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ABSTRACT: The visible-light photoredox/[Co(III)] cocatalyzed dehy-
drogenative functionalization of cyclic and acyclic styryl derivatives with
carboxylic acids is documented. The methodology enables the chemo- and
regioselective allylic functionalization of styryl compounds, leading to
allylic carboxylates (32 examples) under stoichiometric acceptorless
conditions. Intermolecular as well as intramolecular variants are
documented in high yields (up to 82%). A mechanistic rationale is also
proposed on the basis of a combined experimental and spectroscopic
investigation.

Unactivated olens are convenient feedstocks in organic
synthesis due to their large availability and intrinsic wide

chemical exibility.1 Generally, the chemical manipulation of
alkenes requires site-selective electrophilic activation of the π-
system using noble transition metals or harsh Brønsted acidic
conditions. Very recently, radical variants started anking these
approaches2 with the use of dedicated visible-light induced
generation of radical cations that could evolve into chemical
diversity/complexity via subsequent stoichiometric oxidant-
free dehydrogenative couplings.
In this context, the combined use of Fukuzumi acridinium

salts (visible-light photoredox abstractors of electrons from
olens)3 and [Co(II)/(III)] oximine proton acceptors (i.e.,
cobaloximes)4 has recently received extensive attention in the
direct functionalization of unactivated alkenes under a catalytic
hydrogen evolution regime (Figure 1a).5,6 In the realm of
photoredox acceptorless dehydrogenation reactions, Lei
documented the anti-Markovnikov oxidation of styrenes with
water,5a alcohols, and azoles.5b In addition, an elegant [4 + 2]-
type cycloaddition between alkenes and aromatic ketoimines
to deliver dihydroisoquinolines was also reported.5c Sub-
sequently, Wu extended this approach to the formation of
alkenylphosphines via a dehydrogenative C−P bond forming
process under photosensitizer-free conditions.5d

In a continuation of our ongoing interests toward the
realization of visible-light photoredox promoted synthetic
protocols7 and metal mediated allylic nucleophilic substitu-
tions,8 we envisioned the opportunity to apply the visible-light
induced cobaloxime/acridinium dual catalysis to the prepara-
tion of allylic esters via dehydrogenation of Csp3−H bonds
under stoichiometric oxidant-free conditions (Figure 1b). Such
an approach would represent a signicant improvement with

respect to the known oxidant-based synthesis of allylic
carboxylates (Figure 1c).9

In this scenario, 1-phenyl-1-cyclohexene (1a) and butanoic
acid (2a) were elected as model substrates in order to tackle
the intrinsic regioselective issues of the protocol (see
compounds 5aa/5aa′/5aa″ in the Table 1 graphic). In
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Figure 1. (a) Co/visible-light mediated functionalization of olens via
SET oxidation. (b) Present working plan. (c) Classic metal catalyzed
oxidative synthesis of allylic carboxylates via C−H functionalization.
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addition, rigorous base-free conditions were targeted in order
to prevent undesired photoinduced decarboxylative events.10

At the outset of the optimization stage, we discovered that
the combined use of [Co(III)(dmgH)2pyCl] (3a) (5 mol %,
dmgH = dimethylglyoximate, py = pyridine) and Fukuzumi 9-
mesityl-10-methylacridinium perchlorate (4a) (2.5 mol %)
promoted the chemoselective anti-Markovnikov (5aa vs
5aa″)5a,11,12 formation of the butyrate 5aa in 63% yield
(blue LED 23 W 465 nm, rt, DCM, entry 1, Table 1).
Furthermore, high allylic ester (5aa) vs enolester (5aa′)
chemoselectivity (generally >25:1) was observed as well (see
mechanistic discussion for details).
Interestingly, among the cobaloximes tested (3a−e), while

[Co(dmgBF2)2(ACN)2] (3b) demonstrated inertness in the
coupling process (entry 2), the analogous Co(III) featured
dierent ancillary ligands (i.e., DMAP, NMI, py: 3c−e) which
promoted the process but to lower extents with respect to 3a
(yield: 33−50%, entries 3−5). Perchlorate acridiunim 4a
proved to be far superior with respect to the corresponding 9-
mesityl-10-methylacridinium tetrauoroborate (4b, 52% yield)

and to photosensitizers 4d,e (entries 7 and 8). Additionally,
removal of the photosensitizer (PC) (entry 10) caused the
failure of the reaction. The reaction medium was then assessed
(entries 11−14). Here, dry and degassed CH2Cl2 emerged as
the optimal solvent, suggesting also the presence of radical
intermediates during the reaction course. Then, dierent
conditions for light exposure (i.e., dark and 1/40 W blue
LEDs) were examined providing insights about the genuine-
ness of the light-driven method (entry 17) but not improved
chemical outcomes (entries 15 and 16).
With the aim of further improving the performance of the

dehydrogenative cross-coupling process, we reasoned that the
employment of a photosensitizer featuring a longer excited
state lifetime (4a τ = 6.4 ns)13 and higher thermal stability
(side dealkylation events have been documented with N-alkyl
acridinuim derivatives)14 could provide a higher concentration
of the key radical cation (Figure 1a). Therefore, in line with
the recent discoveries by Nicewicz,14 the new N-phenyl dye 4c
was synthesized and fully characterized spectroscopically: (i)
singlet excited state energy = 2.64 eV; (ii) singlet excited state
lifetime = 17.6 ns; (iii) cyclic voltammetry revealed that two
reversible one-electron reductions were observed at −0.59 and
−1.65 V (vs SCE see Figure S1).15 Finally, the excited state
reduction potential was estimated to be 2.05 V and hence
comparable to that of 4a.
Interestingly, the N-phenyl acridinium 4c provided 5aa in a

similar extent to 4a (60% yield) but with a shorter reaction
time (48 h, entry 7 vs entry 1), enabling also the reactivity of
several inert substrates with 4a to be unlocked. As a partial
explanation of the recorded outcomes, we compared the
relative decrease of the singlet excited state lifetime of 4a and
4c in the presence of the same concentration of 1a (21 mM) in
CH2Cl2. The results revealed that the singlet excited state of 4a
was quenched only by 55%. However, in the case of 4c,
quenching was as high as 71%. Accompanied by the previous
results, the Stern−Volmer quenching constants were found to
be kQ = 8.6 × 109 M−1 s−1 and kQ = 6.6 × 109 M−1 s−1 for 4a
and 4c, respectively.16

Having established the optimal reaction conditions, we faced
the substrate scope of the methodology by subjecting to the
model photoredox cross-coupling conditions a range of
carboxylic acids 2b−m and alkene 1a (Scheme 1).

Interestingly, good yields were obtained for linear (5ac,d),
branched (5ae) and hydrocinnamic carboxylates 5af (58%).
Analogously, acetic acid proved competent in the dehydrogen-
ative coupling, delivering the desired acetate 5ab in 58% yield.
α,β-Unsaturated carboxylic acids worked also satisfyingly,
providing the carboxylates 5ag−h in moderate yield (43%)
but without appreciable erosion on the stereochemical
information on the pristine carboxylic acid. Additionally,

Table 1. Optimization of the Reaction Conditions

runa reaction conditions yield 5aa (%)b

1 3a/4a 63
2 3b/4a traces
3 3c/4a 33
4 3d/4a 37
5 3e/4a 50
6 3a/4b 52
7 3a/4c (48 h) 60
8 3a/4d nr
9 3a/4e nr
10 3a/− nr
11 3a/4a in reagent grade/undegassed DCM nr
12 3a/4a in DMF nr
13 3a/4a in (CH2Cl)2 41
14 3a/4a in CH3CN nr
15 3a:4a blue LED (1 W) 20
16 3a:4a blue LED (40 W), 32 h 31
17 3a:4a dark nr

aReaction conditions: 1a (0.1 mmol, 0.1 M), 2a (10 equiv), 3 (5 mol
%), 4 (2.5 mol %) under nitrogen conditions and degassed solvent
(72 h), unless otherwise specied. bDetermined after ash
chromatography. In many cases and more pronouncedly for yields
<50%, discrete amounts of unreacted olen 1a were observed even
upon prolonged irradiation times. DMAP: 4-(dimethylamino)-
pyridine. NMI: N-methylimidazole. nr: no reaction.

Scheme 1. Generality of the Method towards Dierently
Substituted Carboxylic Acids Based on Table 1, Entry 1,
Conditions
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functionalized benzoic acids (2i−m) eectively participated to
the oxidative coupling, delivering the products 5ai−am in
moderate to good yields (45−71%), regardless the position as
well as electronic properties of the aryl substituents.
Optimal conditions were then applied to a series of cyclic as

well as acyclic styryl derivatives in order to assess the generality
of the protocol toward unsaturated hydrocarbons (Scheme 2).

First, a range of functionalized 1-aryl-cyclohexenes (1b−n)
were subjected to the oxidative photocatalyzed intermolecular
derivatization. Substituents can be eectively accommodated at
the C-4 position of the cyclohexenyl scaold (i.e., tBu, Me, and
gem-dimethyl), generating the corresponding carboxylates 5 in
a yield up to 71%.
In this direction, a library of carboxylic acids 6a−d were

readily obtained via Suzuki cross-coupling and directly
subjected to optimal reaction parameters (Scheme 3).
Additionally, the adoption of 1-aryl-cyclohexenyl units,
carrying both EWGs (i.e., CO2Me, COMe, F) and EDGs
(i.e., Me and di-Me, tBu) at the ortho-, meta-, and para-
positions of the arene, led to the allylic carboxylates 5 in
moderate to good yields (up to 69%) via anti-Markovnikov

condensation. The generality of the protocol was also
ascertained for the cycloeptenyl compound 1o that generated
the desired benzoate 5oa in 43% yield.17 Finally, C7, C9 and
diphenyl-substituted C5 acyclic styryl compounds 1p,q were
conveniently synthesized as an E:Z-mixture via Suzuki cross-
coupling of the corresponding enol triates or Grignard
addition/dehydration sequences (see SI) and subjected to the
oxidative coupling in the presence of 4c.18 Also, in these cases,
the allylic esters were isolated in satisfying yields (up to 52%)
and marked allylic ester vs enol ester selectivity.
Moreover, the synthetic versatility of the procedure was

further emphasized by implementing an intramolecular variant.
In particular, the photoredox procedure was applied to the
direct synthesis of isocoumarin scaolds 719 via an
unprecedented intramolecular dehydrogenative formal Csp2−
H functionalization.20 Interestingly, the desired isocoumarins 7
were obtained from moderate to excellent yields (up to 82%)
accompanied by a high selectivity toward the 3,4-unsaturated
scaold (up to >25:1).21 Dierently, the corresponding
pyranyl core 7d was isolated in 40% yield as a mixture (ca.
1:1) of the 1,4- and 1,10b-dihydropyranyl isomers. Therefore,
the synthetic exibility of the allylic carboxylates was examined
(Figure 2a). First, the epoxidation of the cyclohexenyl core was

carried out eectively (mCPBA, CH2Cl2, 0 °C, 16 h)
delivering the cyclohexene oxide 8ab in 88% yield. In addition,
the acetyl group of 5ab could be conveniently saponied
(NaOH, MeOH, rt) to release the corresponding allylic
alcohol 9ab in 89% yield, proposing the present methodology
as a catalytic indirect hydroxylation of allylic Csp3−H bonds.
In order to get some insight into the reaction machinery,

several dedicated control experiments were carried out. First,
the on/o irradiation experiment (Schemes S1 and S2)
revealed that, upon a relatively short induction period, the

Scheme 2. Scope of the Reaction: Alkenesa,b

aCatalyst 4a. bCatalyst 4b. The blue spot shows the dehydrogenation
site.

Scheme 3. Synthesis of Functionalized Isocoumarin
Derivatives 7 via Intramolecular Photoredox/Co
Cocatalyzed Dehydrogenative Reaction

Figure 2. (a) Synthetic manipulations of the allyl acetate 5ab. (b)
Mechanistic hypothesis for the dual Co/acridinium dehydrogenative
functionalization of olens (the case for PC 4a is depicted). (c)
Parallel isotope labeling experiments.
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reaction proceeded smoothly under blue LED irradiation,
which showed negligible advancements during the light-free
stages. Radical trap experiments with TEMPO led to
contrasting results with respect to similar processes previously
investigated.3d,6,22 In particular, attempts to replace the
cobaloxime 3a with stoichiometric amounts of TEMPO failed
in promoting the photoredox condensation, and no overall
inhibition was observed when the radical trap was added to
optimal conditions.
Mechanistically, the schematic representation depicted in

Figure 2b is proposed. Irradiation with a blue LED (465 nm,
23 W) promotes the [Acr+-Mes ClO4

−] A into the
corresponding excited state [Acr+-Mes ClO4

−]* A*
(Ered[Acr•-Mes•+/Acr•-Mes] = +2.06 V vs SCE)11a that
could oxidize the olen 1a (Eox 1a/1a•+ = +2.00 V vs
SCE)23 via an SET process and deliver the aryl cation I and the
reduced form of the PC B.24 Therefore, the reoxidation of B by
[Co(III)(dmgH)2pyCl] (E1/2

red Co(III)/Co(II) = −0.67 V vs
SCE)25a would restore the [Acr+-Mes ClO4

−] A with the
concomitant reduction of the cobalt species. The radical cation
II could undergo anti-Markovnikov condensation with the
carboxylic acid26 releasing the α-carboxyl-benzyl radical III
upon deprotonation. Therefore, the in situ formed [Co(II)]
complex might trap the radical III to deliver a [Co(III)]−alkyl
intermediate that would rapidly evolve into the nal product 5
and the corresponding [Co(III)−H] via β-H elimination.27,28

It is worth mentioning that, as the β-H elimination of alkyl−
Co species is subjected to rigid stereochemical constraints (i.e.,
syn periplanar conformations are required),29 we can speculate
that the β-CH−OCO2R cannot arrange syn periplanar with
respect to the C−Co linkage, making the formation of the
enolester 5′ unlikely. Last, protonation of [Co(III)−H] would
restore the catalytically active [Co(III)] adduct via a hydrogen
evolution reaction (HER).30

Finally, a kinetic isotope eect (KIE) experiment was carried
out with deuterated phenyl-cyclohexene d3-1a (Figure 2c).31 In
the intermolecular competition experiment, a 1a/d3-1a 1:1
mixture was utilized under optimal conditions (32 h, yield =
21%). Interestingly, no isotopic eect was observed (5aa:d2-
5aa = 1:1), excluding the β-elimination from the rate-
determining step of the catalytic cycle.
In conclusion, in this study, we have documented an

unprecedented dual visible-light/cobalt catalyzed redox proto-
col for the preparation of cyclic and acyclic allylic carboxylates
via direct Csp3−H oxidation of styryl compounds with
carboxylic acids. The oxidant-free methodology showed
peculiar anti-Markovnikov regiochemistry. An intramolecular
variant was also realized, resulting in the direct preparation of
isocoumarin scaolds in up to 82% yield . Studies toward the
extension of the present methodology to the realization of
direct allylic C−H activation protocols are underway in our
laboratories.
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