SUPPORTING INFORMATION

Reactivity of Vanadyl pyrophosphate catalyst in ethanol ammoxidation and β -picoline oxidation: advantages and limitations of bi-functionality features

Tommaso Tabanelli¹, Massimiliano Mari¹, Federico Folco¹, Federico Tanganelli¹, Francesco Puzzo¹, Laura Setti¹, Fabrizio Cavani¹

¹Dipartimento di Chimica Industriale "Toso Montanari", Viale Risorgimento 4, 40136 Bologna, Italy

Figure S1. Effect of W/F ratio on reactants conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: T 440°C, feed composition (molar %): ethanol (azeotrope)/ammonia/oxygen/inert 5/13/13/69. Symbols: ethanol conversion (\blacklozenge), ammonia conversion (\blacktriangle) and oxygen conversion (\blacksquare). Selectivity to: acetonitrile (\diamondsuit), acetaldehyde (\ast), ethylene (\bigtriangleup), CO+CO₂ (\bigcirc), HCN (\Box), and heavy compounds (+). Catalyst VPP.

Figure S2. Effect of W/F ratio on reactants conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: T 440°C, feed composition (molar %): ethanol (azeotrope)/ammonia/oxygen/inert 7.5/13/13/66.5. Symbols: ethanol conversion (\blacklozenge), ammonia conversion (\bigstar) and oxygen conversion (\blacksquare). Selectivity to: acetonitrile (\diamondsuit), acetaldehyde (\bigstar), ethylene (\bigtriangleup), CO (\bigcirc), CO₂ (\bigstar), HCN (\square), and heavy compounds (\dotplus). Catalyst VPP.

Figure S3. Effect of ammonia inlet molar fraction on reactants conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: W/F ratio 0.8 g s ml⁻¹, T 370°C, feed composition (molar %): ethanol (azeotrope)/ammonia/oxygen/inert 5/x/13/82-x. Symbols: ethanol conversion (\blacklozenge), and oxygen conversion (\blacksquare). Selectivity: acetonitrile (\diamondsuit), acetaldehyde (\bigstar), ethylene (\bigtriangleup), CO+CO₂ (\bigcirc), HCN (\Box), heavy compounds (\dotplus). Catalyst VPP.

Figure S4. Effect of W/F ratio on reactants conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: temperature 350°C, feed composition (molar %): acetaldehyde/ammonia/oxygen/inert 0.5/13/13/73.5. Symbols: acetaldehyde conversion (\blacklozenge), ammonia conversion (\blacktriangle) and oxygen conversion (\blacksquare). Selectivity: acetonitrile (\diamondsuit), CO+CO₂ (O), HCN (\Box), and N₂ (calculated with respect to converted ammonia) (\blacklozenge). Catalyst VPP.

Figure S5. Effect of temperature on reactants conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: W/F ratio 0.8 g s ml⁻¹, feed composition (molar %): ethylamine/oxygen/inert 0.9/13/86.1. Symbols: ethylamine conversion (\blacklozenge), and oxygen conversion (\blacksquare). Selectivity to: acetonitrile (\diamondsuit), CO+CO₂ (\bigcirc), and HCN (\Box). Catalyst VPP.

Figure S6. Effect of temperature on reactants conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: W/F ratio 0.8 g s ml⁻¹, feed composition (molar %): ethylene/ammonia/oxygen/inert 7.5/13/13/66.5. Symbols: ethylene conversion (\blacklozenge), ammonia conversion (\blacktriangle) and oxygen conversion (\blacksquare). Selectivity to: CO+CO₂ (O), HCN (\Box), unknown compound (possibly toluene, +) and N₂ (calculated with respect to converted ammonia) (\blacklozenge). Catalyst VPP.

Figure S7. Effect of temperature on reactants conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: W/F ratio 0.8 g s ml⁻¹, feed composition (molar %): acetonitrile/ammonia/oxygen/inert 1/13/13/66.5. Symbols: acetonitrile conversion (\blacklozenge), ammonia conversion (\blacktriangle) and oxygen conversion (\blacksquare). Selectivity to: CO+CO₂ (O), and HCN (\Box).

Figure S8. Raman spectra of the fresh calcined VPP catalyst (top) and of the used catalyst after ethanol ammoxidation (bottom). In the latter case, only bands attributable to $(VO)_2P_2O_7$ are shown, whereas in the calcined catalyst also bands attributable to α_I -VOPO4, in the 500-to-600 cm⁻¹ spectral range, are shown.

Figure S9. TPD profile recorded by heating the VPP sample in He until 650°C, with no preadsorption. The TCD signal was coincident with the m/e = 18 signal (H₂O) recorded by MS.

Figure S10. TPD profiles; experiments were carried out by first heating the sample in He until 350°C, then adsorbing NH₃ at 100°C, then making the TPD experiments by heating either in He (top) or in He with 5% O₂ (bottom). Red signal (mass 16): NH₃; Blu signal (mass 18): H₂O; Black signal (mass 17): H₂O and NH₃; Green signal (mass 28): N₂.

Figure S11. DRIFTS spectra; experiments were carried out by first heating VPP in He until 500°C, then adsorbing NH₃ at 100°C and recording its desorption with temperature (TPD) in He (left). Then ethanol was pulsed at 350°C, collecting spectra at increasing time-on-stream (right). Signals at 1441 and 1669 cm⁻¹ are typical of ammonium cations ($\delta_s(NH_4)$, $\delta_{as}(NH_4)$). Spectra are obtained by subtracting the spectra of VPP (dotted line) and are in line with the results previously reported in literature. ¹

¹ G. Busca, G. Centi, F. Trifiro, and V. Lorenzelli. Phys. Chem. 1986, 90, 1337-1344.

Figure S12. Effect of contact time on β -picoline conversion and on selectivity to products. Reaction conditions: feed composition (molar %): β -picoline/oxygen/inert 1/20/79; temperature 330°C. Symbols: β -picoline conversion (\blacklozenge), selectivity to: nicotinic acid (\diamondsuit), nicotinic aldehyde (\bigstar), pyridine (\triangle), cyanopyridine (\Box), CO (\bigstar), CO₂ (\bigcirc) and heavy compounds (+). Catalyst VPP.