SUPPORTING INFORMATION

A Multidisciplinary Study of Chemico-physical Properties of Different Classes of 2-Aryl-5(or 6)-nitrobenzimidazoles: NMR, Electrochemical Behaviour, ESR, and DFT

Calculations

El Mostapha Rakib^a, Carla Boga^b, Matteo Calvaresi^c, Mohamed Chigr^a, Paola Franchi^c, Isacco Gualandi^b, Aziz Ihammi^a, Marco Lucarini^c, Gabriele Micheletti^{b,*}, Domenico Spinelli^{c,*}, Domenica Tonelli^b

^a.Laboratory of Organic and Analytic Chemistry, Faculty of Sciences and Technics, Sultan Moulay Slimane University, BP 523, 2300 Beni-Mellal, Morocco

^bDepartment of Industrial Chemistry 'Toso Montanari' Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, Bologna, 40136, Italy

^cDepartment of Chemistry 'G. Ciamician' Alma Mater Studiorum, Università di Bologna, Via Selmi 2, Bologna, 40126, Italy

Correspondence to: domenico.spinelli@unibo.it; gabriele.micheletti3@unibo.it

Content	Page
Experimental part. Synthesis of compounds 1a-f, 2a-f, and 3a-f and related data	s3
Table S1. ¹ H NMR data (chemical shifts δ in ppm, J in Hz) of 1a - f recorded	
in DMSO-d ₆ at +102 °C.	S6
Table S2. ¹ H NMR data for 1-methyl-5-nitrobenzimidazoles 2a-f in	
DMSO-d ₆ at 25 °C	S 7
Table S3. ¹ H NMR data (chemical shifts δ in ppm, J in Hz) for	

1-methyl-6-nitrobenzimidazoles 3a–f in DMSO-d ₆ at 25 °C.	S8
Table S4. ¹³ C NMR data (chemical shifts δ in ppm) for	
NH-nitrobenzimidazoles 1a–f in DMSO-d ₆ at 102 °C.	S9
Table S5 . ¹³ C NMR data (chemical shifts δ in ppm) for	
1-methyl-5-nitrobenzimidazoles $2a-f$ in DMSO-d ₆ at 25 °C.	S10
Table S6. ¹³ C NMR data (chemical shifts δ in ppm) for	
1-methyl-6-nitrobenzimidazoles $3a-f$ in DMSO-d ₆ at 25 °C.	S11
Table S7. ¹ H NMR data (600 MHz, δ in ppm, J in Hz) of compounds	
2a – f and 3a – f recorded in acetone-d ₆ at 25 °C.	S12
Table S8. ¹³ C chemical shift values for mono substituted benzenes	S15
Table S9. Electrochemical properties of nitrobenzimidazoles 2 and 3.	S16
Figure S1. $\Delta\delta$ of C ₁ , <i>versus</i> the Hammett constants for series 1 .	S17
Figure S2. $\Delta\delta$ of C ₁ , <i>versus</i> the Hammett constants for series 2 .	S17
Figure S3. $\Delta\delta$ of C ₁ , <i>versus</i> the Hammett constants for series 3.	S18
Figure S4. $\Delta\delta$ of C ₂ versus the Hammett constants for series 1 .	S18
Figure S5. $\Delta\delta$ of C ₂ versus the Hammett constants for series 2 .	S19
Figure S6. $\Delta\delta$ of C ₂ versus the Hammett constants for series 2 .	S19
Figure S7. $\Delta\delta$ C1 for monosubstituted benzenes <i>versus</i> $\Delta\delta$ C4' for 1c–f.	S20
Figure S8. ESR spectrum of the radical species electrogenerated from 2f in	
0.1 M Bu ₄ NClO ₄ -ACN. The corresponding theoretical simulation is reported.	S20
Figure S9. Plot of $a_N vs. \sigma$ substituent constants for compounds 2.	S21
Figures S10-S87. Copies of ¹ H-, ¹³ C-, HSQC, HMBC NMR spectra for 1a-f,	
2a–f , and 3a–f .	S22–S99
Figure S88-S105. Copy of cyclic voltammogram of 1a–f, 2a–f, and 3a–f.	S100-S108
References	S109

1. Synthesis of 5(6)-Nitrobenzimidazole derivative 1a-f. General procedure

Scheme 1. Synthetic pathway to obtain compounds 1a-f.

The synthetic approach is shown in Scheme 1. *General procedure*: 4-Nitrophenylene diamine (1 mmol) and substituted aromatic aldehydes (1.01 mmol) were refluxed in 15 ml of DMSO in a round bottom flask (100 mL). Sodium metabisulfite ($Na_2S_2O_5$) (1 mmol) was added to the stirring solutions. The reaction mixture was heated until the reaction completion and the progress was checked by TLC. When the reactions were completed the reaction mixtures were cooled to room temperature. Addition of water (30 mL) resulted in the precipitation of crude solid residues. The crude mixtures were chromatographed on silica gel columns to afford the 5(6)-nitrobenzimidazole derivatives (**1a–f**) in high yields. NMR data are reported in main text and Tables S1 and S4 of this section, other data are reported below.

1.1. 5(6)-Nitro-2-phenyl-1H-benzo[d]imidazole (1a)

Yield: 76 %. Mp: 214–216°C Lit. (Lopez-Alvarado et al., 1995): 213-215 °C. MS: m/z (%): 239 (M⁺, 100), 209 (38), 166 (19). Anal. Calcd for C₁₃H₉N₃O₂: C, 65.27; H, 3.79, N, 17.56; Found: C, 64.97, H, 3.77, N, 17.55.

1.2. 2-(3-Bromophenyl)-5(6)-nitro-1H-benzimidazole (1b)

Yield: 80%. Mp: 240–242 °C. MS: m/z (%), 317 (M⁺, 100), 289 (29), 192 (21). Anal. Calcd for C₁₃H₈BrN₃O₂: C, 49.08; H, 2.53, N, 13.21; Found: C, 49.01, H, 2.51, N, 13.22.

1.3. 2-(4-Fluorophenyl)-5(6)-nitro-1H-benzo[d]imidazole (1c)

Yield: 81%. Mp: 259–261 °C. Lit. (Shi et al., 2014): 258-260 °C. MS: m/z (%), 257 (M⁺, 100), 211 (57), 184 (34). Anal. Calcd for C₁₃H₈FN₃O₂: C, 60.70; H, 3.13, N, 16.34; Found: C, 60.60, H, 3.14, N, 16.32.

1.4. 2-(4-Chlorophenyl)-5(6)-nitro-1H-benzo[d]imidazole (1d)

Yield: 85%) Mp: 308–310 °C. Lit. (Shi et al., 2014): 301–303 °C; MS: m/z (%), 273 (M⁺, 100), 227 (70), 200 (33). Anal. Calcd for C₁₃H₈ClN₃O₂: C, 57.05; H, 2.95, N, 15.35; Found: C, 57.08, H, 2.92, N, 15.36.

1.5. N,N-Dimethyl-4-[(5)6-nitro-1H-benzo[d]imidazol-2-yl]aniline (1e)

Yield: 82%. Mp: 216–218 °C. Lit. (Leandri et al., 1955): 220 °C; MS: m/z (%), 282 (M⁺, 100), 236 (73). Anal. Calcd for C₁₅H₁₄N₄O₂: C, 63.82; H, 5.00, N, 19.85; Found: C, 64.01, H, 4.97, N, 19.86.

1.6. 5(6)-Nitro-2-(4-nitrophenyl)-1H-benzo[d]imidazole (1f)

Yield: (80%). Mp: 340–342 °C. Lit. (Feitelson et al., 1952): 340 °C; Anal. Calcd for C₁₃H₈N₄O₄: C, 54.93; H, 2.84, N, 19.71; Found: C, 53.98, H, 2.82, N, 19.72.

2. Synthesis of compounds **2a**–**f** and **3a**–**f** by alkylation of 5(6)-nitrobenzimidazole derivatives. General procedure

Scheme 2. Synthetic pathway to obtain compounds 2a-f and 3a-f.

The synthetic approach is shown in Scheme 2. *General procedure:* 5(6)-Nitrobenzimidazole (1a–f, 1 g) was dissolved in 15 mL of pure acetone. Potassium hydroxide (3.3 equivalents) was added and the mixture was stirred for 15 minutes at room temperature. Then 2.2 equivalents of iodomethane were added and the mixture was kept under stirring until the reaction was complete. The reaction mixture was filtered and then the solvent was evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluent: ethyl acetate/hexane 1/9). Yields of known compounds are reported below in parentheses and the related physicochemical data agree with those reported, often partially, in the literature. 1-Methyl-5-nitro-2-phenyl-1H-benzimidazole (2a) (Sagitullina et al., 2014) and 1-methyl-6-nitro-2-phenyl-1H-benzimidazole

(3a) (Reddy and Rao, 1970) (43% and 47%); 1-methyl-2-(4-chlorophenyl)-5-nitro-1Hbenzimidazole (2d) (Evans et al., 1996) and 1-methyl-2-(4-chlorophenyl)-6-nitro-1Hbenzimidazole (3d) (45% and 46%); N,N-dimethyl-4-(1-methyl-5-nitro-1H-benzimidazol-2-yl)aniline (2e) (Leandri et al., 1955) and N,N-dimethyl-4-(1-methyl-6-nitro-1H-benzimidazol-2-yl)aniline (3e) (Leandri et al., 1955) (44% and 47%); 1-methyl-5-nitro-2-(4-nitrophenyl)-1Hbenzimidazole (2f) (Hui et al., 2019) and 1-methyl-6-nitro-2-(4-nitrophenyl)-1H-benzimidazole (3f) (Hui et al., 2019) (45% and 45%). NMR data for unknown compounds are reported in the main text (results and discussion) and in Tables S2, S3, S5, S6, and S7 of this section, other data are reported below.

2.1. 1-Methyl-2-(3-bromophenyl)-5-nitro-1H-benzimidazole (2b)

Yield: (45%). Mp: 182–184 °C. Lit. (Feitelson et al., 1952): 181–183 °C; MS: m/z (%), 331 (M⁺, 100), Anal. Calcd for C₁₄H₁₀BrN₃O₂: C, 50.62; H, 3.03, N, 12.65; Found: C, 50.45, H, 3.12, N, 12.93.

2.2. 1-Methyl-2-(3-bromophenyl)-6-nitro-1H-benzimidazole (3b)

Yield: (45 %). Mp: 228–230 °C. Lit. (Feitelson et al., 1952): 231–232 °C; MS: m/z (%), 331 (M⁺, 100), Anal. Calcd for C₁₄H₁₀BrN₃O_{2:} C, 50.62; H, 3.03, N, 12.65; Found: C, 50.51, H, 3.09, N, 12.88.

2.3. 2-(4-Fluorophenyl)-1-methyl -5-nitro-1H-benzimidazole (2c)

Yield: (45 %). Mp: 208–210 °C. Lit. (Feitelson et al., 1952): 205–207 °C; MS: m/z (%), 271.08 (M⁺, 100), Anal. Calcd for C₁₄H₁₀FN₃O₂: C, 61.99, H, 3.72, N, 15.49; Found: C, 61.79, H, 3.69, N, 15.46.

2.4. 2-(4-Fluorophenyl)-1-methyl -6-nitro-1H-benzimidazole (3c)

Yield: (44 %). Mp: 171–173 °C. Lit. (Feitelson et al., 1952): 174–176 °C; MS: m/z (%), 271.08 (M⁺, 100), Anal. Calcd for C₁₄H₁₀FN₃O₂: C, 61.99, H, 3.72, N, 15.49; Found: C, 61.85, H, 3.73, N, 15.51.

2.5. 1-Methyl-2-(4-chlorophenyl)-6-nitro-1H-benzimidazole (3d)

Yield: (46 %). Mp: 226–228 °C. Lit. (Feitelson et al., 1952): 225–227 °C; MS: m/z (%), 287.05 (M⁺, 100), Anal. Calcd for C₁₄H₁₀ClN₃O_{2:} C, 58.45, H, 3.50, N, 14.61; Found: C, 58.91, H, 3.75, N, 14.45.

Compound	H-4	Н-5	H-7	Н-2'/Н-6'	H-3'/H-5'	
1a	7.72	8.09	8.43	8.20	7.60-7,52	
	d, <i>J</i> =8.8, 1H	dd, J = 8.8, 2.1, 1H	d, <i>J</i> = 2.1, 1H	dd, J ₁ =8.2 Hz, J ₂ =2.0 Hz, 2H	m, 2H	
1b	7.73	8.10	8.43	H-2' 8.36 dt, <i>J</i> = 1.5, 0.3,	H-5' 7.53	
	d, <i>J</i> = 8.9, 1H	dd, <i>J</i> = 8.9, 2.2, 1H	br.s, 1H	1H; H-6' 8.18 dm, <i>J</i> = 7.9, 1H	t, J=7.9, 1H	ddd, .
1c	7.72	8.09	8.42	8.24	7.38	
	d, <i>J</i> = 8.9, 1H	dd, J = 8.9, 2.3, 1H	d, <i>J</i> = 2.3, 1H	dd, $J = 9.0, J_{\text{F-H}} = 5.6, 2\text{H}$	t, $J = 9.0, J_{F-H} = 9.0,$ 2H	
1d	7.73	8.10	8.44	8.20	7.63	
	d, J = 8.8, 1H	dd, J = 8.8, 1.9, 1H	d, <i>J</i> = 2.3, 1H	dd, <i>J</i> ₁ =8.5 Hz, 2H	d, <i>J</i> = 8.5, 2H	
1e	7.63	8.07	8.34	8.04	6.86	
	d, J = 8.5, 1H	dd, J = 8.5, 2.2, 1H	br.s, 1H	d, <i>J</i> = 8.8, 2H	d, <i>J</i> = 8.8, 2H	
1f	7.79	8.13	8.48	8.38	8.42	
	d, J = 8.9, 1H	dd, <i>J</i> = 8.9, 2.2, 1H	d, <i>J</i> = 2.2, 1H	d, <i>J</i> = 9.1, 2H	d, <i>J</i> = 9.1, 2H	

Table S1. ¹H NMR data of 1a–f recorded in DMSO-d₆ at +102 $^{\circ}$ C.^a

^a Chemical shifts δ in ppm, J in Hz.

S6

Compound (aryl group)	H-4	Н-5	H-7	Н-2'/Н-6'	Н-3'/Н-5'	Н-4'	NCH3	N(CH3)2
2a (C ₆ H ₅)	7.85	8.20	8.55	7.91-7.87	7.64-7.58	7.64-7.58	3.95	
	d, <i>J</i> =9.0, 1H	dd, J ₁ =9.0, J ₂ =2.1, 1H	d, <i>J</i> =2.1, 1H	m, 2H	m, 2H	m, 1H	s, 3H	
2b (3-Br-C ₆ H ₄)	7.86	8.20	8.54	H-2' 8.06 t, <i>J</i> =1.8,	7.56	7.81	3.95	
	d, <i>J</i> =9.0, 1H	dd, J ₁ =9.0, J ₂ =2.3, 1H	d, <i>J</i> =2.3, 1H	1H H-6' $7.90 \text{ dt}, J_1=7,8, J_2=1.2, 1H$	t, <i>J</i> =7.8, 1H	ddd, $J_1=8.0$, $J_2=1.9$, $J_3=0.8$, 1H	s, 3H	
2c (4-F-C ₆ H ₄)	7.88	8.22	8.56	7.97	7.46		3.95 s,	
	d, <i>J</i> = 8.8, 1H	dd, J_1 =8.8, J_2 =2.0 Hz, 1H	d, <i>J</i> = 2.0, 1H	dd, $J_{\text{H-H}}=8.5$, $J_{\text{H-}}=5.2$, 1H	t, $J_{\text{H-H,H-}}$ _F =8.7, 1H		311	
2d (4-Cl-C ₆ H ₄)	7.86	8.21	8.55	7.92	7.67		3.95	
	d, <i>J</i> =8.9, 1H	dd, J ₁ =8.9, J ₂ =1.9, 1H	d, <i>J</i> =1.9, 1H	d, <i>J</i> =8.5, 2H	d, <i>J</i> =8.5, 2H		s, 3H	
2e (4-(NMe ₂)-C ₆ H ₄)	7.79	8.16	8.48	7.76	6.87		3.95	3.02
	d, <i>J</i> =8.8, 1H	dd, J ₁ =8.8, J ₂ =2.0, 1H	d, <i>J</i> =2.0, 1H	d, <i>J</i> =9.0, 2H	d, <i>J</i> =9.0, 2H		s, 3H	s, 6H
$2f(4-NO_2-C_6H_4)$	7.94	8.26	8.62	8.20	8.43		4.01 s,	
	d, <i>J</i> = 9.1, 1H	dd, <i>J</i> ₁ =9.1, <i>J</i> ₂ =2.0, 1H	d, <i>J</i> = 2.0, 1H	d, <i>J</i> = 8.6, 1H	d, <i>J</i> = 8.6, 2H		3H	

Table S2. ¹H NMR data for 1-methyl-5-nitrobenzimidazoles **2a–f** in DMSO-d₆ at 25 °C.^a

^a Chemical shifts δ in ppm, J in Hz.

	H-4	Н-5	H-7	H-2'/H-6'	H-3'/H-5'	Н-4'	NCH3	N(CH3)2
group)								
3a (C ₆ H ₅)	7.85	8.15	8.66	7.93-7.89	7.63-7.60	7.63-7.60	4.00	
	d, <i>J</i> =8.8, 1H	dd, $J_1=8.8$, $J_2=2.1$, 1H	d, <i>J</i> =2.1, 1H	m, 2H	m, 2H	m, 1H	s, 3H	
3b (3-Br-C ₆ H ₄)	7.84	8.13	8.65	H-2' 8.07 br.s, 1H	H-5' 7.56	7.81	4.00	
	d, <i>J</i> =9.0, 1H	br.d, <i>J</i> =9.0, 1H	br.s, 1H	H-6' 7.91 d, J=7.5, 1H	t, <i>J</i> =8.0, 1H	br.d. <i>J</i> =8.3, 1H	s, 3H	
3c (4-F-C ₆ H ₄)	7.85	8.15	8.67	7.98	7.46		4.00	
	d, <i>J</i> = 8.7, 1H	dd, $J_1=8.7, J_2=2.0,$ 1H	d, <i>J</i> = 2.0, 1H	dd, $J_{\text{H-H}}$ =8.7, $J_{\text{H-F}}$ =5.6, 1H	t, J _{H-H,H-F} =8.7, 1H		s, 3H	
3d (4-Cl-C ₆ H ₄)	7.83	8.13	8.64	7.92	7.66		3.99	
	d, <i>J</i> =8.9, 1H	dd, $J_1=8.9$, $J_2=1.9$, 1H	d, <i>J</i> =1.9, 1H	d, <i>J</i> =8.6, 2H	d, <i>J</i> =8.6, 2H		s, 3H	
3e (4-(NMe ₂)-C ₆ H ₄)	7.76	8.12	8.58	7.80	6.87		4.00	3.03
	d, <i>J</i> =8.8, 1H	dd, $J_1=8.8$, $J_2=2.1$, 1H	d, <i>J</i> =2.1, 1H	d, <i>J</i> =8.9, 2H	d, <i>J</i> =8.9, 2H		s, 3H	s, 6H
3f (4-NO ₂ -C ₆ H ₄)	7.92	8.18	8.75	8.21	8.42		4.06	
	d, <i>J</i> = 8.8, 1H	dd, J ₁ =8.8, J ₂ =1.9, 1H	d, <i>J</i> = 1.9, 1H	d, <i>J</i> = 8.5, 1H	d, <i>J</i> = 8.5, 2H		s, 3H	

Table S3. ¹H NMR data (chemical shifts δ in ppm, J in Hz) for 1-methyl-6-nitrobenzimidazoles **3a–f** in DMSO-d₆ at 25 °C.^a

^{a.} Chemical shifts δ in ppm, J in Hz.

Compound	C-2	C-4	C-5	C-6	C-7	C-3a	C-7a	C-1'	C-2'/C-6'	C-3'/C-5'	C-4'
1a	155.6	114.3 (br)	117.5	142.7	111.6	142.7 (br)	139.2 (br)	129.0	126.8	130.5	128.7
1b	153.8	114.2	117.5	142.8	111.4	b	Ь	131.0	129.1 ($C_{2'}$) (+2.3)	121.9 (C _{3'})	133.0
	(-1.8)	(br)"	(0.0)	(+0.1)	(br)"			(+2.0)	126.6 (C ₆ .) (-0.2)	130.8 (C _{5'})	(+4.3)
1c	154.6	114.1	117.5	143.1	112.2	142.6	139.1	125.4	129.1	115.7	163.9
	(-1.0)	br.s	(0.0)	br.s	br.s	(br)	(br)	(d, <i>J</i> = 3.3 Hz)	(d, J = 9.0 Hz)	<i>J</i> _{C-F} = 22.2 Нz	(d, J = 249.3 Hz)
1d	154.4	114.2	117.6	142.7	111.4	142.5	139.0	127.7	128.8	128.3	135.3
	(-1.2)	v. br.	(+0.4)	(0.0)	(v. br.)	(br.)	(br.)	(-1.3)	(+2.0)	(-2.2)	(+6.6)
1e ^c	156.6	113.4	116.7	141.0	110.0	144.4	139.1	115.7	127.8	114.4	151.7
	(+0.1)	(v. br.)	(-0.8)		(v. br.)	(v. br.)	(v. br.)	(-13.3)	(+1.0)	(-16.1)	(+23.0)
1f	153.0	114.6 ^d	117.8	143.1	112.0 ^d	142.7	139.1	134.4	123.5	127.6	148.3
	(-2.6)	(br)	(+0.3)	(+0.4)	(br)	(br)	(br)	(+5.4)	(-3.3)	(-2.9)	(+19.6)

Table S4. ¹³C NMR data (chemical shifts δ in ppm) for NH-nitrobenzimidazoles **1a–f** in DMSO-d₆ at 102 °C.

a. Tentatively assigned. ^{b.} Not detected due to high signal broadening. ^{c.} δ_{NCH3}: 39.1 ppm. ^{d.} Interchangeable

$\begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	C-2	C-4	C-5	C-6	C-7	C-3a	C-7a	C1'	C-2'/C-6'	C-3'/C-5'	C-4'	NCH ₃
2a (C ₆ H ₅)	157.0	111.2	117.9	142.9	115.9	140.9	141.5	129.1	129.4	130.4	128.8	32.3
2b (3-Br-C ₆ H ₄)	155.3 (-1.7)	111.4 (+0.2)	118.4 (+0.5)	143.0 (+0.1)	115.2 (-0.7)	140.8 (+0.1)	141.3 (-0.2)	131.3 (2.2)	C-2':131.8 (+2,4) C-6':128.4 (-0.1)	C-3':121.9 (-8.5) C-5':130.8 (+0.4)	133.2 (+4.4)	32.3 (0.0)
2c (4-F-C ₆ H ₄)	156.1 (-0.9)	111.3 (+0.1)	117.9 (0.0)	142.9 (0.0)	115.9 (0.0)	140.9 (0.0)	141.4 (-0.1)	125.6 (d, $J_{C-F}= 3.1$ Hz) (-3.5)	131.9 (d, $J_{C-F} = 8.7$ Hz) (+2.5)	$115.9 (d, J_{C-F} = 14.5 Hz) (-15.3)$	163.3 (d, $J_{C-F} =$ 248.5 Hz) (+34,5)	32.3 (0.0)
2d (4-Cl-C ₆ H ₄)	155.9 (-1.1)	111.4 (+0.2)	118.0 (+0.1)	143.0 (+0.1)	115.1 (-0.8)	140.9 (0.0)	141.4 (-0.1)	127.9 (-1.2)	131.2 (+1.8)	128.9 (-1.5)	135.4 (+6.6)	32.3 (0.0)
$ 2e (4-(NMe_2)-C_6H_4)^a $	157.8 (+0.8)	110.6 (-0.6)	117.3 (-0.6)	142.6 (-0.3)	114.2 (-1.7)	141.8 (+0.8)	141.3 (-0.2)	115.5 (-13.6)	130.4 (+1.0)	111.6 (-18.8)	151.4 (+22.6)	32.5 (+0.2)
2f (4-NO ₂ -C ₆ H ₄)	154.8 (-2.2)	111.7 (+0.5)	118.5 (+0.6)	143.2 (+0.3)	115.6 (-0.3)	141.1 (+0.2)	141.4 (-0.1)	135.1 (+6.0)	128.8 (-0.6)	130.9 (+0.5)	148.3 (+19.5)	35.2 (2.9)

Table S5. ¹³C NMR data (chemical shifts δ in ppm) for 1-methyl-5-nitrobenzimidazoles **2a–f** in DMSO-d₆ at 25 °C.

 $^{a}\delta_{\rm NMe2} = 39.7$ ppm.

$\begin{array}{c} \overbrace{O_2N} & \overbrace{N} & \overbrace{N} & Ar \\ \hline \\ Compound (aryl group) \end{array}$	C-2	C-4	C-5	C-6	C-7	C-3a	C-7a	C-1'	C-2'/C-6'	C-3'/C-5'	C-4'	NCH ₃
3a (C ₆ H ₅)	158.0	119.2	117.6	146.9	107.9	142.6	136.0	129.0	128.8 (+3.8)	130.5	129.5	32.3
3b (3-Br-C ₆ H ₄)	156.3 (-1.7)	119.3 (+0.1)	117.7 (+0.1)	146.7 (-0.2)	108.0 (+0.1)	142.8 (+0.2)	135.9 (-0.1)	121.9 (-7.1)	C-2':131.9 (+3.1) C-6':128.4 (-0.4)	C-3':131.5 (+1.0) C-5':130.9 (+0.4)	133.3	32.3 (0.0)
3c (4-F-C ₆ H ₄)	157.1 (-0.9)	119.2 (0.0)	117.7 (+0.1)	146.8 (-0.1)	107.9 (0.0)	142.6 (0.0)	136.0 (0.0)	125.6 (d, J = 2.7 Hz) (-3.4)	132.0 (d, J = 8.8 Hz) (+3.2)	115.9 (d, J) = 21.5 Hz (-14.6)	163.3 (d, J = 249.0 Hz) (+33.8)	32.3 (0.0)
3d (4-Cl-C ₆ H ₄)	156.8 (-1.2)	119.2 (0.0)	117.7 (+0.1)	146.9 (0.0)	107.9 (0.0)	142.7 (+0.1)	136.0 (0.0)	127.1 (-1.9)	131.2 (+2.4)	128.9 (-1.6)	135.5 (+6.0)	32.3 (0.0)
$3e (4-(NMe_2)-C_6H_4)^a$	158.9 (+0.9)	118.2 (-1.0)	117.5 (-0.1)	147.5 (+0.6)	107.2 (-0.7)	141.9 (-0.7)	136.2 (+0.2)	115.4 (-13.6)	130.5 (+1.7)	111.5 (-19.0)	151.7 (+22.2)	32.5 (+0.2)
3f (4-NO ₂ -C ₆ H ₄)	155.8 (-2.2)	119.7 (+0.5)	117.9 (+0.3)	146.6 (-0.3)	108.3 (+0.4)	143.1 (+0.5)	136.2 (+0.2)	135.1 (+6.1)	123.8 (-5.0)	130.9 (+0.4)	148.4 (+18.9)	32.5 (+0.2)

Table S6. ¹³ C NMR data	(chemical shifts δ in ppm) for 1-me	thyl-6-nitrobenzimidazoles 3a	–f in DMSO- d_6 at 25 °C.
------------------------------------	--	-------------------------------	------------------------------------

^{*a*} $\delta_{NMe2} = 39.7$ ppm.

Table S7. ¹H NMR data (600 MHz, δ in ppm, J in Hz) of compounds **2a–f** and **3a–f** recorded in acetone-d₆ at 25 °C.

Prodotti	¹ H NMR
	600 MHz Acetone-d ₆ , 25 °C
	8.56 (d, $J=2.1$ Hz, 1H, H ₇)
	$8.20 (dd, J_1=8.8 Hz, J_2=2.1 Hz, 1H, H_5)$
a	$7.96 (d, J=4.4 Hz, 1H, H_2, 0 H_{6'})$
	7.95 (d, $J=2.3$ Hz, 1H, H ₂ , o H ₆)
	7.84 (d, $J=8.8$ Hz, 1H, H4)
	7.64 (d, $J=1.4$ Hz, 1H, H ₃ , o H ₄ , o H ₅)
	7.63 (d, $J=2.1$ Hz, 1H, H ₃ ' o H ₄ ' o H ₅ ')
	4.13 (S, 3H, NCH ₃)
	600 MHz Acetone- a_6 , 25 °C
O ₂ N N	$8.5/(d, J=2.0 \text{ Hz}, 1\text{ H}, \text{H}_7)$
	8.25 (dd, $J_1=8.8$ HZ, $J_2=2.0$ HZ, 1H, H ₅)
а	7.94 (d, $J=4.4$ HZ, 1H, H ₂ , 0 H ₆)
	$7.95 (d, J-2.0 \Pi Z, \Pi, \Pi_2, 0 \Pi_6)$
	7.00 (0, J=0.0 Hz, 1 H, 14) 7.62 (d, J=1.8 Hz, 1 H, 14, 0 Hz, 0 Hz)
	7.03 (d, J=1.0 Hz, 1H, Hz, 0 Hz, 0 Hz)
	7.02 (d, $J=2.0$ Hz, 111, 113, 0 H4, 0 H5) 4.07 (s. 3H NCH ₂)
	$\frac{600 \text{ MHz A cetope } d_{c} 25 ^{\circ}\text{C}}{600 \text{ MHz A cetope } d_{c} 25 ^{\circ}\text{C}}$
	000 MHZ Accione- u_6 , 25 °C
O ₂ N N	856(A = 21 Hz 1H Hz)
Λ.	8.50 (d, J = 8.8 Hz, h=2.0 Hz, 1H, Hz)
_	7.99 (d I = 8.5 Hz 2H Hz)
d	7.59 (d, $J=8.8$ Hz 1H H ₄)
	$7.67 (d, J=8.5 Hz, 2H, H_2)$
	$4 14 (s 3H NCH_2)$
/	600 MHz Acetone-d ₆ , 25 °C
	8.57 (d, $J=2.1$ Hz, 1H, H ₇)
$O_2N^ \sim$ N \longrightarrow	$8.26 (dd, J_1 = 8.8 Hz, J_2 = 2.1 Hz, 1H, H_5)$
d d	······································

	$707(4 - 1-95)$ $H_{2}(2)$ $H_{1}(4)$
	7.97 (u, $J=0.5$ Hz, $2H$, H_2^{-7})
	/.81 (d, $J=8.8$ Hz, 1H, H ₄)
	$7,67 (d, J=8.5 Hz, 2H, H_{3'})$
	4.08 (s, 3H, NCH ₃)
	600 MHz Acetone-d ₆ , 25 °C
	8.58 (d. J=2.0 Hz. 1H. Hz)
h Br	8 21 (dd L = 8 8 Hz L = 20 Hz 1H Hz)
	8 13 (t L=1.7 Hz 11 Hz)
b	7.07 (d = 7.6 Hz + 1H Hc)
	7.57 (0, 5-7.0 Hz, 111, 116)
	7.85 (d, $J=8.8$ Hz, 1H, H4)
	/.81 (d, $J=/.9$ Hz, 1H, H ₄ ,)
	$7.60 (t, J=7.9 Hz, 1H H_{5'})$
	4.15 (s, 3H, NCH ₃)
	600 MHz Acetone-d ₆ , 25 °C
	8.58 (d, $J=2.0$ Hz, 1H, H ₇)
	8.27 (dd. $J_1=8.8$ Hz. $J_2=2.0$ Hz. 1H. H ₅)
Br 1-	8 12 (t I = 17 Hz 1H Hz)
D	$7.95 (d = 7.7 Hz + 1H + H_c)$
	7,92 (4, $J=7.7$ 112, 111, 116)
	7.02 (u, $J=0.0$ fZ, ff, f4)
	7.81 (d, J=7.8 HZ, 1H, H4)
	7.60 (t, $J=7.7$ Hz, 1H H ₅)
•	4.09 (s, 3H, NCH ₃)
	600 MHz Acetone-d ₆ , 25 °C
$O_2N^* $ V_1 V_2 V_1	$8.58 (d, J=2.1 Hz, 1H, H_7)$
e	8.12 (dd, J_1 =8.8 Hz, J_2 =2.1 Hz, 1H, H ₅)
e	$7.80 (d. J=8.9 Hz, 2H, H_{2})$
	$7.76 (d I = 8.8 Hz 1 H H_4)$
	6.87 (d, J=8.0 Hz, 2H, Hz)
	4.00 (a, 211 NCH)
	4.00(8, 50, 100, 100)
	3.03 (s, 6H, N(CH ₃) ₂)
/	600 MHz Acotona d. 25 °C
	$\delta.4\delta$ (a, $J=2.0$ HZ, 1H, H ₇)
- -	8.16 (dd, J_1 =8.8 Hz, J_2 =2.0 Hz, 1H, H ₅)
Č L	$7.79 (d, J=8.8 Hz, 1H, H_4)$

	$7.76 (d_{J}=9.0 Hz 2H_{Hy})$
	6.87 (d I=9.0 Hz 2H Hz)
	(0.07 (0.37, 0.112, 211, 113))
	5.95 (S, 5H, NCH ₃)
	3.02 (s, 6H, N(CH ₃) ₂)
	600 MHz Acetone-d ₆ , 25 °C
	8.75 (d, $J = 1.9$ HZ, 1H, H ₇)
	8.42 (d, $J=8.5$ Hz, 2H, H ₃)
f	$8.21 (d, J= 8.5 Hz, 1H, H_{2'})$
±	8.18 (dd, <i>J1</i> =8.8 Hz <i>J2</i> =1.9 Hz, 1H, H ₅)
	$7.92 (d, J = 8.8 Hz, 1H, H_4)$
	4.06 (s, 3H, NCH ₃)
/	600 MHz Acetone-d ₆ , 25 °C
	$8.62 (d_1 = 2.0 Hz 1H_1 Hz)$
O_2N	8.43 (d = 8.6 Hz, 2H Hz)
f	8.45 (4, 5, 6.0112, 211, 113) 8.26 (44, 11-0.1 Hz, 12-2.0 Hz, 111 Hz)
	0.20 (dd, J = 9.1 Hz J = 2.0 Hz, HI, HS)
	$8.20 (0, J - 8.0 \text{ HZ}, 1 \text{ H}, \text{H}_2)$
	(0, J = 9.1 HZ, 1H, H4)
	4.01 (s, 3H, NCH ₃)
	600 MHz Acetone-d ₆ , 25 °C
	8.56 (br.s, 1H, H ₇)
с	8.20 (d, <i>J</i> =9.0 Hz, 1H, H ₅)
	$8.03 (dd, J_{H-H}=8.0, Hz J_{H-F}=5.3 Hz, 1H, H_{2'})$
	7.83 (d, <i>J</i> =9.0 Hz, 1H, H ₄)
	7.41 (t, $J_{\text{H-H,H-F}}$ =8.7 Hz, 1H, H ₃)
	4.13 (s, 3H, NCH ₃)
	600 MHz Acetone-d ₆ , 25 °C
	8.57 (d. $J = 2.1$ Hz. 1H. Hz)
$O_2N^2 \sim N$	8.25 (dd L = 8.8 Hz L = 2.1 Hz 1H Hz)
с	$8 01 (dd L_{HH} = 8 8 Hz L_{H} = 5 3 Hz 1H H_{2})$
	$7 \ \text{O} (A = 8 \ \text{H}^2 \ \text{H}^2 \ \text{H} \ \text{H})$
	7.00 (u, J) = 0.0112, 111, 114 J 7 A1 (+ J) = -9 9 Hz 1 H H)
	$(1.41 (t, J_{\text{H-H,H-F}} - 0.0 \Pi Z, 1\Pi, \Pi_{3'})$
	(4.0) (S, 5H, NCH ₃)

	C ₁	C ₂	C ₃	C 4
Н	128.5	128.5	128.5	128.5
F	163.6	114.2	129.4	124.0
	(+35.1)	(-14.3)	(+0.9)	(-4.5)
Cl	134.9	128.7	129.5	126.5
	(+6.4)	(+0.2)	(+1.0)	(-2.0)
Br	123.1	131.9	126.3	127.5
	(-5.4)	(+3.4)	(-2.2)	(-1.0)
NMe ₂	150.9	112.8	129.3	116.7
	(+22.4)	(-15.7)	(+0.8)	(-11.8)
NO ₂	148.1	123.2	129.4	134.5
	(+19.6)	(-5.3)	(+0.9)	(+6.0)

Table S8. ¹³C chemical shift values^a for mono substituted benzenes.^b

^{a.} Chemical shifts in ppm with respect to TMS. ^bIn brackets the difference with respect to benzene.

Series 2	E_1^{0} , (V)	$E_2^{0, (V)}$
2a	-1.616	
2b	-1.589	
2c	-1.603	
2d	-1.614	
2e	-1.639	
2f	-1.353*	-1,641*
Series	E_1^{0} , (V)	Ci vuole E?
3 ^{02N}		
3 a	-1.572	
3b	-1.555	
3c	-1.547	
3d	-1.555	
3 e	-1.584	
3f	-1.351*	-1.534*

Table S9. Electrochemical properties of nitrobenzimidazoles 2 and 3.

1 and 2 subscripts indicate the first and second reduction processes. E^{0*} indicates the formal potential.*refers to the reduction of the nitro group on the benzimidazole moiety.

Figure S1. $\Delta\delta$ of C_1 , versus the Hammett constants for series 1.

Figure S2. $\Delta\delta$ of C_1 , versus the Hammett constants for series 2.

Figure S3. $\Delta\delta$ of C₁, versus the Hammett constants for series 3.

Figure S4. $\Delta\delta$ of C₂ versus the Hammett constants for series 1.

Figure S5. $\Delta\delta$ of C₂ versus the Hammett constants for series 2.

Figure S6. $\Delta\delta$ of C₂ versus the Hammett constants for series 3.

1f.

Figure S9. Plot of $a_N vs. \sigma$ substituent constants for compounds **2**. ($r^2 = 0.943$, $\rho = -0.19$).

Figure S10. ¹H NMR spectrum of compound 2a in DMSO-d₆ at 25 °C.

Figure S11. ¹³C NMR spectrum of compound **2a** in DMSO-d₆ at 25 °C.

Figure S12. HSQC spectrum of compound 2a in DMSO-d₆ at 25 °C.

Figure S13. HMBC spectrum of compound 2a in DMSO-d₆ at 25 °C.

Figure S14. ¹H NMR spectrum of compound 2b in DMSO-d₆ at 25 °C.

Figure S15. ¹³C NMR spectrum of compound **2b** in DMSO-d₆ at 25 °C.

Figure S16. HSQC spectrum of compound 2b in DMSO-d₆ at 25 °C.

Figure S17. HMBC spectrum of compound 2b in DMSO-d₆ at 25 °C.

Figure S18. ¹H NMR spectrum of compound 2c in DMSO-d₆ at 25 °C.

Figure S19. ¹³C NMR spectrum of compound 2c in DMSO-d₆ at 25 °C.

Figure S20. HSQC spectrum of compound 2c in DMSO-d₆ at 25 °C.

Figure S21. HMBC spectrum of compound 2c in DMSO-d₆ at 25 °C.

Figure S22. ¹⁹F NMR spectrum of compound 2c in DMSO-d₆ at 25 °C.

Figure S23. ¹H NMR spectrum of compound 2d in DMSO-d₆ at 25 °C.

Figure S24. ¹³C NMR spectrum of compound 2d in DMSO-d₆ at 25 °C.

Figure S25. HSQC spectrum of compound 2d in DMSO-d₆ at 25 °C.

Figure S26. HMBC spectrum of compound 2d in DMSO-d₆ at 25 °C.

Figure S27. ¹H NMR spectrum of compound 2e in DMSO-d₆ at 25 °C.

Figure S28. ¹³C NMR spectrum of compound 2e in DMSO-d₆ at 25 °C.

Figure S29. HSQC spectrum of compound 2e in DMSO-d₆ at 25 °C.

Figure S30. HMBC spectrum of compound 2e in DMSO-d₆ at 25 °C.

Figure S31. ¹H NMR spectrum of compound 2f in DMSO-d₆ at 25 °C.

Figure S32. ¹³C NMR spectrum of compound 2f in DMSO-d₆ at 25 °C.

Figure S33. HSQC spectrum of compound 2f in DMSO-d₆ at 25 °C.

Figure S34. HMBC spectrum of compound 2f in DMSO-d₆ at 25 °C.

Figure S35. ¹H NMR spectrum of compound **3a** in DMSO-d₆ at 25 °C.

Figure S36. ¹³C NMR spectrum of compound 3a in DMSO-d₆ at 25 °C.

Figure S37. HSQC spectrum of compound 3a in DMSO-d₆ at 25 °C.

Figure S38. HMBC spectrum of compound 3a in DMSO-d₆ at 25 °C.

Figure S39. ¹H NMR spectrum of compound 3b in DMSO-d₆ at 25 °C.

Figure S40. ¹³C NMR spectrum of compound **3b** in DMSO-d₆ at 25 °C.

Figure S41. HSQC spectrum of compound 3b in DMSO-d₆ at 25 °C.

Figure S42. HMBC spectrum of compound 3b in DMSO-d₆ at 25 °C.

Figure S43. ¹H NMR spectrum of compound 3c in DMSO-d₆ at 25 °C.

Figure S44. ¹³C NMR spectrum of compound 3c in DMSO-d₆ at 25 °C.

Figure S45. HSQC spectrum of compound 3c in DMSO-d₆ at 25 °C.

Figure S46. HMBC spectrum of compound 3c in DMSO-d₆ at 25 °C.

Figure S47. ¹⁹F NMR spectrum of compound **3c** in DMSO-d₆ at 25 °C.

Figure S48. ¹H NMR spectrum of compound 3d in DMSO-d₆ at 25 °C.

Figure S49. ¹³C NMR spectrum of compound 3d in DMSO-d₆ at 25 °C.

Figure S50. HSQC spectrum of compound 3d in DMSO-d₆ at 25 °C.

Figure S51. HMBC spectrum of compound 3d in DMSO-d₆ at 25 °C.

Figure S52. ¹H NMR spectrum of compound 3e in DMSO-d₆ at 25 °C.

Figure S53. ¹³C NMR spectrum of compound 3e in DMSO-d₆ at 25 °C.

Figure S54. HSQC spectrum of compound 3e in DMSO-d₆ at 25 °C.

Figure S55. HMBC spectrum of compound 3e in DMSO-d₆ at 25 °C.

Figure S56. ¹H NMR spectrum of compound 3f in DMSO-d₆ at 25 °C.

Figure S57. ¹³C NMR spectrum of compound **3f** in DMSO-d₆ at 25 °C.

Figure S58. HSQC spectrum of compound 3f in DMSO-d₆ at 25 °C.

Figure S59. HMBC spectrum of compound 3f in DMSO-d₆ at 25 °C.

Figure S60. ¹H NMR spectrum of compound 1a in DMSO-d₆ at 102 °C.

Figure S61. ¹³C NMR spectrum of compound 1a in DMSO-d₆ at 102 °C.

Figure S62. HSQC spectrum of compound 1a in DMSO-d₆ at 102 °C.

Figure S63. HMBC spectrum of compound 1a in DMSO-d₆ at 102 °C.

Figure S64. ¹H NMR spectrum of compound 1b in DMSO-d₆ at 102 °C.

Figure S65. ¹³C NMR spectrum of compound 1b in DMSO-d₆ at 102 °C.

Figure S66. HSQC spectrum of compound 1b in DMSO-d₆ at 102 °C.

Figure S67. HMBC spectrum of compound 1b in DMSO-d₆ at 102 °C.

Figure S68. ¹H NMR spectrum of compound 1c in DMSO-d₆ at 102 °C.

Figure S69. ¹³C NMR spectrum of compound 1c in DMSO-d₆ at 102 °C.

Figure S70. HSQC spectrum of compound 1c in DMSO-d₆ at 102 °C.

Figure S71. HMBC spectrum of compound 1c in DMSO-d₆ at 102 °C.

Figure S72. ¹H NMR spectrum of compound 1d in DMSO-d₆ at 102 °C.

Figure S73. ¹³C NMR spectrum of compound 1d in DMSO-d₆ at 102 °C.

Figure S74. HSQC spectrum of compound 1d in DMSO-d₆ at 102 °C.

Figure S75. HMBC spectrum of compound 1d in DMSO-d₆ at 102 °C.

Figure S76. ¹H NMR spectrum of compound 1e in DMSO-d₆ at 102 °C.

Figure S77. ¹³C NMR spectrum of compound 1e in DMSO-d₆ at 102 °C.

Figure S78. HSQC spectrum of compound 1e in DMSO-d₆ at 102 °C.

Figure S79. HMBC spectrum of compound 1e in DMSO-d₆ at 102°C.

Figure S80. ¹H NMR spectrum of compound 1f in DMSO-d₆ at 102 °C.

Figure S81. ¹³C NMR spectrum of compound 1f in DMSO-d₆ at 102 °C.

Figure S82. HSQC spectrum of compound 1f in DMSO-d₆ at 102 °C.

Figure S83. ¹H NMR spectrum of compound 1a in acetone-d₆ at -76 °C.

Figure S84. ¹H NMR spectrum of compound 1b in acetone-d₆ at -76 °C.

Figure S85. ¹H NMR spectrum of compound 1c in acetone-d₆ at -76 °C.

Figure S86. ¹H NMR spectrum of compound 1d in acetone-d₆ at -76 °C.

Figure S87. ¹H NMR spectrum of compound 1e in acetone-d₆ at -76 °C.

Figure S88. Cyclic voltammogram of 1a (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S89. Cyclic voltammogram of 1b (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S90. Cyclic voltammogram of 1c (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S91. Cyclic voltammogram of 1d (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆. This figure corresponds to Fig. 8 of main text.

Figure S92. Cyclic voltammogram of 1e (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S93. Cyclic voltammogram of 1f (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S94. Cyclic voltammogram of **2a** (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆. This Figure is included in Fig. 7 of main text.

Figure S95. Cyclic voltammogram of 2b (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S96. Cyclic voltammogram of 2c (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S97. Cyclic voltammogram of 2d (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S98. Cyclic voltammogram of 2e (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S99. Cyclic voltammogram of 2f (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S100. Cyclic voltammogram of 3a (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S101. Cyclic voltammogram of 3b (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S102. Cyclic voltammogram of 3c (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S103. Cyclic voltammogram of 3d (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S104. Cyclic voltammogram of 3e (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.

Figure S105. Cyclic voltammogram of 3f (2 mM) recorded at a scan rate of 0.05 V s⁻¹ in acetonitrile containing 0.1 M TBAPF₆.
REFERENCES

Evans, D., Hicks, T.A., Williamson, W.R.N., Dawson, W., Meacock, S.C.R., Kitchen, E. A. 1996 Synthesis of a group of 1H-benzimidazoles and their screening for antiinflammatory activity. Eur. J. Med. Chem. 31, 635–642, DOI: 10.1016/0223-5234(96)89560-2.

Feitelson, B.N., Mamalis, P., Moualim, R.J., Petrow, V., Stephenson, O., Sturgeon, B. 1952, Some benziminazole derivatives. J. Chem. Soc. 2389–2393, DOI: 10.1039/JR9520002389.

Hui; L., Guangtao, Q., Chunhai, C., Haiquan, C., Jianan. Y., Yangyang, G. 2019 N-substituted benzimidazole diamine and preparation method thereof. CN109400536 (A)-2019-03-01.

Leandri, G., Mangini, A., Montanari, F., Passerini, R. 1955 Ricerche sugli eterocicli: Spettri di assorbimento U. V. e proprietà cromoforiche – Nota 1: imidazoli, benzimidazoli e fenilbenzimidazoli. Gazz. Chim. Ital. 85, 769–788. Non esiste il DOI?

López-Alvarado, P., Avendaño, C., Menéndez, J.C. 1995 New Synthetic Applications of Aryllead Triacetates. N-Arylation of Azoles. J. Org. Chem. 60, 5678–5682, DOI: 10.1021/jo00122a060.

Reddy, K.K., Rao, N.V.S. 1970 Alkylation and aralkylation of N-heterocycles. Proc. Indian Acad. Sci. 71, 141–146, DOI: 10.1007/BF03049526.

Sagitullina, G.P., Garkushenko, A.K., Novikov, A.N., Sagitullin, R.S. 2014 Unexpected Formation of 5-Nitro-1H-benzimidazoles by Nucleophilic Recyclization of 1-Methyl-5-nitropyridinium Salts. J. Heterocycl. Chem. 51, 1871–1874, DOI: 10.1002/jhet.1876.

Shi, L., Wu, T.-T., Wang, Z., J Xue, J.-Y., Xu, Y.-G. 2014 Discovery of N-(2-phenyl-1Hbenzo[*d*]imidazol-5-yl)quinolin-4-amine derivatives as novel VEGFR-2 kinase inhibitors. Eur. J. Med. Chem. 84, 698–707, DOI: 10.1016/j.ejmech.2014.07.071.