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Abstract 1 

Serpentinization is the process of hydroxylation of olivine-rich ultramafic rocks to produce 2 

minerals such as serpentine, brucite and magnetite. This process is commonly accompanied 3 

by Fe oxidation and release of H2, which can be involved in abiotic reaction pathways leading 4 

to the genesis of abiotic light hydrocarbons such as methane (CH4). Examples of this 5 

phenomenon exist at the seafloor, such as at the serpentinite-hosted Lost City hydrothermal 6 

field, and on land in ophiolites at relatively shallow depths. However, the possibility for 7 

serpentinization to occur at greater depths, especially in subduction zones, raises new 8 

questions on the genesis of abiotic hydrocarbons at convergent margin and its impact on the 9 

deep carbon cycle. High-pressure ultramafic bodies exhumed in metamorphic belts can 10 

provide insights on the mechanisms of high-pressure serpentinization in subduction zones 11 

and on the chemistry of the resulting fluids. This study focuses on the ultramafic Belvidere 12 

Mountain complex belonging to the Appalachian belt of northern Vermont, USA. 13 

Microstructures show overgrowth of both primary (Mg# 0.91) and metamorphic (Mg# 0.95) 14 

olivine by delicate antigorite crystals, pointing to at least one stage of serpentinization at high-15 

temperature conditions and consistent with the high-pressure subduction evolution of the 16 

Belvidere Mountain complex. Formation of ubiquitous magnetite and local Fe-Ni alloys 17 

testifies to the partial oxidation of Fe2+ into Fe3+ and generation of reduced conditions. Fluid 18 

inclusion trails cross-cutting the primary olivine relicts suggest their formation during the 19 

antigorite serpentinization event. MicroRaman spectroscopy on the fluid inclusions reveals a 20 

CH4-rich gaseous composition, as well as N2, NH3 and H2S. Moreover, the precipitation of 21 

daughter minerals such as lizardite and brucite in the fluid inclusions indicate the initial 22 

presence of H2O in the fluid. High-pressure serpentinization driven by the infiltration of 23 
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metasediment-derived aqueous fluids is proposed at the origin of CH4 and other reduced fluid 24 

species preserved in the fluid inclusions. This suggests the Belvidere Mountain complex as an 25 

example of deep abiotic hydrocarbon genesis related to high-pressure serpentinization in an 26 

early Paleozoic subduction zone. 27 

Keywords: HP Serpentinization, Metamorphic olivine, Abiotic methane, C fluxes at 28 

subduction zones, Belvidere Mountain Complex. 29 



Introduction 1 

Alteration of ultramafic rocks by aqueous fluids, or serpentinization, produces serpentine-rich 2 

rocks and may be accompanied by redox reactions leading to the formation of H2 and abiotic 3 

light hydrocarbons (Mével, 2003; Moody, 1976; Seyfried Jr et al., 2007). Oxidation of Fe2+ in 4 

mantle minerals and formation of Fe3+ minerals such as magnetite produces H2, which may 5 

then promote the conversions of dissolved carbon-bearing species into abiotic CH4 (Andreani 6 

et al., 2013; Berndt et al., 1996). Serpentinization is well documented at mid-ocean ridges and 7 

on land (Andréani et al., 2007; Cannat et al., 2010; Etiope et al., 2011; Klein et al., 2014; 8 

Schrenk et al., 2013), where H2 and CH4 produced through serpentinization can support 9 

biological communities and could be linked to the emergence of early life on Earth (Kelley et 10 

al., 2005; Ménez et al., 2018; Sleep and Bird, 2007). Serpentinization processes may also 11 

happen at much greater depths and affect subducted mantle sections and the overlying 12 

mantle wedge at convergent margins (Guillot et al., 2015, 2000; Vitale Brovarone et al., 2017; 13 

Wada et al., 2008), owing to the availability of aqueous fluids (Bebout and Penniston-Dorland, 14 

2016; Deschamps et al., 2013). However, the patterns of serpentinization reactions at high-15 

temperature (HT) and high-pressure (HP) conditions, here defined with respect to the 16 

serpentine stability field, and the associated fluid-rock redox budgets are still largely 17 

unconstrained. The possibility that HT-HP serpentinization may not involve Fe oxidation and 18 

genesis of H2 has been proposed (Evans, 2010). However, natural case studies of slab-derived 19 

serpentinized peridotites suggest that magnetite, H2 and abiotic CH4 can be produced at these 20 

conditions (Vitale Brovarone et al., 2020). Ultramafic bodies in metamorphic belts can provide 21 

good insights on the mechanisms of HP-HT serpentinization and the resulting fluids (Evans et 22 
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al., 2017), and therefore make good case studies for the investigation of the mechanisms of 23 

serpentinization in subduction zones. 24 

The Belvidere ultramafic complex, Vermont, USA, is a fragment of the Iapetus ocean that was 25 

involved in the Taconic orogeny and recorded HP metamorphism during Cambrian-Ordovician 26 

(Chew and van Staal, 2014; Gale, 1980; Honsberger et al., 2017). This complex includes 27 

variably serpentinized peridotites bearing antigorite, the HT serpentine polysome stable at 28 

subduction zone HP conditions (Schwartz et al., 2013), therefore making a potential example 29 

of HT-HP serpentinization. In this work, we integrate field, microstructural, thermodynamic, 30 

and fluid inclusions data to investigate the patterns and timing of serpentinization of the 31 

Belvidere ultramafic complex, with particular focus on the HP fluid-rock interactions recorded 32 

by these rocks. 33 

1. Geologic setting 34 

The Belvidere Mountain complex (BMC) area is part of a North-South trending belt of 35 

mafic/ultramafic rocks belonging to the Appalachian Mountain system and extending form 36 

Newfoundland to Georgia (Gale, 2007; Hibbard et al., 2006)(Fig. 1). These ultramafic bodies 37 

mainly consist of variably serpentinized peridotites, and associated metabasic and metafelsic 38 

rocks tectonically embedded within Cambrio-Ordovician metasedimentary and 39 

metavolcanics formations (Chidester et al., 1978; Gale, 1986, 1980; Laird et al., 1984; Van 40 

Baalen et al., 2009). The BMC, as well as other mafic/ultramafic complexes such as the 41 

Tillotson Peak and the Pennington complexes, are interpreted to represent remnants of an 42 

ocean-continent transition zone associated with the extension of the Laurentian margin 43 

(Chew and van Staal, 2014). These terranes were successively involved in the closure of the 44 



Iapetus Ocean during the Ordovican Taconic orogeny (Doolan et al., 1982; Honsberger et al., 45 

2017; Karabinos et al., 1998; Laird et al., 1984; Stanley et al., 1984). The BMC forms a 6.5 km 46 

long body that structurally overlies the metasedimentary Ottauquechee and Stowe 47 

Formations to the East and is overlain by the Hazen Notch formation to the West. The Stowe 48 

Formation is late Cambrian, composed of gray-green quartz -chlorite-sericite +/- magnetite 49 

schists. The Ottauquechee Formation is middle Cambrian consisting carbonaceous 50 

pyritiferous phyllite. The Hazen Notch Formation is dated from Neoproterozoic to Cambrian, 51 

graphitic and non-graphitic quartz-albite-sclerite-chlorite schist, along medium-grained, 52 

massive, quartz-albite-muscovite gneiss. The internal architecture of the BMC comprises, 53 

from top to bottom, variably serpentinized dunite and harzburgite, coarse-grained and fine-54 

grained amphibolite, greenstone, muscovite schist, and albite gneiss (Gale, 1986, 1980; Van 55 

Baalen et al., 2009). Lenticular bodies composed of talc-carbonate rocks and steatite, often 56 

including cores of relatively unserpentinized peridotite, are observed within the BMC, and 57 

range size from a few meters to several tens of meter (Chidester et al., 1978). The BMC rocks 58 

underwent Taconic blueschist-facies peak metamorphic conditions constrained at 0.9-1.3 GPa 59 

and 510-520 °C in metabasic rocks (Honsberger, 2015; Laird et al., 1993). Slightly higher P, 60 

blueschist-to-eclogite-facies metamorphic conditions are recorded by the Tilliston Peak mafic 61 

rocks located just north of the BMC (Laird et al., 1993, 1984). This tectonometamorphic event 62 

has been dated at 505-473 Ma by 40/39Ar amphibole and mica geochronology (Castonguay et 63 

al., 2012; Laird et al., 1993). 64 

2. Methods 65 

Quantitative energy-dispersive X-ray spectroscopy (EDS) analyses and backscattered electron 66 

(BSE) imaging were carried out using the JSM-IT300LV Scanning Electron Microscope Oxford 67 



Inca Energy Dispersive Spectrometer at the Department of Earth Sciences of Turin University. 68 

Data were processed with the INCA software from Oxford Instruments. Quantitative analysis 69 

employed 15kV accelerating voltage and 20 s to 40 s counting time. Natural and synthetic 70 

mineral and oxide standards were employed. EDS calibration was made using Cobalt 71 

standard. 72 

Quantitative wavelength-dispersive spectrometer (WDS) analyses were carried out using a 73 

JEOL 8200 Super Probe at the Department of Earth Sciences “Ardito Desio” of Milan 74 

University. The microprobe was using a 15keV accelerating voltage under 5 nÅ, with 30s 75 

counting time under maximum emission peak. Sixteen oxide composition were measured, 76 

using synthetic and natural standards: grossular (Si, Al and Ca), omphacite (Na), K-feldspath 77 

(K), fayalite (Fe), forsterite (Mg), rhodonites (Mn), niccolite (Ni), ilmenite (Ti), galena (Pb and 78 

S), pure Cr, pure Zn and pure Cu. 79 

MicroRaman spectroscopy of minerals and fluid inclusions was done at the Department of 80 

Earth Sciences, University of Turin, with a LabRAM HR (VIS) (HORIBA Jobin Yvon) equipped of 81 

a 532.11 nm, solid-state Nd laser, a Super Notch Plus filter with spectral resolution of 1 cm−1, 82 

and a grating of 600 grooves/mm. The laser of emission power was set at 80 mW and focused 83 

to 5 μm with a ×100 objective with a laser power on the sample < 5 mW. Calibration was 84 

performed using the 520.6 cm−1 band of a silicon standard for the 100-2000 cm-1 range, and 85 

the 2331 cm-1 band of atmospheric N2 for the 2000-4000 cm-1 range. Four accumulations of 86 

30–60 s were collected for each spectrum. Raman spectra of fluid inclusions were performed 87 

on double-polished thick sections unless otherwise specified. 88 



Isotopic composition measurements of methane were performed on a MAT 253 (Thermo 89 

Fisher) mass spectrometer, coupled with gas chromatography (GCC-IR-MS) in order to purify 90 

the samples. The gas phase was extracted and measured after crushing the rock sampler 91 

under vacuum. 92 

Thermodynamic modelling was performed using the Deep Earth Water (DEW) Model 93 

(Sverjensky et al., 2014) and the EQ3/EQ6 software (Wolery and Jarek, 2003) with a modified 94 

Berman database (Berman, 1988). EQ3 was used to calculate the composition of a fluid in 95 

equilibrium with a given mineral assemblage as, fO2, P and T. EQ6 was used to model the 96 

interaction of fluid compositions from EQ3 with another mineral assemblage as function of 97 

the  fluid/rock (F/R) ratio. 98 

3. Sample description and mineral chemistry 99 

In this section, we present the petrography, microstructures and mineral chemistry of 100 

samples collected in the Belvidere mine (Fig. 2) and showing different degrees of 101 

serpentinization. The selected samples range from weakly serpentinized  dunite (V18-2a and 102 

V18-2b) to partially serpentinized dunite including layers of boudinaged meta-pyroxenite 103 

(V18-3a and V18-3b), to fully serpentinized peridotite (V18-B3). 104 

3.1. Microstructural characterization  105 

Sample V18-2a (least serpentinized dunite) consists of olivine (∼80 vol.%), antigorite (∼10 106 

vol.%), Cr-spinel (>5 vol.%), magnetite (<5 vol.%), chlorite (<1 vol.%), sulphides (<1 vol.%), and 107 

alloys (<1 vol.%) determined from visual estimate in thin section. Primary olivine forms 108 

crystals ranging in size from 0.25 to 1 mm (Fig. 3A). It is partially replaced by antigorite, as 109 



identified by MicroRaman spectroscopy (Fig. 4), along mesh-like structures (Fig. 3A-C). 110 

Antigorite is present as elongated crystals, up to 200 µm in length, which statistically 111 

overgrew the olivine (Fig. 3C). Magnetite is present in three microstructural domains: as large, 112 

millimeter scale crystals rimming chromite relicts, as grains of ∼50 µm in the mesh structures, 113 

and as millimeter scale crystals in antigorite veins. Chlorite is found, together with magnetite, 114 

around Cr-spinel relicts (Fig. 3B).  115 

Sample V18-2b (serpentinized dunite) consists of antigorite (∼40 vol.%), olivine (∼40 vol.%, 116 

including primary and metamorphic olivine), magnetite (>5 vol.%), chlorite (>5 vol.%), brucite 117 

(<5 vol.%), and alloys (<1 vol.%). The structure is similar to V18-2a, but in this case the extent 118 

of serpentinization along the meshes is higher. SEM backscattered-electron imaging reveals 119 

the presence of a second generation of olivine, hereafter metamorphic olivine (see Section 120 

4.2 for discussion) growing in two different sites: epitaxially on the primary olivine and 121 

replacing former orthopyroxene (Fig. 5A-B). Striped zoning is observed in primary olivine (Fig 122 

5A), as described in Plümper et al., 2012a, alternating thin forsterite-richer and forsterite-123 

poorer olivine composition. The initial presence of orthopyroxene in the rock is inferred based 124 

on the presence of clinopyroxene exsolutions preserved in metamorphic olivine-rich 125 

pseudomorphoses (Fig. 3D and 5B). Antigorite is present as elongated (0.5 mm in length) 126 

crystals and as fine-grained aggregates in the matrix. The elongated antigorite crystals are 127 

chemically zoned, with bright core and dark rim in backscattered electron imaging (Fig. 5A). 128 

Raman spectra of both generations exhibit the characteristic 1043 cm-1 band of antigorite, 129 

whereas the main OH stretching is at 3664 cm-1 in the bright core and at 3673 cm-1 in the dark 130 

rim (Fig 4C), both inconsistent with antigorite-lizardite mixing. The higher Raman shift of the 131 

dark rim may be linked to variation of pressure condition (Auzende et al., 2004). The dark 132 



antigorite generation appears the same forming the fine-grained aggregates. The bright 133 

antigorite generation (at the core of large crystals) is never found in contact with either 134 

primary or metamorphic olivine, whereas the darker antigorite generation (at the rim of large 135 

crystals of disseminated in the matrix) is in contact with them (Fig. 5A). Magnetite is more 136 

abundant relative to sample V18-2a, especially along meshes. Brucite was identified by SEM 137 

and Raman (Fig. 4D) in veins, sometimes associated with metamorphic olivine (Fig. 5C). Alloys 138 

and sulphides are present in association with antigorite and are locally associated to 139 

magnetite (Fig. 5D).  140 

Samples V18-3a and 3b are from a boudinaged layer of clinopyroxenite included in an 141 

intensely serpentinized dunite (Fig. 3E-G). The mineral assemblage and microstructures of the 142 

serpentinized dunite part of the sample is similar to sample V18-2b, yet more intensely 143 

serpentinized. The primary clinopyroxene is fully replaced by diopside aggregates in both the 144 

clinopyroxenite layer and the host dunite. The primary clinopyroxene sites in this sample are 145 

slightly different from the serpentinized dunite, with less abundant magnetite and 146 

characteristic fan-shaped diopside aggregates in the former compared to the latter. 147 

Metamorphic olivine is present at the rim of primary clinopyroxene and along its cleavages, 148 

together with antigorite (Fig. 5E-F). In the latter case, metamorphic olivine is localized along 149 

thin arrays encircled by antigorite (Fig. 5F). Antigorite shows the same chemical zoning as 150 

observed in the dunite, with brighter cores and darker rims in backscatter electron imaging 151 

(Fig. 5G). Backscattered electron imaging reveals that the dark antigorite shows similar 152 

overgrowth microstructural relationships with both primary and metamorphic olivine (Fig. 153 

5E). The microstructures reflect either equilibrium between antigorite and the two olivine 154 

generations, or overgrowth of both olivine generations by the antigorite. Considering that the 155 



amount of primary olivine strongly decreases in favour of antigorite in several samples, which 156 

suggests serpentinization of the primary olivine, second antigorite generation formed after 157 

the growth of metamorphic olivine appears . It is possible, even though the microstructures 158 

could not confirm it, that the first antigorite generation grew prior to or together with the 159 

metamorphic olivine. Magnetite is present in four different structural sites: as arrays of ∼50 160 

µm size crystals along the meshes, as trails of ∼50 µm crystals in primary olivine and 161 

clinopyroxene pseudomorphoses, as aggregates rimming the primary Cr-spinel, and as 162 

millimeter scale aggregates along discordant veins. The Cr-spinel sites are characterized by 163 

three different layers: a rather preserved core, a mantle of ferritchromite, and a rim of 164 

magnetite (Fig. 5E; see Section 4.2).  165 

Sample V18-B3 is a fully serpentinized peridotite. The matrix is composed of a mixture of 166 

antigorite and chrysotile (identified by MicroRaman) with magnetite. Brucite is observed 167 

replacing pyroxene sites and is associated with magnetite and/or metamorphic olivine (Fig. 168 

3H and 5H). Based on the microstructural observations on sample V18-2b, these 169 

pseudomorphoses are interpreted as former orthopyroxene crystals replaced by 170 

metamorphic olivine and successively hydrated to form serpentine + brucite ± magnetite. 171 

3.2. Mineral chemistry 172 

Primary olivine has Mg# of 0.91-0.92 [Mg# = Mg/(Fe+Mg)], whereas metamorphic olivine is 173 

enriched in Mg (Mg# of 0.95) (Table 1, Fig. 6). The Mn# [Mn# = Mn/(Mn+Fe+Mn+Ni)] of 174 

metamorphic olivine (0.0040 ±0.0006) is much higher than primary olivine (0.0015 ±0.0005). 175 

Metamorphic olivine analyses in sample V18-B3 show slightly lower Mg# and higher Mn# 176 

content relative to metamorphic olivine from other samples. Metamorphic olivine rimming 177 



the primary orthopyroxene sites in sample V18-3a has higher CaO content (0.25 wt.%) 178 

compared to the metamorphic olivine overgrowing primary olivine in V18-2b (0.02 wt.%). 179 

Metamorphic olivine in the sample V18-B3 show slightly lower Mg# and highly increased MnO 180 

content (1.2 wt %) in regard to metamorphic olivine from other samples. The NiO content of 181 

primary olivine (0.38 to 0.49 wt.%) and metamorphic olivine (0.39 to 0.46 wt.%) are similar. 182 

The incorporation of Mn in olivine appears to be characteristic of metamorphic olivine from 183 

several localities regardless of the olivine formation environments (dehydration vs. 184 

hydration). The Mg# of metamorphic olivine relative to primary olivine may depend upon 185 

several parameters such as the stability of different Fe-bearing minerals, the Fe partitioning 186 

among them, and the P-T and redox conditions (Frost and Beard, 2007; Majumdar et al., 2016; 187 

Nozaka, 2018, 2003). An increase in Mg# (and MnO) in metamorphic olivine relative to 188 

primary olivine has been observed in inferred mantle wedge peridotites recording HP 189 

serpentinization (Dandar et al., 2019; Guillot et al., 2000). Plümper et al., 2012a report striped 190 

Mg# zoning in hydrated supra-subduction mantle rocks as the result of chemical interaction 191 

during antigorite serpentinization at high temperature conditions. Metamorphic olivine 192 

formed through prograde antigorite + brucite dehydration shows either lower or higher Mg# 193 

compared to mantle olivine (Arai et al., 2012; Debret et al., 2013; Iyer et al., 2008; Kempf and 194 

Hermann, 2018; Nozaka, 2018; Plümper et al., 2012b; Scambelluri et al., 1995; Shen et al., 195 

2015)(Fig. 6).  196 

The core of individual, elongated antigorite crystals exhibits higher FeO (1.6 to 2.6 wt.% [Mg# 197 

0.94-0.96]), Al2O3 (1.77 wt.%) [Mg# =Mg/(Mg+ƩFe)], and Cr2O3 (0.61 wt.%) than the rim (1.35 198 

wt.% [Mg# 0.97], 0.52 wt.%, 0.13 wt.%, respectively) (Table 1). Unzoned matrix antigorite has 199 



a composition equivalent to the rim of the elongated antigorite crystals. The Mn# [Mn# = 200 

Mn/(Mn+Fe+Mn+Ni)] of antigorite is 0.0006 (±0.0004). 201 

The preserved spinel core has Cr# [Cr/(Cr+Al)] of 0.79 (Table 2). The mantle overgrowing the 202 

primary spinel has a ferritchromite mantle of Cr-magnetite with a Cr# of 0.91 and higher MnO 203 

relative to the core. The magnetite rims with no Al2O3, but high Cr2O3 (1.87 wt.%). The 204 

composition of magnetite in the meshes and veins differs from magnetite found in the spinel 205 

sites, with very little Cr2O3. 206 

Diopside has a Mg number [Mg# =Mg/(Mg+Fe)] of 0.98. Chlorite has an Mg# [Mg# 207 

=Mg/(Mg+ƩFe)] of 0.95, and Cr2O3 up to 4.07 wt.% (Table 1). 208 

Brucite has up to 3 wt.% FeO (as total Fe), Mg# [Mg# =Mg/(Mg+Fe)] of 0.97 (Table 2). Alloys 209 

and sulfides are Ni rich, with various amounts of S, Fe and trace amounts of Pb, Cu, et Co 210 

(Table 3). Alloys mainly consist of Cu-bearing FeNi alloy (taenite) (Table 3). Sulphides include 211 

Ni, Cu, and Fe sulphides. Only heazlewoodite (NiS) was analysed whereas for other sulphides 212 

proper analyses could not be obtain owing to the small grain sizes. 213 

3.3. Fluid inclusion analysis 214 

Primary olivine in all samples is rich in fluid inclusions forming secondary trails (Fig. 7). The 215 

fluid inclusion trails are confined within individual crystals and show two alternative structural 216 

relationships relative to the antigorite veins, being either cut by them (Fig. 7A) or injected 217 

from them (Fig. 7B-C). These patterns suggest a secondary fluid trapping during the antigorite 218 

serpentinization event forming the main mesh structure observed in the rock. 219 



Fluid inclusions exhibit rounded to elongated shapes (Fig. 7D-E). Optical microscope 220 

observations at room conditions suggest that the fluid inclusions are either single-phase and 221 

gaseous, or bi-phase with solid and gas. MicroRaman spectra of fluid inclusions are presented 222 

in Fig. 8. The spectra show the presence of marked CH4 bands (2912 cm-1), as well as N2 (2327 223 

cm-1), NH3 (3324 cm-1), S-H/H2S (2575 cm-1). Free H2O in the fluid inclusions was not detected 224 

by MicroRaman. However, the presence of tiny amounts of free H2O in the fluid inclusions —225 

undetectable by MicroRaman at room conditions— cannot be excluded (Berkesi et al., 2009; 226 

Lamadrid et al., 2017).  227 

The molar fraction of gas in the gas mixture was estimated using the Raman scattering cross-228 

section and the instrumental efficiency of each species. Using equation presented in Frezzotti 229 

et al., 2012, we obtain the following molar proportion: CH4 = 92±6%, N2 = 6±5%, H2S = 1±1% 230 

and NH3 = 1±2% for the mean composition of twenty inclusions in olivine from all samples (Fig 231 

9). Composition within the same inclusion trail show molar fractionation variation smaller 232 

than 1% but different trail within the same crystal can exhibit up to 10% of molar fraction of 233 

CH4 and could reflect fluid heterogeneity. Alternatively, this effect can be the result of 234 

different crystal orientation during data acquisition (Caumon et al., 2019). No clear pattern 235 

was observed linked to relationship between inclusion trails and antigorite veinlets. 236 

Solid phases were identified in large fluid inclusions. MicroRaman analysis revealed the 237 

presence of lizardite and brucite but no magnetite was detected. Some inclusions contain 238 

graphite as a solid phase in the inclusion in addition (Fig. 7F and Fig. 8B). The only sporadic 239 

presence of graphite in the fluid inclusions, and in particular in inclusions resulting from 240 

necking processes, suggest that this mineral precipitated as a result of local respeciation of 241 

the fluid inclusions (Cesare, 1995). The presence of hydrous phases is the inclusions suggests 242 



re-equilibration of the inclusion with the host mineral, effectively serpentinizing the olivine 243 

and consuming water initially present in the inclusions. However, the presence of step-244 

daughter minerals in the inclusion is not systematic, suggesting that the initial fluid was 245 

already rich in CH4 (-N2-NH3-H2S) at the time of trapping, and that the reduced fluid species 246 

did not form only inside the fluid inclusions. 247 

3.4. Rodingite 248 

Rodingite are ultramafic rocks that are composed of carbonate, garnet, diopside, epidote ± 249 

graphite. While not being the focus of this study, the carbonate in the rodingite bear 250 

numerous trails of fluid inclusions. Fluid inclusions exhibit negative crystal shape and are 251 

single-phase gaseous. The composition of the carbonate-hosted fluid inclusions, as revealed 252 

by Raman spectroscopy, is essentially CH4 and N2. Using quantitative estimation of inclusions 253 

in carbonates (see section 4.3) yield molar fractions of N2 = 67±4%, CH4 = 33±4% on four 254 

different inclusions.  255 

3.5. Thermodynamic modelling 256 

Thermodynamic calculations were performed in order to constrain the mineralogical, fluid 257 

and redox pattern of the HP serpentinization. Because the selected partially serpentinized 258 

samples are comprised in strongly serpentinized rocks and embedded in metasediment, two 259 

fluid equilibriums can be considered. For silica-rich fluid sources (e.g. metasedimentary rocks 260 

or talc-bearing ultramafic rocks), the predicted assemblages do not match the natural 261 

samples. For this reason, the fluid composition calculated with EQ3 was equilibrated with a 262 

serpentinite consisting of antigorite + magnetite + brucite + chlorite + olivine. This fluid  then 263 

reacted with a dunite with mineral modal proportions comparable with the study samples 264 



and consisting of 92% olivine (forsterite 90%, fayalite 10%), 5.4% orthopyroxene (enstatite 265 

90%, ferrosilite 10%), 2.5% clinopyroxene (diopside 90%, hedenbergite 10%) and 0.1% spinel. 266 

The fO2 of the infiltrating fluid was set at the quartz-fayalite-magnetite (QFM) buffer. The 267 

calculations were done at temperatures consistent with the peak metamorphic conditions 268 

estimated for the BMC, i.e., 400 °C to 500 °C and 1 GPa (Honsberger, 2015; Laird et al., 1993), 269 

and for different F/R ratios. Figure 10 shows the mineralogical evolution as a function of 270 

reaction progress at 450 °C and 1GPa for a fluid rock ratio of 1. The model reaction proceeds 271 

with progressive transformation of, from the first to the last reacting mineral, mantle spinel, 272 

clinopyroxene, orthopyroxene, and olivine. Magnetite starts to form during the early stages 273 

of the reaction along with chlorite in response to spinel consumption. Reaction of mantle 274 

pyroxenes marks the precipitation of metamorphic clinopyroxene (diopside 93%, 275 

hedenbergite 3.35% and clino-enstatite 3.65% ), metamorphic olivine, antigorite, and 276 

additional magnetite. The late formation of antigorite marks the partial consumption of 277 

metamorphic olivine and a decrease in its Mg#, from Mg# 0.90 to Mg# 0.83. These patterns 278 

reflect the microstructural features observed in the natural samples. For example, spinel 279 

appears intensely replaced by chlorite in rather unserpentinized portions of the rock (Fig. 280 

10A). Similarly, mantle olivine adjacent to fully replaced mantle pyroxenes is commonly little 281 

affected by the serpentinization. Both mantle and metamorphic olivine in the natural samples 282 

appear texturally replaced by antigorite, as also suggested by the modelling while 283 

approaching equilibration. With the chosen bulk composition and used thermodynamic data 284 

set, the formation of antigorite is limited to T < 470 °C. The antigorite stability field could be 285 

enlarged by considering iron in the antigorite thermodynamic model. The fO2 decreases 286 

progressively during the reaction progress, with a steep decrease during the formation of 287 

antigorite down to ∆Log QFM = -1.2 (Fig. 10C). Methane, initially about 1 order of magnitude 288 



less concentrated than CO2 in the reacting fluid, becomes a dominant species at reaction 289 

completion (about 1 order of magnitude more concentrated than CO2). Nevertheless, 290 

variations of parameters such as F/R ratio, mineralogy, or temperature, were found to affect 291 

the proportion of CH4 and CO2. As an example, increasing the modal proportion of either 292 

orthopyroxene or clinopyroxene in the initial rock or decreasing the F/R ratio appears to 293 

favour a higher proportion of CH4 in the fluid in respect to CO2. The model predicts high 294 

relative concentration of H2 in the fluids, however H2 was not detected in natural samples by 295 

micro-Raman spectroscopy. Sulphur and nitrogen speciation were also assessed, with HS- and 296 

H2S and NH3 being the dominant sulphur species relative to HS O4
-  and N2 and N H4

+ , 297 

respectively (Fig. 10B).  298 

4. Discussion 299 

4.1. Patterns and timing of serpentinization 300 

The timing of serpentinization of slab-derived, exhumed HP serpentinized rocks can span 301 

(sub)seafloor conditions prior to subduction, prograde hydration during subduction, or 302 

retrograde hydration during exhumation. The BMC complex has been interpreted as a 303 

fragment of subducted Iapetus lithosphere, and therefore may have recorded different stages 304 

of serpentinization. Although the possibility of at least some (sub)seafloor serpentinization 305 

prior to the Taconic subduction cannot be excluded, our data cannot provide any proof of 306 

such a pre-subduction event and, instead, suggest a main hydration event at HP-HT conditions 307 

in the subduction zone. 308 

Besides late chrysotile veinlets, antigorite is the only serpentine polysome identified in the 309 

BMC rocks. Although formation of antigorite may occur in a wide range or P-T conditions also 310 

as a function of chemical parameters such as the silica activity (Rouméjon et al., 2019), 311 



serpentinites dominated by antigorite are generally referred to the HT temperature part of 312 

the serpentine stability field, generally above ∼300-400 °C (Evans, 2004; Schwartz et al., 313 

2013). In most subduction zone settings, these conditions also correspond to relatively HP 314 

conditions above 1 GPa. However, the presence of antigorite does not necessarily imply the 315 

serpentinization event to have happened at HP-HT conditions because it could also have 316 

formed as a result of the prograde transformation of lizardite or chrysotile following the 317 

reaction: 318 

17 Lizardite/Chrysotile = Antigorite + 3 Brucite (1) 319 

Nevertheless, several lines of evidence indicate that the BMC rocks recorded a stage of HP-320 

HT serpentinization. As a first general consideration, the presence of fresh mantle 321 

assemblages throughout the complex (Chidester et al., 1978; this study) represents a suitable 322 

condition to promote HP-HT serpentinization in the subduction zone, if aqueous fluids are 323 

available. Such a process has already been proposed in other HP ultramafic massifs preserving 324 

fresh mantle assemblages (e.g. Früh-Green et al., 2004; Scambelluri and Tonarini, 2012; Vitale 325 

Brovarone et al., 2020, 2017). The BMC rocks provides evidence for such a HP hydration event. 326 

Figure 11 summarizes the proposed fluid-rock evolution of the BMC rocks as inferred from 327 

the studied samples. The first indication of serpentinization (stage I in Fig. 11) is suggested by 328 

the growth of elongated metamorphic olivine on the primary clinopyroxene sites (Fig. 5G), 329 

which suggests the former presence of serpentine blades overgrowing the primary 330 

clinopyroxene. The selective growth of serpentine at the expense of clinopyroxene rather 331 

than primary olivine places this hypothetical event at HT conditions (Klein et al., 2013) and 332 

possibly in the antigorite stability field (Fig. 12). Metamorphic olivine is most commonly 333 

interpreted to form in response of serpentine dehydration during prograde metamorphism 334 



(Plümper et al., 2017; Scambelluri et al., 1991). Figure 12 provides a compilation of traditional 335 

serpentine dehydration reactions leading to the formation of metamorphic olivine. The peak 336 

metamorphic conditions proposed for the BMC (0.9-1.3 GPa and 520 °C) are consistent with 337 

the first olivine-forming reaction involving antigorite + brucite as reactants. Moreover, several 338 

studies have shown that olivine can form at T conditions lower than the reactions shown in 339 

figure 12 as a result of local bulk compositional features (Plümper et al., 2017). Alternatively, 340 

metamorphic olivine after orthopyroxene may also have formed in response to hydration 341 

rather than dehydration reactions, as already proposed for serpentinized mantle wedge rocks 342 

(Dandar et al., 2019) following the reaction: 343 

Orthopyroxene + 0.46 Water + 0.35 Mg2+= 344 

0.59 M-olivine +0.06 Antigorite + 0.29 Silica + 0.7 H+ (2) 345 

Followed by the hydration of olivine to form antigorite following the reaction  346 

Olivine + 1.29 Water + 0.42 Silica = 0.71 Antigorite (3) 347 

In either case (hydration or dehydration), the amount of serpentinization predating the 348 

formation of metamorphic olivine must have been very low and, if any, related to a HT event. 349 

The second, more robustly constrained stage of transformation (stage II in Fig. 11) is 350 

characterized by the formation of metamorphic olivine after primary orthopyroxene, and as 351 

rim around primary clinopyroxene (now recrystallized into diopside). This reaction was 352 

observed in rocks containing rather undisturbed primary olivine, which again point to HT 353 

serpentinization conditions (Klein et al., 2013). The partial preservation of clinopyroxene 354 

exsolution lamellae inside metamorphic olivine pseudomorphic on orthopyroxene may 355 

suggest nearly isovolumetric replacement during this event (Plümper et al., 2012b; Viti et al., 356 



2005). The thermodynamic modeling results suggest that, at 450 °C and 1 GPa, a transient 357 

antigorite generation may have formed together with metamorphic olivine early in the fluid-358 

rock interaction, along with spinel breakdown. The Al-Cr-rich antigorite cores (Atg1) observed 359 

in the studied samples may testify to this transient antigorite formation. The application of 360 

empirical distribution coefficient KD for antigorite and olivine by Evans, 2008 and 361 

Trommsdorff and Evans, 1974 support this hypothesis (Table 4). The empirical Mg distribution 362 

coefficient KD [antigorite/olivine, KD = (∑Fe/MgSrp)/(Fe/MgOl)] proposed by Evans, 2008 is 0.45-363 

0.35 upon consideration of ferric iron in the antigorite. The Atg1/metamorphic olivine 364 

apparent KD is 0.49-0.25, which agrees with the value proposed by Evans, 2008 for 365 

equilibrium, compared with other antigorite/olivine pairs (Atg1/primary olivine = 0.14-0.25; 366 

matrix antigorite (Atg2)/primary olivine = 0.11; Atg2/metamorphic olivine = 0.17-0.25). The 367 

Mn distribution between antigorite and olivine gives similar results. The empirical Mn 368 

distribution coefficients for antigorite/olivine equilibria is 0.18 (Trommsdorff and Evans, 369 

1974). The Atg1/metamorphic olivine pair has apparent appears KD of 0.14-0.18, thus 370 

consistent with the predicted equilibrium (Table 4).  371 

The third stage (stage III in Fig. 11) is characterized by the growth of a matrix antigorite (Atg2) 372 

at the expense of both primary and metamorphic olivine. This event may mark either 373 

retrograde hydration along the exhumation path of the BMC, or the progression of the fluid-374 

rock interaction. As indicated by the thermodynamic modeling results, a second antigorite 375 

generation is expected to form at 450 °C and 1 GPa after the precipitation of metamorphic 376 

olivine (Fig. 10A). The modeling predicts this second antigorite and metamorphic olivine to be 377 

stable together. However, the apparent KD for matrix antigorite and metamorphic olivine 378 

suggest disequilibrium (equilibrium Mg KD = 0.45, measured = 0.17-0.25; equilibrium Mn KD = 379 



0.18, measured = 0.09-0.14) (Table 4). This feature suggests that stage III marks the beginning 380 

of retrograde hydration. 381 

The fourth stage of serpentinization (IV in Fig. 11) is characterized by the complete 382 

serpentinization of primary olivine and partial to full serpentinization of metamorphic olivine. 383 

The partial preservation of metamorphic olivine after orthopyroxene in sample free of any 384 

primary olivine relict indicates that the largest event of serpentinization of the BMC rocks 385 

took place after the formation of metamorphic olivine. The presence of both antigorite and 386 

lizardite + brucite at the expense of metamorphic olivine after orthopyroxene suggests that 387 

this event protracted during the cooling of the BMC metamorphic path to temperatures lower 388 

than 400 °C (Fig. 12). 389 

In summary, based on the collected petrographic and thermodynamic data, the dominant 390 

serpentinization event observed in the BMC complex is interpreted to have taken place in the 391 

Taconic subduction zone. 392 

 393 

4.2. Timing of fluid inclusion formation and origin of CH4  394 

4.2.1. Timing of fluid inclusion entrapment 395 

Fluid inclusions in the BMC ultramafic and related metasomatic rocks contain reduced fluid 396 

species such as CH4, NH3, and H2S. The timing of fluid inclusion formation, as well as the origin 397 

of their reduced speciation, is discussed in this section. 398 

Reduced fluids have been found to form in ultramafic systems in a wide range of geologic 399 

conditions spanning mid-ocean ridges, obducted ophiolitic massifs, and orogenic peridotite 400 

bodies, in subduction, and in the upper mantle (Andréani et al., 2007; Etiope et al., 2011; 401 



Schrenk et al., 2013). In the BMC rocks, the fluid inclusions may have formed in three different 402 

stages of the evolution of the massif and corresponding to three different geodynamic 403 

settings: (i) in the mantle prior to the formation of the Iapetus Ocean, (ii) during the 404 

(sub)seafloor evolution prior to subduction, and (iii) in the subduction zone. 405 

A primary mantle origin can be ruled out because the observed fluid inclusions occur as 406 

secondary trails propagating from the antigorite veinlets crossing olivine crystal. A 407 

(sub)seafloor origin would match the identification of CH4-rich fluid inclusions in oceanic 408 

peridotite (Cannat et al., 2010; Holm and Charlou, 2001). However, in this case, the fluid 409 

inclusions would have been preserved during prograde metamorphism to at least 520 °C and 410 

1 GPa, which is unlikely (Touret, 2001). Moreover, the BMC fluid inclusions are rich in N 411 

species (NH3, N2), which seems to be an uncommon feature in fluid inclusions from oceanic 412 

peridotites (Grozeva et al., 2020; Klein et al., 2019). Instead, N-rich, NH3-bearing fluid 413 

inclusions have been recently documented in CH4-rich fluid inclusions in HP serpentinized 414 

peridotites from the Alpine belt and proposed to represent a distinctive feature of subduction 415 

zone serpentinizing fluids relative to mantle or (sub)seafloor fluids, especially in the presence 416 

of metasediment-derived fluids (Vitale Brovarone et al., 2020). Considering the 417 

microstructural and petrologic features discussed in Section 5.1, and the abundance of N 418 

species, a metamorphic origin in the Taconic subduction is proposed for the studied fluid 419 

inclusions. 420 

The formation of lizardite and brucite as step-daughter minerals inside the fluid inclusions can 421 

be interpreted (1) as a prograde, pre-antigorite inclusion-host interactions, (2) as a retrograde 422 

reequilibration of antigorite during cooling of the BMC below ∼400 °C with excess brucite 423 

(Reaction 1), or (3) as a retrograde host-inclusion interaction below ∼400 °C (Fig. 12). 424 



Excluding lizardite (meta)stability due to local equilibrium/kinetic features or faster 425 

antigorite-lizardite conversion in the inclusions relative to the host rock, we interpret the 426 

formation of step-daughter lizardite and brucite as a retrograde host-inclusion interaction. 427 

Similar interpretations have been proposed for analogous inclusions from Alpine belt (Vitale 428 

Brovarone et al., 2020). 429 

 430 

4.2.2. Origin of the reducing potential and fluid sources  431 

Another important question is the origin the identified reduced fluids species. In particular, 432 

several studies over the last decades have investigated the biotic or abiotic origin of geological 433 

CH4 and associated reduced fluid species (Etiope et al., 2011; Etiope and Sherwood Lollar, 434 

2013; McCollom, 2016; Ménez et al., 2018). Ultramafic systems are generally favourable 435 

environments for the genesis of abiotic CH4 (Section 5.2.1), but other interpretations are also 436 

possible. 437 

For example, the abundance of metasedimentary rocks in the study area may have promoted 438 

the formation of thermogenic gases during their prograde evolution. This hypothesis would 439 

be also consistent with the production of NH3 through degassing of organic matter in 440 

metasedimentary rocks (Bebout and Fogel, 1992; Li et al., 2009). Biotic processes, including 441 

thermogenic gas formation, typically show very light δ13CCH4 signatures (Etiope and Sherwood 442 

Lollar, 2013), whereas abiotic processes generally result in much heavier δ13CCH4 (∼-50 to 0‰) 443 

(Etiope and Sherwood Lollar, 2013). In order to test this hypothesis, we performed 444 

reconnaissance δ13C analysis of CH4 in the fluid inclusions (Boutier et al., in preparation). The 445 

analyses yielded δ13C in the range of -14‰ (±2‰) for inclusions in olivine, and -13‰ (±1‰) 446 

for carbonate-hosted methane-rich inclusions from the rodingite. Even though these results 447 



must be considered as preliminary test data, they seem to exclude the possibility of a pure 448 

thermogenic source. 449 

Following the hypothesis of an abiotic origin, two possible mechanisms for the formation of 450 

CH4 can be considered with either external or internal sources, respectively. External sources 451 

correspond to the infiltration of CH4 and other reduced species formed abiotically in other 452 

geological reservoirs. A deep mantle origin for the reduced fluids detected in the BMC fluid 453 

inclusions appears unlikely if the syn-inclusion, water-rich nature of the serpentinizing fluid is 454 

considered. The metasedimentary formations adjacent to the BMC contain carbonate, 455 

graphitic carbon, sulphides, and phyllosilicates as potential sources of the C-N-S-H fluid 456 

identified in the fluid inclusions. Previous studies along the Appalachian belt have reported 457 

evidence of carbon mobilization from these metasedimentary formations or their along-strike 458 

equivalents. For example, Zhang et al., 2018 documented metamorphic loss of isotopically 459 

light carbon from the Wepawaug schists, Connecticut. The possibility for these carbonate-460 

bearing formations to generate strongly reduced fluids abiotically is not obvious —for 461 

reference, water-maximum conditions in graphite-saturated fluids contain roughly equal 462 

proportions of CH4 and CO2 (Connolly, 1995; Holloway, 1984) —. Nevertheless, evidence for 463 

the circulation of CH4-rich fluids in equivalent formations in East Central Vermont and New 464 

Hampshire has been reported (Evans et al., 2002; Rumble III and Hoering, 1986). 465 

Nevertheless, most petrological studies focusing on New England metasediment-derived 466 

fluids point to more oxidized, CO2-dominated aqueous fluids(Ferry, 2007; Penniston-Dorland 467 

and Ferry, 2006). Alternative external sources of reduced fluids would require unidentified 468 

processes, including mixing of different carbon reservoirs, or water-rock interactions 469 

equivalent to those that took place in the BMC. 470 



A reducing potential internal to the BMC, and in particular the hydroxylation of fresh mantle 471 

peridotites during the Taconic subduction, appears the most likely interpretation for the 472 

genesis of the identified reduced fluid species. The presence of Fe-Ni alloys in the BMC 473 

partially serpentinized peridotites indicates that the rock recorded reducing conditions, as 474 

already observed in several oceanic and ophiolitic, and some subduction zone serpentinites 475 

(Evans et al., 2017; Frost, 1985; Klein and Bach, 2009; Vitale Brovarone et al., 2020). High-476 

pressure syn-serpentinization reducing conditions are also suggested by the thermodynamic 477 

modelling results presented in this study, which indicates fO2 values as low as –3.2 ΔQFM at 478 

400 °C and 1 GPa to -1.2 ΔQFM at 450 °C and 1 GPa, and the formation of significant amounts 479 

of H2 in the fluid (Fig. 10C). The interaction of this H2 with dissolved carbon, nitrogen, and 480 

sulphur species present in the serpentinizing fluid, could have favoured the formation of CH4 481 

H2S, and NH3 from more oxidized species. For NH3, the modelling also indicates that this 482 

species is already the dominant N species in the infiltrating fluid buffered at QFM. This feature 483 

suggests that the N2 detected in the fluid is most likely formed through post-entrapment 484 

respeciation of NH3, unless the serpentinizing fluid was more oxidized than QFM. The absence 485 

of detectable H2O in the fluid inclusions is interpreted to result from host-inclusion interaction 486 

and formation of step-daughter lizardite and brucite, or by the preferential entrapment of 487 

immiscible reduced gases relative to aqueous fluids (Huang et al., 2017; Vitale Brovarone et 488 

al., 2017). The absence of residual H2 in the fluid inclusions may be explained by the much 489 

faster diffusion H2 relative to other fluid species through the host olivine, or by selective 490 

leakage.  491 

The most plausible sources of serpentinizing fluid were the metasedimentary formations 492 

surrounding the BMC complex. These rock types host substantial amounts of subducted 493 

carbon, sulphur, and nitrogen (Bebout and Fogel, 1992; Evans et al., 2014; Kelemen and 494 



Manning, 2015; Plank and Manning, 2019). An ultramafic source internal to the BMC would 495 

not be consistent with the general retention of N during prograde metamorphism and 496 

dehydration of serpentinites (Halama et al., 2014). The hypothesis of a metasediment-derived 497 

serpentinizing fluid was also suggested by previous oxygen and hydrogen isotopic data on 498 

antigorite from the BMC complex (Wenner and Taylor, 1974, 1971). Moreover, the authors 499 

proposed antigorite-magnetite equilibration T in the range of 220-460 °C, which is consistent 500 

with the prograde P-T of the BMC (Fig. 12). This supports the interpretation of a subduction-501 

related serpentinization related to the infiltration of metasedimentary-derived fluids in a 502 

rather dry ultramafic body.  503 

5. Conclusions 504 

Mineralogical, microstructural, and fluid inclusion study of variably serpentinized dunite from 505 

the Belvidere Mountain Complex, Appalachian belt, Northern Vermont, provides insight into 506 

the process of high-pressure serpentinization in subduction zone and the related fluid-rock 507 

redox patterns. Although the BMC underwent a complex tectonic evolution potentially 508 

characterized by multiple stages of hydration from the (sub)seafloor to subduction and 509 

exhumation, the collected data point to a major event of high-pressure serpentinization that 510 

took place in the Appalachian subduction zone. Metamorphic olivine in the BMC 511 

serpentinized peridotite is interpreted as the product of rock hydration rather than 512 

dehydration, linked to the high-pressure serpentinization event. Our data support the 513 

hypothesis that the methane observed in olivine-hosted secondary fluid inclusions is 514 

genetically linked to serpentinization in the antigorite stability field consistent with the high-515 

pressure portion of the prograde or retrograde P-T path of the BMC. This favors an abiotic 516 

origin for this methane, even though a biotic origin for the C source cannot be excluded. The 517 



C- and N-rich composition of fluid inclusions suggests a metasediment-derived origin for the 518 

serpentinizing fluid.  The high-pressure serpentinization and related abiotic methanogenesis 519 

place the Belvidere mountain complex as a suitable proxy for the study of mantle wedge 520 

serpentinization. This study confirms the importance of fluid mobility in deep seated 521 

ultramafic body in subduction zones for the mobility of C, H, and N, and their implications on 522 

large-scale geochemical cycling. 523 
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Fig. 1: A: Simplified geological map of Vermont, modified from Hibbard et al., (2006). B: 1 

Simplified bedrock geologic map of the Belvidere Mountain Complex and the surrounding 2 

formations. Modified after Hibbard et al., (2006). Units description from Hibbard et al., (2006) 3 

and Gale, (2007). 4 

Fig. 2: A-B: Photographs of the Belvidere serpentinized peridotite in outcrop. C: Weakly 5 

serpentinized dunite (samples V18-2a and V18-2b). D: Serpentinized dunite, with boudinaged 6 

meta-gabbro (samples V18-3a and V18-3b). 7 

Fig. 3: A: Photomicrograph of a partially serpentinized dunite. B: Partial replacement of 8 

primary chromian spinel by magnetite and chlorite. C: Partial replacement of olivine by 9 

antigorite. D: Inferred primary orthopyroxene being pseudomorphically replaced by 10 

metamorphic olivine. See also Figure 5B. E: Photomicrograph of a pyroxenite layer included in 11 

the Belvidere peridotite. The photomicrograph shows radial diopside aggregate 12 

pseudomorphic on primary clinopyroxene. Partially serpentinized olivine is also visible. F: 13 

Magnetite-rich diopside pseudomorphosis on primary clinopyroxene. Note the growth of 14 

metamorphic olivine at the rim of the clinopyroxene site. See Figure 5A for SEM-based 15 

backscattered electron image. G: Metamorphic diopside replacing primary clinopyroxene. In 16 

this case, note the growth of metamorphic olivine along fractures cutting the 17 

pseudomorphosis. See Figure 5F for SEM-based backscattered electron image. H: Relict of 18 

metamorphic olivine pseudomorphic on primary clinopyroxene. The metamorphic olivine is 19 

then partially replaced by serpentine + brucite + magnetite. A-D: Sample V18-2b, E-G: Sample 20 

V18-3a; H: sample V18-B3. P-Ol: primary olivine, M-Ol: metamorphic olivine, Atg: antigorite, 21 

Chl: chlorite, Mgt: magnetite, Di: diopside, Chr: chromite, Br: brucite, Ctl: chrysotile. 22 

Captions



Fig. 4: Raman spectra of solid phases. A: Primary olivine. B Antigorite overgrowing primary 23 

olivine. C: Antigorite core (Atg1) and rim (Atg2) (see Fig. 5A). D: Brucite. 24 

Fig. 5: SEM-BSE images of samples V18-2b,V18-3a and V18-B3. A: Microstructural patterns of 25 

serpentinization. Two generations of serpentine can be observed based on the BSE contract, a 26 

bright core (Atg1) and a dark rim (Atg2). Note also the striped zonation of primary olivine and 27 

the formation of metamorphic olivine. B: Replacement of an inferred primary orthopyroxene 28 

crystal by metamorphic olivine. The close-up shows the preservation of clinopyroxene relicts 29 

interpreted as exsolutions inside the former orthopyroxene. C: Formation of at the expense of 30 

metamorphic. D: Composite aggregate of Fe-Ni and Fe-Cu-Ni alloys and Ni sulphide. E: Growth 31 

of metamorphic olivine around a diopside-rich primary clinophyroxene pseudomorphosis. A 32 

primary chromina spinel partially converted into magnetite can also be observed. F: 33 

Metamorphic diopside replacing primary clinopyroxene. Note the presence of antigorite + 34 

metamorphic olivine ± magnetite along the fractures. In this case, metamorphic olivine 35 

occupies the centre of the fractures and is not in contact with diopside, whereas the 36 

metamorphic olivine rimming the primary clinopyroxene site is in contact with it. G: 37 

Metamorphic olivine growing at the expense of metamorphic diopside (former primary 38 

clinopyroxene). The microstructure suggests the former presence of serpentine needles 39 

replacing the clinopyroxene and successively replaced by metamorphic olivine. Both Atg1 and 40 

Atg2 antigorite generations are present. H: Relict of metamorphic olivine formed at the 41 

expense of a primary orthopyroxene site in V18-3b. The metamorphic olivine is partially 42 

converted into brucite + serpentine. P-Ol: primary olivine M-Ol: metamorphic olivine Px: 43 

pyroxene Di: diopside Mtg: magnetite Chr: chromite Atg: antigorite Br: brucite Ctl: chrysotile 44 

NiFeS: nickel and iron sulphite. The presence of antigorite was confirmed by Raman 45 

spectroscopy. 46 



Fig. 6: Mg# versus MnO (wt%) diagram showing the compositional variation of primary and 47 

metamorphic olivine. The Mn-richest cluster of metamorphic olivine belongs to sample V18-48 

B3 (fully serpentinized peridotite).  Background data from Arai et al., (2012); Dandar et al., 49 

(2019); Debret et al., (2013); Iyer et al., (2008); Nozaka, (2018); Plümper et al., (2012b); 50 

Scambelluri et al., (1995); Shen et al., (2015). 51 

Fig. 7: Photomicrographs of methane-rich fluid inclusion trails in olivine from sample V18-2a. 52 

Black arrows indicate fluid inclusion trails. A: Inclusion trail being cut by antigorite veinlets. B: 53 

Inclusion trail limited by antigorite veins. C: Secondary trail of fluid inclusions propagating 54 

from an antigorite veinlet. D: Photomicrograph showing a fluid-inclusion-rich olivine 55 

aggregate. E: Close up of the methane-rich fluid inclusions. F: Close up of a graphite bearing 56 

fluid inclusion (red arrow), as confirmed by Raman spectroscopy in (Fig. 8B).  57 

Fig. 8: Raman spectra of fluid inclusions and step-daughter solid phases. A: Inclusion showing 58 

a marked CH4 band and minor peaks of N2 NH3 and S-H bond. Lizardite and brucite O-H bands 59 

are also observed. B: Graphite in fluid inclusions (see Fig. 6D). C: Methane-rich fluid inclusion 60 

with a close up of O-H bonds of lizardite and brucite. 61 

Fig. 9: Calculated molar fraction of CH4, N2, H2S and NH3 from Raman scattering cross-section 62 

and the instrumental efficiency of each species.  See Frezzotti et al., (2012) for methodology. 63 

Fig. 10: Thermodynamic modelling of HP serpentinization of dunite and related mineralogical 64 

and fluid evolution. A: Mineralogical evolution during serpentinization at 450 °C and 1 GPa. 65 

Representative microstructures of the main reaction steps are proposed as observed in the 66 

natural samples. B: Evolution of the nitrogen and sulphur fluid speciation as a function of the 67 

reaction progress presented in A. C: Evolution of the fO2 and H2, CH4, and CO2 concentrations 68 

in the fluid as a function of the reaction progress presented in A. 69 



Fig. 11: Reconstruction of the mineralogical evolution of the BMC partially serpentinized 70 

peridotite. An early step of serpentinization is proposed based on the needle-like growth of 71 

metamorphic olivine on primary clinopyroxene, suggesting the presence of serpentine prior to 72 

the formation of metamorphic olivine. The successive growth of antigorite at the expense of 73 

both primary and metamorphic olivine constrains the main serpentinization event to 74 

metamorphic conditions. Finally, a late serpentinization event is proposed based on the 75 

growth of brucite + antigorite + chrysotile on relict metamorphic. Chr : chromite, P-Ol : primary 76 

olivine, M-Ol : metamorphic olivine, Opx : primary orthopyroxene, Cpx : primary clinopyroxene, 77 

Chl : chlorite, Mgt : magnetite, Atg : antigorite, Di : diopside, Brc : brucite, Ctl : chrysotile.   78 

Fig. 12: Stability field of serpentine type minerals and olivine, modified from Guillot et al., 79 

(2015) (see references therein for details on the main reactions). The  retrograde P-T path of 80 

BMC from Honsberger, (2015) is also shown for reference. Atg : antigorite, Brc : brucite; Ctl : 81 

chrysotile; Ilm : ilmenite; Ol : olivine; Tlc : talc; Ticl : titanian clinohumite. 82 
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Table 1 1 

MicroProbe analysis. Absence of SD value when n>1 indicates SD<0.01. *EDS analyses normalized at 100. 

Minerals Primary Olivine  Metamorphic Olivine  Pyroxene  Serpentine (Bright core)  Serpentine (Matrix)  Chlorite 

Sample V18-2b V18-3a  V18-2b V18-3a V18-B3*  V18-3a  V18-2b V18-3a  V18-2b V18-3a  V18-2b V18-3a 

(n) 14 11  28 15 25  20  6 2  9 4  11 1 

SiO2 40.91 (0.25) 40.83 (0.46)  41.31 (0.49) 41.95 (0.63) 42.00 (0.12)  54.96 (0.98)  42.87 (1.21) 43.41 (0.1)  44.15 (0.17) 43.1 (1.35)  32.61 (1.34) 32.03 

TiO2 0.01 (0.01) 0.02 (0.02)  0.02 (0.01) 0.02 (0.02)   0.03 (0.02)  0.01 (0.01) 0.02 (0.01)  0.02 (0.01) 0 (0)  0.02 (0.02) 0.00 

Al2O3 0.01 (0.01) 0.01 (0.01)  0.01 (0.02) 0.04 (0.09)   0.15 (0.11)  1.77 (1.22) 1.45 (0.78)  0.52 (0.21) 0.47 (0.26)  14.34 (2.39) 11.78 

Cr2O3 0.01 (0.02) 0.01 (0.02)  0.06 (0.18) 0.04 (0.03)   0.17 (0.11)  0.61 (0.85) 0.25 (0.19)  0.13 (0.09) 0.1 (0.1)  1.07 (0.56) 4.07 

FeO (tot) 8.97 (0.34) 7.93 (0.22)  4.83 (0.30) 5.05 (0.57) 4.71 (0.19)  0.76 (0.16)  2.60 (0.26) 1.58 (0.27)  1.35 (0.22) 1.2 (0.29)  3.31 (0.46) 2.79 

MnO 0.15 (0.04) 0.12 (0.06)  0.45 (0.08) 0.37 (0.06) 1.02 (0.18)  0.05 (0.03)  0.04 (0.02) 0.05 (0.05)  0.04 (0.02) 0.02 (0.02)  0.06 (0.10) 0.07 

NiO 0.38 (0.03) 0.49 (0.06)  0.43 (0.07) 0.39 (0.06) 0.46 ( 0.08)  0.03 (0.03)  0.16 (0.02) 0.18 (0.06)  0.15 (0.04) 0.19 (0.02)  0.22 (0.05) 0.24 

ZnO 0.04 (0.04) 0.03 (0.04)  0.03 (0.04) 0.03 (0.04)   0.01 (0.02)        0.02 (0.04) 0.00 

MgO 50.23 (0.22) 50.91 (0.22)  52.8 (0.64) 51.8 (1.57) 51.80 (0.28)  18.75 (1.15)  37.97 (1.30) 39.81 (0.59)  39.6 (0.77) 40.07 (0.61)  34.34 (1.11) 35.08 

CaO 0.02 (0.01) 0.01 (0.02)  0.02 (0.02) 0.25 (0.37)   24.87 (1.43)  0.02 (0.02) 0.05 (0.04)  0.02 (0.02) 0.02 (0.01)  0.02 (0.01) 0.05 

Na2O 0.09 (0.22) 0.01 (0.01)  0.02 (0.02) 0.01 (0.01)   0.04 (0.02)        0.02 (0.03) 0.03 

K2O 0.01 (0.02) 0.01 (0.01)  0.01 (0.01) 0.01 (0.01)   0.01 (0.01)        0.02 (0.02) 0.02 

Total, 100.82 (0.36) 100.37 (0.70)  100.06 (1.10) 99.96 (1.63) 100  99.83 (1.12)  86.2 (0.63) 86.93 (0.4)  86.07 (0.82) 85.25 (1.66)  86.14 (0.65) 86.17 

Cations                  

Si 0.990 0.988  0.991 1.012 1.013  1.989  1.984 2.010  2.044 1.995  6.232 6.165 

Ti 0.000 0.000  0.000 0.000   0.001  0.000 0.001  0.001 0.000  0.004 0.000 

Al 0.000 0.000  0.000 0.001   0.006  0.091 0.079  0.028 0.026  3.229 2.672 

Cr 0.000 0.000  0.001 0.001   0.005  0.026 0.009  0.005 0.004  0.162 0.619 

Fe2+ (tot) 0.181 0.161  0.097 0.102 0.095  0.023  0.104 0.061  0.052 0.046  0.529 0.404 

Mn 0.003 0.003  0.009 0.008 0.021  0.002  0.001 0.002  0.002 0.001  0.010 0.012 

Ni 0.007 0.010  0.008 0.008 0.009  0.001  0.006 0.007  0.006 0.007  0.034 0.037 

Zn 0.001 0.001  0.000 0.001   0.000        0.003 0.000 

Mg 1.812 1.837  1.891 1.861 1.862  1.012  2.486 2.747  2.733 2.765  9.782 10.063 

Ca 0.000 0.000  0.001 0.006   0.964  0.001 0.002  0.001 0.001  0.003 0.011 

Na 0.004 0.000  0.001 0.000   0.003        0.007 0.012 

K 0.000 0.000  0.000 0.000   0.000        0.005 0.005 

Mg# 0.91 0.92  0.95 0.95 0.95  0.98  0.94 0.96  0.97 0.97  0.95 0.96 

Mg# = Mg/(Mg+ΣFe)               

2 
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Table 2 3 

MicroProbe analysis. Absence of SD value when n>1 indicates SD<0.01 

Minerals Spinel (nucleus)  Spinel (intermediate)  Magnetite (rim)  Magnetite (mesh and veins)  Brucite 

Sample V18-3a  V18-3a  V18-3a  V18-3a V18-2b  V18-2b 

(n) 7  7  7  1 4  10 

SiO2 0.02 (0.02)  0.03 (0.01)  0.06 (0.07)  0.07 0.05 (0.03)  0.78 (2.20) 

TiO2 0.09 (0.02)  0.23 (0.05)  0.03 (0.02)  0.04 0.01 (0.01)  0.01 

Al2O3 12.63 (0.94)  3.87 (1.34)  0.00  0.03 0.01 (0.01)  0.01 (0.01) 

Cr2O3 47.51 (0.57)  41.6 (1.29)  1.87 (1.16)  0.01 0.02 (0.02)  0.04 (0.05) 

FeO 34.12 (1.1)  48.32 (2.02)  91.45 (0.75)  92.44 92.57 (0.28)  2.91 (0.18) 

MnO 0.34 (0.04)  0.95 (0.36)  0.16 (0.03)  0.12 0.19 (0.05)  0.22 (0.04) 

NiO 0.09 (0.02)  0.27 (0.05)  1.05 (0.1)  1.11 0.82 (0.09)  0.38 (0.09) 

ZnO 0.49 (0.08)  0.3 (0.1)  0.04 (0.06)  0.10 0.04 (0.08)  0.01 (0.02) 

MgO 5.99 (0.32)  3.37 (0.22)  0.71 (0.09)  0.62 0.82 (0.19)  75.88 (3.93) 

CaO 0.01 (0.01)  0.00  0 (0.01)  0.00 0.00  0.02 (0.03) 

Na2O 0.03 (0.04)  0.02 (0.02)  0.03 (0.03)  0.03 0.02 (0.04)  0.02 (0.02) 

K2O 0.00  0.01 (0.01)  0 (0.01)  0.01 0.00  0.01 (0.01) 

Total 101.4 (0.56)  99.03 (0.6)  95.46 (0.5)  94.63 94.56 (0.45)  80.33 (2.70) 

           

Cr# 0.79(0.01)  0.92(0.2)  1.00      

Cr# = Cr/(Al+Cr) 4 

Table 3 5 

MicroProbe analysis of alloys 

Sample V18-2b       V18-3a   

Alloy NiFeCu NiS NiS NiS NiFeCu NiFeCu  NiS NiS NiS 

S  24.06 24.25 24.12    24.59 24.52 24.50 

Fe 12.21 0.9 0.51 1.35 13.35 20.07  0.84  0.95 

Pb    0.13    0.18   

Ni 86.23 72.68 72.71 73.55 86.05 80.03  72.97 72.85 73.30 

Cu 1.94    1.75 1.49     

Total: 100.45 97.9 97.59 99.18 101.28 101.71  98.70 97.72 99.04 

           

Table 4 6 

Calculated partition coefficient between antigorite and olivine for Mg and Mn 

 KD Mg  KD Mn 

Calculated KD V18-2 V18-3b  V18-2 V18-3b 

Atg1 / P-Ol 0.25 0.14  0.42 0.54 

Atg2 / P-Ol 0.11 0.11  0.42 0.27 

Atg1 / M-Ol 0.49 0.23  0.14 0.18 

Atg2 / M-Ol 0.21 0.17  0.14 0.09 

      

KD Atg/Ol from bibliography    
 0.45-0.35  0.18 

KD Atg/Ol Mg from Evans et al.(2008) and Mn from Trommsdorff and Evans, 1974. 


