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20 Abstract
21 Bone remodelling after total hip arthroplasty has been largely observed and investigated. Most 

22 studies rely on projective images and only few obtain 3D information with limited spatial 

23 resolution. This study proposes a method to provide quantitative, 3D high-resolution data about 

24 femur bone density variations, by means of CT volume processing. This would offer a tool for 

25 further research and clinical studies. Five patients subjected to primary, cementless total hip 

26 arthroplasty were considered. Calibrated CT volumes were acquired before, just after surgery, and 

27 one year later. Bone remodelling hinders accurate alignment of femur volumes acquired after a 

28 year, instead, prosthesis stem remains unchanged. Thus, after metal artifact reduction, prosthesis 

29 was segmented, and stem-based accurate alignment was obtained. A test to exclude prosthesis 

30 migration was performed by considering specific femur anatomical landmarks. Bone density error 

31 due to artifact reduction and realignment were estimated. Quantitative differences in bone mineral 

32 density were computed for each voxel, providing a resolution of about 1 mm. Preliminary results 

33 showed that the femur underwent consistent remodelling after a year. Widespread bone density 

34 losses appeared in those areas where stress shielding is normally expected, particularly about the 

35 calcar. Conversely, distal areas with clear stem-bone contact showed considerable density gains. 

36
37
38 Keywords: Total Hip Arthroplasty, femur bone remodelling, CT image processing, prosthesis rigid 
39 realignment 
40
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42 1. Introduction
43
44 Total Hip Arthroplasty (THA) produces significant variations of the stress distribution in the femur, 

45 which adapts after implantation. Remodelling [1] depends on implant size, geometry, mechanical 

46 properties and fixation type (i.e. cemented or cementless). Uncemented fixation has gained wide 

47 acceptance and is the first choice for younger and more active patients [2,3]. Cementless femoral 

48 stems have a lower risk of aseptic loosening failure than cemented femoral stems in younger 

49 patients [4-7]. Accurate fit and fill in the proximal femur are considered important to achieve 

50 physiological load transfer [8].

51 Prosthesis implantation inevitably changes the load distribution in the host bone, and the 

52 femur remodels accordingly. Bone remodels itself in response to load (Wolff's law). After THA 

53 diffuse reductions in bone density appears around the prosthesis stem because of stress shielding [9-

54 14]. After primary THA rapid bone loss occurs during the first months and it progress more slowly 

55 in subsequent years [15]. Bone loss in the calcar area up to one year, is 22.9% in the uncemented 

56 and 24.5% in the cemented prosthesis [16]. Bone Mineral Density (BMD) can be considered a good 

57 indicator of bone quality and its change over time [17]. Bone density loss leads to local bone 

58 weakening and fracture risk increases. In general, missing implant-bone contact or osteolysis 

59 around the stem might lead to failure of the prosthesis after few years [18,19]. Furthermore, bone 

60 loss makes revision surgery more critical and less successful. But prosthesis also produces bone 

61 density gains at specific locations (e.g. at the preferential support points of the prosthesis stem). In 

62 such areas, bone density drastically increases in response to the increased mechanical stimuli. 

63 Bone remodelling also depends on patient-related factors such as gender, age, initial femoral bone 

64 stock, patient activity and general health conditions, as well as prosthesis-related factors, such as 

65 type of fixation, stem length, stiffness, femoral bone preparation [20]. 

66 Although the large majority of THA is correctly performed, a significant percentage of 

67 patients undergoing THA requires revision within 10 to 15 years after surgery [22]. Aseptic 

68 loosening, instability, associated osteolysis and infection are reported as the major reason for 

69 implant failure in 71% of cases [23]. The postoperative reduction of the periprosthetic bone density 

70 after implantation of uncemented and cemented [13] stems is considered a main problem in 

71 orthopaedic surgery. Therefore, it would be advantageous to estimate patient’s BMD prior to 

72 performing THA surgery [24,25], but these measurements are not a standard today. In general, there 

73 is interest to accurately monitor bone remodelling as well. Bone resorption cause aseptic loosening, 

74 but multifactorial events concur: wear-debris induced osteolysis, excessive interface micromotions, 
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75 and stress shielding concur (with other factors) to a negative sequence of events [26,27].  Therefore, 

76 it is not still quite clear to what extent stress shielding alone would lead to implant failure [28].

77 Minimizing bone loss after THA is desirable, and bisphosphonate treatment can help to 

78 reduce acute periprosthetic bone loss [29]. However, bisphosphonates show severe detrimental side 

79 effects such as heterotopic ossifications [30] and their use is therefore limited to extreme cases. 

80 Stress shielding has extensively been studied in vitro [31-35], but actual stress shielding 

81 consequences have to be demonstrated in vivo. Evaluation of bone remodelling after THA is often 

82 evaluated measuring BMD by means of Dual-Energy X-ray Absorptiometry (DEXA) [36-38], but 

83 only 2D projections are available. Usually, seven macro-areas (i.e. Gruen zones [39]) adjacent to 

84 the implant are considered. Inherently, DEXA analysis cannot provide the specific, 3D information 

85 (e.g. complete circumferential data) on local variations of femur BMD. 

86 In the past, some attempts to use three-dimensional imaging techniques to study more 

87 thoroughly the changes in bone density were tried. With recent improvements in metal artifact 

88 reduction techniques, CT are more and more used for accurate analysis of bone remodelling [40-

89 45]. In particular, quantitative CT-based osteodensitometry were proposed to get more detailed 

90 information on BMD at different levels of the femur by analyzing the cross-sectional CT images 

91 [46-48]. Another study [49] proposed an even more detailed BMD analysis by means of CT data, 

92 but without specifically addressing the metal artifact problem, and only focusing on patients with 

93 cemented implants.

94 In summary, while stress shielding and the consequent bone remodelling has been 

95 extensively assessed in the past in qualitative terms, a method is still missing to enable a 

96 quantitative, volumetric measurement of bone resorption or apposition around a cementless stem.  

97 This would allow quantifying bone remodelling and effects of stress shielding over time.  

98 The objective of this study is to develop and test a method able to quantitatively and accurately 

99 measure femur bone density changes through time. This method provides a research tool for a large 

100 cohort investigation and further studies. CT volumes of real patients who underwent THA were 

101 recorded just before, after surgery, and after one year. Thanks to the prospective nature of this 

102 study, consistent and completed dataset were available. By comparing the two CT scan of the 

103 operated femurs, a three-dimensional, quantitative, high-resolution map of BMD changes is 

104 provided.

105 2. Materials and methods
106 Patient CT scans taken at different times post-operatively were compared. The process included 

107 reduction of the metal artefacts, registration of the CT scans taken at different times (this process 
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108 included segmentation, the actual registration, resampling and smoothening), a check for the lack of 

109 excessive implant migrations, and the actual comparison between the scans.  In addition, in this 

110 study we performed a dedicated study to quantify the uncertainty propagating from the different 

111 steps to the final HU values.

112 2.1. CT - image acquisition

113 The patient CT data were selected from a previous study [50,51]. Five patients who underwent a 

114 primary hip replacement, implanted with Spotorno cementless implant were involved in this study 

115 (Table 1).

116
Patient Gender Age Weight [Kg] Operated Side Implant Type
GSF63 F 63 96 Left Cementless
BEM52 M 52 95 Left Cementless
GMM43 M 43 87 Left Cementless
BTM21 M 66 66 Right Cementless
BJF59 F 59 89 Right Cementless

117
118 Table 1Patients enrolled in the study
119
120 Patients’ volumes were acquired using a spiral CT Scan Philips Brilliance 64 slices in Reykjavik. 

121 X-ray tube voltage was set to 120 KVp, slice thickness is 1 mm (with increments of 0.5 mm) while 

122 pixel size was 0.6 by 0.6 mm (voxel volume = 0.36 mm3), each slice was 512x512 pixels, 12-bit 

123 precision grey values (Hounsfield Units range from -1024 to 3072). CT scan started from anterior 

124 superior iliac spine and ended approximately to the middle of the femur shaft.

125 All the CT scans were calibrated using a Quasar Multi-Purpose Body Phantom to evaluate the 

126 relationship between HU and BMD [52]. Patient’s CT scans were acquired before surgery (hereafter 

127 coded as: “pre-op”), within 24 hours after surgery (“24h”), and 1 year later (“1yr”). 

128 2.2. Metal Artefact Reduction (MAR) 

129 Presence of metal prosthesis causes considerable artifacts in CT images [53,54]. Typical streaks 

130 propagating from the implant produces a large amount of noise in the surrounding tissues and in 

131 particular in femur bone hindering further analysis. Therefore, a post-processing, metal deletion 

132 technique (MDT) [55] was performed to reduce the artifacts in post-operative CT. Figures 1 (a) and 

133 (b) provides an example of the algorithm performance.

134
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135
136 Figure 1: (a) a raw CT slice enclosing the metal prosthesis ; (b) the same slice after Metal Artifact Reduction
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137

138 2.3. Registration of 24h – 1yr CT scans 

139 The 24h and 1yr CT datasets cannot be straightforward compared because they were acquired in 

140 different times and conditions (i.e. patient positioning have varied, and bone have changed). 

141 Patients’ 24h and 1yr femurs must be registered before further analysis. The following, multi-step 

142 rigid 3D registration process was applied. 

143 As a first step, once the metallic artefact was suppressed, the operated femur was segmented from 

144 both, 24h and 1yr CT volumes: initially, bone tissues were roughly segmented by means of 

145 thresholding (voxel with HU values larger than 260 were pre-selected). As a second step, the 

146 segmented, binary volumes were smoothed using 3D binary operators. Once the femur (including 

147 the prosthesis) was selected, the outer volume (i.e. all its surroundings) was arbitrarily set as air 

148 (HU=-1024). At this stage, volumes containing only the operated femur and the prosthesis were 

149 available (see Fig. 2a). As a third step, the two CT volumes (24h and 1yr) were aligned by applying 

150 a surface registration. Rather than using the surface of the entire femur, the stem surface was 

151 considered because the bone has possibly changed during the year. The stem was segmented, and its 

152 surface was reconstructed in both 24h and 1yr volumes. The 24h and 1yr surfaces were rigidly 

153 registered by means of the Iterative Closest Point algorithm [56], which uses similarity and affine 

154 transforms. As a fourth step, the registered 1yr volume was re-sampled (by means of linear 

155 interpolation) to match the voxeling of the 24h volume. Therefore, a pixel-to-pixel correspondence 

156 between the 24h and the aligned 1yr CT volumes was available (see Fig. 2b).

157
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158
159 Figure 2: (a) a femur 24 hour after the surgical implant (on the left) and the same femur after 1 year (on the right): the 

160 two femurs are not aligned ; (b) the two femurs aligned.

161

162 Then, in order to reduce the interpolation and alignment errors and to preserve edges, the CT 

163 volumes were 3D low-passed filtered. A simple, conditioned-average smoothing filter (sized 3x3x3 

164 pixels, corresponding to 1.8 by 1.8 by 3.0 mm) was applied. Only the voxels, whose difference with 

165 the central voxel were less than 600 HU (an arbitrary threshold value), were used to compute the 

166 average. Very steep edges (e.g. bone-prosthesis, bone-outside) were preserved, while uniform 

167 regions were averaged (e.g. inside the bone). As example Figure 3 show the resulting volumes at 

168 this stage.

169
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170
171 Figure 3: an example of two aligned femurs after the conditioned-average smoothing filter: (a) the femur 24 hour after 

172 the surgical implant ; (b) the same femur after 1 year.

173 2.4. Tests to quantify migration

174 Since the femur alignment procedure relied on the prosthesis geometry, the cases where the stem 

175 significantly migrated must be excluded. The relative positioning between the prosthesis stem and 

176 the femur must be somehow estimated between 24h – 1yr volumes. To this end, starting from the 

177 aligned femurs, the external surfaces of the 24h and the 1yr femurs were extracted. Again, the 

178 Iterative Closest Point rigid registration procedure was applied to these surfaces and the 

179 correspondent roto-translation matrix was computed. Ideally, if there was no migration, the 

180 resulting displacements and rotations should be zero, but practically this cannot happen exactly 

181 because the bone has reshaped. Error thresholds of 2 mm for displacements a 1 degree for rotations 

182 were empirically set (according to the CT resolution) to verify the absence of migration. The errors 

183 computed for all the patients resulted below these thresholds and then the occurrence of prosthesis 

184 migration was excluded.

185 An additional, redundant test was also carried out to confirm the reliability of the former procedure: 

186 three specific anatomic landmarks (i.e. The entrance of the arterial foramen in the femur shaft; The 

187 most posterior protuberance of the lesser trochanter; The most posterior anterior protuberance of the 

188 greater trochanter) were manually identified and selected on both 24h and 1yr volumes. Their 

189 relative locations with respect to the prosthesis were evaluated. Again, displacements and rotations 

190 were confined below the aforementioned thresholds. 

191
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192 2.5. CT processing errors assessment

193 Patients’ pre-operative volumes were used to evaluate the errors associated to the metal artefact 

194 suppression and realignment procedures. The 24h CT volume (after metal artefact suppression) was 

195 compared with the pre-op CT scan. As only few days passed between the two scans, we can assume 

196 that the bone has not changed. The difference in HU between these two volumes is therefore a 

197 measure of the uncertainty associated to the CT volume manipulations.

198 Once again there is the need to align the two femurs, but the prosthesis is not present in both 

199 volumes. The procedure adopted for this rigid alignment consists of two stages. A first rough 3D 

200 registration based on anatomic landmarks was followed by a finer rigid-global registration based on 

201 HU similarity index. The three aforementioned anatomic landmarks were manually selected on both 

202 femurs and the rigid roto-translation was computed. Then, a finer adjustment was obtained by 

203 minimizing the HU differences in all the voxels belonging to the compact bone. This fine 

204 registration is based on the Mattes mutual information registration metric [57]. Finally, the aligned, 

205 post-operative femur was opportunely re-sampled (by means of linear interpolation). Differences in 

206 HU of corresponding voxels belonging to the pre-operative and the 24h femur were computed (see 

207 Fig. 4). The error followed a Gaussian distribution (Kolmogorv-Smirnov test, p=0.999), with mean 

208 close to 0 HU and standard deviation about 150 HU. This has suggested to consider bone HU 

209 changes significant only if they exceed the value of 200 HU.

210

211
212 Figure 4: histogram of the HU differences of correspondent voxels belonging to the pre-operative and the 24h femur.

213
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214 2.6. Quantification of bone changes

215 A 3D, high-resolution map of the femoral bone HU differences was obtained. For each voxel, the 

216 bone density 1-year difference was available. The HU differences were grouped in five regions 

217 solely to provide more concise and intuitive representation of bone remodelling (see table II for 

218 colours). As specified above, HU differences between -200 and +200 were associate to unmodified 

219 bone. HU differences between -1200 and -200 were associated to bone tissue that lost mineral 

220 content, while greater negative values (i.e. HU differences <-1200) were associated to complete 

221 bone loss. Conversely, HU differences between +200 and +1200 were associated to bone tissue that 

222 gained mineral content, while greater positive values (i.e. HU differences > +1200) were associated 

223 to newly formed bone. The coloured data were superimposed on the gray-scale images in order to 

224 better appreciate anatomical details. 
225

Region HU range Colour

Eroded [-3000; -1201] Red

Density Loss [-1200; -201] Orange

Unmodified bone [-200; +200] transparent

Density Gain [201;1200] Light green

New-born [1201; 3000] Dark green

226
227 Table 2The selected HU ranges and the corresponding colours adopted to map bone remodelling.
228
229

230 In addition, bone loss-gain parameters were estimated within the Gruen zones (Zone 1: Greater 

231 trochanter; Zone 2: Proximal lateral; Zone 3: Distal Lateral; Zone 4: Sub prosthetic peak; Zone 5: 

232 Distal Medial; Zone 6: Proximal Medial; Zone 7: Calcar), as shown in Figure 5.

233
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234
235
236 Figure 5: an example of the Gruen zones (1 to 7) on a projection of the realigned femurs

237 3. Results
238 The entire procedure was successfully applied to the five real patients’ datasets., Figure 6 shows, for 

239 each patient (labelled from (a.) to (e.)) two axial sections in correspondence of the calcar (labelled 

240 as (.1)) and of the prosthesis distal tip (labelled as (.2)) particularly meaningful for bone 

241 remodelling after THA. For each sub-image on the left the pseudo-coloured 2D slices are presented 

242 while on the right the corresponding cutting plane is showed.
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243

244
245
246 Figure 6: Examples of the 3D differential representation. Each patient is labeled with a letter from (a.) to (e.). Axial 

247 sections in correspondence of the calcar are labeled as (.1) and axial sections at the prosthesis distal tip are labeled as 

248 (.2). For each sub-image the axial section is represented on the left and the corresponding 3D map with the cutting plane 

249 is represented on the right.

250
251 In addition to the concise illustration of the Table II regions, it is possible to obtain a much more 

252 detailed and continuous representation of bone density variations. As example, Figure 7(b) shows 
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253 the 1-year variations of the HU along an arbitrarily chosen segment (depicted as a white arrows) 

254 belonging to the slice shown in Figure 7(a). 

255

256
257 Figure 7: (a) an example of a slice (cutting the great trochanter) on which a segment was arbitrarily chosen and 

258 indicated by a white arrow: (b) The HU variations along the segment showed as the white arrow in panel (a)

259

260 Cumulative bone density variations (averaged on all patients) are reported in table 3 for each Gruen 

261 zone. The variations were computed as mean percentage of HU changes.
262

Region GZ1 GZ2 GZ3 GZ4 GZ5 GZ6 GZ7
Eroded (%) 4 4 2 2 2 4 6

Bone Loss (%) 5 10 7 9 9 15 16
Unmodified bone (%) 78 75 82 82 80 68 58

Bone Gain (%) 9 8 6 4 5 9 13
New-born (%) 2 1 1 1 3 1 5

263
264 Table 3 Percentage of variations in the Gruen Zone = number of voxels that are in the considered ROI / number of 
265 voxels that are in the considered Gruen zone. * 100
266

267 In general, according to these results we can say that the bone, after one year from the total hip 

268 arthroplasty, presents a significant remodelling related to all Gruen zones.  

269 4. Discussion
270 This study proposes a methodology for obtaining an accurate, patient-specific, 3D map of the femur 

271 bone density variations after THA. Different 3D rigid realignments of both the prosthesis and the 
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272 femur were adopted to achieve a reliable and robust analysis tool to accurately evaluate bone 

273 remodelling. It proposes and test the feasibility of the methodological approach and does not claim 

274 to provide exhaustive results of remodelling map on a large patients’ cohort. 

275 Preliminary results related to the five patients indicate that the femur, even after only one year, 

276 resulted enough modified. In particular, the external part of the calcar shows great losses and even 

277 bone resorption, in line with many other studies [58-61]. On the contrary, in the calcar region 

278 adjacent to prosthesis, a significant increase in bone density was found: this bone reinforcement is 

279 supposed to support the great mechanical load generated at this point by the prosthesis. Similarly, a 

280 particular intense bone growth resulted close to the distal tip of the prosthesis stem. Generalised 

281 bone density losses along the bone shaft appeared as result of the stress shielding phenomenon. In 

282 addition, cumulative results corresponding to the Gruen zones were presented to allow comparative 

283 studies. 

284 In conclusion, the proposed methodology offers a very accurate tool for analyzing bone remodelling 

285 by providing bone density differences with a resolution comparable to that of CT equipment.  This 

286 approach, if applied to more patients, would provide a better understanding of the bone 

287 remodelling. Furthermore, the proposed methodology could be extended to the case of cemented 

288 prostheses. Finally, the objective results provided by the proposed methodology could be of help in 

289 prostheses design and assessment.

290
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