of mtDNA replication

and expression (reviewed in Seebacher et al. 2010). This ex-

ample illustrates well the crosstalk between the nucleus and

the mitochondria leading to the maintenance of cellular

health and homeostasis. However, nucleus-to-mitochondria

(anterograde) and mitochondria-to-nucleus (retrograde) ge-

netic regulation alone cannot fully explain mitochondrial

plasticity. There are other processes that regulate mitochon-

drial DNA replication and gene expression within the mito-

chondrion, such as mitochondrial epigenetic mechanisms,

and there are also mtDNA-encoded factors that modify cel-

lular metabolism not necessarily always through

“communication” with the nucleus. In this section, we will

briefly review some of these factors underlying mitochondrial

plasticity from a “strictly mitochondrial genome point of

view,” that is, those directly acting on or encoded by the

mtDNA that regulate mitochondrial gene expression and

function, including mtDNA methylation, mtDNA-derived

noncoding RNAs and micropeptides. Other mechanisms,

such as posttranslational modifications of mitochondrial nu-

cleoid proteins or mtDNA-encoded proteins (reviewed in

Stram and Payne 2016; Sharma et al. 2019), posttranscrip-

tional modifications of mtRNA (reviewed in Pearse et al.

2017), as well as mitochondrial fatty acid composition, mi-

tochondrial fusion and fission, and ROS signaling, which are

also important features for maintaining mitochondrial plas-

ticity (e.g., Seebacher et al. 2010; Bahat and Gross 2019) will

not be discussed. Moreover, we will focus on mechanisms

that seem to be conserved among animal taxa, so that we

do not attempt to exhaustively review all exceptions. For

example, emerging evidence suggests that RNA editing

could be used for acclimation or acclimatization (reviewed

in Rosenthal 2015). To our knowledge however, mitochon-

drial RNA editing, even if it has evolved multiple times inde-

pendently (Chateigner-Boutin and Small 2011), does not

seem to be widespread in metazoans and its role in mito-

chondrial plasticity still remain obscure.

The Controversial History of mtDNA Methylation

Epigenetics refers to the mechanisms allowing the modifica-

tion of gene expression without directly altering the nucleo-

tide sequence (see Cavalli and Heard 2019 for a recent

review). In other words, epigenetic mechanisms allow for

the generation of phenotypic variations in organisms, while

keeping the genome intact (Leung et al. 2016; Cavalli and

Heard 2019). Both nuclear and mitochondrial DNAs can be

regulated via epigenetic mechanisms, but the understanding

of mitochondrial epigenetics is still in its infancy. One inter-

esting example is DNA methylation, which is the most stud-

ied epigenetic mechanism. In animals, methylation of nuclear

DNA occurs mainly on a cytosine that precedes a guanine, at

its fifth carbon (5-methylcytosine or 5mC). One such dinu-

cleotide sequence is called “CpG” and can be found in large

quantities in certain regions of the nuclear genome, forming

CpG islands (CGI) (Illingworth and Bird 2009). Methylation is

found mainly in promoters, where it represses expression of

the associated gene, for example, by preventing the binding

of transcription factors, thereby blocking its expression

(Illingworth and Bird 2009).
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In contrast to the nuclear DNA, the presence and role of

cytosine methylation in the mitochondrial DNA have been a

matter of debate since the 1970s (reviewed in van der Wijst

and Rots 2015; Castegna et al. 2015; Lambertini and Byun

2016; D’Aquila et al. 2017; Mposhi et al. 2017; Coppedè and

Stoccoro 2019; Sharma et al. 2019; Leroux et al. 2021). On

the one hand, some recent studies suggest that this process is

virtually absent or very rare in mammals (e.g., Liu et al. 2016;

Mechta et al. 2017; Matsuda et al. 2018; Owa et al. 2018),

thus questioning its functional relevance. For example,

Matsuda et al. (2018) exhaustively analyzed mouse mtDNA

using three methods that are based upon different principles

for detecting methylated cytosines, that is, whole genome

bisulfite sequencing (WGBS), treatment with methylated

cytosine-sensitive endonuclease McrBC and mass spectromet-

ric nucleoside analyses of highly purified mtDNA preparations,

and detected very low levels of 5-methylcytosines (<2%),

questioning the putative role of methylation in the regulation

of mtDNA gene expression.

On the other hand, a growing body of literature suggests

that methylation adds an epigenetic layer of regulation con-

trol of mtDNA replication and transcription (D’Aquila et al.

2017 and reviews aforementioned). Several studies reported

significant correlations between mtDNA epigenetic marks

(i.e., 5-methylcytosines as well as 5-hydroxymethylcytosines),

dietary, pharmacological agents, exposure to environmental

pollutants and peculiar phenotypes, ageing, and diseases

(D’Aquila et al. 2017 and reviews aforementioned). The ma-

jority of these studies assessed mtDNA methylation levels of

the D-loop region, which contains essential replication and

transcription elements. For example, a study by Liao et al.

(2016) showed that with respect to the control group, fish

fed a high-lipid diet were characterized by an increase of D-

loop methylation. Coupled to these studies were the discov-

eries of DNA methyltransferases targeted to and functioning

in human and mouse mitochondria, modifying mtDNA meth-

ylation levels and presumably influencing mitochondrial tran-

scription (Chestnut et al. 2011; Shock et al. 2011; Wong et al.

2013; Dou et al. 2019; Patil et al. 2019). However, despite all

these observations, mtDNA methylation remains a matter of

debate due to contradictory reports from WGBS studies, but

recent work suggests that this controversy can in part be at-

tributed to methodological considerations.

Indeed, by taking methodological adaptations for investi-

gating mtDNA methylation via WGBS (e.g., accounting for or

avoid nuclear contamination and linearize the molecule prior

to bisulfite conversion to avoid secondary structure effects),

two recent and independent studies, respectively on human

cells (Patil et al. 2019) and cow oocytes and blastocytes (Sirard

2019), demonstrated that the mtDNA is extensively methyl-

ated (>10%), with a concomitant decrease in gene expres-

sion being observed, thus challenging the notion that mtDNA

methylation is not biologically relevant. These two studies

(Patil et al. 2019; Sirard 2019) also revealed L-strand and

non-CpG methylation biases in mammalian mtDNAs, sup-

porting the suggestion by Dou et al. (2019) that most

WGBS studies focused on only methylated CpGs and did

not perform strand-specific analysis, and this, that is, neglect-

ing non-CpGs and combining reads of both strands for map-

ping methylation, probably misled to previous conclusions of

the absence of global mtDNA methylation. For example, the L

strand in the human mtDNA possesses more than twofold C

sites than the H strand, and among all C sites (N¼ 7,350),

CpGs are underrepresented (N¼ 435). This could partly ex-

plain why mtDNA methylation mainly occurs on the L strand.

In addition, because most protein-coding genes (12 out of 13)

use L strand as template, the regulation of the L strand by

methylation may relate to mtDNA gene expression regulation

(Dou et al. 2019).

That being said, by reanalyzing previous WGBS data, Dou

et al. (2019) validated that mitochondrial genomes in

humans, mice, and zebrafish are strongly biased to L-strand

non-CpG methylation with conserved peaks (>10% methyl-

ation) at gene–gene boundaries, and conserved methylation

patterns across different species and developmental stages.

Moreover, knockout of de novo methyltransferase DNMT3A

perturbed mtDNA methylation patterns (but not global levels)

and altered mitochondrial gene expression, copy number, and

oxygen respiration (Dou et al. 2019). Similar results, that is,

knockdown of DNA methyltransferase enzymes affecting

methylation levels, were reported by Patil et al. (2019), who

also suggested the possibility of fine, transient, and gene-

specific transcriptional regulation by methylation to meet

the energy demand of cells. This hypothesis was supported

by the observation that the genes of a certain promoter re-

gion of the D-loop were differently affected in the absence of

the methyltransferase DNMT3B (Patil et al. 2019), suggesting

the existence of a gene-specific regulation. Similarly, Sirard

(2019) reported an association between a low level of meth-

ylation and a higher expression of certain protein-coding

genes, and conversely, a high level of 5mC in less expressed

genes. Collectively, these data provide strong support for

functional relevance of mtDNA methylation in animals.

Interestingly, two recent researches suggested that ade-

nine methylation is also an important epigenetic mechanism

regulating mitochondrial function (Koh et al. 2018; Hao et al.

2020). Koh et al. (2018) first reported the presence of N6-

methyldesoxyadenosine (6 mA) in humans and showed that

6 mA levels in mtDNA are much higher than in nuclear DNA,

and that adenine demethylation causes a decrease in ATP

production. Similarly, Hao et al. (2020) showed that mam-

malian mtDNA is enriched for 6 mA compared with nuclear

DNA, and that the activity of the methyltransferase that

mediates mtDNA 6 mA methylation (Methyltransferase Like

4 or METTL4) can decrease mtDNA transcription and copy

number. Moreover, 6 mA levels in mtDNA could be further

elevated under hypoxia, suggesting regulatory roles for 6 mA

in mitochondrial stress response (Hao et al. 2020).
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Despite the growing body of literature on mtDNA methyl-

ation, its role and effects in animal species still remain largely

obscure (e.g., Kowal et al. 2020), probably because of previ-

ous conflicting reports surrounding cytosine methylation, and

also because most articles published to date focused on hu-

man and mouse mtDNAs (e.g., Bellizzi et al. 2013; Lambertini

and Byun 2016; D’Aquila et al. 2017; Matsuda et al. 2018;

Patil et al. 2019). Mitochondrial DNA methylation seems to

affect mitochondrial gene expression and function, and thus

likely represents an additional key mechanism by which ani-

mals could respond quickly (in real time) to environmental

change (e.g., Bartelli et al. 2018). Moreover, mtDNA methyl-

ation seems to be affected by numerous factors and could

thus represent a useful biomarker for harmful environmental

and nutritional factors (Iacobazzi et al. 2013), and also for

disease detection and diagnosis (Gao et al. 2017). Further

studies are needed to add more precision and clearer under-

standing of the phenomenon.

Intramitochondrial Actions of mtDNA-Derived Noncoding
RNAs

Epigenetic regulation of mitochondrial gene expression can

also be accomplished by noncoding RNAs (ncRNAs). An

ncRNA is a functional molecule transcribed from DNA but

not translated into a protein, the most well-known being

the tRNAs and rRNAs involved in protein synthesis.

Mitochondrial epigenetic-related ncRNAs, that is, long non-

coding RNAs of >200 bp (lncRNAs) and small noncoding

RNAs, can be of nuclear or mitochondrial origin. They gener-

ally regulate gene expression at the transcriptional and post-

transcriptional levels. One recent example is Cerox1, a nuclear

lncRNA conserved across placental mammals that has been

shown to modulate mitochondrial complex I subunit tran-

scripts, increasing complex I subunit protein abundance and

enzymatic activity, and decreasing ROS production (Sirey et al.

2019). In this article, however, we will not discuss ncRNAs

produced by the nuclear genome and imported into mito-

chondria (nor ncRNAs produced by mtDNA and acting as

retrograde signaling molecules), since the subject has been

recently reviewed by others (e.g., Dong et al. 2017;

Vendramin et al. 2017; Zhao et al. 2018; Jeandard et al.

2019; Cavalcante et al. 2020; Gusic and Prokisch 2020).

We will rather provide a brief overview of mitochondrial

epigenetic-related ncRNAs transcribed from the mtDNA and

acting inside mitochondria, although their mode of action in

mitochondria still remains mostly enigmatic.

Indeed, the mitochondrial genome is known to produce a

set of lncRNAs (mtlncRNAs; Dong et al. 2017; Zhao et al.

2018; Sharma et al. 2019 for reviews) as well as small non-

coding RNAs (microRNAs located in other typical mitochon-

drial genes; Geiger and Dalgaarg 2017; Pozzi and Dowling

2019; Sharma et al. 2019; Pozzi and Dowling 2020; Pozzi and

Dowling 2021) that could participate in the regulation of

mitochondrial gene expression. mtlncRNAs with putative

intramitochondrial functions include the simple antisense

transcripts lncND5, lncND6, and lncCytb, which were first

identified by strand-specific RNA-seq of purified mitochondria

and by RT–qPCR (Mercer et al. 2011; Rackham et al. 2011).

These mtlncRNAs have been shown to create RNA–RNA

duplexes with their complementary mRNAs, supporting the

idea that they could regulate mRNA expression and stability

(Rackham et al. 2011). Two other mtlncRNAs that are thought

to play a role in the regulation of mitochondrial gene expres-

sion are MDL1 (Mitochondrial D-Loop 1), which mostly covers

the entire mitochondrial D-loop region of the human mtDNA,

and MDL1AS (MDL1 Anti Sense), which is the antisense tran-

script of MDL1 (Gao et al. 2018). MDL1 and MDL1AS were

proposed to be precursors of mitochondrial transcription ini-

tiation RNAs (Gao et al. 2018).

Contrary to mtlncRNAs, which have been mainly studied

in human and mice, putative mitochondrially produced

microRNAs (i.e., from �15nt to �120nt) have been de-

scribed in a variety of animal species (e.g., Mercer et al.

2011; Ro et al. 2013; Bottje et al. 2017; Pozzi et al. 2017;

Riggs et al. 2019; Pozzi and Dowling 2019; Passamonti et al.

2020; Pozzi and Dowling 2020). Their mitochondrial origin

has been demonstrated in various ways, for example 1) they

are not expressed in Rho0 cells devoid of mitochondrial DNA

(Ro et al. 2013), 2) they map exclusively to the mtDNA se-

quence even in species with high NUMT levels (mitochondrial

pseudogenes in the nuclear genome), and 3) their tissue-

specific abundances are strongly associated with the

mtDNA content (Pozzi and Dowling 2019). The historical no-

menclature for these mitochondrial microRNAs is a bit con-

fusing (see Pozzi and Dowling 2020). The term mitomiRs

refers to microRNAs of nuclear or mitochondrial origin iden-

tified in the mitochondria (Bandiera et al. 2011; Duarte et al.

2014), whereas the term mt-miRNAs refers to microRNAs

that are specifically encoded by the mtDNA and able to

bind Argonaute protein or AGO2, a key element involved

in RNA interference (RNAi, see below) (Pozzi and Dowling

2020). Several groups have reported that mitomiRs of mito-

chondrial origin can regulate the expression of mitochondrial

genes, and to our knowledge, many of them appear to do it

in a RNAi-dependent manner (e.g., Ro et al. 2013; Sharma

et al. 2019; Cavalcante et al. 2020; Pozzi and Dowling 2020).

By directly targeting mRNAs, miRNAs represent one im-

portant class of posttranscriptional regulators of gene ex-

pression. Specifically, a mature miRNA associates with a

partially complementary regulatory region of a target

mRNA as well as with AGO2, an endonuclease shared

across multiple species and involved in RNAi (Ha and Kim

2014; Cloonan 2015; Pozzi et al. 2017). With other part-

ners, they form a cytoplasmic ribonucleoprotein RISC com-

plex that is able to hinder the binding of the target mRNA to

the ribosome (Cloonan 2015). However, it is still unclear

whether such a mechanism operates inside mitochondria
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or if there is an alternative RNAi-like machinery operating

inside the organelle (Ro et al. 2013; Cavalcante et al. 2020;

Pozzi and Dowling 2020). The latter idea is supported by the

observations that key proteins involved in RNAi, such as

AGO2 and DICER, were absent in highly enriched mitochon-

drial fractions from human HEK293T cells, suggesting that

mitochondria lack the canonical miRNAs biogenesis machin-

ery (Ro et al. 2013). In sharp contrast, strong evidence that

AGO2 and other key components of the canonical RNAi

machinery may function in mitochondria were provided by

different studies (e.g., Bandiera et al. 2011; Zhang et al.

2014; Geiger and Dalgaarg 2017). For example, a mito-

chondrial localization of AGO2 was reported following mi-

tochondrial immuno-isolation after differential

centrifugation to wash the organelles in stringent condi-

tions, leading to highly purified mitochondrial fractions

(Bandiera et al. 2011). Additional results and interpretations

of Bandiera et al. (2011) were rather convincing, such as 1)

the use of four prediction programs to identify subcellular

protein localization (i.e., TargetP, MitoProt II, Predotar, and

ESLPred), which all consistently predicted a mitochondrial

localization of AGO2, 2) the binding of AGO2 to some mi-

tochondrial transcripts such as COX3, and 3) the insights

from other proteomic studies of AGO2 partners, which

identified mitochondrial proteins mostly from the inner

membrane, including many ATP/ADP translocases, carriers

and ribosomal proteins as binding partners (Höck et al.

2007). All together, these observations suggest that putative

mt-miRNAs could inhibit mitochondrial mRNA translation in

a RNAi-dependent manner, although canonical RISC-activity

in mitochondria still needs to be clearly demonstrated. It is

also possible that small noncoding mtRNAs do not act ex-

clusively through RNAi, as some of them seem to enhance

the production of their host mitochondrial genes (e.g., Ro

et al. 2013; Sharma et al. 2019), and/or act as regulators

through interactions with different proteins (e.g., Geiger

and Dalgaarg 2017).

Recent research highlights regulation via small noncoding

mtRNAs as an emerging mechanism by which animals can

adjust the expression of their mitochondrial genome in rela-

tion to cellular conditions and energetic demands. For exam-

ple, a study by Riggs et al. (2019) provided evidence that small

mtDNA-encoded RNAs may play a role in supporting anoxia

tolerance in embryos of the annual killifish Austrofundulus

limnaeus. It is now clear that the mtDNA harbors multiple

gene layers, with different mitochondrial products encoded

within multiple genes, such as noncoding RNAs and micro-

peptides, which are discussed below, and the question arises

whether the presence of overlapping selection pressures

could alter the strength or direction of selection on particular

regions of mtDNA sequence. As suggested by Pozzi and

Dowling (2020), the presence of “genes within genes” should

increase the effect of purifying selection in order to preserve

the function of these products. Comparative studies across a

growing number of species will be crucial to fully test this

hypothesis.

Mitochondrially Encoded Micropeptides That Modify Cell
Metabolism

For many years, most scientists assumed that, in eukaryotes,

each mature nuclear mRNA encodes a single functional open

reading frame (ORF), but recent findings have revealed in

humans and other organisms, that many mRNAs encode

more than one protein, that is, they code for a large protein

and one or several small proteins (Samandi et al. 2017). These

findings indicate that the size and complexity of most eukary-

otic nuclear proteomes have probably been greatly underesti-

mated and this is also true for mitochondrial proteomes,

including in humans (Capt et al. 2016; Angers et al. 2019;

Samandi et al. 2017; Miller et al. 2020). This is supported by

recent discovery of small proteins of functional importance,

for instance Humanin, MOTS-c, and SHLPs (small humanin-

like peptides), that is, micropeptides 16–38 amino acids long

that are encoded within the 16S (Humanin and SHLPs) and

the 12S rRNA (MOTS-c) genes in the human mtDNA (Lee et al.

2015; Cobb et al. 2016; Kim et al. 2018). Of these, MOTs-c,

which is involved in metabolic regulation, appears to exert its

function in the cytoplasm (Lee et al. 2015), and Humanin, the

first discovered mtDNA-encoded micropeptide, to modulate

mitochondrial biology, cell proliferation, and cell survival

through receptors located outside mitochondria (reviewed

in Miller et al. 2020). Of the six SHLPs, SHLP2, and SHLP3

have been shown to increase mitochondrial oxygen consump-

tion rate and ATP levels while reducing reactive oxygen spe-

cies, indicating them as mitochondrial modulators (Cobb et al.

2016). However, this was observed through an incubation of

cells with SHLP2 and SHLP3, that is, by testing their exogenous

effects on mitochondria (Cobb et al. 2016). It thus remains to

be established if mtDNA-encoded micropeptides exert their or

some of their functions in the mitochondrial compartment.

On a final note, the presence of Humanin and SHLP6 was also

detected through comparative genomic analyses in birds

(Mortz et al. 2020), suggesting the possibility that the mito-

chondrial rRNA genes may encode small bioactive peptides in

a variety of animal taxa.

Mitochondrial Adaptation: Long-Term
Response to Changing Environments

Evolution can be defined as the change in allele frequencies

through time. Such change can be due to chance events

(mutation-drift), or the result of differences in fitness.

Interestingly, the sources of mitochondrial genome muta-

tions are still a matter of debate. In animals, there is a

wide consensus that mtDNA typically mutates faster than

nuclear DNA (Ballard and Whitlock 2004) and it has long

been presumed that this higher mutation rate was
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predominantly attributable to reactive oxygen species (ROS)

produced in mitochondria during respiration (Harman 1972;

Miquel et al. 1980; Richter et al. 1988; Shigenaga et al.

1994). This assumption has however been challenged by

findings suggesting that mutations are mostly an endoge-

nous property of mtDNA replication and repair machinery

(Milani and Ghiselli 2015; Melvin and Ballard 2017; Hood

et al. 2019). Indeed, several studies have questioned whether

mutagens necessarily lead to extensive DNA damage, includ-

ing ROS (Szczepanowska and Trifunovic 2015; Wanagat

et al. 2015). This rethinking was due to several considera-

tions, among which 1) the resilience of mtDNA to many

mutagens of the nuclear DNA (nDNA) (Valente et al.

2016), 2) the mtDNA protection in the nucleoid—forming

nucleoid–protein–DNA structures in the inner mitochondrial

membrane—(Kucej and Butow 2007) that shields the

mtDNA from mutagens by packaging it as chromatin does

for the nDNA, and 3) the rapid scavenging of ROS, that

actually minimizes their damaging potential (Sheng et al.

2014; Melvin and Ballard 2017).

It is becoming evident that the majority of mtDNA muta-

tions probably derive from errors during mtDNA replication

without adequate repair mechanisms (Zheng et al. 2006;

Szczepanowska and Trifunovic 2015; Kauppila et al. 2017).

If the origin of mtDNA mutations was oxidative stress, the

most common change would be mis-incorporation of an A

base, resulting in a G: C to T: A (G ! T) (Bohr 2002).

However, recent analyses suggested that G: C to A: T tran-

sitions (C ! T) are the most common mtDNA mutations

(Khrapko et al. 1997; Zheng et al. 2006; Lawless et al.

2020). According to these studies, this type of change is

most likely a consequence of errors due to Pol-c activity, the

enzyme responsible for replication of the mtDNA (Zheng et al.

2006; Melvin and Ballard 2017), thus minimizing the role of

ROS in mtDNA mutagenesis. That being said, oxidative dam-

age to Pol-c may also cause reduced replication fidelity

(Anderson et al. 2020), and the fidelity of mtDNA replication

does not depend only on Pol-c but also on other molecules

and factors involved in mtDNA maintenance and repair, as

well as on local DNA sequence environment (Szczepanowska

and Trifunovic 2015). One of the compelling lines of evidence

against the historical view that high animal mtDNA mutation

rates are simply the result of oxidative damage associated

with mitochondrial function is the fact that some other eu-

karyotic lineages (like plants) have very low mitochondrial mu-

tation rates (Wolfe et al. 1987), and that these low mutation

rates are dependent on specialized repair machinery that is

actually not present in animal systems (Wu et al. 2020).

The change in allele frequencies due to differential fitness

is caused by natural selection and it can be either a decrease

in the frequency of deleterious alleles (defined as negative or

purifying selection), or an increase in frequency of beneficial

alleles (positive selection). Natural selection is responsible for

adaptation, and it can be the result of a direct influence of a

genetic variant on a phenotype (direct selection), or of selec-

tion acting at a linked locus (indirect selection). For a long

time, the textbook notion was that the mtDNA evolves

mainly under purifying selection, and that the genetic vari-

ance that we observe in populations is neutral (Ballard and

Whitlock 2004). Given the central role of mitochondria in

eukaryotic life, it is reasonable to think that the mtDNA

influences several traits and phenotypes, thus being involved

in adaptive processes. Indeed, there is increasing evidence of

mtDNA genetic variance being linked to phenotypic variance

across several traits (Dowling 2014), and that mitochondria

undergo a significant amount of adaptive evolution (James

et al. 2016). Some examples of recent works reporting evi-

dence of adaptive mtDNA evolution are included in table 1.

The traits influenced by mtDNA showing signs of adaptation

are predictably broad, the most investigated being thermal/

altitude adaptation, longevity, effects of diet on metabolism,

stress tolerance, and reproduction. Most of the evidence of

adaptive evolution, though, is based on correlations and ma-

nipulative experiments are still limited and restricted to a

handful model species (Dowling 2014, Milani and Ghiselli

2020).

Experimental evolution studies are promising to test the

idea that standing mtDNA variants can be shaped by selection

imposed by environmental heterogeneity, and to understand

mtDNA contribution to trajectories of adaptive evolution. In

recent studies—for example, in Drosophila and

Callosobruchus seed beetle (table 1)—environmental selec-

tion (e.g., replicated populations assigned to two divergent

temperatures) was applied, then the changes in frequencies

of mtDNA haplogroups across generations in each treatment

were assessed. This can be a powerful way to test for a po-

tential adaptive role of mtDNA.

Challenges in Assessing mtDNA Adaptive Evolution

Mitochondrial DNA mutation rate depends on life history of

organisms (e.g., physiology, reproduction), so it is not sur-

prising to see a large variance across different taxa (see Allio

et al. 2017 and references therein). Interestingly, James et al.

(2016) suggested that mitochondrial adaptive evolution is

limited by the supply of mutations; a consequence of these

observations is that organisms with different life histories and

biology will have different adaptation potentials. For this rea-

son, it is very important to estimate mtDNA mutation rates

to infer evolutionary patterns, but the presence of multiple

copies per organelle and multiple organelles per cell is a

major source of complexity (reviewed in Schaack et al.

2020). Another consequence of mtDNA being present in

multiple copies in each cell is that different variants can be

present in the same organelle and/or cell, a condition defined

as heteroplasmy. Once thought to be rare and not particu-

larly relevant, now heteroplasmy is known to be widespread

(Dowling 2014). An interesting feature of heteroplasmy is
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that the expression of a particular mitochondrial variant

depends on its abundance in the mitochondrial population.

There is a “threshold effect” by which a mtDNA variant will

affect the phenotype only if it exceeds a certain frequency in

the mitochondrial population, otherwise its effects are buff-

ered by the more common variant (Ghiselli et al. 2013;

Dowling 2014; Milani and Ghiselli 2015, van den Ameele

et al. 2020). The segregation dynamics of mtDNA across

organelles, cells, tissues, and generations will influence the

distribution of variants, changing their frequencies and af-

fecting their penetrance. Therefore, a variant can have dif-

ferent effects in different cells/tissues as heteroplasmy

changes over time because of the partitioning of mtDNA

into daughter cells at each cell division (van den Ameele

et al. 2020; Zhang, Burr et al. 2018). The distribution of

mtDNA variants is also affected by mitochondrial fission–fu-

sion and intercellular transfers that make the situation even

more dynamic (Busch et al. 2014; Sinha et al. 2016; Torralba

et al. 2016). Since the copy number of a variant determines

its expression, the changes in frequencies inside an organelle,

a cell, a tissue, or a whole organism will affect the effective

population size of that variant, with consequences on ge-

netic drift and selection. Each time an mtDNA population

goes through a reduction in copy number (genetic bottle-

neck)—for example, during mitochondrial fission, cell divi-

sion, and gametogenesis—the relative frequencies of

different variants change. The maintenance and distribution

of different alleles in the mitochondrial population were ini-

tially thought to be governed exclusively by random genetic

drift, but there is increasing evidence of selection, especially

of the purifying type (Milani and Ghiselli 2015; Milani

2015; Zhang, Burr et al. 2018), but also selfish selection

appears to be involved (see below). Interestingly, a reduction

in mtDNA copy number per organelle/cell can expose low-

frequency variants to natural selection when their abundance

cross the threshold and they express their phenotype.

Accordingly, the mechanism of mitochondrial fission can iso-

late deleterious variants that are then eliminated by mitoph-

agy (Busch et al. 2014), and the reduction of mtDNA copy

number per cell in gametes and during embryo development

can increase the effectiveness of natural selection (Ghiselli

et al. 2013; Milani and Ghiselli 2015).

Another consequence of mtDNA being present in multiple

copies, is multilevel selection (Rand 2001), a condition that

can lead to genomic conflicts, favoring the spread of selfish

variants (see Phillips et al. 2015; Lindholm and Price 2016; Ma

and O’Farrell 2016; Klucnika and Ma 2019). Uniparental in-

heritance of mitochondria reduces within-individual variation,

in turn reducing within-individual selection, and this is often

argued to be one of the main reasons behind its evolutionary

success. However, uniparental inheritance favors the emer-

gence of cytonuclear conflicts over sex ratio, sex determina-

tion, and sexual antagonistic variants (Unckless and Herren

2009; Dowling and Adrian 2019). Since mtDNA is usually

maternally inherited, the evolutionary response to selection

on mtDNA in males is greatly limited and this means that

male-harming mtDNA variants can accumulate under

mutation-selection balance (Frank and Hurst 1996). This prin-

ciple was named “Mother’s Curse” by Gemmell et al. (2004),

and the situation just described has been referred to as a

“weak form” of Mother’s Curse (Dowling and Adrian

2019; Havird, Forsythe, et al. 2019). The “strong form” of

Mother’s Curse predicts that female-beneficial but male-

harming variants can accumulate as a consequence of positive

selection on sexually antagonistic mutations (Dowling and

Adrian 2019; Havird, Forsythe, et al. 2019). Results of some

empirical works are consistent with the Mother’s Curse hy-

pothesis (Rand 2001; Sackton et al. 2003; Camus et al. 2017;

Milot et al. 2017; Vaught and Dowling 2018), but in some

other cases no supporting evidence was found (Mossman

Table 1

Recently Published Works Reporting Adaptive Evolution of Animal mtDNA

Adaptation Investigated Organism(s) References

Altitude/hypoxia Mice, grasshoppers Cheviron et al. (2014); Li et al. (2018)

Bioelectrogenesis Electric fish Elbassiouny et al. (2020)

Depth Fish, scale worms, sea cucumbers, bivalves Shen et al. (2019); Zhang, Sun et al. (2018); Mu et al.

(2018); Yang et al. (2019)

Diet/metabolism Vampire bats, fruit flies, ladybirds Botero-Castro et al. (2018); Camus et al. (2017); Mossman

et al. (2016); Yuan et al. (2020)

Evolution of soft shell Turtles Escalona et al. (2017)

Sexual dimorphism/antagonism Fruit flies, mammals, seed beetles Camus et al. (2017); Havird and McConie (2019); Immonen

et al. (2020); Nagarajan-Radha et al. (2020)

Sperm competition Pseudoscorpions Padua et al. (2014)

Thermal adaptation Fruit flies, mice, crabs, mammals, insects, seed

beetles, European anchovies, planthoppers;

birds

Camus et al. (2017); Cheviron et al. (2014); Chung et al.

(2017); Frigault et al. (2017); Immonen et al. (2020);

Lajbner et al. (2018); Silva et al. (2014); Sun et al. (2019);

Lamb et al. (2018)

NOTE.—For the bibliographic research, we used the following criteria: 1) papers published in the last 5 years, 2) molecular/genomic approach (i.e., papers must include
sequence analyses), and 3) papers must report specific adaptations, not just signatures of putative positive selection.
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et al. 2016, 2017; Eyre-Walker 2017), so the generality of the

phenomenon and its relevance to natural populations are still

under study (Dowling and Adrian 2019; Rand and Mossman

2020). It has been shown that the effects of Mother’s Curse

can be curtailed by inbreeding or assortative mating allowing

nuclear modifiers to be effective despite mtDNA not being

transmitted by males (Unckless and Herren 2009; Wade and

Brandvain 2009; Hedrick 2012), and that the context-specific

nature of mitonuclear epistatic interactions (more below)

could increase or minimize Mother’s Curse impact (Rand

and Mossman 2020). Interestingly, a theoretical model

(Wade and Brandvain 2009) and experiments on Drosophila

(Keaney et al 2020a, 2020b) revealed the possibility that also

kin selection might allow mitochondria to respond to selection

on both male viability and fertility. Clearly, the asymmetry

between sexes concerning mitochondrial biology adds multi-

ple layers of complexity to the study of adaptive evolution of

mtDNA.

One last challenge we want to briefly mention here is

mitonuclear coevolution. One of the consequences of the

endosymbiotic origin of mitochondria and the retention of

an mtDNA semi-independent from the nuclear genome, is

that the two genomes have to coevolve, because funda-

mental cellular functions—such as energy production

through oxidative phosphorylation—depend on the integra-

tion and interaction of molecules produced by either ge-

nome. So, a specific phenotype can be the result of the

product of epistatic interactions—either conflicting or coop-

erative—among nuclear and mitochondrial genes by the en-

vironment, making the reconstruction of evolutionary

patterns very difficult (Rand and Mossman, 2020). This

also means that a mitochondrial variant can have different

effects depending on the nuclear background, and that

mitonuclear interactions and coevolution are heavily involved

in the mechanisms of adaptation (Hill et al. 2019; Hill 2019).

Almost all the processes overviewed in this paper might be

moderated by mitonuclear interactions, and there is increas-

ing evidence that such interactions are evolutionarily relevant

(e.g., Rand et al. 2004; Bar-Yaacov et al. 2012; Osada and

Akashi 2012; Barreto and Burton 2013; Gershoni et al.

2014; Sloan et al. 2018; Adrion et al. 2016; Havird and

Sloan 2016; Yang et al. 2019; Piccinini et al. 2021).

Mitonuclear interactions and coevolution is a quite complex

topic, so an in-depth discussion would require a dedicated

paper, rather than just a paragraph. Lately, this evolutionary

mechanism has gained much attention from evolutionary

biologists and some thorough reviews are available (Sloan

et al. 2018; Hill 2019; Hill 2020).

Text Box

Additional, Putative Mechanisms for Adaptive Fixation of Environmentally Induced
mtDNA Modifications

To complete our understanding of how a changing environment might contribute to mtDNA evolution, we should

consider the processes that can potentially lead to fixation not only of environmentally induced mutations (generated

for example by boosted mtDNA replication or by environmental agents such as xenobiotics), but also of epigenetic

modifications. With “environmentally induced mutations” we indicate mutations that are not adaptive characters per

se, and, thus, they are not intended as “directed mutation” (see Charlesworth et al. 2017). Environmental induction of

phenotypes (phenotypic plasticity) might represent a way for new traits to arise. In this light, environmentally induced

mtDNA mutations and epigenetic modifications can be screened by natural selection and eventually be removed from

or become fixed in a population, as in the case of the nuclear counterpart (Ehrenreich and Pfennig 2016). In this way,

an environmentally induced phenotype has the potential to become an adaptive phenotype through a series of

quantitative genetic changes (West-Eberhard 2003) that can be selected if the trait is favorable in that environment.

This process is known as genetic accommodation (Moczek 2007; Moczek et al. 2011) and in its extreme form it is

defined as genetic assimilation, that is, when plasticity decreases up to trait fixation (the trait becomes expressed

constitutively in a population) (Waddington, 1952, 1953; Pigliucci et al. 2006; Ehrenreich and Pfennig 2016; Nishikawa

and Kinjo 2018).

Although there is no evidence so far that these processes are relevant to mitochondrial genome evolution, they might

represent putative mechanisms fixing mitochondrial genetic and epigenetic modifications. In this way, also regulatory

components of mitonuclear interactions, like epigenetic modifications that confer some advantage in the new envi-

ronment that caused them, represent targets on which genetic accommodation could act (e.g., Jones and Robinson

2018). Indeed, cases in which genes appear to be “followers” in the origins of novel traits were considered convincing,

not only in animals but also in plants (Schwander and Leimar, 2011; Schlichting and Wund 2014; Ehrenreich and

Pfennig 2016).

Experimental evolution studies provide definitive evidence for demonstrating genetic accommodation occurrence.

However, ascertaining whether or not genetic assimilation has contributed to character evolution in natural
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Conclusions

The literature reviewed here illustrates the great complexity

of mitochondrial evolutionary biology. Recent studies are

revealing that epigenetic marks that increase fitness can

rise in frequency in a population, and these changes may

result in novel morphology, behavior, or physiology, and

ultimately reproductive isolation (e.g., Smith et al. 2016).

At the mitochondrial level, it is clear that more research is

needed to better understand the potential importance of

mtDNA methylation and noncoding RNAs in the capacity

of animals to adjust their phenotype to variations in the

environment. In addition, the literature reviewed in this pa-

per illustrates that animal mtDNAs, including the human

mtDNA, have a larger functional repertoire than previously

believed (Breton et al. 2014; Capt et al. 2016; Angers et al.

2019; Miller et al. 2020; Mortz et al. 2020). For example, a

deeper examination of the human mitochondrial genome

revealed the existence of more than 200 open reading

frames of 20 amino acids (Angers et al. 2019). The func-

tional potential is therefore enormous, even for such a small

genome. It is highly probable that several other mitochon-

drial ncRNAs and micropeptides will be discovered and their

study will certainly allow us to understand the fundamental

mechanisms regulating mitochondrial transcription and

translation, as well as further reveal the intimate metabolic

link between the mitochondria and the cell. A whole new

class of mitochondrial ncRNAs and proteins would also

transform the way we study the molecular mechanisms

leading to the development of diseases related to mitochon-

drial dysfunction. In addition, this would offer new thera-

peutic avenues for many pathologies. The study of small

mitochondrial proteins will also facilitate our understanding

of the process of origin of new genes, which are thought to

contribute to evolutionary innovations (Samandi et al.

2017). In other words, species- or lineage-specific mitochon-

drial micropeptides and ORFan genes probably hold the key

to many recent adaptations, but they remain, for the most

part, still uncharacterized.

The sources of mtDNA mutations in animals are still a mat-

ter of debate but recent findings suggest that a predominant

source comes from imperfect replicative fidelity and repair

mechanisms (Melvin and Ballard 2017). The rate and pattern

of mutation accumulation in the mtDNA vary greatly within

and among animal groups and are influenced by processes at

different levels (molecular, cellular, population levels) (see also

text box). All these aspects need to be comprehended to in-

terpret evolution and disease linked to the mtDNA. The com-

plexity of mitochondrial biology makes it difficult to clearly

assess and explain the mechanisms of mtDNA adaptive evo-

lution (Ghiselli and Milani 2020), and consequently to predict

the effects of environmental changes and the long-time

responses of the organisms. Given the central role of mito-

chondria in morphologically complex (eukaryotic) organisms,

it will be important to pursue the ambitious goal of elucidating

mechanisms patterns of evolution to better understand adap-

tation in the light of a rapidly changing environment (see, e.g.,

Blier et al. 2014). Undoubtedly, the best approach is to inte-

grate genetics/genomics, biochemistry, and physiology to ex-

plore the widest biodiversity possible (Ballard and Pichaud

2014; Havird, Weaver, et al. 2019; Milani and Ghiselli 2020).
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