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Abstract Geologists and Reservoir Engineers routinely use time-domain nuclear magnetic resonance (NMR)
to learn about the porous structure of rocks that hold underground fluids. In particular, two-dimensional NMR
(2DNMR) technique is now gaining importance in a wide variety of applications. Crucial issues in 2DNMR
analysis are the speed, robustness and accuracy of the data inversion process. This paper proposes a multi-
penalty method with locally adapted regularization parameters for fast and accurate inversion of 2DNMR
data.

The method solves an unconstrained optimization problem whose objective function contains a data-fitting
term, a single L1 penalty parameter and a multiple parameter L2 penalty. We propose an adaptation of the
Fast Iterative Shrinkage and Thresholding (FISTA) method to solve the multi-penalty minimization problem,
and an automatic procedure to compute all the penalty parameters. This procedure generalizes the Uniform
Penalty principle introduced in [Bortolotti et al., Inverse Problems, 33(1), 2016].

The proposed approach allows us to obtain accurate 2D relaxation time distributions while keeping short
the computation time. Results of numerical experiments on synthetic and real data prove that the proposed
method is efficient and effective in reconstructing the peaks and the flat regions that usually characterize
2DNMR relaxation time distributions.

Keywords NMR relaxometry · multi-parameter regularization · multi-penalty regularization · UPEN2D ·
FISTA

1 Introduction

Geologists and Reservoir Engineers routinely use time-domain nuclear magnetic resonance (NMR) to learn
about the porous structure of rocks that hold underground fluids. NMR is a unique technique that directly
senses the presence of 1H nuclei. Therefore, it permits to accurately estimate many petrophysical parameters,
such as porosity, saturation and permeability, etc. Thus nowadays, for example, borehole 1H NMR is extensively
used in oil and gas reservoir characterisation, and recent technological advances have led to tools suitable for
environmental applications (see details in [1]). Moreover, two-dimensional NMR (2DNMR) techniques are
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gaining increasing importance in analysing different porous media ranging from cement to biological tissues.
Therefore, an appropriate inversion algorithm of NMR relaxation data is a crucial requirement [4].

In 2DNMR, for example, the joint measurements of the spin relaxation with respect to the longitudinal
and transverse relaxation parameters T1 and T2, respectively, allow us to build two-dimensional relaxation time
distributions (T1 − T2 maps). Peaks usually characterize such distributions over flat regions; the position and
volume of the peaks are used to obtain information such as petrophysical properties, molecular diffusion, etc
[4]. Due to the large dimension of the data and the inherent ill-posedness of the inverse problem, a significant
issue in 2DNMR inversion is to ensure both computational efficiency and accuracy. This aspect is particularly
relevant in multidimensional logging where 3DNMR inversion algorithms are usually based on methods for
2DNMR inversion [2]. Therefore, the development and application of 3DNMR techniques is seriously restricted
by the efficiency and accuracy of the 2D inversion [5]. The measured NMR data S are related to the NMR
parameter distribution F according to a Fredholm integral equation of the first kind with separable kernel. For
example, in case of T1 − T2 2D distributions (2DNMR maps) we have the following continuous model:

S(t1, t2) =

∞∫∫
0

k1(t1, T1)k2(t2, T2)F (T1, T2) dT1 dT2 + e(t1, t2) (1)

where t1, t2 are the evolution time parameters and e(t1, t2) represents additive Gaussian noise. The kernels
k1(t1, T1) and k2(t2, T2) are decaying exponential functions.The discretization of the integral equation (1) by a
quadrature rule leads to a linear inverse problem

Kf + e = s (2)

where K = K2⊗K1 is the Kronecker product of the discretized decaying exponential kernels K1 ∈ RM1×N1 and
K2 ∈ RM2×N2 . The vector s ∈ RM , M = M1 ·M2, represents the measured noisy signal, f ∈ RN , N = N1 ·N2, is
the vector reordering of the 2D distribution to be computed and e ∈ RM represents the additive Gaussian noise.
The severe ill-conditioning of K is well-known, and it causes the least-squares solution of (2) to be extremely
sensitive to the noise; for this reason, regularization is usually applied. The most common numerical strategies
are based on L2 regularization and often use constraints, such as non-negativity constraints, in order to prevent
unwanted unphysical results in the computed distribution. This approach requires solving the nonnegatively
constrained Tikhonov-like problem:

min
f≥0

{
‖Kf − s‖2 + λ‖f‖2

}
(3)

where λ > 0 is the regularization parameter. Here and henceforth ‖ · ‖ denotes the Euclidean norm. In this
context, the approach of Venkataramanan et al. [6], uses data compression to reduce the size of problem
(3) and the Butler–Reeds–Dawson method [7] to solve the smaller-size optimization problem. Chouzenoux
et al. [8] apply the interior point method for the solution of (3). The main drawback of single parameter L2
regularization is its tendency to either over-smooth the solution, making it difficult to detect low-intensity peaks,
or to under-smooth the solution creating non-physical sharp peaks. Substantial improvements are obtained by
the application of multiple parameters Tikhonov regularization, as in the UPEN2D algorithm [10,11] which
solves the minimization problem

min
f≥0

{
‖Kf − s‖2 +

N∑
i=1

λi(Lf)2i

}
(4)

where L ∈ RN is the discrete Laplacian operator. The multiple regularization parameters λis are locally adapted,
i.e., at each iteration, approximated values for the λis are computed by imposing the Uniform Penalty (UPEN)
principle [10] and a constrained subproblem is solved by the Newton Projection method [12]. Although UPEN2D
can obtain very accurate distributions, as reported in the literature [10,13,14,11], its computational cost may
be high since it requires the solution of several nonnegatively constrained least-squares problems. In the NMR
literature, L1 regularization has been recently considered in order to better reproduce the characteristic sparsity
of the relaxation distribution. In [15], the L1 regularization problem

min
f

{
‖Kf − s‖2 + α‖f‖1

}
(5)
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is considered and the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [16] is used for its solution. An
update searching method is proposed to iteratively determine the regularization parameter as α =

√
Nσ/‖f‖1

where σ is the standard deviation of the noise. We remark that FISTA is known to be one of the most effective
and efficient methods for solving L1-based image denoising and deblurring problems. Recently, FISTA has also
been applied to non-convex regularization [17,18].

The L1 regularization has also been used in NMR to decrease the data acquisition time [19]. In [20], an
algorithm related to FISTA is applied to NMR relaxation estimation and comparisons with the methods of
Venkataramanan et al. [6], and Chouzenoux et al. [8], are carried out showing the efficiency of the FISTA-like
method. However, despite its computational efficiency and its capability of revealing isolated narrow peaks, L1
regularization tends to divide a wide peak or tail into separate undesired peaks.

Recently, the elastic net method [21] with a non-negative constraint

min
f≥0

{
‖Kf − s‖2 + λ‖f‖2 + α‖f‖1

}
(6)

has been used in [22] to obtain T2 distributions. The problem is formulated as a linearly constrained convex
optimization problem and the primal-dual interior method for convex objectives has been applied to one
dimensional [22] and two dimensional [23] NMR relaxation problems. However, the performance of the method
depends on the two regularization parameters which needs an accurate tuning; a parameter selection analysis
is performed in [23] for a specific set of 2DNMR data.

Our previous review of the current literature shows that for each inversion method, we have to take into
account both the efficiency and the accuracy. The UPEN2D method has a great inversion accuracy due to
the employment of multi-penalty regularization with locally adapted parameters, but the nonnegative con-
straints are responsible for its poor computational efficiency. The L1 regularization with FISTA algorithm is
computationally very efficient, but its accuracy can be low in the presence of non-isolated peaks. Multi-penalty
regularization (6) is able to simultaneously promote distinct features of the sought-for distribution, since it
yields a good trade-off among data fitting error, sparsity and smoothness of the solution. However, its applica-
bility is greatly limited by the fact that multiple parameters tuning is a challenging task depending on SNR,
sparsity and smoothness. To overcome the aforementioned drawbacks ensuring both efficiency and accuracy, in
this paper, we propose a multi-penalty approach involving L1 and L2 penalties with locally adapted regulariza-
tion parameters. The proposed method can be mathematically formulated as the unconstrained minimization
problem

min
f

{
‖Kf − s‖2 +

N∑
i=1

λi(Lf)2i + α‖f‖1

}
. (7)

This approach allows us to accurately reconstruct distributions with isolated and non-isolated peaks as well as
flat areas, in short computation time. On the one hand, L1 regularization prevents from over-smoothing while,
on the other hand, local L2 regularization prevents from under-smoothing merging peaks or peak tails. Since
L1 regularization enforces sparse distributions, the nonnegative constraints are not included in problem (7) and
FISTA can be used for its efficient and effective solution. The UPEN principle is extended to the multi-penalty
problem (7) obtaining a very efficient computation strategy for all the regularization parameters. Therefore,
tedious multiple parameters tuning procedure is not necessary.

The contribution of this paper is two-fold. Firstly, it introduces a locally adapted multi-penalty model for
2D NMR data inversion, and it proposes an efficient strategy for the automatic computation of the multiple
parameters. Secondly, we prove that the solution of (7) is a regularized solution of problem (2). The extension
of the regularization properties of the UPEN principle [Bortolotti et al., Inverse Problems, 33(1), 2016] to a
multiple regularization context makes it possible to apply it to more general, non-differentiable and possibly
non-convex penalties.

The proposed algorithm has been tested on both synthetic and real NMR relaxometry problems, and has
been compared to multiple parameters L2 regularization (4) (UPEN2D) and to L1 regularization (5). The
numerical results show the efficiency and effectiveness of the method.

The remainder of the paper is organized as follows: section 2 analyzes the regularization properties of the
proposed method. Section 3 reports the details of the numerical algorithm. Finally, in section 4, some results
are shown and discussed both on synthetic and real NMR data. The algorithms are implemented in Matlab
R2019b and are freely distributed upon request to the authors.
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2 The Uniform Penalty Principle

In order to generalize to multi-penalty regularization the UPEN principle introduced in [10] for problem (4),
let us write problem (7) as

min
f

{
‖Kf − s‖2 +

N+1∑
i=1

ηiφi(f)

}
(8)

where

φi(f) =

{
(Lf)2i , i = 1, . . . , N,
‖f‖1, i = N + 1,

and ηi =

{
λi, i = 1, . . . , N,
α, i = N + 1.

(9)

The generalization of the UPEN principle can be stated as follows.

Definition 2.1 (Generalized Uniform Penalty Principle). Choose the regularization parameters ηi of multi-penalty

regularization (8) such that, at a solution f , the terms ηiφi(f) are constant for all i with φi(f) 6= 0, i.e:

ηiφi(f) = c, ∀ i = 1, . . . , N + 1 s.t. φi(f) 6= 0 (10)

where c is a positive constant.

Let us assume that a suitable bound ε on the fidelity term of the exact solution f∗ is given; i.e:

‖Kf∗ − s‖2 ≤ ε2 (11)

where f∗ is the solution of the noise-free least-squares problem

min
f

{
‖Kf − ŝ‖2, s = ŝ + e

}
. (12)

Following Miller’s criterium [24], the constant c is selected to balance the fidelity and regularization terms in
(8); i.e:

c =
ε2

N0
(13)

where N0 is the number of non null terms φi(f):

N0 = #{i | φi(f) 6= 0, i = 1, . . . , N + 1}. (14)

Obviously, with this choice for c, Lemma 3.1 of [10] still applies. The lemma is restated here for the sake of
clarity.

Lemma 2.1. If f satisfies ‖Kf − s‖2 ≤ ε2 and the parameters ηi, i = 1, . . . , N + 1, are chosen according to the

generalized uniform penalty principle with

0 ≤ c =
ε2

N0
(15)

where N0 is the number of non null terms φi(f), then

0 ≤ ‖Kf − s‖2 +

N0∑
i=1

ηiφi(f) ≤ 2ε2. (16)

Conversely, if f satisfies (16) and the generalized UPEN principle with (15), then it also satisfies ‖Kf − s‖2 ≤ ε2.
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Proof. Let f be such that ‖Kf − s‖2 ≤ ε2, then, if (10) holds with c selected as in (15), we have

0 ≤ ‖Kf − s‖2 +

N0∑
i=1

ηiφi(f) ≤ ε2 +

N0∑
i=1

ε2

N0
= 2ε2. (17)

Conversely, if (16) and (15) hold, then

2ε2 ≥ ‖Kf − s‖2 +

N0∑
i=1

ηiφi(f) = ‖Kf − s‖2 +

N0∑
i=1

ε2

N0
= ‖Kf − s‖2 + ε2. (18)

Hence
‖Kf − s‖2 + ε2 ≤ 2ε2

and, by subtraction, we obtain the thesis:
‖Kf − s‖2 ≤ ε2

From (10) and (13) we obtain the following expression for the ηi’s:

ηi =
ε2

N0φi(f)
for all i = 1, . . . , N + 1 such that φi(f) 6= 0 (19)

which can be written in terms of the parameters λi and α as

λi =
ε2

N0(Lf)2i
if (Lf)i 6= 0 and α =

ε2

N0‖f‖1
. (20)

If the regularization parameters are computed as in (20), the following lemma shows that the solution of (7) is
a regularized solution of (2).

Lemma 2.2. Let f∗ be the solution of the noise-free least-squares problem (12) and let fε denote the solution to

problem (7) where the regularization parameters are chosen according to the generalized uniform penalty principle as

follows:

λi =


ε2

N0(Lf∗)2i
, if (Lf∗)i 6= 0;

γε2, otherwise;

and α =
ε2

‖f∗‖1
(21)

where γ is a positive constant and N0 is the number of non null terms (Lf∗)i. Then

lim
ε→0

fε = f∗

and hence fε is a regularized solution of (2).

Proof. Let us define the diagonal matrix Λ whose diagonal elements are the parameters λi. The first-order
optimality conditions of (7) are

{0} ∈ 2KT (Kf − s) + 2LTΛLf + αg (22)

where g is the subgradient of ‖f‖1, i.e. [3, chp. 3]:

gi =


+1, if fi > 0
−1, if fi < 0
[− 1, 1], if fi = 0

, i = 1, . . . , N.

In the limit for ε→ 0, from (20), equation (22) becomes

{0} ∈ 2KT (Kf − s) (23)

which are the first-order optimality conditions for (12).
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3 The proposed method

The computation of the parameters λi, i = 1, . . . , N , and α as in (21) uses the quantities f∗ and ε which are
unknown. For this reason, we propose a splitting iterative procedure where they are respectively approximated
by the k−th iterate f (k) and the corresponding residual norm ‖Kf (k) − s‖. The proposed iterative procedure is
outlined in Algorithm 1 where τ is the tolerance of the stopping criterium. The parameter ρ is a compliance
floor that prevents possible divisions by zero, occurring when (Lf (k))i ' 0. If ρ is too small the correspondent
value λi may become too large, making the problem very badly conditioned and hence numerically unstable.
On the contrary, if ρ is too large, only L1 penalty affects the solution because λi ' 0.

Algorithm 1

1: Compute a starting guess f (0);

2: Choose ρ, τ ∈ (0, 1); set k = 0;

3: repeat

4: Set ε(k) = ‖Kf (k) − s‖2

5: Set λ
(k)
i =

ε(k)

(N + 1)(Lf (k))2i + ρ
, i = 1, . . . N

6: Set α(k) =
ε(k)

(N + 1)‖f (k)‖1
7: Compute

f (k+1) = arg min
f

{
‖Kf − s‖2 +

N∑
i=1

λ
(k)
i (Lf)2i + α(k)‖f‖1

}

8: Set k = k + 1

9: until ‖f (k+1) − f (k)‖ ≤ τ‖f (k)‖

The computation of each new approximate solution f (k+1) at step 7 of Algorithm 1 is obtained by FISTA
[16], after suitable reformulation of the minimization problem.

Let us assume that the values λ
(k)
i , i = 1, . . . , N , and α(k) are fixed, then problem (7) can be written as:

min
f
{Ψ1(f) + Ψ2(f)} (24)

where:

Ψ1(f) =

∥∥∥∥(I 0

0
√

Λ(k)

)(
K

L

)
f −

(
s

0

)∥∥∥∥2 , Λ(k) = diag(λ
(k)
i )

I ∈ RM×M is the Identity matrix, 0 ∈ RM×N is a zero block, and

Ψ2(f) = α(k)‖f‖1.

The FISTA steps for the solution of (24) are reported in Algorithm 2 where ξ is a constant stepsize and the
starting guess corresponds to solution computed in Algorithm 1 at the k-th step. The FISTA iterations are
stopped when the relative distance between two successive values of the objective function of (24) becomes
smaller than a given tolerance value τfista. At step 4 of Algorithm 2, the components of f (j) are computed
explicitly, element-wise, by means of the soft thresholding operator:

f
(j)
i = sign

(
z
(j)
i − α

ξ

)
max

(∣∣∣z(j)i ∣∣∣− α

ξ
, 0

)
, i = 1, . . . , N

where

z(j) = y(j) − 1

ξ
∇(Ψ1(y(j))).
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Algorithm 2 – fk+1 = fista step(ξ,f (k), Ψ1, Ψ2))

1: Set t0 = 1; j = 0; y(1) = f (k)

2: repeat

3: j = j + 1

4: f (j) = arg minf

{
Ψ2(f) + ξ

2

∥∥∥f − (y(j) − 1
ξ∇(Ψ1(y(j)))

)∥∥∥
2

}
5: tj+1 = 1

2

(
1 +

√
1 + 4t2j

)
6: y(j+1) = f (j) +

(t2j − 1)

tj+1

(
f (j) − f (j−1)

)
7: until stopping criterion

8: f (k+1) = f (j+1)

The convergence of FISTA has been proven for any stepsize ξ such that ξ ≥ L(Ψ1), where L(Ψ1) is the Lipschitz
constant for the gradient ∇Ψ1 [16]; i.e:

L(Ψ1) = λmax(KTK + LTΛ(k)L) (25)

where λmax(X) represents the maximum eigenvalue of the matrix X.
The following theorem shows that an upper bound for L(Ψ1) can be easily provided, thus obtaining the con-
vergence of FISTA.

Theorem 3.1. Let σ
(1)
1 and σ

(2)
1 be the maximum singular values of the matrices K1 and K2, respectively, and let

λ
(k)
i be the local regularization parameters computed at kth step of Algorithm 1, then the value ξ defined as follows:

ξ =
(
σ
(1)
1 σ

(2)
1

)2
+ 64 max

i
|λ(k)i | (26)

satisfies

ξ ≥ L(Ψ1)

and it guarantees the convergence of the FISTA method.

Proof. We recall that the spectral norm of the symmetric matrix KTK + LTΛ(k)L is defined as

‖KTK + LTΛ(k)L‖2 = λmax(KTK + LTΛ(k)L).

Then, by using the triangular inequality,

‖KTK + LTΛ(k)L‖2 ≤ ‖KTK‖2 + ‖LTΛ(k)L‖2

we obtain
λmax(KTK + LTΛ(k)L) ≤ λmax(KTK) + λmax(LTΛ(k)L)

since KTK and LTΛ(k)L are symmetric matrices. Using the Kronecker product properties of the Singular Value
Decomposition (SVD), we have:

λmax(KTK) = λmax((K2 ⊗KT
1 )T (K2 ⊗KT

1 )) = (σ
(1)
1 σ

(2)
1 )2. (27)

Concerning the term λmax(LTΛ(k)L) we can apply the property of the discrete Laplacian matrix λmax(L) ≤ 8.
This property easily follows from a structured finite difference representation of the Laplace opeartor with unit
step size. Hence:

λmax(LTΛL) ≤ 64 max
i
|λ(k)i |. (28)

Finally, collecting the terms (27) and (28), we obtain the value ξ that guarantees the convergence of FISTA
steps.
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We observe that, in NMR, the matrices K1 and K2 are usually of small size and their SVD can be easily

performed in order to compute the values σ
(1)
1 and σ

(2)
1 .

Following the observations in [10], we apply Algorithm 1 with the following L2 penalty parameters, which
have proven to be very efficient with NMR problems:

λ
(k)
i =

‖Kf (k) − s‖2

(N + 1)

(
β0 + βpmax

µ∈Ii
(p

(k)
µ )2 + βcmax

µ∈Ii
(c

(k)
µ )2

) , i = 1, . . . , N (29)

where
c(k) = Lf (k), p(k) = vec

(
‖∇F(k)‖

)
, f (k) = vec(F(k))

and F(k) is the k-th distribution map (here, vec(V) denotes the vector obtained by columnwise reordering the
elements of a matrix V). The Ii are the indices subsets related to the neighborhood of the point i and the β’s
are positive parameters; β0 prevents division by zero and is a compliance floor, which should be small enough
to prevent under-smoothing, and large enough to avoid over-smoothing. The optimum value of β0, βc and βp
can change with the nature of the measured sample.

Finally, the proposed procedure is stated in Algorithm 3 and is called L1LL2 method, which comes from
”method based on L1 and Locally adapted L2 penalties”. As already discussed in [10], the starting guess f (0)

is computed by applying a few iterations of the Gradient Projection method to the nonnegatively constrained
least squares problem

min
f≥0
‖Kf − s‖2.

Algorithm 3 – L1LL2 method

1: Choose τ ∈ (0, 1) and β0, βp, βc > 0

2: Set k = 0 and compute f (0)

3: Compute σ
(1)
1 and σ

(2)
1

4: repeat

5: Set ε(k) = ‖Kf (k) − s‖2

6: Set λ
(k)
i =

ε(k)

(N + 1)

(
β0 + βpmax

µ∈Ii
(p

(k)
µ )2 + βcmax

µ∈Ii
(c

(k)
µ )2

) , i = 1, . . . , N

7: Set α(k) =
ε(k)

(N + 1)‖f (k)‖1

8: Set ξ(k) =
(
σ
(1)
1 σ

(2)
1

)2
+ 64 maxi |λ

(k)
i |

9: Compute

f (k+1) = fista step(ξ(k), f (k), ‖Kf − s‖2 +
N∑
i=1

λ
(k)
i (Lf)2i , α

(k)‖f‖1)

10: until ‖f (k+1) − f (k)‖ ≤ τ‖f (k)‖

4 Numerical Results

The analysis of the proposed algorithm is carried out in this section both on synthetic and real NMR relaxation
data. The numerical tests are performed on a PC laptop equipped with 2,9 GHz Intel Core i7 quad-core, 16
GB RAM. The algorithms are implemented in Matlab R2019b. The values τ = 10−3 and τfista = 10−7 have
been fixed for the stopping tolerances of L1LL2 (Algorithm 3) and FISTA (Algorithm 2) respectively.
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(a) Two peaks map (b) Three peaks map

Fig. 1 Maps of relaxation times used in tests with synthetic data.

4.1 Synthetic data

Aim of this paragraph is to analyse the accuracy and performance of the proposed L1LL2 algorithm. To this
purpose we test L1LL2 algorithm on synthetic data that emulates the results of measurement with a 2D
IR-CPMG sequence (see [10,13,14]), where the kernels of (1) are defined as follows:

k1(t1, T1) = 1− 2 exp(−t1/T1), k2(t2, T2) = exp(−t2/T2). (30)

Two different predefined relaxation maps F (T1, T2) are used to compute two set of synthetic relaxation data.
The first relaxation map, named 2Pks test, has size N1 ×N2 where N1 = N2 = 80. The relaxation map, repre-
sented in Figure 1(a), has two peaks at positions (T1 = 814.97 ms, T2 = 4.533 ms) and (T1 = 119.54 ms, T2 =
8.5606 ms), relative to two population of spins with the NMr constraint T1 > T2.
The second relaxation map, named 3Pks test, has 100 × 100 points. In this case the relaxation map, repre-
sented in Figure 1(b), has three peaks, relative to three population spins, with peaks in the following positions:
(T1 = 1582.2 ms, T2 = 32.289 ms), (T1 = 5.9692 ms, T2 = 2.6124 ms) and (T1 = 1139.5 ms, T2 = 258.08 ms).
In both cases the number of the IR points is M1 = 128, while for CPMG it is M2 = 2048.
Normal Gaussian random noise e of level δ ≡ ‖e‖ is added as follows: s = Kf∗ + e. The tests are carried out
by running 10 noise realizations with δ = 10−2 and the numerical results reported in the table 1 and 2 are
averaged over these noise realizations.
The algorithms accuracy is measured by means of the relative error Erel2 and the Root Mean Squared Deviation
RMSD, defined as follows:

Erel2 = ‖f − f∗‖2/‖f∗‖2, RMSD =
‖ŝ− s‖√

M
, ŝ = Kf (31)

where f represents the map computed by the algorithms and f∗ is the true map. The first analysis evaluates the
effects of the multi-penalty and multi-parameter approach (L1LL2) compared to the L1 and multi-parameter
L2 penalties. The adapted L1 penalty algorithm (A-L1) is obtained applying the algorithm 1 to solve (7) with
λi = 0, while multi-parameter L2 is obtained by solving problem (3) with algorithm UPEN2D. In table 1,
the error parameters and computation times are reported for each algorithm. While UPEN2D reaches always
the most accurate solutions, the A-L1 algorithm has the greatest relative error values. Conversely, A-L1 is the
fastest method while UPEN2D requires the longest computation times. We observe that L1LL2 achieves the
best trade-off between accuracy and computation time. We can quantify such trade-off in terms of Percentage
Accuracy Loss (PAL), defined as

PALm =
Errm − Errmin

Errmin
× 100 (32)
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where Errm represents the relative error of method m (L1LL2 or A-L1) and Errmin is the minimum rela-
tive error, always obtained by UPEN2D. Analogously, we measure the Percentage Efficiency Gain (PEG) by
subtracting the computation time of L1LL2 or A-L1 (T imem) to that UPEN2D (T imemax):

PEGm =
T imemax − T imem

T imemax
× 100 (33)

The values reported in table 2 show that for the 2pks test the accuracy lost by L1LL2 is about 22% smaller than

Test Algorithm
Erel2 RMSD Time

(-) (a.u.) (s)

L1LL2 1.22 10−1 1.953 10−4 10.80
2Pks A-L1 1.41 10−1 1.953 10−4 10.13

UPEN2D 8.79 10−2 1.953 10−4 68.6

L1LL2 1.09 10−1 1.381 10−4 29.00
3Pks A-L1 1.31 10−1 1.381 10−4 19.84

UPEN2D 8.51 10−2 1.381 10−4 85.62

Table 1 Accuracy and computation times of the synthetic tests. Reference value RMSD∗ = δ/
√
M = 1.9531 10−5.

Test Algorithm
PAL PEG
(%) (%)

2Pks
L1LL2 38.8 84.3
A-L1 60.5 85.2

3Pks
L1LL2 28.1 66.1
A-L1 53.9 78.0

Table 2 Percentage Accuracy Loss (PAL (32)) and Percentage Efficiency Gain (PEG (33)) obtained by each method on the
two different test problems.

A-L1 while the computation efficiency gained is similar. Concerning the 3Pks test we observe that accuracy
lost by L1LL2 is about 25% smaller than A-L1 while the performance gained by A-L1 is 11% greater than
that of L1LL2. Hence L1LL2 reaches the best balance between accuracy and computation time. This feature is
well represented in figures 2 where the time evolution of Erel2 is plotted for each algorithm. We observe that
the introduction of the L1 regularization causes a considerable decrease in the total computation time at the
expenses of a slight increase in the relative error.
The contribution of the multi-parameter L2 term to the algorithm accuracy is further highlighted in figures 3

and 4 where the maps computed by the three algorithms on the 2Pks and 3Pks tests are shown. We observe
that figures (b) and (d) are more precise in reproducing the true contour levels (figure (a)), compared to the
A-L1 regularization algorithm in figure (c).
Concerning the residual values, we observe that the RMSD parameters reported in table 1 have indeed very tiny
differences, in the range [10−8, 10−7], revealing equal data consistency for all methods. Moreover the good results
are confirmed by the RMSD correspondent to the true solution f∗, given by RMSD∗ = δ/

√
M = 1.9531 10−5.

4.2 Real data

In this section we report the reconstructions obtained with L1LL2 on real data acquisitions. Two measured
samples are studied: a White Portland Cement (WPC) and a Maastricht stone, a limestone characterized by
high porosity [9], (see [11], for a detailed description of acquisition parameters and instrument characteristics).
The first test, named T1 − T2 test, is relative to an 1H IR-CPMG measurement performed on a WPC sample
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(a) Two peaks test (b) Three peaks test

Fig. 2 Relative Error vs. computation time: UPEN2D cyan line, A-L1, blue dashed line, L1LL2 red dash-dotted line.

Test Algorithm
RMSD ErelUPEN2D Time
(a.u.) (-) (s)

T1 − T2
L1LL2 3.33 10−3 9.36 10−2 4.2
A-L1 3.03 10−3 3.91 10−1 6.5

UPEN2D 3.36 10−3 − 54.6

T2 − T2
L1LL2 1.248 10−1 1.99 10−1 4.32
A-L1 1.235 10−1 5.00 10−1 7.85

UPEN2D 1.251 10−1 − 10.6

Table 3 RMSD, ErelUPEN2D and computation times obtained with 2D NMR real data.

hardened a few tens of minutes. The kernels are defined in (30), the data set have 48 × 1000 elements and
the computed relaxation time map has 80 × 80 points. The second test, named T2 − T2 test is related to a
1H CPMG-CPMG measurement performed on a Maastricht stone full saturated with water. In this case, both
kernels k1 and k2 refer to transversal relaxation times T21, T22 with the following expression:

k1(t1, T21) = exp(−t1/T21), k2(t2, T22) = exp(−t2/T22).

and the T1, T2 in model (1) are substituted by T21, T22. The reconstructed relaxation time map has 64 × 64
points while the acquired data set has 128× 2800 elements. Since in previous computations UPEN2D yielded
the most accurate solutions on data set coming from different sequences and samples (see [10], [13], [14] and
[11]), we use it as a reference method and we evaluat the following relative error ErelUPEN2D:

ErelUPEN2D =
‖f − fUPEN2D‖
‖fUPEN2D‖

(34)

From the results reported in table 3 we observe that despite the similarity of the RMSD values within the same
test problem, there is a remarkable difference in the relative distance from the reference solution computed by
UPEN2D (column ErelUPEN2D). Indeed ErelUPEN2D of A-L1 is always greater than that obtained by L1LL2.
Moreover, the computation times show the improved efficiency of L1LL2, as expected.
In case of the T1 − T2 test, analysing the computed 2D contour map, figure 5, we can see two peaks with T2
values at about 0.8 ms and 20 ms. As it well known, WPC pore structures depend on the sample preparation,
and the hydration processes causes their continuously evolution over time, therefore these two peaks seem to be
compatible with the population of spins into interhydrate spaces and capillary pores, respectively [25]. A small
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(a) True (b) L1LL2

(c) A-L1 (d) UPEN2D

Fig. 3 Contour plots of the 2pks test. (a) True distribution map, (b) L1LL2 reconstruction, (c) A-L1 reconstruction, (c)
UPEN2D reconstruction.

artifact is visible in the contour map (figure 5) as well as in the T1 projection (figure 6). As a general comment,
we can see the optimal correspondence of L1LL2 with UPEN2D in the 1D maps projections reported in figure
6 where both peaks are well defined in position, height and amplitude. The contour maps of the computed
2D relaxation time distributions, reported in figure 5, also confirm the good accuracy of L1LL2 compared to
UPEN2D. We observe in figure 5(c) the poor A-L1 reconstruction, probably due to the low S/N ratio of the
acquired data.
Concerning the T2 − T2 test, we again observe in table 3 the preservation of consistency of the results between
L1LL2 and UPEN2D algorithms. The relaxation time contour maps, reported in figure 7, report a precise
reproduction of spin population, confirmed also by the projection on horizontal axes in figure 8(b). Two-
dimensional T2 − T2 exchange experiments are useful to assess exchange between different relaxation centers
and to understand the pore connectivity. Off-diagonal peaks in figure 7 indicate exchange of water between
pores of different size. While the peaks asymmetry can be caused by three-site exchange in the case of different
exchange rates [26]. Concerning two smaller populations it is evident in figure 8(a) that relaxation maps are
not coincident, however in this case L1LL2 provides a better separation of the spin populations with smaller
relaxation times. Finally, we observe that L1LL2 is computationally more efficient than UPEN2D and A-L1
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(a) True (b) L1LL2

(c) A-L1 (d) UPEN2D

Fig. 4 Contour plots of the 3pks test. (a) True distribution map, (b) L1LL2 reconstruction, (c) A-L1 reconstruction, (c)
UPEN2D reconstruction.

map (figure 7(c)) suffers from evident distortions, probably due to the low S/N ratio of the acquired data. The
1D projections in figures 6, 8 are shown only for L1LL2 and UPEN2D because of the poor reconstructions
computed by A-L1.
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(a) UPEN2D

(b) L1LL2 (c) A-L1

Fig. 5 Test T1 − T2, contour maps of relaxation times. (a) computed in 54.6 s. (b) computed in 3.53 s (c) computed in 6.6 s.

(a) T1 (b) T2

Fig. 6 T1 − T2 test, projection of the time relaxation maps onto the vertical axis T1 and onto the horizontal axis T2. L1LL2
red dashed line, UPEN2D blue line.
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(a) UPEN2D

(b) L1LL2 (c) A-L1

Fig. 7 Test T2 − T2, contour maps of relaxation times. (a) computed in 10.3 s, (b) computed in 3.6 s (c) computed in 7.8 s

(a) T21 (b) T22

Fig. 8 T2-T2 test, projection of the time relaxation maps onto the vertical axis T21 and onto the horizontal axis T22. L1LL2
red dashed line, UPEN2D blue line.
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5 Conclusion

This paper presents the L1LL2 method for the inversion of 2DNMR relaxation data. The algorithm automat-
ically computes a 2D distribution map of NMR parameters and spatially adapted regularization parameters
by iteratively solving a sequence of multi-penalty problems. The FISTA method is used for the solution of the
minimization problems, and all the regularization parameters are updated according to the uniform penalty
principle. The L1LL2 method has been compared to A-L1 and UPEN2D algorithms. The numerical results
show that, compared to UPEN2D, the main advantage of L1LL2 is the increased computational speed without
a significant loss in the inversion accuracy; compared to A-L1, L1LL2 provides more accurate distributions at
a comparable computational cost. Future work will consider the extension of this method to different penalty
functions to employ the generalized uniform Penalty principle to a broader variety of inverse problems.
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