
Journal of Grid Computing (2021) 19:28
https://doi.org/10.1007/s10723-021-09569-9

Edge-enabled Mobile Crowdsensing to Support Effective
Rewarding for Data Collection in Pandemic Events

Luca Foschini ·Giuseppe Martuscelli ·
Rebecca Montanari ·Michele Solimando

Received: 2 December 2020 / Accepted: 21 June 2021
© The Author(s) 2021

Abstract Smart cities use Information and Commu-
nication Technologies (ICT) to enrich existing public
services and to improve citizens’ quality of life. In this
scenario, Mobile CrowdSensing (MCS) has become,
in the last few years, one of the most prominent
paradigms for urban sensing. MCS allow people
roaming around with their smart devices to collec-
tively sense, gather, and share data, thus leveraging the
possibility to capture the pulse of the city. That can
be very helpful in emergency scenarios, such as the
COVID-19 pandemic, that require to track the move-
ment of a high number of people to avoid risky situa-
tions, such as the formation of crowds. In fact, using
mobility traces gathered via MCS, it is possible to detect
crowded places and suggest people safer routes/places.
In this work, we propose an edge-anabled mobile crow-
dsensing platform, called ParticipAct, that exploits edge
nodes to compute possible dangerous crowd situations

L. Foschini · G. Martuscelli · R. Montanari ·
M. Solimando (�)
Department of Computer Science and Engineering (DISI),
University of Bologna, Viale Risorgimento 2, 40136,
Bologna, Italy
e-mail: michele.solimando@unibo.it

L. Foschini
e-mail: luca.foschini@unibo.it

G. Martuscelli
e-mail: giuseppe.martuscelli@unibo.it

R. Montanari
e-mail: rebecca.montanari@unibo.it

and a federated blockchain network to store reward
states. Edge nodes are aware of all critical situation in
their range and can warn the smartphone client with a
smart push notification service that avoids firing too
many messages by adapting the warning frequency
according to the transport and the specific subarea in
which clients are located.

Keywords Edge computing · Mobile crowd
sensing · Smart city · Blockchain · Pandemic
prevention

1 Introduction

Smart cities put digital technology at the service of cit-
izens to improve their quality of life and of city rulers
to better govern their service provisioning decisions
and to improve sustainability. Smart city enabling
technologies, such as Internet of Things (IoT) or cloud
computing, promote innovation of city services in sev-
eral fields, from urban transport, water supply, waste
disposal facilities to more efficient building light-
ening and heating systems. Mobile CrowdSensing
(MCS) represents currently another crucial technolog-
ical enabler allowing the collection and sharing of
great amounts of data and the monitoring/detection of
citizenship habits and movements in urban environ-
ments. All sensors and human behavior collected data
can be processed using machine learning algorithms
and give us back higher-level inferences and useful

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09569-9&domain=pdf
http://orcid.org/0000-0002-9053-7594
mailto:michele.solimando@unibo.it
mailto:luca.foschini@unibo.it
mailto:giuseppe.martuscelli@unibo.it
mailto:rebecca.montanari@unibo.it

 28 Page 2 of 17 J Grid Computing (2021) 19:28

information [1–3]. Especially in the recent COVID-
19 pandemia, by enabling to enrich gathered data with
location- and context-aware information, MCS can be
helpful to support user’s contact tracing and people’s
crowding degree computation in urban areas, a crucial
information to limit the virus spread.

As key feature, with MCS data collection can be
enabled from smartphones or tablets without the need
to rely on a priori deployment of a network of tra-
ditional physical sensors, thus tearing down the cost
and the time related to the design and construction
of a sensor network. Two different approaches can be
exploited to generate data. On the one hand, raw data
can be gathered directly from the embedded sensors
(GPS, camera, microphone, etc.) without user involve-
ment, on the other hand, the user itself injects data of
interest. The latter case considers the user as a sensor
and is commonly known as social sensing to be used
beside or alternatively to the physical sensors to allow
users to enrich injected data with relevant details.

In any MCS system, the involvement of as many
people as possible is crucial for the sensing cam-
paign’s success; a greater amount of information leads
to more complete inferences, therefore to high-quality
data sets. A largely used gimmick to increase and
incentivize participation is through reward programs
that loyalize and involve the users. The crowdsensing
campaign can be proposed in a form of a game that
favors the involvement of a great number of people,
augmenting the quantity and the quality of the gath-
ered information. In this way, the user is encouraged
and stimulated to complete the task. The participants,
accomplishing the sensing campaign’s objectives, gain
a price as a reward for their actions, which can be vir-
tual, such as virtual points, or can be real such as a
little amount of money useful to the users.

However, the management of large amount of data
collected in smart city, especially in pandemia sce-
narios, as well as the effective support of rewarding
become difficult to address with traditional cloud-
based centralized MCS platforms requiring a shift
toward novel architectures capable of moving com-
putation where the end-user devices are more nearby.
In particular, for massive scale MCS deployments
Multi-access Edge Computing (MEC) is a promising
recent architectural model and specification (i.e., by
European Telecommunications Standards Institute -
ETSI) that allows to add to the traditional two-layers
MCS platform deployment model a third layer, at the

edge of the network [4]. MEC adds resources and
information at the peripheral of the network enabling
the processing, filtering, and aggregation of real-time
data close to data sources and allowing to reduce the
latency in communication [5]. MEC servers can facil-
itate the control of the sensing process on mobile
devices located within their deployment area and par-
ticipate in the management of MCS tasks within the
same area. The edge layer can leverage on their own
resources to lighten the workload of both mobile
devices and servers in cloud. Furthermore, the exe-
cution offloading on MEC nodes potentially reduces
the complexity of any software platform’s components
running in the other architectural layers.

Taking into account the great potential of the joint
exploitation of MEC and MCS solutions, this paper
proposes and describes the adoption of MEC for MCS
along two different directions. On the one hand, we
propose a MEC-based MCS architecture for pandemic
scenarios, such as the COVID-19 one, capable of
leveraging the collection of data from mobile users
and their analysis in order to identify the crowding
degree of urban areas. Users who pass through the
areas covered by the MEC nodes can benefit from
timely notifications on the level of crowding in the
nearby areas. In particular, the system performance is
not affected by this additional calculation.The supple-
mentary edge layer is responsible of finding cluster
of people overcrowding the same area, thus reliev-
ing the server from the processing of great amount
of geographical data. In addition, given the knowl-
edge of data location and context, the use of MEC
nodes improves the accuracy of the information noti-
fied to users. On the other hand, to improve the
effectiveness of user’s rewards we propose an edge-
enabled distributed ledger architecture to record the
reward assignments among untrusted and unknown
participants in a generic gamification system. Lean-
ing on ETSI MEC nodes, the platform exhibits high
scalability because of the great availability of addi-
tional computational and storage resources on the
edge used to execute distributed ledger-related func-
tions. An edge layer between the participants and the
cloud server could perform all needed tasks required
to use a blockchain, leaving the cloud servers free to
focus on their main crowdsensing core business pro-
cessing. Moving the rewards on the edge nodes also
gives redundancy and fault tolerance to the whole plat-
form, avoiding the loss of all users’ achievements due

J Grid Computing (2021) 19:28 Page 3 of 17 28

to a potential server critical fault. The adoption of an
edge enabled blockchain also leverages the security
of the whole system. Distributing the rewards through
the blockchain on edge nodes prevents the stealing
or faking of users’ accomplishments resulting from
an internal or external attack to the server itself. In
particular, this twofold contribution of the paper has
been designed, developed, and tested by extending our
MCS framework called ParticipAct [6].

The paper is structured as follows. In Section 2 we
present the state of art and the background related to
Edge Computing in correlation with MCS and with
blockchain to support emergency scenario, such as
the COVID-19 pandemic; in Section 3 we present the
edge-enabled parts of ParticipAct which, supported
by the Edge, collects location information and after
the aggregation process notifies potentially dangerous
crowded areas in the proximity. Section 3 details also
the edge-based distributed ledger architecture we have
developed for supporting decentralized incentives in
ParticipAct, while Section 4 focuses on our solu-
tion implementation and experimental results. Finally,
Section 5 concludes the paper.

2 State of the Art and Background

This section is intended to provide a background
overall view on the topics covered in this paper. In
particular, we will present notable works found in the
literature related to the edge support to mobile crowd-
sensing platforms and to distributed ledger deploy-
ments.

2.1 Mobile CrowdSensing and Multi-access Edge
Computing

MCS has gained significant attention in recent years
and has become an appealing paradigm for urban
sensing. Thanks to the MCS paradigm, receiving
heterogeneous contributions from the crowd of peo-
ple becomes possible. Data collection is performed
directly on devices owned by participants to the
crowdsensing campaign. These devices range from
dumb wearables terminals to more powerful smart-
phones and tablets. Although the computational power
increases, the mobile devices used for MCS cam-
paigns remain constrained in terms of autonomy and
power supply. To involve a growing number of people,

some form of rewards should be assured to the users
for their good quality contributions. In this way, it is
possible to increase the catchment area of the MCS
platforms. The recent advancement in network archi-
tecture, with the addition of edge layer and edge
computing capabilities, seems to facilitate the man-
agement of MCS complex platforms, opening differ-
ent solutions that take care of locality and efficiency in
executing and maintaining crowdsensing campaigns.
In particular, the Multi-access Edge Computing [7],
whose definition was specified by European Telecom-
munications Standards Institute (ETSI) is a natural
choice for leveraging MCS platforms [13]. MCS plat-
forms can exploit the most important features of
MEC schema such as the computational power at the
edge of the network (ideally one-hop from the end-
user devices), achieving a very fast communication
between services and participants, and breaking down
the latencies that usually affect the cloud deploy-
ments. Ultra-low latency and large bandwidth result
in more secure and reliable services, enriched with
context-awareness and locality information [4]. The
ETSI MEC reference architecture specifies all the
components in the virtualized environment to provide
developers with a complete IT service environment to
run MEC applications on operator network [9]. We
refer to a MEC node as the asset, at the edge of the
network, having all the resources to execute applica-
tions, such as storage, processing, and networking. In
the following, we present some works, found in the lit-
erature, that use the edge computing paradigm to aid
crowdsensing operations and to ease the gathering of
contributions and the distribution of rewards.

In [10] authors analyze the merge between MCS
technologies and Mobile Edge Computing, the orig-
inal definition of edge computing by ETSI, now
replaced with Multi-access Edge Computing. The
authors propose a new scalable architecture that relies
on the edge layer for heavy computation and that pays
much attention to the privacy of participants’ data.
The authors provide a use case scenario in which a
crowdsensing application is used to enable neighbor-
hood collaboration to improve the quality of life in
urban districts. For example, if a user wants to know
the traffic situation or she expresses the will of having
a park area without pollution, she creates/joins a task
for the neighborhood, giving other people the possi-
bility to share their experiences and contributions. The
work outlines several advantages of using mobile edge

 28 Page 4 of 17 J Grid Computing (2021) 19:28

computing as an intermediate layer between clients
and cloud servers. MEC contributes to reducing data
processing and services execution, usually in charge
of the server. Only aggregated and filtered (not redun-
dant) data comes to the cloud. Many open issues
need still to be solved to complete the full integration
between MEC and MCS. The interoperability among
different MCS platforms is assured only if they use the
same interfaces, open communication protocols, and
standard data models. Furthermore, giving user data
to the edge layer opens the privacy issue about cus-
tomers’ profiles. Also, the cost of orchestrating the
various MCS services among the edge nodes is not
negligible.

In [11] an MCS agent-based service provided by
smart objects is proposed that relies on agents on
the edge of the network and on end user’s devices.
The work tackles the big problem of opportunistic
resource provisioning, due to the unpredicted mobil-
ity of the users in such a scenario. Their solution,
namely (Agent-oriented Cooperative Smart Object-
Methodology) ACOSO-Meth, is a guideline that
drives the developer in the implementation of a crowd-
sensing service starting from a systematical analysis
of its own processes. The edge nodes executing the
agents enable to perform context-aware operations of
the crowdsensing platform. Authors state that the edge
layer helps the system to save resources and covers the
case of user mobility, giving dynamicity to the whole
platform. In the work described in [11] standard Web
interfaces and REST API calls are used to overcome
the interoperability issue. The work shows the analy-
sis, design, and implementation phases using the user
mobility as a crowdsensing campaign use case. The
IoT agents on the edge expose the API that agents
on the smartphones can call to update or to know the
status of the node.

In [12] the edge computing paradigm is introduced
to process raw data, to improve the latency and to
protect users’ privacy. This need is especially dictated
in the case of massive participation in crowdsens-
ing campaigns. When the data to sense increases,
the ability of the platform is limited and the pri-
vacy of crowds could be revealed. The authors break
the classic two-layer deployment of a crowdsensing
platform adding the edge layer to receive contextual
users’ contributions, for example, the user’s position
in a certain area. The edge servers take charge of

computation-intensive tasks and represent the com-
munication interface between participants and the
cloud MCS platform. The edge nodes also filter raw
information before sending them to the cloud server,
deleting the noisy data and avoiding external net-
work congestion and latencies. The distributed nature
of edge computing allows the local storage of user-
profiles, thus preserving their privacy and avoiding the
transmission of sensitive information over the pub-
lic Internet. Once the cloud server gives the task to
the edge nodes, the reward for accomplishing a cam-
paign is estimated by the edge and the users. The
authors here elaborate on an efficient incentive mech-
anism designing a three-layer game for the platform.
To decide who must perform the task, edge nodes play
a game in which they have to maximize the gain. The
task cost for each edge server is the payoff to the
crowd in case of execution of the considered task. The
reward to the users undergoes an adjustment, since the
participants are moving, they can change spot while
performing a task, so the authors considered a proba-
bility of termination when calculating the task cost for
each edge node. In the end, the cloud server decides
which node to assign the task based on the winner
of the game among the edge nodes. The work ends
by saying that this fair assignment mode is achievable
thanks to edge computing, which performs many fast
operations that the cloud server cannot cope with due
to the higher latency.

2.2 Distributed Ledgers and Edge Computing

Blockchain acts as a distributed, decentralized and
immutable append-only ledger that stores blocks of
data containing transactions between nodes in a peer-
to-peer (P2P) network. Blockchain technology pro-
vides a decentralised trust model in an environment
where participants typically do not trust each other
allowing the implementation of a tamper-proof ledger
with characteristics of immutability, censorship resis-
tance and transaction timestamping. There are cur-
rently several blockchain platforms that can be classi-
fied depending on different criteria [8]. For instance,
based on access regulation blockchain can be divided
into public and private. The public blockchains is an
open network and anyone can join it without any
approval and can publish and validate transactions.
In private blockchain the participation is regulated

J Grid Computing (2021) 19:28 Page 5 of 17 28

by an owner who decides who can access the net-
work. Blockchain networks can be also classified
on the basis of the access models. In permission-
less blockchain any peer can take part in the net-
work and to be involved in the consensus process.
In the other model, participation is limitated and can
be confined only on writing (validation) or reading
rights. Among the most widespread permissionless
blockchains we can find Bitcoin and Ethereum. Bit-
coin is an open-source blockchain invented in 2008, it
offers open access to the transactions and it is based
on Proof-of-Work consensus algorithm, Ethereum is a
decentralized open platform which supports natively
smart contracts applications. This programs can exe-
cute automatically tasks such as money exchange
when certain conditions are met. Solutions that belong
to the permissioned blockchain category, instead, are
Hyperledger Fabric project which is mostly supported
by IBM and allows pluggable consensus protocols and
Sawtooth which is contributed by Intel and introduce a
Proof of Elapsed Time (PoET) consensus to consume
less energy increasing efficiency.

The integration of blockchain and edge computing
can take advantages from each other exploiting the
security and privacy features offered by the blockchain
and the possibility of scaling a distributed system
offered by the edge computing paradigm [14]. In this
way the integrated frameworks and functionalities of
blockchain and edge computing-based systems can
enable reliable access and control of the network,
storage, and computation distributed at the edges,
hence providing a large scale of network servers,
data storage, and validity computation near the end
in a secure manner. In particular, the incorporation
of edge computing into blockchain brings the power-
ful decentralized network and rich computation and
storage resources in the network edge. Conversely,
the incorporation of blockchain into edge comput-
ing enhances the security, privacy, and the automatic
resource usage. Using the blockchain technique, it is
possible to build a distributed control at dozens of
edge nodes. Thanks to the mining process and the
replication on many nodes, blockchains protect the
accuracy, consistency and validity of the data and rules
over their life cycle in a transparent way. Despite
the prospected benefits of integrated blockchain and
edge computing systems, several issues remain to be
addressed before widespread deployment.

Some studies are emerging that propose frame-
works to integrate blockchain and edge computing
systems with the most disparate goals and within
dfferent application scenarios. Sharma et al. [15],
for example, proposes a blockchain-based distributed
cloud architecture with a software defined network-
ing (SDN) enable controller fog nodes at the edge
of the network to provide low-cost, secure, and on-
demand access to the most competitive computing
infrastructures in an IoT network.

Guo et al. [16] proposes a hybrid architecture to
facilitate access control of Electronic Health Record
(EHR) data by using both blockchain and edge node.
Within the architecture, a blockchain-based controller
manages identity and access control policies and
serves as a tamper-proof log of access events. In addi-
tion, off-chain edge nodes store the EHR data and
apply policies specified.

In [17], a novel blockchain-based security architec-
ture in NDN Vehicular Edge Computing networks is
introduced to systematically tackle their security, such
as key management, cache poisoning, access con-
trol. More specifically, authors design and implement
an efficient blockchain system on NDN by adopting
lightweight yet robust delegate consensus algorithm
and carry out extensive experiments to evaluate per-
formance efficiency on key management protocols,
cache poisoning defense schemes, and access control
strategies for NDN-based VEC networks.

The solution described in [18] proposes a secure
and efficient V2G energy trading framework by explor-
ing the joint adoption of blockchain and edge com-
puting. In particular, a consortium blockchain-based
secure energy trading mechanism for V2G is devel-
oped and the edge computing has been incorporated to
improve the successful probability of block creation.

In [19] the applicability of the integration of
blockchain and edge has been described by consid-
ering different scenarios ranging from smart cities,
smart transportation to Industrial IoTs, smart homes
and sart grids.

2.3 MCS and Blockchain for Pandemia Management

The sensed data can converge in databases belonging
to several domains, which can be neatly categorized as
suggested in [20]. Crowd behavior, environment, and
infrastructure monitoring and control are just some of

 28 Page 6 of 17 J Grid Computing (2021) 19:28

the potential opportunities that MCS could open in
favor of smart city services. The exploitation of MCS
solutions in the environmental field aims to moni-
tor environmental data, such as weather, air, noise
pollution levels with the ultimate goal of basically
preserving the nature. Infrastructure monitoring rep-
resents another prominent field for MCS platforms:
large-scale sensing among citizens enable the prompt
and fast identification of city outages, such as faults in
the lighting system or in the city water supply and can
also prevent traffic congestion and suggest parking
areas. The benefits people gains from MCS solutions
may also involve opinions about places and recom-
mendations based on everyone’s shared experience.
Furthermore, MCS can be exploited to infer collec-
tive behavior patterns and to conclude about commu-
nity intelligence. Within these domains, many solu-
tions have been proposed and discussed. Much less
research and real-case works have emerged in relation
to the capability of MCS platforms to enhance emer-
gency situation management and especially pandemia
scenarios, being these cases of recent occurrences
and extremely complex to address. Along this direc-
tion, the few existing works provide some insights
by sharing the common idea to employ citizens in
crowdsensing campaigns to keep under control the
diffusion of infective diseases. In the work described
in [21] authors present the timeline evolution of the
COVID-19 pandemic in Spain, and summarise the
MCS research efforts that are being undertaken by
the Spanish community to address COVID-19 out-
break. In this study, some new developments within
the MCS framework have been introduced to achieve
the smart quarantine concept in Spain. Since the sensi-
tivity of shared data, such as posts on social networks
and GPS locations, the authors try to find a trade-off
between the privacy of participants and the profit that
the society derives from the accuracy and number of
data collected. The authors of [22] propose a study for
the acceptance of crowdsensing campaigns aimed at
tracking infected people. The participatory and oppor-
tunistic capabilities of this idea allow to the creation of
a city map about the places visited by infected citizens
in order to identify location that need a more accurate
disinfection, such as metro stops, squares, commercial
business, offices. The study focuses on the willingness
to share location information and health status related
to the COVID-19 disease, through the exploiting of
the aforementioned crowdsensing technique.

Similar considerations apply to the applicability
of blockchain in the particular field of pandemia
management. Whereas a great number of use-cases
of blockchain adoption exist in various application
domains, the benefit of blockchain for pandemia man-
agement have been only recently identified but exper-
imentation is still lacking. We can exploit Blockchain
mechanisms to tackle several use cases occurring dur-
ing the current COVID-19 pandemic situation. For
example, the clinical validation of vaccines and drugs
can be a real application that would last even after the
current health crisis. Furthermore, since its privacy-
preserving features, the health authorities can use the
Blockchain to transparently track blood or body organ
donors and fundraising activities [23, 24]. Blockchain
can also help to better manage supply chains that the
COVID-19 crisis has rattled by helping rebuilding dis-
rupted networks, by providing trading partners and
consumers with transparent, trusted and secured data
on goods and transactions and by contributing to a
more equitable system of commerce for producers and
consumers alike.

3 Edge-enabled MCS Platform for Data Collection
and Rewarding in Pandemic Scenarios

This work focuses on an edge-enabled MCS plat-
form targeted at supporting effective data collec-
tion/analysis and rewarding in critical scenarios, such
as the recent COVID-19 one. In particular, we expanded
our previous work described in [25] with two contri-
butions: i) the design and development of an edge-
enabled data collection/analysis module capable of
evaluating the crowding degree of an area and ii) the
development and testing of the edge-based distributed
ledger for managing user’s rewarding. Our edge-based
extensions have been built and integrated within our
MCS framework called ParticipAct [6].

ParticipAct is a comprehensive mobile crowdsens-
ing platform developed the University of Bologna
that provides us with the proper playground to gather
crowd contributions and to test edge-based expansions
in the crowdsensing domains of our interest. In Par-
ticipAct the users have a sensing client application
installed on their smartphones and they send col-
lected information to a centralized cloud server, based
on targeted sensing campaigns created by researchers
and platform administrators. ParticipAct developers

J Grid Computing (2021) 19:28 Page 7 of 17 28

followed best practice guidelines in developing the
crowdsensing platform. Thanks to the use of MoST
[26], a high-performance sensing module, the Par-
ticipAct client application has a very low footprint
when running on devices, and it requires few actions
from the user to collect data, avoiding boring him
with requests. At any time, the user can stop the
sensing data sharing and can reject tasks and cam-
paigns that are proposed to him. The secure protection
of users’ data and the mechanisms for administra-
tors and clients authentication guarantee the integrity
of the profiles and contributions collected. Any user
can freely view its own contributions to keep tabs
on everything he is sharing with the community.
The database replication assures the availability of
data. The server side is built on top of open-source
technologies, and its modularity permits easy expan-
sion and reusability for different purposes in several
domains, such as smart cities and transportation, peo-
ple tracking, GPS data gathering, and trajectories
drawing. Authorized administrators can create cam-
paigns on the server and can choose the users to
whom to propose them, the geo notification and geo
activation areas, and a time frame during which the
campaign is available. The many actions of a sin-
gle campaign are called Tasks and they must all be
completed before a user can declare a campaign con-
cluded, send the collected data to the server, and
possibly receive a reward for the quantity and quality
of the information provided.

3.1 Data Collection and Crowding Degree Analysis

The basic cloud-based deployment of ParticipAct lacks
some characteristics that are needed to address our
requirement of providing a support for controlling the
spread of a pandemia, such as in the recent COVID-19,
by calculating the crowding degree of an area.

This requirement can be achieved with a massive
data campaign supported by an effective data col-
lection and user’s rewarding management. The basic
ParticipAct platform can involve many users around
the country, but does not currently have the possi-
bility to efficiently and effectively notify users in
a specific geographic area with context-aware and
location-aware updated information, being the cloud
layer unaware of these data. The edge computing
paradigm allows to overcome this limitation. Edge
computing extends the cloud resources by offering

networking, storing, computing capabilities and ser-
vices distributed at the edge of the network closer
to the final users. Edge nodes allow to reduce the
load toward the server and the communication latency
because they can perform local computation on data
of interest and, most importantly, can promptly pro-
vide nearby users with location-aware information.
Another limitation of the basic ParticipAct platform
is the impossibility to federate different spontaneous
systems spawned around the world. In this regard,
we would like to achieve the purpose of sharing the
user’s scoreboard among ParticipAct federated servers
deployed in distributed areas (ideally worldwide),
maybe for different purposes. In this way, if a contrib-
utor should be involved in a crowdsensing campaign
created by a server different from her usual one, she
can contribute to the campaign and continue to acquire
scores on the same profile, common among all feder-
ated servers. Thanks to the great customization feature
of the platform, in [25] we started to formalize a
way to federate different ParticipAct servers spawned
around the world. Different servers, with possibly dif-
ferent purposes, can share the user rewards in order to
enable the interaction of federated participants even if
subscribed to different local servers. Users can benefit
from the federation as they find their scores on any of
the federated servers, regardless of the crowdsensing
campaign they are participating in. Facilitating user’s
reward sharing among federated servers has a great
beneficial impact on data collection. The catchment
area participating in each campaign is increased mak-
ing data collection more complete. In the case of a
pandemia this is particularly important because it is
possible to take into account the movement of users
across different cities. When in a federated city users
can still contribute to the campaign and user’s pres-
ence can be still considered to precisely evaluate the
crowding degree of an area.

Figure 1 shows the proposed edge-based architec-
tural model of ParticipAct. In particular, each Partic-
ipAct server relies on a pool of base MEC stations,
as those defined by ETSI in the ETSI-MEC specifica-
tion. We can assume that the exact position of the edge
stations is always known by the server, and it is stored
in a dedicated database containing the GPS coordi-
nates of all associated MEC nodes. The participants in
the crowdsensing campaigns have their own specific
ParticipAct server to which they send contributes in
order to complete the tasks assigned by ParticipAct’s

 28 Page 8 of 17 J Grid Computing (2021) 19:28

Fig. 1 Edge-based participact architecture

administrators and researchers. The ParticipAct plat-
form already has all the tools to enable GPS tracking
of users’ locations with extreme precision. For the
sake of controlling pandemic spreading, the admin-
istrators can choose the duration of a campaign. At
campaign completion after participants can send all
contributions. This policy is used to control the trade-
off between monitoring level precision and network
overhead. For example, a short campaign duration
augments the precision of the contributions, on the
contrary a long duration for a campaign decreases the
network load.

For our use case, the contributors send to the server
their GPS tracking location data created and stored on
their devices while performing a GPS tracking task.
In this way, the server keeps the contributions of all
users in terms of GPS coordinates and areas visited by
contributors during the tracking campaign.

As Section 4 will detail, from the ParticipAct’s
database containing all the contributions, it is possible
to obtain information about most frequented areas in
urban centers, outlining degrees of density, in terms of

number of people, and classifying them based on the
indications of the medical authorities. In our deploy-
ment, The ParticipAct server is hosted in a private
datacenter or in a public cloud. However, during the
crowdsensing campaigns, the server is engaged in a
high number of tasks, including the receipt of contri-
butions by users. Furthermore, a dataset of location
contributions can reach the size of several tens of
thousands of entries per day, and the calculation of
the density could be a heavy computation task if per-
formed at the server side. For these reasons, we decide
to delegate the ParticipAct edge agents to perform the
calculation of the high-density zones.

The ParticipAct server, based on an application-
dependent policies, sends a subset of coordinates to
each associated edge node for the density calculation.
We recall that the server knows the positions of the
MEC nodes, so it sends to a single edge node only
the coordinates that pertain to the coverage area of
the node. The policy with which this calculation takes
place on MEC nodes depends on the policy according
to which the server recursively sends contributions to

J Grid Computing (2021) 19:28 Page 9 of 17 28

the edge nodes. For example, if a server sends daily
updates, the edge node will calculate the crowding
of its related zones on a daily basis. At the end of a
generic campaign, including those related to the pan-
demic control, in addition to the GPS coordinates, the
ParticipAct servers will send to the associated edge
nodes the prize to be awarded to each user who has
completed a campaign, so that all MEC nodes will
have a copy of user scores.

The MEC nodes now can notify people who pass
within their range with alerts about crowded areas.
This information will appear on all devices of peo-
ple having ParticipAct application, but the data can be
also shared with third-party health services to enrich
the knowledge base of the smart city.

3.2 Edge-based Blockchain for Rewarding
Management

In our proposal the storage of user’s rewards in a fed-
erated crowdsensing environment is provided by an
integrated edge-based blockchain platform within Par-
ticipAct. The underlying reason for the adoption of
a blockchain paradigm is to maintain rewards in a
secure and distributed manner ensuring privacy and
non-repudiable features. One crucial issue to consider
when integrating a blockchain solution within a MCS
platform is the architectural model to adopt. It is unre-
alistic to have a complete instance of the ledger on
the end user devices and to rely on them for achiev-
ing a consistent ledger state. For saving resources
we propose to rely on edge computing to distribute
the ledger among multiple close-to-edge deployments.
The ledger is distributed and decentralised among
MEC nodes and MEC nodes are responsible for
achieving a consistent state. We consider the employ-
ment of ETSI MEC nodes to improve the scalability of
the entire system, in this way in fact the DLT-related
functions can be executed exploiting the computing
and storage edge resources lighten the cloud servers of
in these additional tasks. In the edge-based blockchain
architecture, shown in Fig. 2, the cloud server has a
connection with a set of MEC nodes containing a full
replica of the distributed ledger, i.e., all immutable
concatenated rewards. The participant to the crowd-
sensing campaign is still afferent to an individual
PartcipAct server to which a group of ETSI MEC
nodes have been added. The MEC nodes have numer-
ous services including a complete distributed ledger

constituted by a full replica and a wallet service. The
clients rely on the blockchain facilities provided by
their closest MEC node and through it they can access
and interact with the rewarding account records.

The federated infrastructure still remains for all
intents and purposes unaltered, with collected data still
privately kept by cloud servers independently from
each other. After having validated a user’s task result,
cloud servers calculates and report its relative point
allotment to their closest MEC nodes. This informa-
tion is then added to the blockchain so that it can
be then shared by every other MEC node under the
control of federated members. More in details, when
rewards need to be updated, MEC nodes execute a
proper smart contract and validate the transaction con-
taining the reward update request. In particular, MEC
nodes perform the consensus protocol to add the new
block containing the transaction to the blockchain and
to maintain a consistent state of the ledger. In [25]
we have compared the above described edge-based
blockchain architecture with an alternative deploy-
ment solution based on the client-server model. In this
case, as shown in Fig. 3, the distributed ledger is com-
pletely located at the server level, and it keeps the
reward data in a distributed manner among federated
nodes. The federation is constituted by all the orga-
nizations which take part of the the MCS campaign
such as universities and company which constantly
update the ledger in a way completely transparent to
the end use. In this configuration the ledger can be
placed aside of the ParticipAct database on each server
keeping them independent and each reward update is
broadcasted to every federated node.

Both the architectural approaches have different
benefits and drawbacks. Comparing the client-server
and an edge-based blockchain architectures as high-
lighted in the work [25], we can notice from the
security perspective that the client-server architecture
is potentially prone to tampering of the ledger since
the number of federated institution servers tends to
be low in the most common case. A low number of
nodes enrolled in the server federation increases the
risk of 50% + 1 attacks in which malicious actor
can hijack the consensus protocol of the ledger tak-
ing over the majority of the nodes. Including the edge
infrastructure in our ledger deployment improves the
fault tolerance of the MCS platform, in this way in
fact the blockchain knowledge base is distributed on
many network segments which are more trustworthy

 28 Page 10 of 17 J Grid Computing (2021) 19:28

Fig. 2 Edge-based blockchain architecture

since are managed by third party’s telecommunication
providers.

4 Implementation

This Section provides a deeper view on the imple-
mentation and the algorithms executed in each single
layer.

4.1 GPS Areas Density Calculation

We deployed our ParticipAct servers in the cloud
layer. Each server relies on a pool of MEC base sta-
tions and has its own users. The clients always know
the server’s address because they registered with it.
We used a private datacenter to run the server appli-
cation, but being the server a classic web application,
its installation can be made also in a public cloud.

Fig. 3 Client-server blockchain architecture

J Grid Computing (2021) 19:28 Page 11 of 17 28

How we can see in Fig. 4, the ParticipAct server
can create crowdsensing campaigns asking users to
provide information from a broad range of sensors,
including the GPS. By creating a GPS task, we can
obtain information about the places people stay or
pass-through.

The server is responsible for the storage, aggre-
gation, and processing of GPS locations. From the
locality data, we can infer the density of the areas
visited by users of the platform. For the server, we
chose the cloud deployment for the great availability
of resources inside a datacenter. This choice gives us
the scalability that high demanding operations need.
However, the calculation of crowded areas will take
place in each edge node associated with a server, for
the reasons set out in Section 3. For the density area
calculation, we started from the datalocation table
stored inside the DB on which the ParticipAct server
backend stores all user contributions. Table 1 is an
excerpt of the datalocation table. We send part of the
coordinates to each associated edge node, based on
their coverage area.

We used the Geohash coordinates as an identifier
of the area for which we want to classify the density
of people in transit, we used the Geohash coordinates,
a practical geocode system which uses a short string
of digits and letters to encode a geographic area. Sub-
stantially this system breaks the earth surface into 32

Table 1 Excerpt from the datalocation table

User Id Received timestamp Latitude Longitude

24173 2017-01-01 00:02:17.384 37.4876 14.056

15697 2017-01-01 00:12:41.197 38.0989 13.3997

48360 2017-01-01 00:14:21.547 41.2776 15.2665

24173 2017-01-01 00:17:17.575 37.4922 14.0557

15697 2017-01-01 00:27:42.709 38.0989 13.3996

48360 2017-01-01 00:34:19.583 41.2776 15.2665

8659 2017-01-01 00:35:27.982 44.4974 11.3436

24173 2017-01-01 00:37:20.836 37.4925 14.056

15697 2017-01-01 00:47:41.573 38.0989 13.3997

24173 2017-01-01 00:52:16.757 37.4916 14.0528

sections, in turn, divided into other sub-regions iden-
tified with a unique string. The width of the area
selected by a string depends on the size of the string,
the longer the string, the smaller the selected area.
This feature allows us to have a dynamic dimension of
the areas in which we calculate the level of crowding.
For the calculation of the Geohash from the Partici-
pAct datalocation table, we use the PostGIS extension
(https://postgis.net/) for the PostgresSQL database.
PostGIS enables geographic support to the database,
allowing location queries to be run in SQL language.

ST_GeoHash(geometry geom, integer

maxchars=full_precision_of_point)

Fig. 4 ParticipAct GPS geo notificated and geo activated campaign

https://postgis.net/

 28 Page 12 of 17 J Grid Computing (2021) 19:28

The previous query realizes the transformation
from coordinates to geo hashes, taking a geometry
point and an integer for the precision. We recall that a
shorter geo hash coincides with a larger zone (less pre-
cise). If no maxchars is provided, the algorithm uses
the default maximum precision (20 characters). The
first parameter, of geometric type, is created by the
function ST MakePoint.
ST_MakePoint(float long, float lat)

The function alone does not refer to any Spatial
References Identifier (SRID), a unique unambiguous
identifier associated with a specific coordinate system.
ST_SetSRID(ST_MakePoint(float long,

float lat),integer srid)

In our case, we use 4326 as SRID, which corre-
sponds to the World Geodetic System 1984, used by
GPS systems. The following query is the result of this
algorithm using a geo hash area of 7 digits, or a tile
size of 152.9 m x 152.4 m.

SELECT ST_GeoHash(ST_SetSRID(ST_MakePoi-

nt(long,lat),4326),7)

INTO public.datalocationgeohash

FROM public.datalocation;

We transformed all the coordinates in the datalo-
cation table into geo hashes. We built a new table
named datalocationgeohash taking the past coordi-
nates gathered via GPS monitoring tasks. The last step
to calculate the crowding of geo hash areas is the
counting of the number of contributions for each area,
our indicator of the population density in that area.
The following query performs this operation.

SELECT st_geohash, COUNT (*)

FROM public.datalocationgeohash

GROUP BY st_geohash ORDER BY COUNT(*)

DESC

4.2 Crowding Experimental Results

We investigate the capabilities of the ParticipAct
server to calculate the crowding of geo hash areas,
exploiting the ParticipAct dataset created through
many crowdsensing real campaigns carried out from
2013 to 2017. We hypothesized that the density cal-
culation takes place not continuously, but on a policy
set on the basis of sending data from the server to the
edge nodes. A fully functioning crowdsensing system,
such as ParticipAct was during past data collection

campaigns, could produce tens of thousands of entries
containing user contributions. The geo hash calcula-
tion on so many entries could be a heavy process.

To obtain the following performance data we aver-
aged ten runs of the SQL query to calculate the den-
sity. We simulated the two tiers, the server, and the
edge one, using respectively a VM running in a pri-
vate data center and having 4 vCPU, 16GB of RAM,
and 100 GB of HD, and a laptop with quad-core
Intel processor, 8 GB of RAM, and 20 GB of HD.
We considered the contributions collected in the date
02/04/2014, so a table with 47384 GPS entries (coor-
dinate points). We executed the algorithm showed in
Section 3 on all the contributions of the selected day.

This calculation could not be negligible, indeed,
usually, the server is under pressure during intensive
crowdsensing campaigns due to the collection and
processing of the data coming from the many sensors
into the users’ device. In this regard, we thought of
transferring the processing of coordinates on the edge
stations. Since each server relies on a pool of MEC
Radio Access Network (RAN) stations, so the server
sends part of the “datalocation” table (latitude, longi-
tude, and contributions) to each edge site, based on
their position. For example, if a RAN station covers a
certain geographic area, only the positions involved in
its range will be sent to that station. This cuts down on
the calculation times of crowded areas as each edge
station would only have to do with the contributions of
users who have passed through this location. For this
experiment, we used geo hashes with 7 digits, cover-
ing an area of 150 square meters, and we hypothesized
a RAN coverage area of about 300 meters.

Table 2 shows the overhead due to the calculation
of the densities performed respectively on the server
and on the edge. The edge had to process only coordi-
nates that belong to its coverage area, which are only
3754 entries. Instead, the server has to process all the
contributions of the day. Although we simulated the
MEC stations with a less powerful asset, they show a

Table 2 Performance comparison between cloud and edge
deployments during geo hashes and density calculation

Deployment Time
(sec)

Rows
number

CPU
usage

RAM
usage

Cloud 5.42 47384 97% 0.5%

Edge 0.511 3754 90% 0.4%

J Grid Computing (2021) 19:28 Page 13 of 17 28

lighter footprint on system resources with respect to
the execution on the server, due to the limited number
of contributions on which to act. The timing for the
edge case does not take into account the data splitting
between the edge nodes, because it is carried out on
the cloud side once a day and with negligible timing
compared to the total gain.

Table 3 is the result of the calculation of the crowd-
ing of geo hash areas under the coverage of a hypo-
thetical RAN MEC station located at the engineering
faculty of the University of Bologna. The first column
represents the geo hash areas under the edge station
coverage, whereas the second column reports the
number of people passing through that area during the
analyzed day.

4.3 Reward Implementation

For the choice of the most suitable blockchain plat-
form, we have evaluated the main distributed ledger
(DL) and their features such as permissioned vs
permissionless, tokenized vs tokenless below. Per-
missioness blockchain means that users need prior
approval (credentials like certificates or keys) before
take part of the ledger and using it submitting trans-
actions and smart contract whereas a permissionless
blockchain lets anyone participate in the system. The
second analyzed feature is about tokenized DL which
has a mechanism to generate the currency like min-
ing and require fee for transactions. Tokenized DL
allow to exchange the currency for fiat currencies and
requires a lot of computing power. The tokenless DL
does not have any fee or mining mechanism and are
prone to spam. The blockchain platforms analyzed for
our use case are: Hyperledger Fabric and Ethereum.
Fabric is a permissioned tokenless blockchain frame-
work originally contributed by IBM and hosted by the
Linux Foundation. Ethereum is a tokenized distributed

Table 3 Geo hash area’s density calculation on a single edge
node

Geo hash area Crowding

srbj1v8 657

srbj1eh 537

srbj1g9 477

srbj1dz 376

srbj1tr 329

ledger which provides digital money, data services
and distributed applications, it supports permission-
less and permissioned deployments and the use of a
self-executing code known as smart contracts run by
Ethereum Virtual Machine (EVM).

For our solution the Hyperledger Fabric platform
turned out to be best suited to our needs thanks to
its permissioned and tokenless feature which better
support the private nature of our rewards network.

The Hyperledger Fabric ledger is constituted by
two different parts: world state and blockchain. The
world state is a database which keeps the current
values of the attributes of an object represented by
key-value pairs. The world state allows the programs
a quick access to the blockchain values without hav-
ing to go through the entire blockchain to calculate
it. The second is the blockchain transaction log which
keeps the transaction history collected in blocks. Each
block contains a cryptographic hash of the previous
block, a timestamp, and transaction data generally rep-
resented as a Merkle tree. In Hyperledger Fabric, each
node have a copy of the world state and the blockchain
ledger and any update of the ledger is performed by
the peers individually executing the consensus algo-
rithm. This algorithm is at the base of the consistency
and ensures that every update is executed in a uniform
manner on each peer and all the peers have identical
copies of the ledger.

Fabric defines three types of peers which are all
involved in the consensus protocol with different:
i) endorsed peers which receive and validate the
transactions and execute smart contracts; ii) ordered
peers which create transaction blocks and receive
endorsed transaction proposals and insert them in a
block together with others in an orderly manner; iii)
committer peers which receive and broadcast trans-
actions and blocks. In addition, Hyperledger Fabric
offers the chaincode (the equivalent of the Ethereum
smart contract) implementation in different general-
purpose programming languages which are Java, Go,
and Node.js. This feature makes easy the develop-
ment of smart contract because we don’t need to
learn another language avoiding an additional layer of
abstraction at programming level.

The application that manages the users’ rewards
is based on a Hyperledger Fabric chaincode and is
written in Go which is the most performing lan-
guage as highlighted in the work [27]. It maintains
the rewards as a matrix data structure of triple

 28 Page 14 of 17 J Grid Computing (2021) 19:28

<identifier:integer:timestamp>; the identifier is
unique and is used by the ParticipAct application
to anonymize the user personal data, the integer
represents the number of points per user while the
timestamp keeps track of the most recent data upload
constituting a simple invalidation mechanism on
blockchain. The reward chaincode is accessed in writ-
ing only from the server that calculate the increment
or decrement of the gamification points based on task
user contribution and it is accessed in reading from
any participant user to check the score. A reward
update on the ledger starts always by the server which
evaluate the client gamification task and attributes
a score to the user sending a transaction proposal
to the MEC nodes. The MEC nodes reply with the
responses which are received by the server and sent
to the orderer node. The orderer first determinates the
satisfaction of the endorsement policy and then com-
pare the answers. The endorsement policy defines the
number of peers which have to execute the chaincode
to validate the transaction. The reading operation on
the ledger to get the reward score can be rather exe-
cuted by all the clients sending a transaction proposal
query and immediately getting the result.

4.4 Hyperledger Fabric Chaincode Experimental
Results

Since the chaincode performance is crucial for a
responsive and secure reward mechanism, we have
analyzed and evaluated the transaction latency at vary-
ing of the number of participating endorser peers.
The endorser peers play a crucial role in the con-
sensus algorithm because are the nodes on which the
chaincode is installed, they receive and execute the
transaction proposal sent from the clients and reply
sending back endorsed result (endorsed transaction
proposal).

We defined the transaction latency as the time
between when the client sends the request and when
the response is received. Analyzing the Fabric oper-
ation, we can calculate two different type of latency:
the query latency and the update latency which depend
on the type of operation executed. For a query in fact
the interaction is only between client and a peer, while
an update involves also endorser, orderer and commit-
ter peer and goes through all the consensus algorithm
phases. For these reasons we differentiate between

Query Latency (LpQ) which is the time interval waited
by the client between the sending of the request and
the receiving of the response and the Update Latency
(LpT) which is the time interval waited by the client
between the request sending and the receiving a confir-
mation event to notice the inclusion of the transaction
in a block and then to the blockchain.

Both LpQ and LpT are composed of a sum among
several latencies, for the LpQ they are: (1) the time
taken by the client application, (2) the time taken by
a transaction to reach the number of endorser peers
declared in the endorsement policy and to get the
response, (3) the overall chaincode execution time,
(4) the number of concurrent transactions executed,
(5) the time spent to read/write the worldstate. For
the LpT other two latencies are added: (6) the time
taken by the orderer to receive transactions and orga-
nize them in blocks, (7) the amount of time to receive
the new block, validate all the transaction individu-
ally and include it to each ledger peer. The latency is
influenced by many factors such as, for example, peers
and client machine hardware, network latency. Other
important factors are the number of endorser peers
and endorsement policy which defines the number of
endorser peers that have to execute the transaction.
Moreover, there is the type of orderer service that can
work in one mode or Kafka, in the first one only a sin-
gle node is involved while Kafka requires coordination
between the different orderer nodes. Crucial is also the
chaincode implementation details and programming
language.

The testing scenario is constituted by VMs con-
nected by a local network and created on a OpenStack-
based cloud infrastructure constituted by 4 server
hosts. Each VM has 2 CPUs, 2 GB RAM and 20GB
of disk and runs Ubuntu 16.04 LTS and Hyperledger
Fabric (version 1.4). All the endorser peers run on dif-
ferent VMs, they have the chaincode installed and use
LevelDB as world state. The orderer is implemented
in one mode and runs on another distinct VM, while
the CA is in a separate container. The client runs on a
further VM which belongs to the local network. The
tests are designed to measure the query and the update
latency at varying of the number of peers. The tests
uses the Go languages both for the client and for the
chaincode at varying the number of nodes of the net-
work. The number of nodes for the tests are 1, 2, 4, 8,
10, 12, 14 and 16 nodes and consider the worst case

J Grid Computing (2021) 19:28 Page 15 of 17 28

Fig. 5 Update transaction
latency

which is when the transaction proposal is requested
and executed by all the network peers to satisfy the
endorsement policy.

The evaluation was carried out on the ledger both
for the Update Latency (LpQ) and for Query Latency
(LpQ). For each experiment the client performs 50
transactions in sequence, the interval measured cal-
culates the time from the request sending request to
the response receiving. We have repeated each experi-
ment 33 times to reduce error factor and in the graphs
are shown the average values; we have not reported
the standard deviations which are always below 6%
for all tests. We consider the reception of the result
for the experiment related to the queries while for
the experiments focused on the updates the notifica-
tion related to the inclusion of a transaction to a block
and the appending on the blockchain is considered. To

perform a write, we executed a writing of a new reward
score for a certain user while for reading we requested
the reward points of the same user.

Figure 5 shows the latency related to a ledger update,
the transactions modify the worldstate and are then
included to the blockchain. The update is then prop-
agated to all the peers. We can notice that the graph
follows a linear trend, it starts from about 1800 ms
and grows up to 2100 ms. The difference of 300 ms is
caused by the execution of consensus algorithm and,
in particular, the transaction proposal which have to
be executed on all the 16 nodes to satisfy the endorse-
ment policy.

Figure 6 shows the latency related to the queries
which exploits only the first phases of the Hyperledger
Fabric consensus algorithm without modify the ledger
including the transactions. Differently from above in

Fig. 6 Query transaction
latency

 28 Page 16 of 17 J Grid Computing (2021) 19:28

fact the reply does not have to wait for the replies of all
the network nodes interacting only with a single peer.
As we can see from the graph, in this case, the trend
at the varying of the number of the peers is approx-
imately constant, specifically, the latency starts from
about 5 ms and grows up to 20 ms.

Comparing the graphs, we can easily notice that
the latency for a query is noticeably lower than for
an update of the ledger. In particular, its average time
is about 100 times faster than an update transaction
execution. As described before, we believe the rea-
son can be researched in the nature of the consensus
algorithm and in the way the data is included into the
blockchain. In the case of update in fact the algorithm
involves several communications and an agreement
among peers, in the second case the information is
directly generated by a unique peer.

5 Conclusions

Mobile crowdsensing is a paradigm that empowers the
citizen contributions melting this data with smart city
information. Pervasivness of mobile and wearables
devices gives good chances to obtain detailed data
from the crowd. Modern smart cities need for scalable
and interoperable solutions in order to achieve a pre-
cise model of the reality and to give citizen and public
institutions a good support based on real data. The
gamification among the participants to crowdsensing
campaigns improves the quality and the quantity of
contributions provided by platform users.

We have extended the classic client-server infras-
tructure of MCS platforms by adding the edge layer
and we have proposed a blockchain mechanism to
federate different MCS servers in order to increase
the catchment area and participation in crowdsens-
ing campaigns. The edge layer supports both a local
processing of location data on MEC nodes associated
with each server and a full-distributed permissioned
blockchain platform to keep the reward user score.
Thanks to the edge we have numerous advantages.
On the one hand it allows us to free the server from
complex calculations that involve a non-negligible
overhead. On the other hand, it increases the robust-
ness of the distributed ledger platform replicating it
on many nodes. In case of potential server failure the
users’ scores could be recovered from any replica on
an associated edge node.

We tested these new capabilities using our MCS
platform, namely ParticipAct, extending it with the
middle edge tier and proving its operability. We spe-
cialized the platform by adding the capability to find
crowded areas based on the presence of users in those
areas during the crowdsensing campaigns. This inte-
grationcan be used to mitigate the spread of pandemic
diseases and could be of help, both for the smart city
and for citizens, during the current health emergency
concerning the spread of COVID-19. The calculation
of the most crowded areas is a complex operation
that involves many transformations from geographical
coordinates to geo hashes values identifying a zone
with different precision. In our tests, we put the MEC
nodes under stress with the calculation of crowded
areas, based on users’ positions, and with the updating
of the blockchain to estimate the users’ score.

We are planning to completely integrate the edge
capabilities with our crowdsensing platform model.
The next step could be the implementation of our logic
inside a real MEC node, following the official ETSI
specifications. We will implement the activity recog-
nition to programmatically and dynamically adjust the
precision of the crowded radius areas calculated by
our algorithm, with the hope that the users contribu-
tions could help in improving smart interactive ser-
vices in the healthcare field and in situations of great
emergency such as the one we are experiencing today.

Funding Open access funding provided by Alma Mater Stu-
diorum - Università di Bologna within the CRUI-CARE Agree-
ment.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated oth-
erwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

References

1. Distefano, S., Longo, F., Scarpa, M.: QoS assessment of
mobile crowdsensing services. J. Grid Comput. 13(4), 629–
650 (2015). https://doi.org/10.1007/s10723-015-9338-7

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10723-015-9338-7

J Grid Computing (2021) 19:28 Page 17 of 17 28

2. Abualsaud, K. et al.: A Survey on mobile crowd-sensing
and its applications in the IoT Era. IEEE Access 7,
3855–3881 (2019). https://doi.org/10.1109/ACCESS.2018.
2885918

3. Pouryazdan, M., Kantarci, B., Soyata, T., Foschini, L.,
Song, H.: Quantifying user reputation scores, data trust-
worthiness, and user incentives in mobile crowd-sensing.
IEEE Access 5, 1382–1397 (2017). https://doi.org/10.1109/
ACCESS.2017.2660461

4. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile
edge computing: a survey. IEEE Internet Things J.
5(1), 450–465 (2018). https://doi.org/10.1109/JIOT.2017.
2750180

5. Aral, A., Brandic, I., Uriarte, R.B., et al.: Addressing appli-
cation latency requirements through edge scheduling. J
Grid Comput. 17, 677–698 (2019). https://doi.org/10.1007/
s10723-019-09493-z

6. Cardone, G., Corradi, A., Foschini, L., Ianniello, R.: Par-
ticipAct: A large-scale crowdsensing platform. IEEE Trans.
Emerg. Top. Comput. 4(1), 21–32 (2016). https://doi.org/
10.1109/TETC.2015.2433835

7. Pham, Q., et al: A survey of multi-access edge computing in
5g and beyond: fundamentals, technology integration, and
state-of-the-art. IEEE Access 8, 116974–117017 (2020).
https://doi.org/10.1109/ACCESS.2020.3001277

8. Lin, Y.: Special issue: Blockchain theories and applications.
J. Grid Comput. 18(4), 573–573 (2020). https://doi.org/10.
1007/s10723-020-09538-8

9. Dahmen-Lhuissier, S., (n.d.): Multi-access Edge Comput-
ing - Standards for MEC. Retrieved November 18, 2020.
from http://www.etsi.org/technologies/multi-access-edge-
computing (2016)

10. Marjanović, M., Antonić, A., Žarko, I.P.: Edge comput-
ing architecture for mobile crowdsensing. IEEE Access
6, 10662–10674 (2018). https://doi.org/10.1109/ACCESS.
2018.2799707

11. Leppänen, T. et al.: Developing agent-based smart objects
for IoT edge computing: mobile crowdsensing use case. In:
Xiang, Y., Sun, J., Fortino, G., Guerrieri, A., Jung, J. (eds.)
Internet and Distributed Computing Systems. IDCS 2018.
Lecture Notes in Computer Science, vol. 11226. Springer,
Cham (2018)

12. Chen, X., Tang, C., Li, Z., et al.: A pricing approach toward
incentive mechanisms for participant mobile crowdsens-
ing in edge computing. Mob. Netw. Appl. 25, 1220–1232
(2020). https://doi.org/10.1007/s11036-020-01538-y

13. Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hos-
seinzadeh, M.: A survey on the Computation Offloading
approaches in Mobile Edge/Cloud computing environ-
ment: A Stochastic-based Perspective. J. Grid Comput.
18(4), 639–671 (2020). https://doi.org/10.1007/s10723-
020-09530-2

14. Yang, R., Yu, F.R., Si, P., Yang, Z., Zhang, Y.: Integrated
Blockchain and Edge Computing Systems: A Survey, Some
Research Issues and Challenges. IEEE Commun. Surv.
Tutorials 21(2), 1508–1532 (2019). https://doi.org/10.1109/
COMST.2019.2894727. Secondquarter

15. Sharma, P.K., Chen, M., Park, J.H.: A software defined
fog node based distributed blockchain cloud archi-
tecture for IoT. IEEE Access 6, 115–124 (2018).
https://doi.org/10.1109/ACCESS.2017.2757955

16. Guo, H., Li, W., Nejad, M., Shen, C.-C.: Access con-
trol for electronic health records with hybrid blockchain-
edge architecture. pp 144–51. https://doi.org/10.1109/
Blockchain.2019.00015 (2019)

17. Lei, K., Fang, J., Zhang, Q., et al.: Blockchain-based cache
poisoning security protection and privacy-aware access
control in NDN vehicular edge computing networks. J.
Grid Comput. https://doi.org/10.1007/s10723-020-09531-1
(2020)

18. Zhou, Z., Wang, B., Dong, M., Ota, K.: Secure and
efficient vehicle-to-grid energy trading in cyber physical
systems: integration of blockchain and edge computing.
IEEE Trans. Syst. Man Cybern. Syst. 50(1), 43–57 (2020).
https://doi.org/10.1109/TSMC.2019.2896323

19. Luo, C., Xu, L., Li, D., Wu, W.: Edge computing inte-
grated with blockchain technologies. In: Du, DZ., Wang,
J. (eds.) Complexity and Approximation. Lecture Notes
in Computer Science, vol. 12000. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-41672-0 17

20. Boubiche, D.E., Imran, M., Maqsood, A., Shoaib, M.:
Mobile crowd sensing – Taxonomy, applications, chal-
lenges, solutions. Comput. Hum. Behav. 101, 352–370
(2019). ISSN 0747–5632

21. Cano, J., Cecilia, J., Hernandez-Orallo, E., Calafate, C.,
Manzoni, P.: Mobile crowdsensing approaches to address
the COVID-19 pandemic in Spain. IET Smart Cities 2(2),
58–63 (2020). https://doi.org/10.1049/iet-smc.2020.0037

22. Cruz, M.M. et al.: Assessing the level of acceptance of
a crowdsourcing solution to monitor infectious diseases
propagation. In: 2020 IEEE International Smart Cities Con-
ference (ISC2), Piscataway, NJ, USA, pp. 1–8 (2020).
https://doi.org/10.1109/ISC251055.2020.9239069

23. Xu, H., Zhang, L., Onireti, O., Fang, Y., Buchanan, W.J.,
Imran, M.A.: BeepTrace: Blockchain-enabled privacy-
preserving contact tracing for COVID-19 pandemic and
beyond, IEEE Internet Things J. https://doi.org/10.1109/
JIOT.2020.3025953

24. Marbouh, D., Abbasi, T., Maasmi, F., et al.: Blockchain for
COVID-19: review, opportunities, and a trusted tracking
system. Arab J Sci Eng 45, 9895–9911 (2020)

25. Bellavista, P., Cilloni, M., Di Modica, G., Montanari, R.,
Carlo Maiorano Picone, P., Solimando, M.: An edge-based
distributed ledger architecture for supporting decentralized
incentives in mobile crowdsensing. In: 2020 20th IEEE/
ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), Melbourne, Australia, pp. 781–787
(2020). https://doi.org/10.1109/CCGrid49817. 2020.00-10

26. Cardone, G., Cirri, A., Corradi, A., Foschini, L., Montanari,
R.: Activity recognition for Smart City scenarios: Google
Play Services vs. MoST facilities. In: 2014 IEEE Sympo-
sium on Computers and Communications (ISCC), Funchal,
pp. 1–6 (2014). https://doi.org/10.1109/ISCC.2014.6912458

27. Foschini, L., Gavagna, A., Martuscelli, G., Montanari, R.:
Hyperledger Fabric Blockchain: Chaincode Performance
Analysis. In: ICC 2020 - 2020 IEEE International Confer-
ence on Communications (ICC), Dublin, Ireland, pp. 1–6
(2020). https://doi.org/10.1109/ICC40277.2020.9149080

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

https://doi.org/10.1109/ACCESS.2018.2885918
https://doi.org/10.1109/ACCESS.2018.2885918
https://doi.org/10.1109/ACCESS.2017.2660461
https://doi.org/10.1109/ACCESS.2017.2660461
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1007/s10723-019-09493-z
https://doi.org/10.1007/s10723-019-09493-z
https://doi.org/10.1109/TETC.2015.2433835
https://doi.org/10.1109/TETC.2015.2433835
https://doi.org/10.1109/ACCESS.2020.3001277
https://doi.org/10.1007/s10723-020-09538-8
https://doi.org/10.1007/s10723-020-09538-8
http://www.etsi.org/technologies/multi-access-edge-computing
http://www.etsi.org/technologies/multi-access-edge-computing
https://doi.org/10.1109/ACCESS.2018.2799707
https://doi.org/10.1109/ACCESS.2018.2799707
https://doi.org/10.1007/s11036-020-01538-y
https://doi.org/10.1007/s10723-020-09530-2
https://doi.org/10.1007/s10723-020-09530-2
https://doi.org/10.1109/COMST.2019.2894727
https://doi.org/10.1109/COMST.2019.2894727
https://doi.org/10.1109/ACCESS.2017.2757955
https://doi.org/10.1109/Blockchain.2019.00015
https://doi.org/10.1109/Blockchain.2019.00015
https://doi.org/10.1007/s10723-020-09531-1
https://doi.org/10.1109/TSMC.2019.2896323
https://doi.org/10.1007/978-3-030-41672-0_17
https://doi.org/10.1049/iet-smc.2020.0037
https://doi.org/10.1109/ISC251055.2020.9239069
https://doi.org/10.1109/JIOT.2020.3025953
https://doi.org/10.1109/JIOT.2020.3025953
https://doi.org/10.1109/CCGrid49817.2020.00-10
https://doi.org/10.1109/CCGrid49817.2020.00-10
https://doi.org/10.1109/ISCC.2014.6912458
https://doi.org/10.1109/ICC40277.2020.9149080

	Edge-enabled mobile crowd sensing to support effective rewarding...
	Abstract
	Introduction
	State of the Art and Background
	Mobile CrowdSensing and Multi-access Edge Computing
	Distributed Ledgers and Edge Computing
	MCS and Blockchain for Pandemia Management

	Edge-enabled MCS Platform for Data Collection and Rewarding in Pandemic Scenarios
	Data Collection and Crowding Degree Analysis
	Edge-based Blockchain for Rewarding Management

	Implementation
	GPS Areas Density Calculation
	Crowding Experimental Results
	Reward Implementation
	Hyperledger Fabric Chaincode Experimental Results

	Conclusions
	References

