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Abstract

We provide an efficiently computable characterization of two important properties describing stable and unstable
complex behaviours as equicontinuity and sensitivity to the initial conditions for one-dimensional linear cellular
automata (LCA) over (Z/mZ)n (Theorem 9), a large and important class of cellular automata (CA) which are
able to exhibit the complex behaviours of general CA and are used in applications. We stress that the setting of
LCA over (Z/mZ)n with n> 1 is more expressive, it gives rise to much more complex dynamics, and it is more
difficult to deal with than the already investigated case n = 1. The proof techniques from [23, 28] used when
n= 1 for obtaining an easy to check characterization of dynamical properties can no longer be exploited when
n> 1 for achieving the same goal. Indeed, in order to get the efficiently computable characterization provided
by Theorem 9 we need to prove a nontrivial result of abstract algebra about the finiteness of matrix semigroups
(Theorem 8) which is also of interest in its own: if K is any finite commutative ring and L is any K-algebra,
then for every pair A, B of n× n matrices over L having the same characteristic polynomial, it holds that the
set {A0, A1, A2, . . .} is finite if and only if the set {B0, B1, B2, . . .} is finite too. A further ingredient we provide to
reach our goal is the result stated in Theorem 6, i.e., the generalization to (Z/mZ)n of the efficiently computable
criterion that allows deciding sensitivity and equicontinuity for the subclass of LCA over (Z/pkZ)n (with p prime)
defined by a matrix in Frobenius normal form.

Keywords: Cellular Automata, Linear Cellular Automata, Decidability, Complex Systems

1. Introduction

Cellular automata (CA) are widely known formal models for studying and simulating complex systems. They
are used in many disciplines ranging from physics to biology, stepping through sociology, ecology and many
others. In computer science they are used for designing security schemes, random number generation, image
processing, etc. This extensive use is essentially due to three main ingredients: the huge variety of distinct
dynamical behaviours; the emergence of complex behaviours from simple local interactions (defined by a local
rule); the ease of implementation (even at a hardware level). In practical applications one needs to know if the
CA used for modelling a system has or not some specific property and, in particular, the properties describing
stable and unstable behaviours are often required.

Unfortunately this need can be an issue. Indeed, a strong result states (roughly speaking) that all non-trivial
dynamical behaviours are undecidable [24]. From this seminal result, a long sequence followed (see [4, 18, 21],

IA preliminary version of the results of this paper have been presented at the international conference ICALP 2020. The ICALP paper [13]
does not contain the proof of the important result stated in Theorem 8 (Section 4 is entirely devoted to that proof) . Moreover, it does not deal
with the “efficient computability” aspects that are the focus of the present paper.
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just to cite some of them). The situation changes if the CA alphabet has the algebraic structure of n-th power Kn

of the finite ring K= Z/mZ, viewed then as a module over K, and the superposition principle holds, i.e., the CA
global rule is a homomorphism (see for instance [23, 28, 27, 25, 8, 7] for the case n = 1), giving rise to linear
cellular automata (LCA) over (Z/mZ)n. In other terms, LCA are CA having (Z/mZ)n as alphabet and local rule
defined by n× n matrices with elements in Z/mZ. We want to stress that they form a large and important class
of CA which are able to exhibit the complex behaviours of general CA and are used in applications (the latter
especially with n> 1, see for instance [29, 2, 25]1).

However, there are few results regarding efficiently computable characterizations, i.e., checkable in polynomial
time, of the dynamical properties for LCA over (Z/mZ)n with n > 1. Actually, the setting n > 1, which is
more expressive and gives rise to much more complex dynamics than n = 1 (see, for instance [12]), is more
difficult to deal with. The proof techniques from [23, 28] used when n= 1 for obtaining efficiently computable
characterizations of dynamical and ergodic properties can no longer be exploited when n> 1 for achieving the
same goal. For a generic n, only injectivity and surjectivity had been characterized (in terms of easy to check
conditions on the matrix associated with the LCA [6, 25]). Just very recently, we have provided a decidable
characterization of ergodicity [11] (and all properties, as for instance topological transitivity and mixing, that
turned out to be equivalent to it for LCA). Furthermore, in [3] authors have proved that, among other properties,
sensitivity and equicontinuity are decidable for the wider class of group CA, but, as noted by themselves, “the
existing characterizations in the literature typically provide easy to check conditions on the local rule of the cellular
automaton for the considered properties, while algorithms extracted from our proofs are impractical and only
serve the purpose of proving decidability”.

In this paper we study sensitivity to the initial conditions and equicontinuity, where the former is the well-
known basic component and essence of the chaotic behaviour of a discrete time dynamical system, while the latter
represents a strong form of stability. We show an efficiently computable characterization of these properties for
LCA over (Z/mZ)n(Theorem 9). In order to get such a characterization we need to prove a nontrivial result of
abstract algebra about the finiteness of matrix semigroups (Theorem 8) which is also of interest in its own: if K is
any finite commutative ring and L is any K-algebra, then for every pair A, B of n× n matrices over L having the
same characteristic polynomial, it holds that the set {A0, A1, A2, . . .} is finite if and only if the set {B0, B1, B2, . . .}
is finite too. Let us point out that proving a new result in algebra in order to show that another new one holds
in theoretical computer science is rather unusual and, we believe, interesting. As a matter of fact, in order to
provide an efficiently computable characterization of sensitivity and equicontinuity for LCA over (Z/mZ)n, such
an algebra result allows us to exploit, and this is the last ingredient we provide in Theorem 6, the extension to
(Z/mZ)n (for any integer m> 1) of our earlier result stating that these properties are decidable by means of an
efficiently computable criterion for LCA over (Z/pkZ)n (for any prime p) defined by matrices in Frobenius normal
form [14]. Finally, we want to stress that, beside an obvious theoretical value, Theorem 9 also has a practical
one since LCA are often required to exhibit a strongly stable or strongly unstable behaviour (depending on the
real-world situation they are modelling) in order they can be successfully used in applications.

The paper is structured as follows. Next section introduces all the necessary background and formal definitions.
Section 3 recalls the known results about LCA over (Z/mZ)n and presents the new ones, including the nontrivial
algebra result about matrices with finitely many distinct powers (Theorem 8). Section 4 is entirely devoted to the
proof of such a result. In the last section we draw our conclusion and provide some perspectives.

2. Background on DTDS and Cellular Automata

We begin by reviewing some general notions about discrete time dynamical systems and cellular automata.

A discrete time dynamical system (DTDS) is a pair (X ,F), where X is any set equipped with a distance function d
(i.e., (X , d) is a metric space) and F : X → X is a map that is continuous on X according to the topology induced
by d.

1Such applications are based on non-uniform (or hybrid) CA, i.e., variants of CA where cells use different local rules (see [15, 17, 16]), in
particular on the periodic linear ones over Z/mZ. We stress that linear periodic non-uniform CA of period n are homeomorphic to LCA over
(Z/mZ)n.
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Let (X ,F) be a DTDS. We say that it is sensitive to the initial conditions (or simply sensitive) if there exists
ε > 0 such that for any x ∈ X and any δ > 0 there is an element y ∈ X such that 0 < d(y, x) < δ and
d(F k(y),F k(x))> ε for some k ∈ N. The system (X ,F) is said to be equicontinuous if ∀ε > 0 there exists δ > 0
such that for all x , y ∈ X , d(x , y) < δ implies that ∀k ∈ N, d(F k(x),F k(y)) < ε. As dynamical properties,
sensitivity and equicontinuity represent the main features of unstable and stable dynamical systems, respectively.
The former is the well-known basic component and essence of the chaotic behavior of discrete time dynamical
systems, while the latter is a strong form of stability.

We now recall some general notions about cellular automata.
Let S be a finite set. A configuration over S is a map from Z to S. We consider the following space of

configurations SZ = {c| c : Z→ S} . Each element c ∈ SZ can be visualized as an infinite one-dimensional cell
lattice in which each cell i ∈ Z contains the element c i ∈ S.

Let r ∈ N and δ : S2r+1→ S be any map. We say that r is the radius of δ.

Definition 1 (Cellular Automaton). A one-dimensional CA based on a radius r local rule δ is a pair (SZ, F), where
F : SZ→ SZ is the global transition map defined as follows:

∀c ∈ SZ, ∀i ∈ Z, F(c)i = δ (c i−r , . . . , c i+r) . (1)

We stress that the local rule δ completely determines the global rule F of a CA.

In order to study the dynamical properties of one-dimensional CA, we introduce a distance over the space of
the configurations. Namely, SZ is equipped with the Tychonoff distance d defined as follows

∀c, c′ ∈ SZ, d(c, c′) =

¨

0, if c = c′,
2−min{i∈N : c i 6=c′i or c−i 6=c′−i} otherwise .

It is easy to verify that metric topology induced by d coincides with the product topology induced by the discrete
topology on SZ. With this topology, SZ is a compact and totally disconnected space and the global transition map F
of any CA (SZ, F) turns out to be (uniformly) continuous. Therefore, any CA itself is also a discrete time dynamical
system. Moreover, any map F : SZ → SZ is the global transition rule of a CA if and only if F is (uniformly)
continuous and F ◦σ = σ ◦ F , where σ : SZ→ SZ is the shift map defined as ∀c ∈ SZ, ∀i ∈ Z, σ(c)i = c i+1. From
now, when no misunderstanding is possible, we identify a CA with its global rule.

2.1. Linear Cellular Automata
We now recall the notion of linear CA. We stress that, whenever the term linear is involved, the alphabet S is

Kn, where K = Z/mZ for some positive integer m. Both Kn and (Kn)Z become K-modules in the obvious (i.e.,
entrywise) way.

A local rule δ : (Kn)2r+1→Kn of radius r is said to be linear if it is defined by 2r+1 matrices A−r , . . . , A0, . . . , Ar ∈
Kn×n as follows:

∀(x−r , . . . , x0, . . . , x r) ∈ (Kn)2r+1, δ(x−r , . . . , x0, . . . , x r) =
r
∑

i=−r

Ai · x i .

Definition 2 (Linear Cellular Automata (LCA)). A linear CA (LCA) over Kn is a CA based on a linear local rule.

LetKn[X , X−1] andKn[[X , X−1]] denote the set of Laurent polynomials and the set of Laurent series, respectively,
with coefficients in Kn. Before proceeding, let us recall that such formalisms have been successfully used to
study the dynamical behaviour of LCA in the case n = 1 [23, 28]. Indeed, global rules and configurations are
represented by Laurent polynomials and Laurent series, respectively, and the application of a global rule turns
into a polynomial-series multiplication. In the more general case of LCA over Kn, a configuration c ∈ (Kn)Z can
be associated with the Laurent series

P c(X ) =
∑

i∈Z

c iX
i =





c1(X )
...

cn(X )



=





∑

i∈Z c1
i X i

...
∑

i∈Z cn
i X i



 ∈
�

K[[X , X−1]]
�n ∼=Kn[[X , X−1]] .
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Then, if F is the global rule of a LCA defined by A−r , . . . , A0, . . . , Ar , one finds

P F(c)(X ) = A · P c(X )

where

A=
r
∑

i=−r

AiX
−i ∈K[X , X−1]n×n

is the the matrix associated with the LCA F . In this way, for any integer k > 0 the matrix associated with F k is Ak,
and then P F k(c)(X ) = Ak · P c(X ). Clearly, the matrix A is nothing but a Laurent polynomial when n= 1.

A matrix A∈K[X , X−1]n×n is in Frobenius normal form if

A=





























0 1 0 . . . 0 0

0 0 1
... 0 0

0 0 0
... 0 0

...
...

...
. . .

. . .
...

0 0 0 . . . 0 1

a0 a1 a2 . . . an−2 an−1





























(2)

where each ai ∈K[X , X−1]. Recall that the coefficients of the characteristic polynomial of A are just the elements
ai of the n-th row of A (up to sign).

Definition 3 (Frobenius LCA). A LCA ((Kn)Z, F) is said to be a Frobenius LCA if the matrix A ∈ K[X , X−1]n×n

associated with F is in Frobenius normal form.

3. Results

We now deal with sensitivity and equicontinuity for LCA over Kn. First of all, we remind that a dichotomy
between sensitivity and equicontinuity holds for LCA. Moreover, these properties are characterized by the behaviour
of the powers of the matrix associated with a LCA.

Proposition 4 ([14]). Let
�

(Kn)Z , F
�

be a LCA over Kn and let A be the matrix associated with F. The following
statements are equivalent:

1. F is sensitive to the initial conditions;
2. F is not equicontinuous;
3.
�

�{A1, A2, A3, . . .}
�

�=∞.

An immediate consequence of Proposition 4 is that any decidable characterization of sensitivity to the initial
conditions in terms of the matrix associated with a LCA over Kn would also provide a decidable characterization
of equicontinuity always in terms of that matrix. In the sequel, we are going to show that such a characterization
actually exists and it is efficiently computable.

First of all, we remind that an easy to check characterization of sensitivity and equicontinuity was provided for
the class of Frobenius LCA over the alphabet (Z/pkZ)n, where pk is a power of a prime number p.

Theorem 5 (Theorem 31 in [14]). Consider any Frobenius LCA F over (Z/pkZ)n where p is a prime number and
k is a positive integer. Let A be the matrix associated with F. Let ai ∈ (Z/pkZ)

�

X , X−1
�

be the coefficients of the
characteristic polynomial of A. The following equivalence holds: F is sensitive to the initial conditions if and only if at
least one ai is the Laurent polynomial associated with a sensitive LCA over Z/pkZ.
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We now derive an efficiently computable characterization of sensitivity and equicontinuity for the class of
Frobenius LCA over the whole Kn.

Theorem 6. Consider any Frobenius LCA F over Kn and let A be the matrix associated with F. Let ai ∈K[X , X−1]
be the coefficients of the characteristic polynomial of A. The following equivalence holds: F is sensitive to the initial
conditions (resp., equicontinuous) if and only if at least one (resp., each) ai is the Laurent polynomial associated with
a sensitive (resp., equicontinuous) LCA over K.

Proof. We are going to prove the equivalence regarding sensitivity. Let m = pk1
1 · · · p

kl
l be the prime factor

decomposition of m and, for any s ∈ {1, . . . , l}, let (A mod ps
ks) denote the matrix obtained by A taking all its

entries modulo ps
ks . By an immediate generalization of [7, Lemma 3.2] to LCA over (Z/mZ)n and by Theorem 5, it

follows that F is sensitive to the initial conditions if and only if for some j the Frobenius LCA over (Z/p j
k jZ)n with

associated matrix (A mod p j
k j ) is sensitive to the initial conditions if and only if for some j at least one coefficient

of the characteristic polynomial of (A mod p j
k j ) is the Laurent polynomial associated with a sensitive LCA over

Z/p j
k jZ. Since the modulo operation well behaves with respect to the computation of the characteristic polynomial,

i.e., for each s ∈ {1, . . . , l}, (as mod p j
k j ) is equal to the s-th coefficient of the characteristic polynomial of (A

mod p j
k j ), the latter proposition holds if and only if for some j at least one (ai mod p j

k j ) is the Laurent polynomial
associated with a sensitive LCA over Z/p j

k jZ if and only if at least one ai is the Laurent polynomial associated
with a sensitive LCA over K. Therefore, the equivalence regarding sensitivity has been proved. The one about
equicontinuity trivially follows from Proposition 4.

Remark 7. Theorem 6 also provides an efficiently computable characterization of sensitivity and equicontinuity
for the class of Frobenius LCA over Kn. Indeed, the main dynamical properties for LCA over K, including sensitivity
and equicontinuity, are decidable by means of efficiently computable criteria that can be checked in polynomial
time in log m and in the radius of the local rule [28].

In order to provide an efficiently computable characterization of equicontinuity and sensitivity for the whole class
of LCA over Kn, we need to prove the following algebra result whose proof is reported in Section 4.

Notation. Let K be any commutative ring. Let n ∈ N. Let A be an n× n-matrix over K. We denote by χA the
characteristic polynomial of A which is as usual defined as the polynomial det (t In − A) ∈K [t], where In stands for
the n× n identity matrix and t In − A is considered as an n× n-matrix over the polynomial ring K [t].

Theorem 8. Let K be any finite commutative ring. Let L be a commutative K-algebra. Let n ∈ N. Let A and B be two
n× n-matrices over L such that χA = χB. Then, the set

�

A0, A1, A2, . . .
	

is finite if and only if the set
�

B0, B1, B2, . . .
	

is finite.

We are now able to prove the main result of the paper.

Theorem 9. The following efficiently computable characterization of sensitivity and equicontinuity holds for LCA
over Kn. Let G be any LCA over Kn and let A be the matrix associated with G. The LCA G is sensitive to the initial
conditions (resp., equicontinuous) if and only if the Frobenius LCA F over Kn such that χA = χB is sensitive (resp.,
equicontinuous) too, where B is the matrix (in Frobenius normal form) associated with F.

Proof. The thesis follows from Theorem 8, Proposition 4, Theorem 6, Remark 7, and from the fact that χA can be
efficiently computed.

For a sake of completeness, we recall that injectivity and surjectivity are decidable for LCA over Kn and, in
particular, with an easy to check characterization. This result follows from a characterization of these properties in
terms of the determinant of the matrix associated with a LCA and from efficiently computable criteria that allow
deciding injectivity and surjectivity for LCA over K (for the latter, see [23]).

Theorem 10 ([6, 25]). Injectivity and surjectivity are decidable for LCA over Kn. In particular, a LCA F over Kn is
injective (resp., surjective) if and only if the determinant of the matrix associated with F is the Laurent polynomial
associated with an injective (resp., surjective) LCA over K.
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The decidability of topological transitivity, ergodicity, and other mixing and ergodic properties for LCA over Kn

has been recently proved in [11], where authors essentially showed the decidability of ergodicity for LCA over Kn

and exploited the equivalence among all the mixing and ergodic properties for the wider class of additive CA over
a finite abelian group [12].

Theorem 11 ([11]). Let F be an LCA over Kn. The following properties are both equivalent and decidable: (1) F is
topologically transitive; (2) F is ergodic; (3) F is surjective and for every integer k > 0 it holds that F k− I is surjective;
(4) F is topologically mixing; (5) F is weak topologically transitive; (6) F is totally transitive; (7) F is weakly ergodic
mixing; (8) F is ergodic mixing.

Finally, we stress that by virtue of Theorem 9 (besides, resp., Theorem 10 and 11), we have been able to
lift the decidability of sensitivity and equicontinuity (besides, resp., injectivity, surjectivity, and all the above
mentioned mixing and ergodic properties) from LCA over Kn to the wider class of additive CA over a finite abelian
group [13, 10].

4. On matrices with finitely many distinct powers: proof of Theorem 8

The goal of this section is to prove Theorem 8. Let us start by illustrate it by means of the following example.

Example 12.

(a) Let K = Z/4Z, L = (Z/4Z) [x] (a polynomial ring), n = 2, A=
�

1 x
0 1

�

, and B =
�

1 0
0 1

�

. Then, χA =

(t − 1)2 = χB. Hence, Theorem 8 yields that the set
�

A0, A1, A2, . . .
	

is finite if and only if the set
�

B0, B1, B2, . . .
	

is
finite. Indeed, both of these sets are finite: The former has 4 elements, while the latter has 1.

(b) Now, let K=Q, L=Q, n= 2, A=
�

1 1
0 1

�

, and B =
�

1 0
0 1

�

. Then, χA = (t − 1)2 = χB. The ring K

is not finite, so Theorem 8 does not apply here. And we see why: The set
�

B0, B1, B2, . . .
	

is finite, but the set
�

A0, A1, A2, . . .
	

is not.

In order to prove Theorem 8, we proceed as follows. We first review in Section 4.1 the needed concepts and
properties about integrality over a commutative ring. Then, in Section 4.2 we deal with the characterization of
integral matrices. Finally, Section 4.3 contains the proof of Theorem 8 just after Proposition 24 which is essential
for that proof since it shows the equivalence between the finiteness of the set

�

A0, A1, A2, . . .
	

from the statement
of Theorem 8 and the integrality of the matrix A itself.

Before proceeding, let us briefly discuss what rings L Theorem 8 applies to. Denote the unity of any ring A
by 1A. Consider any commutative ring L. It is not difficult to show that there exist a finite commutative ring K
and a K-algebra structure on L if and only if there exists a positive integer m such that m · 1L = 0 (the proof
relies on the application of Lagrange’s Theorem to the finite group (K,+) and the fact that the canonical ring
homomorphism Z→ L, a 7→ a · 1L factors through the quotient ring Z/mZ). As a consequence, we can restate
Theorem 8 as follows:

Corollary 13. Let L be a commutative ring. Assume that there exists a positive integer m such that m · 1L = 0. Let
n ∈ N. Let A and B be two n× n-matrices over L such that χA = χB. Then, the set

�

A0, A1, A2, . . .
	

is finite if and only
if the set

�

B0, B1, B2, . . .
	

is finite.

Remark 14. A converse of this corollary holds as well: Let L be a commutative ring for which there is no positive
integer m such that m · 1L = 0. Let n≥ 2 be an integer. Then, there exist two n× n-matrices A and B over L such
that χA = χB and the set

�

A0, A1, A2, . . .
	

is infinite but the set
�

B0, B1, B2, . . .
	

is finite. Such matrices can easily be
constructed by imitation of Example 12 (b).

In the following, semigroups will always be written multiplicatively: That is, if M is a semigroup, then the
operation of M will be written as multiplication (i.e., we will write ab for the image of (a, b) ∈ M ×M under this
operation).
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4.1. Integrality basics
Our proof will rely on some basic properties of integrality over a commutative ring. This concept is defined as

follows:

Definition 15. Let K be a commutative ring. Let L be a K-algebra (not necessarily commutative). An element
u ∈ L is said to be integral over K if and only if there exists a monic polynomial f ∈K [t] such that f (u) = 0.

Recall that a polynomial is said to be monic if its leading coefficient is 1. Definition 15 generalizes [22,
Definition 2.1.1] from commutative ring extensions to arbitrary algebras, and generalizes [26, Definition (10.21)]
from commutative K-algebras L to arbitrary K-algebras L.

Philosophically, there is a similarity between integral elements of a K-algebra, and “finite-order” elements of
a semigroup (i.e., elements a such that the set

�

a1, a2, a3, . . .
	

is finite). In Proposition 24, we shall see a direct
connection between these two concepts, but even before that, the similarity is helpful as a guide.

Definition 16. Let K be a commutative ring. Let M be a K-module, and let n ∈ N.
(a) If m1, m2, . . . , mn are n elements of M , then we let 〈m1, m2, . . . , mn〉K denote the K-submodule of M

spanned by m1, m2, . . . , mn. This K-submodule is called the K-linear span of m1, m2, . . . , mn. A similar notation
will be used for spans of infinitely many elements.

(b) We say that the K-module M is n-generated if and only if there exist n elements m1, m2, . . . , mn ∈ M such
that M = 〈m1, m2, . . . , mn〉K.

We notice that a K-module M is finitely generated if and only if there is some n ∈ N such that M is n-generated.

The following fact provides several criteria for when an element of a commutative K-algebra is integral over K:

Theorem 17 (Theorem 1.1 in [20]). Let K be a commutative ring. Let L be a commutative K-algebra. Let n ∈ N.
Let u ∈ L. Then, the following assertions A, B, C and D are equivalent:

• Assertion A: There exists a monic polynomial f ∈K [t] of degree n such that f (u) = 0.

• Assertion B: There exist an L-module C and an n-generated K-submodule U of C such that uU ⊆ U and such
that every v ∈ L satisfying vU = 0 satisfies v = 0. (Here, we are making use of the fact that each L-module
canonically becomes a K-module, since L is a K-algebra.)

• Assertion C: There exists an n-generated K-submodule U of L such that 1 ∈ U and uU ⊆ U.

• Assertion D: We have K [u] =



u0, u1, . . . , un−1
�

K.

Note that Theorem 17 is just one of several “determinantal tricks” used in studying integrality over rings. See
[5, Chapter V, Section 1.1, Theorem 1] or [9, Theorem 8.1.6] for another. We shall only use the implications
B =⇒A and A=⇒ D of Theorem 17.

We now draw the following conclusion from Theorem 17:

Corollary 18. Let K be a commutative ring. Let L be a commutative K-algebra. Let u ∈ L. Let C be an L-module.
Let U be a finitely generated K-submodule of C such that uU ⊆ U. Assume that every v ∈ L satisfying vU = 0 satisfies
v = 0. (Again, we are making use of the fact that each L-module canonically becomes a K-module.)

Then, u ∈ L is integral over K.

Proof. The K-module U is finitely generated. In other words, it is n-generated for some n ∈ N. Consider this n.
Thus, Assertion B of Theorem 17 is satisfied. Hence, Assertion A of Theorem 17 is satisfied as well, i.e., there
exists a monic polynomial f ∈K [t] of degree n such that f (u) = 0. Therefore, u is integral over K.

We conclude this part by recalling the following result which will be useful in the sequel:

Theorem 19 (implication (2) =⇒ (3) of Theorem (10.28) in [26]). Let K be a commutative ring. Let L be a
commutative K-algebra. Let u1, u2, . . . , um be a finite list of elements of L. Assume that these m elements u1, u2, . . . , um
are all integral over K, and generate L as a K-algebra. Then, the K-module L is finitely generated.
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4.2. Characterizing integral matrices

The following theorem characterizes integral matrices.

Theorem 20 ((a) ⇐⇒ (c) of Proposition 17, Section 1.6, Chapter V in [5]). Let K be a commutative ring. Let
n ∈ N. Let L be a commutative K-algebra. Let A be an n× n-matrix over L. The matrix A is integral over K (as an
element of the K-algebra Ln×n) if and only if each coefficient of the characteristic polynomial χA ∈ L [t] is integral
over K.

As a consequence of Theorem 20, we get the following result.

Corollary 21. Let K be a commutative ring. Let n ∈ N. Let L be a commutative K-algebra. Let A be an n× n-matrix
over L. Assume that A is integral over K (as an element of the K-algebra Ln×n). Let M be the K-subalgebra of L
generated by the coefficients of the characteristic polynomial χA ∈ L [t]. Then,M is a finitely generated K-module.

Proof. Let u1, u2, . . . , um be the coefficients of the polynomial χA. These coefficients are integral over K (by
Theorem 20), and generateM as a K-algebra (by the definition ofM); thus, in particular, they are elements ofM.
Hence, Theorem 19 (applied toM instead of L) yields that the K-moduleM is finitely generated.

4.3. Proof of Theorem 8

We need two more lemmata about finite generation of certain modules:

Lemma 22. Let K be a finite commutative ring. Let M be a finitely generated K-module. Then, M is finite (as a set).

Proof. The K-module M is finitely generated. In other words, there exist finitely many vectors a1, a2, . . . , am ∈ M
that generate M as a K-module. Consider these a1, a2, . . . , am. Thus, each element of M is a K-linear combination
of a1, a2, . . . , am. Since K is finite, there exist only finitely many K-linear combinations of a1, a2, . . . , am. Hence,
there are only finitely many elements of M . In other words, M is finite.

Lemma 23. Let K be a commutative ring. Let f ∈K [t] be a monic polynomial. Then, the K-module K [t]/ ( f ) is
finitely generated.

Proof. Much more can be said: For each u ∈K [t], we let u denote the projection of u onto K [t]/ ( f ). Then, the
K-module K [t]/ ( f ) is free with basis

�

t0, t1, . . . , tn−1
�

, where n= deg f . This is a well-known fact2 and follows
easily from “Euclidean division of polynomials”. Of course, this entails that the K-module K [t]/ ( f ) is finitely
generated.

The following fact will bring us very close to Theorem 8.

Proposition 24. Let K be a finite commutative ring. Let n ∈ N. Let L be a commutative K-algebra. Let A be an
n× n-matrix over L. Then, the following three assertions are equivalent:

• Assertion U : The set
�

A0, A1, A2, . . .
	

is finite.

• Assertion V: The matrix A is integral over K (as an element of the K-algebra Ln×n).

• Assertion W: There exists a positive integer m such that the polynomial t2m − tm is a multiple of χA in L [t].

Proof. We shall prove the implications U =⇒ V and V =⇒W and W =⇒ U :
U =⇒ V: Assume that Assertion U holds. The set

�

A0, A1, A2, . . .
	

is closed under multiplication. Thus, this set
(equipped with multiplication) is a semigroup. Furthermore, this set is finite (since Assertion U holds), and thus is
a finite semigroup. By [30, Corollary 1.2] or [19, Proposition 6.31], there exists a positive integer m such that
Am = A2m. Consider this m. Let g ∈K [t] be the polynomial t2m− tm. Then, g is monic (since m> 0) and satisfies

2See, e.g., [1, Chapter III, Proposition 4.6] for an equivalent version of this fact (restated in terms of an isomorphism K [t]/ ( f )→K⊕n).
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g (A) = A2m − Am = 0 (since Am = A2m). Hence, there exists a monic polynomial f ∈ K [t] such that f (A) = 0
(namely, f = g). In other words, A is integral over K, i.e., Assertion V holds.

V =⇒W: Assume that Assertion V holds. LetM be the K-subalgebra of L generated by the coefficients of the
characteristic polynomial χA ∈ L [t]. Then, the coefficients of χA belong to this K-subalgebraM; thus, χA ∈M [t].
Furthermore, Corollary 21 shows thatM is a finitely generated K-module. Thus, Lemma 22 (applied to M =M)
shows thatM is finite (as a set).

The polynomial χA ∈M [t] is monic. Thus, the M-module M [t]/ (χA) is finitely generated (by Lemma 23,
applied toM and χA instead of K and f ). Thus, Lemma 22 (applied toM andM [t]/ (χA) instead of K and M)
shows that M [t]/ (χA) is finite (as a set). This ring M [t]/ (χA) becomes a semigroup when equipped with its
multiplication. This semigroupM [t]/ (χA) is finite (since we have just shown thatM [t]/ (χA) is finite).

For each u ∈ M [t], we let u denote the projection of u onto M [t]/ (χA). By [30, Corollary 1.2] or [19,
Proposition 6.31], there exists a positive integer m such that tm = t2m. Consider this m. Then, tm = tm = t2m = t2m;
in other words, we have the congruence tm ≡ t2m modχA in the ring M [t]. In other words, the polynomial
t2m − tm is a multiple of χA inM [t]. Hence, the polynomial t2m − tm is a multiple of χA in L [t] (sinceM [t] is a
subring of L [t]). Thus, Assertion W holds.

W =⇒ U : Assume that Assertion W holds. Let m be a positive integer such that the polynomial t2m − tm is a
multiple of χA in L [t]. Note that 2m and m are positive integers satisfying 2m> m. Consider the ring Ln×n as a
semigroup (equipped with its multiplication).

Now, there exists a polynomial g ∈ L [t] such that t2m− tm = χA · g (since the polynomial t2m− tm is a multiple
of χA in L [t]). Consider this g. Evaluating both sides of the polynomial identity t2m − tm = χA · g at A, by the
Cayley–Hamilton theorem, we obtain

A2m − Am = χA (A) · g (A) = 0 · g (A) = 0

In other words, A2m = Am. Since Ln×n is a semigroup, we get
�

A1, A2, A3, . . .
	

=
�

A1, A2, . . . , A2m−1
	

Thus, the set
�

A1, A2, A3, . . .
	

is finite. Hence, the set
�

A0, A1, A2, . . .
	

is also finite. In other words, Assertion U holds.

We can now prove Theorem 8:

Proof of Theorem 8. Proposition 24 (or, more precisely, the equivalence of the Assertions U and W in this propo-
sition) shows that the set

�

A0, A1, A2, . . .
	

is finite if and only if there exists a positive integer m such that the
polynomial t2m − tm is a multiple of χA in L [t]. Since χA = χB, the set

�

A0, A1, A2, . . .
	

is finite if and only if there
exists a positive integer m such that the polynomial t2m − tm is a multiple of χB in L [t]. Therefore, the following
logical equivalence holds: the set

�

A0, A1, A2, . . .
	

is finite if and only if the set
�

B0, B1, B2, . . .
	

is finite.

5. Conclusions

We have provided an efficiently computable characterization of sensitivity to the initial conditions and
equicontinuity for one-dimensional LCA over Kn. To get such a characterization we have proved an algebra result
about the finiteness of matrix semigroups which is also of interest in its own.

Providing an efficiently computable characterization for other interesting dynamical properties such as expan-
sivity and strong transitivity for LCA over Kn is the first step for further researches in this domain.

Furthermore, an important research direction consists in generalizing our results (in terms of efficiently
computable characterizations), on one hand, to D-dimensional LCA over Kn, and, on the other hand, to additive
CA over a possibly non abelian group. This would also allow to build more robust methods based on such CA in
several applications.
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