Supplementary Information

Syntheses and characterization data

Materials and general instrumentations

Solvents and reagents were obtained from commercial suppliers and used without further purification. If required, solvents were distilled prior to use. For simplicity, solvents and reagents are indicated as follows: acetonitrile (MeCN), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, ethyl acetate (EtOAc), petroleum ether (PE), tetrahydrofuran (THF), triethylamine (TEA), sodium hydroxide (NaOH), hydrochloric acid (HCl), sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$. Thin-layer chromatography analyses were performed using pre-coated Supelco silica gel on TLC Al foils 0.2 mm and visualized by UV (254 nm), and/or KMnO_{4} stain. NMR experiments were run on a Varian Gemini 400 MHz spectrometer (400.13 MHz for ${ }^{1} \mathrm{H}$, and 100.62 MHz for ${ }^{13} \mathrm{C}$), equipped with a BBI probe and Z-gradients. Spectra were acquired at 300 K , using deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ or dimethyl sulfoxide $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ as solvents. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded in parts per million using the residual non-deuterated solvent as the internal standard. The experiment 1D NOESY was performed with NOE DPFGSE pulse sequence at the mixing time of 1,5 seconds. Data are reported as follows: chemical shift (ppm), multiplicity (indicated as: bs, broad signal; s, singlet; d, doublet; t, triplet; q, quartet; p, quintet; sx, sextet; m, multiplet and combinations thereof), coupling constants (J) in Hertz (Hz) and integrated intensity. The IR-FT spectra were recorded on a Jasco FT/IR-4100. Compounds were named using the naming algorithm developed by CambridgeSoft Corporation and used in ChemBioDraw Ultra 15.0. UPLC-MS analyses were run on a Waters ACQUITY UPLC/MS system consisting of a QDa mass spectrometer equipped with an electrospray ionization interface and a 2489 UV/Vis detector.

General procedure for preparation of dimethylbenzene-1,2-diols 3,4DMC, 3,5DMC, 3,6DMC and 4,5DMC ${ }^{[1]}$
A solution of the appropriate dimethylphenol a1-4 (12.2 mmol), anhydrous MgCl_{2} (18.4 mmol) and TEA (36.8 mmol) in ACN $(6 \mathrm{~mL})$ was prepared and stirred under nitrogen atmosphere for 15 minutes. Then p-formaldehyde (36.8 mmol) was added dropwise. The reaction was heated to $100^{\circ} \mathrm{C}$ and stirred for 2.5 hours. After cooling to room temperature, the mixture was acidified with $1 \mathrm{~N} \mathrm{HCl}(12$ mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mL} x \mathrm{3}$). The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to obtain the corresponding crude intermediate aldehydes b1-4 as yellow solid, which were used to the next step without further purification.
The aldehydes b1-4 were dissolved in THF (5 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Then 5 M $\mathrm{NaOH}(2.4 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.2 \mathrm{~mL})$ were added dropwise and the reaction was stirred at room temperature for 30 minutes. The mixture was diluted with $2 \mathrm{~N} \mathrm{HCl}(12 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mL} x$ 3). The collected organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed to provide the corresponding crude products, which were purified by flash silica gel chromatography ($\mathrm{PE}-\mathrm{EtOAc}$) to give the desired 3,4DMC, 3,5DMC, 3,6DMC and 4,5DMC.
3,4-dimethylbenzene-1,2-diol (3,4DMC)
2,3-dimethylphenol a1 ($1.5 \mathrm{~g}, 11.3 \mathrm{mmol}$) and p-formaldehyde ($1.108 \mathrm{~g}, 36.9 \mathrm{mmol}$) were reacted to achieve the intermediate aldehyde $\mathbf{b 1}$ which in turn was treated to give the crude product of $\mathbf{3}, 4 \mathrm{DMC}$, according to general procedure. The crude product was purified by flash silica gel chromatography (PE-EtOAc, gradient up to $88-12$) to provide 3,4DMC as pale-yellow solid (726 mg , yield 43%). The spectroscopic data are in agreement with those reported in literature ${ }^{[2]}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 6.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}), 6.4(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}), 8.4\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH}\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right)$,
$2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.18, 140.96, 129.97, 123.08, 121.04, 112.05, 19.44, 11.72. IR (nujol) $v_{\text {max }} \mathrm{cm}^{-1} 3478,3364$. ESI-MS for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: calculated 138.07, found m/z $137.09[\mathrm{M}-\mathrm{H}]^{-}$.

3,5-dimethylbenzene-1,2-diol (3,5DMC)

3,5-dimethylphenol $\mathbf{a} 2(1.5 \mathrm{~g}, 11.3 \mathrm{mmol})$ and p-formaldehyde $(1.10 \mathrm{~g}, 36.9 \mathrm{mmol})$ were reacted to achieve the intermediate aldehyde $\mathbf{b} \mathbf{2}$ which in turn was treated to give the crude product of 3,5DMC, according to general procedure. The crude product was purified by flash silica gel chromatography (PE-EtOAc, gradient up to 95-5) to provide 3,5DMC as white solid (620 mg , yild 37%). The spectroscopic data agree with those reported in literature ${ }^{[3]}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.53$ (s, $1 \mathrm{H}, \mathrm{CH}), 6.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}$, exchange with $\mathrm{D}_{2} \mathrm{O}$), $2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,139.7$, 130.1, 124.4, 123.5, 123.4, 113.8, 113.7, 20.7, 15.5. IR (nujol) $v_{\max } \mathrm{cm}^{-1} 3430$ (broad, OH), 3255 (broad, OH). ESI-MS for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: calculated 138.07 , found $\mathrm{m} / \mathrm{z} 137.09[\mathrm{M}-\mathrm{H}]^{-}$.
3,6-dimethylbenzene-1,2-diol (3,6DMC)
2,5-dimethylphenol a3 ($1.5 \mathrm{~g}, 11.3 \mathrm{mmol}$) and p-formaldehyde $(1.104 \mathrm{~g}, 36.8 \mathrm{mmol})$ were reacted to achieve the intermediate aldehyde $\mathbf{b 3}$ which in turn was treated to give the crude product of $\mathbf{3 , 6 D M C}$, according to general procedure ${ }^{[1]}$. The crude product was purified by flash silica gel chromatography (PE-EtOAc, gradient up to 93-7) to provide 3,6DMC as white solid (315 mg , yield 19%). The spectroscopic data are in agreement with those reported in literature ${ }^{[2,4]}$. ${ }^{1} \mathrm{H} N \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.23\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.8,121.9,121.7,15.5$. The molecular structure was confirmed by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ NOE spectroscopy experiment through the irradiation of CH proton which yielded the enhancement of CH_{3} protons signal. IR (nujol) $v_{\max } \mathrm{cm}^{-1} 3348$ (broad, $2 \times \mathrm{OH}$). ESI-MS for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: calculated 138.07, found $\mathrm{m} / \mathrm{z} 137.09[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-dimethylbenzene-1,2-diol (4,5DMC)
3,4-dimethylphenol a4 ($1.22 \mathrm{~g}, 10.0 \mathrm{mmol}$) and p-formaldehyde ($901 \mathrm{mg}, 30.0 \mathrm{mmol}$) were reacted to achieve the intermediate aldehyde b4 which in turn was treated to give the crude product of 4,5DMC, according to general procedure. The crude product was purified by flash silica gel chromatography (PE-EtOAc, gradient up to 88-12) to provide 4,5DMC as white solid (420 mg , yield 30%). The spectroscopic data are in agreement with those reported in literature ${ }^{[2,5]} .^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.65(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 4.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2$, 129.91, 117.0, 19.1. IR (nujol) $v_{\max } \mathrm{cm}^{-1} 3375$ (broad, $2 \times \mathrm{OH}$). ESI-MS for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: calculated 138.07, found m/z $137.19[\mathrm{M}-\mathrm{H}]^{-}$.

Protein crystallization

Aliquots of $11 \mathrm{mg} \mathrm{mL}^{-1} \mathrm{SPU}$, dissolved in 50 mM HEPES buffer at pH 7.5 , also containing 50 $\mathrm{mM} \mathrm{Na} 2 \mathrm{SO}_{3}$ as a reducing agent, were subjected to successive dilution - concentration cycles using Amicon Ultra centrifugal filter units - MWCO 10 KDa (Merck Millipore) and 50 mM HEPES buffer at pH 7.5 , in order to remove $\mathrm{Na}_{2} \mathrm{SO}_{3}$. After a final concentration step up to $2 \mathrm{mg} \mathrm{mL}^{-1}$, each SPU solution was incubated in the presence of $0.5 \mathrm{mM} 3 \mathbf{M C}, 2.5 \mathrm{mM} 4 \mathrm{MC}, 1.0 \mathrm{mM} \mathbf{3 , 4 D M C}, 0.5 \mathrm{mM}$ 3,5DMC, 1.0 mM 4,5DMC and 1.0 mM 3,6DMC, respectively, all dissolved in the same buffer. After a proper incubation period, during which the enzyme activity was abolished (approximately 13 hours, depending on the nature of derivative), SPU-inhibitor solutions were concentrated up to 11 mg mL - and crystallization drops were made by diluting $1.5 \mu \mathrm{~L}$ of SPU-inhibitor solution with 1.5
$\mu \mathrm{L}$ of a precipitant solution containing $1.6-2.1 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ dissolved in 100 mM sodium citrate buffer, at pH 6.3 . No inhibitor was present in the precipitant solution, so that the crystallizations occurred in the presence of 0.25 mM 3MC, $1.25 \mathrm{mM} 4 \mathrm{MC}, 0.5 \mathrm{mM}$ 3,4DMC, 0.25 mM 3,5DMC, $0.5 \mathrm{mM} 4,5 \mathrm{DMC}$, and $0.5 \mathrm{mM} \mathbf{3 , 6 D M C}$, respectively. Crystallization trials were performed at 293 K using the vapor diffusion technique (hanging-drop method), equilibrating the drop against 1 mL of the precipitant solution using 24 -well XRL Plate (Molecular Dimensions, Suffolk, UK) Rice-shaped protein crystals (dimensions up to $0.1 \times 0.1 \times 0.3 \mathrm{~mm}^{3}$) typically grew in the presence of $1.7-2.0 \mathrm{M}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ after 1-2 weeks. Crystals were cryoprotected by transferring them in a solution containing 100 mM citrate buffer at $\mathrm{pH} 6.3,2.4 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, and $20 \%(\mathrm{v} / \mathrm{v})$ ethylene glycol, and then flashcooled and stored in liquid nitrogen.

Quantum mechanical calculations.

Density functional theory (DFT) computations were carried out using the program ORCA 4.1.0 ${ }^{[35]}$ and the Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional ${ }^{[36]}$ as defined in the Gaussian software ${ }^{[37]}$ (B3LYP/G). In a first set of calculations, the conformational space of all the possible conformations of the semiquinones deriving from each of the catechol derivatives investigated in this work was investigated. Subsequently, the geometries of the reaction intermediates obtained in the second step of the reactions between the most stable conformations of the semiquinones considered in the first set of calculations and a model of $\alpha \mathrm{Cys} 322(\mathrm{~S} \gamma)$ consisting of a $\mathrm{CH}_{3} \mathrm{SH}$ moiety ${ }^{[16 i]}$. The geometry optimizations carried out on the previously described molecules were performed by using the Dunning correlation-consistent polarized triple zeta basis set, with the inclusion of diffuse functions, (aug-cc-pVTZ) ${ }^{[38]}$ was used. Frequency computations were performed to determine the nature of the minimized structures. Finally, for each of the most stable intermediates of each catechol derivative, the dissociation of the bond between the carbon atom of the catechol derivative and the sulfur atom from the $\mathrm{CH}_{3} \mathrm{SH}$ moiety was investigated using relaxed surface scan computations ${ }^{[35]}$, which involve constrained optimizations for different values of a selected reaction coordinate. The chosen coordinate, in this case the bond distance, is fixed to a certain value while the remaining coordinates of the molecule are optimized. After completion of one optimization cycle, the value of the reaction coordinate is changed, and another optimization cycle is carried out. This procedure was used to trace a path (theoretically close to a minimum energy path) from the reaction intermediates to the separated catechol derivatives and the $\mathrm{CH}_{3} \mathrm{SH}$ moiety in the radical form (methylsufanyl, $\mathrm{CH}_{3} \mathrm{~S} \bullet$). For relaxed scan calculations all atoms were described by the Pople-style $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set ${ }^{[37]}$.

Table 1-SI. Data collection, processing and refinement statistics for the crystal structures of SPU bound to 3MC, 4MC, 3,4DMC, 3,5DMC, 4,5DMC, and 3,6DMC (PDB codes 6ZNY, 6ZNZ, 6ZO0, 6ZO1, 6 ZO 2 and 6 ZO 3).

ligand (PDB code) Data collection	3MC (6ZNY)	4MC (6ZNZ)	3,4DMC (6ZO0)	3,5DMC (6ZO1)	4,5DMC (6ZO2)	3,6DMC (6ZO3)
Wavelength (\AA)	0.9537	0.9537	1.0000	0.9660	0.9677	0.9677
Detector	DECTRIS PILATUS 6M	DECTRIS PILATUS 6M	DECTRIS PILATUS 6M	DECTRIS PILATUS 6M	EIGER X 4M	EIGER X 4M
Crystal-to-Detector distance (mm)	251.18	330.02	347,64	185.788	101.34	101.32
Oscillation angle (degrees)	0.100	0.100	0.500	0.100	0.100	0.100
Number of images	1400	400	200	800	1800	1400
Space group	$P 6{ }_{3} 22$	$P 6{ }_{3} 22$	$P 6_{3} 22$	$P 6{ }_{3} 22$	$P 6_{3} 22$	$P 6{ }_{3} 22$
Unit cell (a, b, c, \AA)	131.6, 131.6, 189.4	131.0, 131.0,188.9	131.5, 131.5,188.7	131.6, 131.6, 188.9	131.6, 131.6, 189.3	131.5, 131.5,189.1
Resolution range ($\AA)^{\text {a }}$	1.50-97.64 (1.50-1.53)	1.89-97.27 (1.89-1.93)	2.23-188.71 (2.23-2.30)	1.61-45.49 (1.61-1.64)	$1.65-62.17$ (1.65-1.68)	1.55-48.77 (1.55-1.58)
Total number of reflections ${ }^{\text {a }}$	2354825 (110984)	337321 (18598)	5100187 (47173)	1082265 (53467)	2379195 (120332)	2232515 (103736)
Unique reflections ${ }^{\text {a }}$	153039 (7425)	76691 (4494)	47585 (4300)	123908 (6001)	116041 (5665)	139215 (6635)
Multiplicity ${ }^{\text {a }}$	15.4 (14.9)	4.4 (4.1)	10.7 (11.0)	8.7 (8.9)	20.5 (21.2)	16.0 (15.6)
Completeness ${ }^{\text {a }}$ (\%)	99.7 (99.1)	99.8 (99.8)	100.0 (100.0)	99.8 (99.6)	100.0 (100.0)	99.9 (97.5)
$\mathrm{R}_{\text {sym }}{ }^{\text {a,b }}$ (\%)	11.3 (235.9)	12.4 (84.2)	27.1 (175.1)	9.7 (165.9)	13.1 (281.1)	12.7 (214.5)
$\mathrm{R}_{\mathrm{pim}}{ }^{\text {a,c }}$ (\%)	3.0 (64.5)	7.5 (54.1)	9.1 (58.3)	3.7 (60.5)	3.0 (63.4)	3.4 (57.1)
Mean I half-set correlation CC(1/2) ${ }^{\text {a }}$	0.999 (0.687)	0.994 (0.675)	0.995 (0.657)	0.999 (0.610)	0.999 (0.771)	0.999 (0.670)
Mean I/ $/(\mathrm{I})^{\text {a }}$	18.8 (1.5)	9.5 (1.5)	9.0 (1.5)	12.4 (1.5)	18.6 (1.5)	17.8 (1.5)
Number of monomers in the asymmetric unit	3	3	3	3	3	3
$\mathrm{R}_{\text {factor }}{ }^{\text {d }}$ (\%)	13.3	15.9	16.11	13.57	13.44	13.55
$\mathrm{R}_{\text {free }}{ }^{\text {d }}$ (\%)	15.2	17.8	21.62	15.90	15.56	15.60
Cruickshank's DPI for coordinate error ${ }^{\circ}$ based on $\mathrm{R}_{\text {factor }}(\AA)$	0.050	0.121	0.223	0.062	0.066	0.056
Wilson plot B-factor (\AA^{2})	15.9	17.2	27.9	21.3	20.6	13.2
Average all atom B-factor $\left.{ }^{(} \AA^{2}\right)^{2}$	23.45	27.64	34.62	26.90	27.52	22.42
B-factor ${ }^{\text {f }}$ for the Ni atoms (\AA^{2})	19.2, 18.0	30.0, 26.8	37.5, 39.8	22.6, 21.5	23.4,22.3	18.8, 17.7
RMS (bonds) ${ }^{\text {d }}$	0.011	0.011	0.011	0.012	0.012	0.012
RMS (angles) ${ }^{\text {d }}$	1.755	1.655	1.922	1.82	1.751	1.765
Total number of atoms	7185	7006	6778	7068	7073	7155
Total number of water molecules	717	585	372	567	649	759
Solvent content (\%)	55.57	55.07	55.36	55.45	55.58	55.42
Matthews Coefficient (\AA^{3} / Da)	2.77	2.74	2.75	2.76	2.77	2.76
Most favored regions (\%)	90.5	90.4	88.5	90.7	90.4	90.0
Additionally allowed regions (\%)	8.5	8.6	10.4	8.3	8.6	9.0
Generously allowed regions (\%)	0.8	0.8	0.9	0.8	0.8	0.8
Disallowed regions (\%)	0.2	0.2	0.2	0.2	0.2	0.2

${ }^{a}$ Highest resolution bin in parentheses;
${ }^{\mathrm{b}} \mathrm{R}_{\text {sym }}=\sum_{\mathrm{hkl}} \sum_{\mathrm{j}}\left|\mathrm{I}_{\mathrm{j}}-\langle\mathrm{I}\rangle\right| / \sum_{\mathrm{hkl}} \sum_{\mathrm{j}} \mathrm{I}_{\mathrm{j}}$, where I is the intensity of a reflection, and $\langle\mathrm{I}\rangle$ is the mean intensity of all symmetry related reflections j ; ${ }^{\text {c }} \mathrm{R}_{\mathrm{p} . \mathrm{i} . \mathrm{m} .}=\sum_{\mathrm{hkl}}\left\{[1 /(\mathrm{N}-1)]^{1 / 2} \sum_{\mathrm{j}}\left|\mathrm{I}_{\mathrm{j}}-\langle\mathrm{I}\rangle\right|\right\} / \sum_{\mathrm{hkl}} \sum_{\mathrm{j}} \mathrm{I}_{\mathrm{j}}$, where I is the intensity of a reflection, and $\langle\mathrm{I}\rangle$ is the mean intensity of all symmetry related reflections j , and N is the multiplicity ${ }^{[6]}$;
${ }^{\mathrm{d}}$ Taken from REFMAC ${ }^{[7]}$; $\mathrm{R}_{\text {free }}$ is calculated using 5% of the total reflections that were randomly selected and excluded from refinement;
${ }^{\mathrm{e}} \mathrm{DPI}=R_{\text {factor }} \cdot D_{\text {max }} \cdot \operatorname{compl}^{-1 / 3} \sqrt{\frac{N_{\text {atoms }}}{\left(N_{\text {refl }}-N_{\text {params }}\right)}}$, where $N_{\text {atoms }}$ is the number of the atoms included in the refinement, $N_{\text {refl }}$ is the number of the reflections included in the refinement, $D_{\text {max }}$ is the maximum resolution of reflections included in the refinement, compl is the completeness of the observed data, and for isotropic refinement, $N_{\text {params }} \approx 4 N_{\text {atoms }}{ }^{[8]}$;
${ }^{\text {f }}$ Taken from BAVERAGE ${ }^{[9]}$;
sTaken from PROCHECK ${ }^{[9]}$.

Table 2-SI. C α RMSD of the crystal structures of SPU bound to 3MC, 4MC, 3,4DMC, 3,5DMC, 4,5DMC, and 3,6DMC (PDB codes 6ZNY, $6 \mathrm{ZNZ}, 6 \mathrm{ZO} 0,6 \mathrm{ZO} 1,6 \mathrm{ZO} 2$ and 6 ZO 3) calculated with respect to the native (PDB code 4CEU) ${ }^{[10]}$ and catechol-bound SPU (PDB code 5G4H). All values are reported in Å.

ligand (PDB code)	3MC (6ZNY)		4MC (6ZNZ)		3,4DMC (6ZO0)		3,5DMC (6ZO1)		4,5DMC (6ZO2)		3,6DMC (6ZO3)	
	(4CEU)	(5G4H)										
	NAT	CAT										
α	0.095	0.080	0.090	0.080	0.171	0.151	0.116	0.103	0.094	0.080	0.069	0.077
β	0.109	0.069	0.099	0.069	0.198	0.167	0.134	0.090	0.117	0.073	0.106	0.062
γ	0.122	0.079	0.117	0.074	0.176	0.139	0.137	0.083	0.130	0.078	0.113	0.069

Table 3-SI. Selected distances and angles around the $\mathrm{Ni}(\mathrm{II})$ ions in the crystal structures of SPU bound to 3MC, 4MC, 3,4DMC, 3,5DMC, 4,5DMC, and 3,6DMC (PDB codes 6ZNY, 6ZNZ, 6ZO0, $6 \mathrm{ZO} 1,6 \mathrm{ZO} 2$ and 6 ZO 3). The same distances and angles measured in the structure of SPU in the native state (PDB code 4 CEU$)^{[10]}$ and bound to CAT (PDB code 5 G 4 H) ${ }^{[11]}$ are reported as a comparison.

(PDB code) ligand	$\begin{gathered} \text { (6ZNY) } \\ \text { 3MC } \end{gathered}$	$\begin{gathered} \text { (6ZNZ) } \\ \text { 4MC } \end{gathered}$	$\begin{gathered} \text { (6ZOO) } \\ \text { 3,4DMC } \end{gathered}$	$\begin{gathered} \text { (6ZO1) } \\ \text { 3,5DMC } \end{gathered}$	$\begin{gathered} \text { (6ZO2) } \\ \text { 4,5DMC } \end{gathered}$	(6ZO3) 3,6DMC	$\begin{aligned} & \text { (5G4H) } \\ & \text { CAT }^{[11]} \end{aligned}$	$\begin{aligned} & \text { (4CEU) } \\ & \text { NAT }^{[10]} \end{aligned}$
$\mathbf{N i}$ - L Distances ($\mathbf{\AA}^{(1)}{ }^{\text {a }}$								
$\mathrm{Ni}(1)-\alpha \mathrm{Lys} 220$ O O 1	2.0	2.1	1.9	2.0	2.0	2.0	2.0	1.9
$\mathrm{Ni}(1)-\mathrm{L}_{\text {b }}$	2.1	2.0	2.0	2.1	2.1	2.1	1.9	2.1
$\mathrm{Ni}(1)-\mathrm{L}_{1}$	2.1	2.3	2.4	2.2	2.2	2.2	2.2	2.2
$\mathrm{Ni}(1)-\alpha \mathrm{His} 249 \mathrm{~N} \delta$	2.0	2.0	2.1	2.0	2.0	2.0	2.0	2.0
$\mathrm{Ni}(1)-\alpha \mathrm{His} 275 \mathrm{~N} \varepsilon$	2.0	2.1	2.1	2.0	2.0	2.0	2.1	2.0
$\mathrm{Ni}(2)-\alpha \mathrm{Lys} 220 * \mathrm{O} 02$	2.1	2.1	2.2	2.1	2.1	2.1	2.1	2.1
$\mathrm{Ni}(2)-\mathrm{L}_{\text {B }}$	2.1	2.1	2.3	2.1	2.1	2.1	2.0	2.1
$\mathrm{Ni}(2)-\mathrm{L}_{2}$	2.2	2.4	2.3	2.2	2.2	2.1	2.2	2.1
$\mathrm{Ni}(2)-\alpha$ His137 $\mathrm{N} \varepsilon$	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
$\mathrm{Ni}(2)-\alpha \mathrm{His} 139 \mathrm{~N} \varepsilon$	2.1	2.1	2.2	2.1	2.1	2.1	2.1	2.1
$\mathrm{Ni}(2)-\alpha \mathrm{Asp} 363 \mathrm{O} \delta 1$	2.1	2.2	2.3	2.1	2.1	2.1	2.1	2.1
$\mathrm{Ni}(1) \cdots \cdots \mathrm{Ni}(2)$	3.7	3.6	3.8	3.7	3.7	3.7	3.6	3.7
$\mathrm{L}_{1} \cdots \mathrm{~L}_{2}$	2.3	2.0	2.1	2.2	2.2	2.2	2.3	2.4

L- Ni-L Angles (${ }^{\circ}$)								
α Lys220* O $01-\mathrm{Ni}(1)-\alpha$ His249 $\mathrm{N} \delta$	100.5	105.5	109.5	102.4	102.5	101.7	101.3	100.4
$\alpha \mathrm{Lys} 220 * \mathrm{O} 1-\mathrm{Ni}(1)-\alpha \mathrm{His} 275 \mathrm{~N} \varepsilon$	104.3	108.8	109.7	103.0	103.6	105.5	107.2	107.2
$\alpha \mathrm{Lys} 220 * \mathrm{O} 01-\mathrm{Ni}(1)-\mathrm{L}_{\mathrm{B}}$	96.8	96.7	100.9	96.3	97.1	94.9	89.9	96.6
$\alpha \mathrm{Lys} 220 * \mathrm{O} \theta 1-\mathrm{Ni}(1)-\mathrm{L}_{1}$	108.3	108.7	102.6	108.6	107.5	107.1	107.9	108.2
α His249 N $\delta-\mathrm{Ni}(1)-\alpha \mathrm{His} 275 \mathrm{~N} \varepsilon$	99.3	92.5	91.1	97.9	96.2	97.0	95.3	98.6
α His275 N $\varepsilon-\mathrm{Ni}(1)-\mathrm{L}_{\text {b }}$	98.0	100.1	102.1	97.2	98.2	100.3	101.9	94.6
$L_{B}-\mathrm{Ni}(1)-\mathrm{L}_{1}$	63.0	63.5	61.1	62.0	63.9	61.0	70.1	67.0
$L_{1}-\mathrm{Ni}(1)-\alpha \mathrm{His} 249 \mathrm{~N} \delta$	90.1	89.2	94.2	92.8	91.2	92.1	85.8	89.3
α His249 N $\delta-\mathrm{Ni}(1)-\mathrm{L}_{\mathrm{B}}$	151.6	149.4	140.6	152.6	152.2	151.8	155.7	154.2
α His $275 \mathrm{~N} \varepsilon-\mathrm{Ni}(1)-\mathrm{L}_{1}$	143.8	140.5	143.3	143.4	145.5	143.5	143.9	141.6
$\alpha \mathrm{Lys} 220$ O $\mathrm{O} 2-\mathrm{Ni}(2)-\alpha \mathrm{His} 137 \mathrm{~N} \varepsilon$	92.3	95.4	97.4	92.5	92.3	91.7	92.1	90.8
$\alpha \mathrm{Lys} 220$ O $\mathrm{O} 2-\mathrm{Ni}(2)-\alpha \mathrm{His} 139 \mathrm{~N} \varepsilon$	91.4	89.7	91.0	91.9	92.2	91.7	92.6	91.7
$\alpha \mathrm{Lys} 220 * \mathrm{O} \theta 2-\mathrm{Ni}(2)-\mathrm{L}_{2}$	92.3	90.2	93.2	92.0	91.6	92.0	93.3	92.9
$\alpha \mathrm{Lys} 220 * \mathrm{O} \theta 2-\mathrm{Ni}(2)-\mathrm{L}_{\mathrm{B}}$	95.0	94.8	91.5	96.3	95.6	93.2	90.2	95.6
α Asp363 O $81-\mathrm{Ni}(2)-\alpha$ His137 $\mathrm{N} \varepsilon$	83.1	81.8	83.1	83.7	83.7	83.2	81.6	82.8
α Asp363 O $81-\mathrm{Ni}(2)-\alpha$ His139 $\mathrm{N} \varepsilon$	85.6	86.5	81.4	86.6	85.9	86.2	84.3	86.4
$\alpha \mathrm{Asp} 363 \mathrm{O} 81-\mathrm{Ni}(2)-\mathrm{L}_{2}$	93.7	94.4	88.4	92.6	93.3	94.4	94.5	94.5
α Asp363 O $11-\mathrm{Ni}(2)-\mathrm{L}_{\mathrm{B}}$	90.3	90.8	91.5	87.3	88.4	91.6	96.0	89.1
$L_{2}-\mathrm{Ni}(2)-\mathrm{L}_{\mathrm{B}}$	62.4	63.8	63.1	63.5	62.5	60.6	69.9	67.7
$L_{B}-\mathrm{Ni}(2)-\alpha$ His137 $\mathrm{N} \varepsilon$	97.2	95.1	101.1	97.6	97.2	97.3	91.7	95.0
α His137 N $\varepsilon-\mathrm{Ni}(2)-\alpha$ His $139 \mathrm{~N} \varepsilon$	109.4	113.0	111.4	109.1	109.1	109.8	112.2	108.5
α His139 N ε - Ni(2)- L2	90.6	87.7	82.9	89.2	90.7	92.0	85.9	88.4
$\alpha \mathrm{Lys} 220$ * O $22-\mathrm{Ni}(2)-\alpha$ Asp363 O $\delta 1$	173.3	173.9	171.9	175.1	174.7	173.4	171.3	172.4
$L_{B}-\mathrm{Ni}(2)-\alpha$ His139 $\mathrm{N} \varepsilon$	152.4	151.1	145.5	150.7	152.3	152.3	155.8	155.3
$L_{2}-\mathrm{Ni}(2)-\alpha \mathrm{His} 137 \mathrm{~N} \varepsilon$	159.4	158.6	162.0	151.7	159.6	157.8	160.8	162.6
$\mathrm{Ni}(1)-\mathrm{L}_{\mathrm{B}}-\mathrm{Ni}(2)$	121.5	122.5	112.2	119.4	120.2	124.6	135.1	122.1

${ }^{(a)} \mathrm{L}_{1}, \mathrm{~L}_{2}$ indicate the ligand atom bound to $\mathrm{Ni}(1)$ and $\mathrm{Ni}(2)$, respectively, while L_{B} indicates the $\mathrm{Ni}-$ bridging ligand atom.

Table 4-SI. Selected distances and angles around the catechol derivatives in the crystal structures of SPU bound to 3MC, 4MC, 3,4DMC, 3,5DMC, 4,5DMC, and 3,6DMC (PDB codes 6ZNY, 6ZNZ, $6 \mathrm{ZO}, 6 \mathrm{ZO} 1,6 \mathrm{ZO} 2$ and 6 ZO 3). The same distances and angles measured in the structure of SPU bound to CAT (PDB code 5 G 4 H) ${ }^{[11]}$ are reported as a comparison. Atom numbering follows that reported in Schemes 1-6-SI. In the distances field, the values corresponding to the distance between $\alpha \mathrm{Cys} 322 \mathrm{~S} \gamma$ and the bonded aromatic carbon atom are represented in bold. The same carbon atom, as well as the aromatic carbon atoms directly bonded to it, are renamed $\mathrm{C}_{\text {aro }}, \mathrm{C}_{\text {aro+1 }}$ and $\mathrm{C}_{\text {aro- }}$, respectively, in the angles and torsion angles field.

(PDB code) ligand	$\begin{gathered} \text { (6ZNY) } \\ \text { 3MC } \end{gathered}$	$\begin{gathered} (6 \mathrm{ZNZ}) \\ 4 \mathrm{MC} \end{gathered}$	$\begin{aligned} & \text { (6ZO0) } \\ & \text { 34DMC } \end{aligned}$	$\begin{aligned} & \text { (6ZO1) } \\ & \text { 35DMC } \end{aligned}$	$\begin{aligned} & \text { (6ZO2) } \\ & \text { 45DMC } \end{aligned}$	$\begin{aligned} & \text { (6ZO3) } \\ & \text { 36DMC } \end{aligned}$	$\begin{aligned} & \hline \mathbf{(5 G 4 H)} \\ & \text { CAT }^{[11]} \end{aligned}$
Distances (\AA)							
C1- α Cys $322 \mathrm{~S} \gamma$	2.7	4.0	2.7	2.7	3.9	4.5	4.0
C2- α Cys 322 S γ	4.0	2.7	4.0	4.0	2.7	4.0	2.6
C3- α Cys 322 S γ	4.5	1.7	4.6	4.5	1.7	2.7	1.6
C4- α Cys $322 \mathrm{~S} \gamma$	4.0	2.7	4.0	4.0	2.7	1.7	2.7
C5- $\mathrm{C}_{\text {Cys } 322 \mathrm{~S} \gamma}$	2.7	4.0	2.7	2.7	4.0	2.6	4.0
C6- α Cys 322 S γ	1.7	4.5	1.7	1.7	4.5	4.0	4.5
O1- α Cys $322 \mathrm{~S} \gamma$	3.0	5.1	3.1	2.9	5.0	5.8	5.0
O2- α Cys322 S γ	5.1	2.9	5.0	5.0	2.9	5.1	2.8
$\mathrm{C}_{\text {M }}-\alpha \mathrm{Cys} 322 \mathrm{~S} \gamma$	6.0	---	6.1	6.0	---	3.1	----
См4- α Cys322 S γ	---	3.2	5.2	---	3.0	---	---
Cm5 - α Cys322 S γ	---	---	---	3.1	5.2	---	---
$\mathrm{C}_{\text {M } 6-\alpha \mathrm{Cys} 322 ~ S ~} \gamma$	---	---	---	---	---	5.1	
Angles and torsion angles (${ }^{\circ}$)							
α Cys $322 \mathrm{C} \beta-\alpha \mathrm{Cys} 322 \mathrm{~S} \gamma-\mathrm{C}_{\text {aro }}$	100.4	106.7	114.7	101.3	104.0	97.6	108.3
$\alpha \mathrm{Cys} 322 \mathrm{~S} \gamma-\mathrm{C}_{\text {aro }}-\mathrm{Cara}_{\text {aro }}$	120.1	123.0	121.6	117.7	120.4	117.6	125.2
α Cys 322 S γ - $\mathrm{Cara}^{-} \mathrm{C}_{\text {aro-1 }}$	119.4	117.9	120.2	123.1	118.3	122.8	115.8
α Cys $322 \mathrm{C} \beta-\alpha \mathrm{Cys} 322 \mathrm{~S} \gamma-\mathrm{Caro}^{-}$- $\mathrm{Caro}^{\text {+ }}$	-68.3	112.6	-92.0	-69.9	107.2	-69.9	108.9
	113.4	-64.8	88.3	109.8	-71.0	110.4	-69.4

Table 5-SI. Kinetic parameters for inhibition of JBU by the mono- and di-substituted catechol derivatives tested at $20 \mu \mathrm{M}$. The same data determined for CAT ${ }^{[1]]}$ are shown as a comparison.

Compound	$k_{1} \times 10^{4}\left(\mathrm{~s}^{-2}\right)$	$k_{2} \times 10^{6}\left(\mathrm{~s}^{-1}\right)$	$k_{1} \times k_{2} \times 10^{10}\left(\mathrm{~s}^{-3}\right)$
CAT	0.72	5.87	4.23
3MC	13.18	6.11	80.53
4MC	1.53	3.17	4.85
3,4DMC	16.52	2.61	43.11
3,5DMC	3.80	0.31	1.18
4,5DMC	12.14	3.94	47.83
3,6DMC	2.17	0.33	0.72

Table 6-SI. Possible conformations of 3-methyl-semiquinone optimized at the B3LYP/G aug-ccpVTZ level. For each conformer, the name, the formation energy (Hartrees) and the spin density are reported. The energy difference in $\mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the most stable conformation is reported into square brackets.

3MS_1: -421.544894 [1.94]	3MS_5: -421.546038 [1.22]
	3MS_6: -421.53
3M,	3MS_7. -421.533852 [8.87]
3	3MS_8: -421.547984 [0.00]*

[^0]

Scheme 1-SI. 3-metyl-catechol atoms numeration scheme.

Table 7-SI. B3LYP/G aug-cc-pVTZ spin density fraction on 3-methyl-semiquinone atoms. Atoms are named accordingly to Scheme 1-SI. The most stable conformation has been indicated with an asterisk, while the atom bearing the larger spin density fraction of each conformation has been highlighted in bold.

	Conformation							
Atom	3MS_1	3MS_2	3MS_3	3MS_4	3MS_5	3MS_6	3MS_7	3MS_8*
C_{1}	0.079	0.046	0.180	0.181	0.080	0.047	0.188	0.186
C_{2}	0.191	0.186	0.059	0.090	0.202	0.198	0.059	0.090
C_{3}	-0.028	-0.033	0.160	0.133	-0.025	-0.031	0.150	0.125
C_{4}	0.214	0.229	-0.022	-0.001	0.203	0.218	-0.018	0.002
C_{5}	0.015	-0.012	0.214	0.206	0.017	-0.009	0.220	0.210
C_{6}	0.124	0.158	-0.036	-0.032	0.113	0.145	-0.036	-0.032
O_{1}	$\mathbf{0 . 2 9 8}$	$\mathbf{0 . 3 3 2}$	0.073	0.083	$\mathbf{0 . 3 0 0}$	$\mathbf{0 . 3 3 5}$	0.076	0.086
O_{2}	0.088	0.077	$\mathbf{0 . 3 3 3}$	$\mathbf{0 . 3 0 5}$	0.093	0.082	$\mathbf{0 . 3 2 3}$	$\mathbf{0 . 2 9 6}$
C_{M}	-0.003	-0.003	0.009	0.007	-0.003	-0.003	0.009	0.007
$\mathrm{H}_{\mathrm{O} 1}$	-	-	0.003	0.005	-	-	0.003	0.005
$\mathrm{H}_{\mathrm{O} 2}$	0.005	0.003	-	-	0.005	0.003	-	-
H_{4}	0.016	0.017	-0.002	0.000	0.015	0.017	-0.002	0.000
H_{5}	0.001	-0.001	0.016	0.015	0.001	-0.001	0.016	0.015
H_{6}	0.006	0.008	-0.004	-0.004	0.005	0.007	-0.004	-0.004
$\mathrm{H}_{\text {M1 }}$	0.000	-0.001	0.001	0.000	0.000	0.000	0.000	0.000
$\mathrm{H}_{\text {M } 2}$	-0.003	-0.003	0.008	0.006	-0.003	-0.004	0.008	0.007
$\mathrm{H}_{\text {M }}$	-0.003	-0.003	0.008	0.006	-0.003	-0.004	0.008	0.007
Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 8-SI. Possible conformations of 4-methyl-semiquinone optimized at the B3LYP/G aug-ccpVTZ level. For each conformer, the name, the formation energy (Hartrees) and the spin density are reported. The energy difference in kcal mol^{-1} with respect to the most stable conformation is reported into square brackets.

* Most stable conformation.

Scheme 2-SI. 4-metyl-catechol atoms numeration scheme.

Table 9-SI. B3LYP/G aug-cc-pVTZ spin density fraction on 4-methyl-semiquinone atoms. Atoms are named accordingly to Scheme 2-SI. The most stable conformation has been indicated with an asterisk, while the atom bearing the larger spin density fraction of each conformation has been highlighted in bold.

	Conformation							
Atom	4MS_1*	4MS_2	4MS_3	4MS_4	4MS_5	4MS_6	4MS_7	4MS_8
C_{1}	0.083	0.052	0.206	0.207	0.082	0.050	0.194	0.199
C_{2}	0.183	0.187	0.046	0.076	0.169	0.171	0.046	0.076
C_{3}	-0.033	-0.036	0.126	0.093	-0.036	-0.039	0.143	0.106
C_{4}	0.200	0.211	-0.006	0.020	0.207	0.216	-0.008	0.019
C_{5}	0.024	-0.004	0.234	0.222	0.021	-0.005	0.228	0.218
C_{6}	0.113	0.138	-0.032	-0.026	0.130	0.157	-0.034	-0.027
O_{1}	$\mathbf{0 . 2 9 8}$	$\mathbf{0 . 3 3 0}$	0.085	0.098	$\mathbf{0 . 3 0 1}$	$\mathbf{0 . 3 3 2}$	0.080	0.093
O_{2}	0.083	0.075	$\mathbf{0 . 3 2 0}$	$\mathbf{0 . 2 8 4}$	0.077	0.068	$\mathbf{0 . 3 3 0}$	$\mathbf{0 . 2 9 0}$
$\mathrm{C}_{\text {M }}$	0.016	0.017	0.001	0.003	0.016	0.017	0.000	0.002
$\mathrm{H}_{\text {O1 }}$	-	-	0.003	0.005	-	-	0.003	0.005
$\mathrm{H}_{\text {O2 }}$	0.005	0.003	-	-	0.004	0.003	-	-
H_{3}	-0.004	-0.005	0.006	0.004	-0.004	-0.004	0.007	0.005
H_{5}	0.000	-0.002	0.017	0.015	0.000	-0.001	0.017	0.015
H_{6}	0.005	0.007	-0.004	-0.003	0.006	0.008	-0.004	-0.004
$\mathrm{H}_{\text {M1 }}$	0.001	0.001	0.000	0.000	0.001	0.001	0.000	0.001
$\mathrm{H}_{\text {M2 }}$	0.013	0.013	-0.001	0.001	0.013	0.013	-0.001	0.001
$\mathrm{H}_{\text {M3 }}$	0.013	0.013	-0.001	0.001	0.013	0.013	-0.001	0.001
Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 10-SI, part 1. Possible conformations of 3,4-dimethyl-semiquinone optimized at the B3LYP/G aug-cc-pVTZ level. For each conformer, the name, the formation energy (Hartrees) and the spin density are reported. The energy difference in $\mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the most stable conformation is reported into square brackets.

[^1]Table 10-SI, part 2. Possible conformations of 3,4-dimethyl-semiquinone optimized at the B3LYP/G aug-cc-pVTZ level. For each conformer, the name, the formation energy (Hartrees) and the spin density are reported. The energy difference in $\mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the most stable conformation is reported into square brackets.

* Most stable conformation.

Scheme 3-SI. 3,4-dimethyl-catechol atoms numeration scheme.

Table 11-SI, part 1. B3LYP/G aug-cc-pVTZ spin density fraction on 3,4-dimethyl-semiquinone atoms. Atoms are named accordingly to Scheme 3-SI. The most stable conformation has been indicated with an asterisk, while the atom bearing the larger spin density fraction of each conformation has been highlighted in bold.

			Conformation					
Atom	34DMS_1	34DMS_2*	34DMS_3	34DMS_4	34DMS_5	34DMS_6	34DMS_7	34DMS_8
C_{1}	0.199	0.190	0.202	0.192	0.198	0.187	0.203	0.190
C_{2}	0.089	0.089	0.089	0.089	0.058	0.059	0.058	0.059
C_{3}	0.103	0.116	0.098	0.113	0.135	0.150	0.128	0.145
C_{4}	0.005	0.003	0.008	0.005	-0.018	-0.019	-0.015	-0.017
C_{5}	0.220	0.216	0.224	0.219	0.230	0.223	0.234	0.227
C_{6}	-0.030	-0.031	-0.029	-0.031	-0.034	-0.035	-0.034	-0.035
O_{1}	0.092	0.088	0.093	0.089	0.080	0.075	0.082	0.078
O_{2}	$\mathbf{0 . 2 8 7}$	$\mathbf{0 . 2 9 4}$	$\mathbf{0 . 2 7 9}$	$\mathbf{0 . 2 8 6}$	$\mathbf{0 . 3 1 8}$	$\mathbf{0 . 3 2 5}$	$\mathbf{0 . 3 0 8}$	$\mathbf{0 . 3 1 6}$
$\mathrm{C}_{\text {M }}$	0.006	0.007	0.005	0.007	0.008	0.009	0.007	0.009
$\mathrm{C}_{\text {M } 4}$	0.002	0.001	0.003	0.001	0.000	-0.001	0.001	-0.001
$\mathrm{H}_{\text {O1 }}$	0.005	0.005	0.005	0.005	0.003	0.003	0.003	0.003
$\mathrm{H}_{\text {O2 }}$	-	-	-	-	-	-	-	-
H_{5}	0.015	0.015	0.015	0.016	0.017	0.016	0.017	0.018
H_{6}	-0.003	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
$\mathrm{H}_{\text {M31 }}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\mathrm{H}_{\text {M32 }}$	0.005	0.005	0.005	0.006	0.006	0.008	0.007	0.008
$\mathrm{H}_{\text {M33 }}$	0.005	0.005	0.005	0.006	0.006	0.008	0.007	0.008
$\mathrm{H}_{\text {M41 }}$	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000
$\mathrm{H}_{\text {M42 }}$	0.000	0.000	0.001	0.000	-0.001	-0.002	-0.001	-0.002
$\mathrm{H}_{\text {M43 }}$	0.000	0.000	0.001	0.000	-0.001	-0.002	-0.001	-0.002
Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 11-SI, part 2. B3LYP/G aug-cc-pVTZ spin density fraction on 3,4-dimethyl-semiquinone atoms. Atoms are named accordingly to Scheme 3-SI. The most stable conformation has been indicated with an asterisk, while the atom bearing the larger spin density fraction of each conformation has been highlighted in bold.

Ato m	Conformation							
	34DMS	34DMS_1						
	9	0	1	2	3	4	5	6
C_{1}	0.085	0.084	0.085	0.084	0.051	0.050	0.052	0.051
C_{2}	0.185	0.176	0.195	0.182	0.187	0.176	0.197	0.182
C_{3}	-0.032	-0.034	-0.031	-0.033	-0.036	-0.037	-0.035	-0.037
C_{4}	0.205	0.205	0.197	0.201	0.218	0.217	0.211	0.213
C5	0.025	0.022	0.028	0.024	-0.004	-0.005	-0.002	-0.004
C_{6}	0.112	0.125	0.102	0.119	0.140	0.154	0.129	0.148
O_{1}	0.292	0.297	0.293	0.299	0.324	0.330	0.327	0.332
O_{2}	0.083	0.078	0.087	0.081	0.075	0.070	0.079	0.073
См3	-0.003	-0.003	-0.003	-0.004	-0.003	-0.004	-0.003	-0.003
См5	0.017	0.017	0.017	0.016	0.018	0.017	0.017	0.017
Ho1	-	-	-	-	-	-	-	-
Ho2	0.005	0.005	0.005	0.004	0.003	0.003	0.003	0.003
H_{5}	0.000	0.001	0.000	0.001	-0.002	-0.001	-0.002	-0.001
H_{6}	0.005	0.006	0.004	0.005	0.007	0.008	0.006	0.007
$\mathrm{H}_{\mathrm{M} 1}$	0.000	0.000	0.000	0.000	-0.001	-0.001	0.000	0.000
$\mathrm{H}_{\text {M } 22}$	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.004
$\mathrm{H}_{\text {M33 }}$	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.004
$\mathrm{H}_{\text {5 } 1 ~}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$\mathrm{H}_{\text {552 }}$	0.013	0.013	0.013	0.013	0.014	0.014	0.013	0.013
$\mathrm{H}_{\text {M53 }}$	0.013	0.013	0.013	0.013	0.014	0.014	0.013	0.013
Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 12-SI. Possible conformations of 3,6-dimethyl-semiquinone optimized at the B3LYP/G aug-cc-pVTZ level. For each conformer, the name, the formation energy (Hartrees) and the spin density are reported. The energy difference in $\mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the most stable conformation is reported into square brackets.
(

[^2]

Scheme 4-SI. 3,6-dimethyl-semiquinone atoms numeration scheme.

Table 13-SI. B3LYP/G aug-cc-pVTZ spin density fraction on 3,6-dimethyl-semiquinone atoms. Atoms are named accordingly to Scheme 4-SI. The most stable conformation has been indicated with an asterisk, while the atom bearing the larger spin density fraction of each conformation has been highlighted in bold.

		Conformation						
Atom	36DMS_1	36DMS_2	36DMS_3	36DMS_4*	36DMS_5	36DMS_6	36DMS_7	36DMS_8
C_{1}	0.177	0.189	0.182	0.194	0.173	0.186	0.180	0.193
C_{2}	0.092	0.092	0.092	0.093	0.059	0.059	0.058	0.059
C_{3}	0.139	0.127	0.131	0.119	0.170	0.157	0.160	0.147
C_{4}	-0.003	0.000	0.001	0.004	-0.023	-0.022	-0.019	-0.018
C_{5}	0.213	0.203	0.217	0.206	0.223	0.214	0.229	0.219
C_{6}	-0.032	-0.030	-0.031	-0.029	-0.035	-0.034	-0.035	-0.033
O_{1}	0.080	0.086	0.083	0.089	0.070	0.075	0.074	0.079
O_{2}	$\mathbf{0 . 3 0 1}$	$\mathbf{0 . 3 0 3}$	$\mathbf{0 . 2 9 3}$	$\mathbf{0 . 2 9 4}$	$\mathbf{0 . 3 2 8}$	$\mathbf{0 . 3 3 2}$	$\mathbf{0 . 3 1 7}$	$\mathbf{0 . 3 2 1}$
$\mathrm{C}_{\text {M3 }}$	0.008	0.007	0.007	0.007	0.010	0.009	0.009	0.008
$\mathrm{C}_{\text {M6 }}$	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
$\mathrm{H}_{\text {O1 }}$	0.005	0.005	0.005	0.005	0.003	0.003	0.003	0.003
H_{4}	0.000	0.000	0.000	0.000	-0.002	-0.002	-0.002	-0.002
H_{5}	0.016	0.015	0.016	0.015	0.017	0.016	0.017	0.017
$\mathrm{H}_{\text {M31 }}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\mathrm{H}_{\text {M32 }}$	0.007	0.006	0.007	0.006	0.008	0.008	0.009	0.008
$\mathrm{H}_{\text {M33 }}$	0.007	0.006	0.007	0.006	0.008	0.008	0.009	0.008
$\mathrm{H}_{\text {M61 }}$	-0.001	0.000	-0.001	0.000	0.000	0.000	0.000	0.000
$\mathrm{H}_{\text {M62 }}$	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
$\mathrm{H}_{\text {M63 }}$	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 14-SI. Possible conformations of 4,5-dimethyl-semiquinone optimized at the B3LYP/G aug-cc-pVTZ level. For each conformer, the name, the formation energy (Hartrees) and the spin density are reported. The energy difference in $\mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the most stable conformation is reported into square brackets.
[9.14]

[^3]

Scheme 5-SI. 4,5-dimethyl-semiquinone atoms numeration scheme.

Table 15-SI. B3LYP/G aug-cc-pVTZ spin density fraction on 4,5-dimethyl-semiquinone atoms. Atoms are named accordingly to Scheme 5-SI. The most stable conformation has been indicated with an asterisk, while the atom bearing the larger spin density fraction of each conformation has been highlighted in bold.

		Conformation						
Atom	45DMS_1*	45DMS_2	45DMS_3	45DMS_4	45DMS_5	45DMS_6	45DMS_7	45DMS_8
C_{1}	0.192	0.180	0.187	0.171	0.194	0.180	0.187	0.169
C_{2}	0.081	0.080	0.080	0.079	0.051	0.050	0.051	0.049
C_{3}	0.097	0.108	0.104	0.121	0.126	0.139	0.136	0.155
C_{4}	0.026	0.024	0.026	0.023	-0.001	-0.002	-0.003	-0.005
C_{5}	0.211	0.221	0.210	0.220	0.220	0.229	0.218	0.226
C_{6}	-0.032	-0.035	-0.032	-0.036	-0.035	-0.038	-0.036	-0.039
O_{1}	0.087	0.082	0.085	0.078	0.077	0.072	0.075	0.067
O_{2}	$\mathbf{0 . 2 8 8}$	$\mathbf{0 . 2 8 8}$	$\mathbf{0 . 2 9 0}$	$\mathbf{0 . 2 9 3}$	$\mathbf{0 . 3 2 2}$	$\mathbf{0 . 3 2 1}$	$\mathbf{0 . 3 2 6}$	$\mathbf{0 . 3 2 8}$
$\mathrm{C}_{\text {M } 4}$	0.001	0.002	0.001	0.001	-0.001	0.000	-0.001	0.000
$\mathrm{C}_{\text {M }}$	0.016	0.016	0.016	0.017	0.017	0.017	0.017	0.017
$\mathrm{H}_{\text {O1 }}$	0.004	0.004	0.005	0.004	0.003	0.003	0.003	0.003
H_{3}	0.004	0.005	0.005	0.006	0.006	0.007	0.007	0.008
H_{6}	-0.004	-0.004	-0.004	-0.004	-0.004	-0.005	-0.005	-0.005
$\mathrm{H}_{\text {M41 }}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\mathrm{H}_{\text {M42 }}$	0.001	0.001	0.000	0.000	-0.001	-0.001	-0.001	-0.001
$\mathrm{H}_{\text {M43 }}$	0.001	0.001	0.000	0.000	-0.001	-0.001	-0.001	-0.001
$\mathrm{H}_{\text {M51 }}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$\mathrm{H}_{\text {M52 }}$	0.013	0.013	0.013	0.013	0.013	0.014	0.013	0.014
$\mathrm{H}_{\text {M53 }}$	0.013	0.013	0.013	0.013	0.013	0.014	0.013	0.014
Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 16-SI, part 1. Possible conformations of 3,5-dimethyl-semiquinone optimized at the B3LYP/G aug-cc-pVTZ level. For each conformer, the name, the formation energy (Hartrees) and the spin density are reported. The energy difference in $\mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the most stable conformation is reported into square brackets.
ces [9.97]

* Most stable conformation.

Table 16-SI, part 2. Possible conformations of 3,5-dimethyl-semiquinone optimized at the B3LYP/G aug-cc-pVTZ level. For each conformer, the name, the formation energy (Hartrees) and the spin density are reported. The energy difference in $\mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the most stable conformation is reported into square brackets.
(13.21]

* Most stable conformation.

Scheme 6-SI. 3,5-dimethyl-catechol atoms numeration scheme.

Table 17-SI, part 1. B3LYP/G aug-cc-pVTZ spin density fraction on 3,5-dimethyl-semiquinone atoms. Atoms are named accordingly to Scheme 6-SI. The most stable conformation has been indicated with an asterisk, while the atom bearing the larger spin density fraction of each conformation has been highlighted in bold.

		Conformation						
Atom	35DMS_1	35DMS_2	35DMS_3*	35DMS_4	35DMS_5	35DMS_6	35DMS_7	35DMS_8
C_{1}	0.175	0.159	0.180	0.165	0.179	0.162	0.185	0.169
C_{2}	0.096	0.095	0.096	0.095	0.064	0.063	0.064	0.063
C_{3}	0.121	0.140	0.114	0.132	0.145	0.165	0.136	0.155
C_{4}	0.008	0.004	0.010	0.007	-0.016	-0.017	-0.012	-0.014
C_{5}	0.196	0.200	0.200	0.204	0.204	0.207	0.209	0.212
C_{6}	-0.034	-0.037	-0.034	-0.037	-0.036	-0.038	-0.036	-0.038
O_{1}	0.078	0.071	0.081	0.074	0.070	0.063	0.073	0.066
O_{2}	$\mathbf{0 . 3 0 0}$	$\mathbf{0 . 3 0 3}$	$\mathbf{0 . 2 9 3}$	$\mathbf{0 . 2 9 5}$	$\mathbf{0 . 3 2 8}$	$\mathbf{0 . 3 3 0}$	$\mathbf{0 . 3 1 8}$	$\mathbf{0 . 3 1 9}$
$\mathrm{C}_{\text {M }}$	0.006	0.008	0.006	0.008	0.008	0.010	0.008	0.009
$\mathrm{C}_{\text {M5 }}$	0.016	0.016	0.016	0.016	0.016	0.016	0.017	0.017
$\mathrm{H}_{\text {O1 }}$	0.004	0.004	0.004	0.004	0.003	0.002	0.003	0.003
$\mathrm{H}_{\text {O2 }}$	-	-	-	-	-	-	-	-
H_{4}	-0.001	0.000	-0.001	0.000	-0.002	-0.002	-0.002	-0.002
H_{6}	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.005
$\mathrm{H}_{\text {M31 }}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\mathrm{H}_{\text {M32 }}$	0.006	0.007	0.006	0.007	0.007	0.008	0.007	0.008
$\mathrm{H}_{\text {M33 }}$	0.006	0.007	0.006	0.007	0.007	0.008	0.007	0.008
$\mathrm{H}_{\text {M51 }}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$\mathrm{H}_{\text {M52 }}$	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
$\mathrm{H}_{\text {M53 }}$	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 17-SI, part 2. B3LYP/G aug-cc-pVTZ spin density fraction on 3,5-dimethyl-semiquinone atoms. Atoms are named accordingly to Scheme 6-SI. The most stable conformation has been indicated with an asterisk, while the atom bearing the larger spin density fraction of each conformation has been highlighted in bold.

Ato m	Conformation							
	35DMS	35DMS_1						
	9	,	1	2	3	4	5	6
C_{1}	0.077	0.077	0.078	0.077	0.045	0.045	0.046	0.046
C_{2}	0.207	0.199	0.219	0.211	0.201	0.189	0.214	0.202
C_{3}	-0.024	-0.025	-0.021	-0.022	-0.031	-0.033	-0.029	-0.030
C_{4}	0.226	0.221	0.214	0.210	0.242	0.235	0.230	0.224
C5	0.021	0.019	0.023	0.021	-0.007	-0.009	-0.005	-0.008
C_{6}	0.095	0.109	0.085	0.097	0.133	0.151	0.121	0.138
O_{1}	0.279	0.287	0.280	0.287	0.316	0.326	0.319	0.328
O_{2}	0.096	0.092	0.100	0.097	0.083	0.078	0.088	0.083
Смз	-0.002	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003	-0.003
См5	0.003	0.002	0.004	0.002	0.001	0.000	0.001	0.000
Ho1	-	-	-	-	-	-	-	-
Ho2	0.005	0.005	0.005	0.005	0.003	0.003	0.003	0.003
H_{4}	0.016	0.016	0.015	0.016	0.018	0.018	0.017	0.017
H_{6}	0.004	0.005	0.004	0.004	0.007	0.008	0.006	0.007
$\mathrm{H}_{\mathrm{M} 1}$	0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.000
$\mathrm{H}_{\text {M } 2}$	-0.002	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
$\mathrm{H}_{\text {M }}$	-0.002	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
$\mathrm{H}_{\text {5 } 1}$	-0.001	0.001	0.000	0.001	0.000	0.001	0.000	0.001
$\mathrm{H}_{\text {5 } 2 ~}$	0.001	0.000	0.001	0.001	-0.001	-0.001	-0.001	-0.001
$\mathrm{H}_{\text {M53 }}$	0.001	0.000	0.001	0.001	-0.001	-0.001	-0.001	-0.001
Total	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 18-SI. B3LYP/G aug-cc-pVTZ formation energies in Hartree of the substituted catechols considered in this work. For each substituted catechol, the energy difference ($\Delta \mathrm{E}$) in $\mathrm{kcal} / \mathrm{mol}$ with respect to the most stable intermediate is also reported.

Intermediate	Formation energy (Hartree)	$\mathbf{\Delta E}$ (kcal/mol)
3MC_int4_open	-860.274140	5.0
3MC_int4_close	-860.276797	3.3
3MC_int5_open	-860.276568	3.5
3MC_int5_close	-860.278837	2.0
3MC_int6_open	-860.278787	2.1
3MC_int6_close	-860.282070	0.0
4MC_int3_open	-860.276598	3.6
4MC_int3_close	-860.277416	3.1
4MC_int5_open	-860.276200	3.8
4MC_int5_close	-860.279452	1.8
4MC_int6_open	-860.277969	2.7
4MC_int6_close	-860.282288	0.0
34DMC_int5_open	-899.603901	4.5
34DMC_int5_close	-899.607184	2.5
34DMC_int6_open	-899.607872	2.0
34DMC_int6_close	-899.611094	0.0
35DMC_int_open	-899.606144	1.9
35DMC_int_close	-899.608627	0.3
35DMC_int_copen	-899.607951	0.7
35DMC_int6_close	-899.609134	0.0
45DMC_int3_open	-899.604405	3.4
45DMC_int3_close	-899.609847	0.0
36DMC_int4_open	-899.605817	1.5
36DMC_int4_close	-899.608233	0.0

Table 19-SI Energy variations (in $\mathrm{kcal} / \mathrm{mol}$) along the relaxed surface scan

Starting catechol	$\Delta \mathrm{E}($ max - separated molecules $)$		
$(\mathrm{kcal} / \mathrm{mol})$		\quad	$\Delta \mathrm{E}$ (intermediate -max$)$
---:			
$(\mathrm{kcal} / \mathrm{mol})$			

Figure 1-SI. Bar plot showing the per residue RMSD of $\mathrm{C} \alpha$ atoms belonging to residues in α, β and γ subunits (colored in red, magenta and blue, respectively) of the crystal structures of SPU bound to 3MC, 4MC, 3,4DMC, 3,5DMC, 4,5DMC, and 3,6DMC (PDB codes 6ZNY, 6ZNZ, 6ZO0, 6ZO1, 6 ZO 2 and 6 ZO 3) calculated with respect to the native enzyme (PDB code 4 CEU) ${ }^{[10]}$.

Figure 2-SI. Bar plot showing the per residue RMSD of $\mathrm{C} \alpha$ atoms belonging to residues in α, β and γ subunits (colored in black, purple and orange, respectively) of the crystal structures of SPU bound to 3MC, 4MC, 3,4DMC, 3,5DMC, 4,5DMC, and 3,6DMC (PDB codes 6ZNY, 6ZNZ, 6ZO0, $6 \mathrm{ZO} 1,6 \mathrm{ZO} 2$ and 6 ZO 3) calculated with respect to the structure of SPU bound to catechol (PDB code 5 G 4 H$){ }^{[11]}$.

Figure 3-SI. Atomic models of the active site of SPU bound to 3MC (A), 4MC (B), 3,4DMC (C), 3,5DMC (D), 4,5DMC (E), and 3,6DMC (F) (PDB codes 6ZNY, 6ZNZ, 6ZO0, 6ZO1, 6ZO2 and 6ZO3). The carbon, nitrogen, oxygen, sulfur and nickel atoms are gray, blue, red, yellow and green, respectively. The unbiased $F_{o}-F_{c}$ electron density map calculated with Fourier coefficients F_{o} - F_{c} and phases derived from the model before addition of the atoms corresponding to the ligands is shown colored blue and contoured at 3σ.

Figure 4-SI. Detail of the mobile flap region after the superimposition of all the X-ray structures determined in the present work together with the structure of SPU bound to catechol (PDB code $5 \mathrm{G} 4 \mathrm{H})^{[11]}$. The ribbons in the flap region, as well as the catechol derivatives, are colored according to the following scheme: CAT: orange; 3MC, blue; 4MC, green; 34DMC, light blue; 35DMC, red; 45DMC, light blue; 36DMC, purple. The side chain of α Lys220* is in sticks colored according to atom type. The $\mathrm{Ni}(\mathrm{II})$ ions are shown as green spheres.

Figure 5-SI. Scheme of the H-bonding network (thin blue lines) in the vicinity of the SPU active site in the case of urease inactivation by $\mathbf{3 M C}$ (PDB code 6ZNY). Spheres are drawn using the relative-atomic-radius values in CrystalMaker. The carbon, nitrogen, oxygen, sulphur, and nickel atoms are coloured grey, blue, red, yellow, and green, respectively.

Figure 6-SI. B3LYP/G aug-cc-pVTZ spin density of the most stable conformation of 3-methylsemiquinone (A), 4-methyl-semiquinone (B), 3-methoxy-semiquinone (C), 3,6-dimethylsemiquinone (D), 4,5-dimethyl-semiquinone (E), and 3,5-dimethyl-semiquinone (F). The spin density fraction on the most relevant atoms has been indicated.

Figure 7-SI. B3LYP/G aug-cc-pVTZ optimized geometries and formation energies (in Hartree) of the reaction intermediate achieved starting from each of the monosubstituted catechols considered in this work. The carbon-sulfur distance (in Angstrom) is also reported. For each substituted catechol, the lowest energy structure has been highlighted with an asterisk.

Figure 8-SI. B3LYP/G aug-cc-pVTZ optimized geometries and formation energies (in Hartree) of the reaction intermediate achieved starting from each of the disubstituted catechols considered in this work. The carbon-sulfur distance (in Angstrom) is also reported. For each substituted catechol, the lowest energy structure has been highlighted with an asterisk.

REFERENCES

[1] M. Iwatsu, D. Urabe, M. Inoue, Heterocycles 2010, 82, 491-504.
[2] A. Pezzella, L. Lista, A. Napolitano, M. d’Ischia, Tetrahedron Lett. 2005, 46, 3541-3544.
[3] D. D. Weller, E. P. Stirchak, J. Org. Chem. 1983, 48, 4873-4879.
[4] K. Shindo, R. Nakamura, A. Osawa, O. Kagami, K. Kanoh, K. Furukawa, N. Misawa, J. Mol. Cat. B 2005, 35, 134-141.
[5] C. Huang, N. Ghavtadze, B. Chattopadhyay, V. Gevorgyan, J. Am. Chem. Soc. 2011, 133, 17630-17633.
[6] M. Weiss, Journal of Applied Crystallography 2001, 34, 130-135.
[7] G. N. Murshudov, A. A. Vagin, E. J. Dodson, Acta Crystallogr D Biol Crystallogr 1997, 53, 240-255.
[8] D. W. Cruickshank, Acta Crystallogr D Biol Crystallogr 1999, 55, 583-601.
[9] M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, Acta Crystallogr D Biol Crystallogr 2011, 67, 235-242.
[10]S. Benini, M. Cianci, L. Mazzei, S. Ciurli, J. Biol. Inorg. Chem. 2014, 19, 1243-1261.
[11]L. Mazzei, M. Cianci, F. Musiani, G. Lente, M. Palombo, S. Ciurli, J. Inorg. Biochem. 2017, 166, 182-189.

[^0]: * Most stable conformation.

[^1]: * Most stable conformation.

[^2]: * Most stable conformation.

[^3]: * Most stable conformation.

