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Abstract: Remote sensing can be fruitfully used in the characterization of metals within stockpiles
and tailings, produced from mining activities. Satellite information, in the form of band ratio, can act
as an auxiliary variable, with a certain correlation with the ground primary data. In the presence of
this auxiliary variable, modeled with nested structures, the spatial components without correlation
can be filtered out, so that the useful correlation with ground data grows. This paper investigates
the possibility to substitute in a co-kriging system, the whole band ratio information, with only the
correlated components. The method has been applied over a bauxite residues case study and presents
three estimation alternatives: ordinary kriging, co-kriging, component co-kriging. Results have
shown how using the most correlated component reduces the estimation variance and improves the
estimation results. In general terms, when a good correlation with ground samples exists, co-kriging
of the satellite band-ratio Component improves the reconstruction of mineral grade distribution,
thus affecting the selectivity. On the other hand, the use of the components approach exalts the
distance variability.

Keywords: resources characterization; bauxite residues; band ratio; kriging of component; min-
eral grade

1. Introduction
1.1. Recovery of Minerals from Stockpiles and Tailings

Raw material and metal extractions have been conducted since pre-historic times.
Mining has been present everywhere in Europe, although nowadays the majority of sites
are closed. This does not mean that resources have been completely depleted. Ancient
mining could not benefit from the most modern extraction and processing techniques and
has left significant amounts of mining residue (including tailings and stockpiles) currently
present in the territory, in the forms of semi-artificial hills, lakes, and ponds. Some of them
were completely stable and never reacted with the environment, while others (especially
those coming from metal mining) significantly modified the environment where they were
stocked. According to “Mining and Metal in a Sustainable World 2050” [1], a major gap
exists in effective retreatment technology (reuse, resize, or remove) of mining residues
to meet the sustainability objectives of United Nations Development Program (UNDP)
in 2030 [2].

Moreover, the depletion of the in-situ reserves, the increasing need of using lower
grade materials, and advances in recovery and processing technologies are the main reasons
why mining wastes are considered as recoverable resources. Moreover, the environmental
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aspects have caused a strong push for more effective management of mining residuals in
many mining sites [3,4]. As a first step, the raw material concentrations in tailings must be
quantified and classified and a reliable expected revenue model should be developed to
assess the feasibility of production, by giving particular attention to the presence of critical
raw materials (CRMs) for the European Union (EU), with high impact on the economy and,
at the same time, high risk of supply shortage [5,6].

A quantitative evaluation of the available resources in mining residues requires an
exhaustive sampling that must be justified, so that a preliminary characterization phase is
necessary for deciding if it is justified, proceeding with a full resource evaluation. Earth
observation (EO) data can be useful for the abovementioned preliminary mapping and
quantification of these mining residues, usually abandoned, in harsh environment, and
with limited possibilities for full and fast sampling campaigns [7]. The main potentials of
EO include the large number of easy to access data over large areas and their continuous
acquisition over time, which may allow continuous land monitoring.

1.2. Exploitation of Remote Sensing Information

The most popular applications of satellite imagery refer to mapping problems, where
the spectral content of images is used to recognize and characterize the observed surface,
for instance, in terms of land cover or physical and chemical properties, among others.
For these purposes, satellite images often require some kinds of geometrical and spectral
calibration [8]. Before calibration, indeed, images are affected by artefacts, which depend
on the sensor characteristics and the conditions at the time of acquisition, and that is to be
removed to enhance the information considered useful. The general problem for mineral
exploration and reserve characterization is the spatial distribution of the target variable,
because, in most practical cases, in situ information is limited and sparse. Satellite images,
instead, can provide dense additional information over the full area of interest, which can
be used, especially when correlation is found with the in situ data.

Because of the fast and accessible information, many EO analyses have been used in
mining areas and abandoned tailings, mainly for mapping pollution and environmental
variables, beginning many years ago [9–13]. In the presented case studies, authors used
remote sensing data and tools (such as imaging spectrometer data, and/or hyperspectral
imagery combined with in situ data) to improve map accuracy of environmental pollutants
affected by mining activities and their abandoned residue. In many applications, to improve
map accuracy and to validate results, geostatistical approaches were used with integration
of remote sensing [14–16]. The base of the geostatistical theory is the spatial correlation
among georeferenced data, correlations exploitable for a correct and optimal numerical
modeling of the regionalized variable (RV). Besides mapping the RV with high accuracy, as
an important advantage, using geostatistical approaches provides an extra tool to improve
the quality of the estimation, measured by the estimation variance maps [17]. In addition,
multivariate geostatistical approaches provide an extra possibility to use more than one RV
and model the correlations between RVs within so called co-regionalization modeling [18].
This analysis is able to not only verify some global results as the statistical correlations,
but also to identify possible correlations between spatial components of the main variable
with extra variables (the so-called secondary or auxiliary variables), including spatial
anisotropies. Therefore, independent of the variables at hand (temperature, concentration,
discovery probability, etc.) and of the spatial distribution model (estimation, simulation),
geostatistics allow tackling the central problem: finding meaningful correlations and spatial
modeling the unknown surface distribution of the interest variable, by extra information
(which can be satellite data for example) [19,20].

As mentioned above, in the mining sector, while direct information is expensive, a
good opportunity can be to exploit indirect information, much denser, but with good
correlation with the direct variable. This is the case of the low-cost data provided by
satellite images. There are many examples of mineral characterizations, where, by knowing
the spectral properties of a surface feature, simple mathematical operations among spectral
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bands (called band ratio) have contributed to localize outcrops and surface deposits [21–26].
To detect a specific feature or mineral, usually at least two spectral bands are necessary, one
band with higher reflectance features of the given material and another one with strong
absorption features for the same material [23]. There are many studies on spectral analysis
of minerals based on different satellite images and specific band ratios for different minerals
in a target area mainly in geological mapping [27,28]. Iron oxides are among the most
studied materials using band ratio techniques [25], because of their selective absorption of
light in the visible and near-infrared range caused by transitions in the electron shell [29].
For example, for detection and mapping of an iron ore formation, ferric (Fe3+) and ferrous
(Fe2+) iron oxide specific band ratios are suggested, and thanks to their correlation with
iron samples, some iron ore grades maps can be obtained [26]. Hence, the band ratio, as an
appropriate index, can be considered as additional information while mapping a specific
mineral of a geological feature on the surface.

This paper proposes to map the iron concentration as the strategic metal within
a bauxite residue in Greece. In the first step, only direct samples from the site were
used (performing ordinary kriging—OK estimation). Then, the band ratio identified for
iron detection was used as additional information to map the iron variability within the
bauxite residues (performing co-kriging—CK estimation). To improve the map accuracies,
a new method (component co-kriging—CCK estimation) was proposed to re-construct
the co-regionalization model between the sample data and the band ratio information, by
exploiting the possibility of extracting a specific component from the satellite data and
using it in the co-regionalization models. Finally, all three models and their results were
compared to check the improvement given by the proposed model in iron estimation maps.

2. Materials and Methods
2.1. Co-Regionalization Model and Application: Current Practice

The most classical estimation method to map the spatial variability of a RV variable
is OK, which uses available samples to predict in “not-available” points [17]. To add
an additional variable in the kriging system, and moving into multivariate geostatistics,
which in many cases improves the target variable prediction, there is a need of, at least,
a second variable, with the spatial correlation among them [18]. This property can be
calculated within the cross-covariance. Given two stationary random functions, Z1(x),
Z2(x), with the means of m1 and m2, the spatial cross-covariance C12(h) 6= C21(h), are
defined in Equation (1):{

C12(h) = E[Z1(x)× Z2(x + h)]−m1 ×m2
C21(h) = E[Z2(x)× Z1(x + h)]−m1 ×m2

(1)

The secondary variable can be known in all points of the domain and displaced in a
regular grid. If remote sensing data are used as a secondary variable, the space-time concept
should be considered because ground samples are taken in a certain time, while satellite
information is repeated over time; this produces photographs of “different” stockpiles.

In this study, an iso-time framework was adopted. An image of the stockpile at the
time zero (t0) was considered, as well as all the ground samples referred to the same surface
remote-sensed. Therefore, the 3D reconstruction of the distribution of concentrations is
relevant to a constant time.

The objective was to map the distribution of the target variable (iron concentration as
the strategic metal), using Sentinel-2 satellite data as the secondary variable. Sentinel-2 is a
European satellite mission for Earth observation, which is part of the Copernicus program.
It provides global coverage of multispectral imagery, composed by 13 bands in the spectral
range between the visible and the short-wave infrared, with a revisiting time of five days
at the equator [30]. It was selected for the present study because of the availability of the
images at the date of sampling, and the good spatial resolution (pixel size from 10 to 60 m,
depending on the band). Moreover, the spectral bands available in Sentinel-2 data allow
the computation of different band ratios useful for mineral exploration. For iron deposits,
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in particular, different band ratios were proposed in the literature for other multispectral
sensors [21–26], which can also apply to Sentinel-2 images [31].

To map the iron variability, the classical steps are:

• Using one variable: iron samples, spatial variability analysis of target variable (sample
variogram and its model), and finally using the OK estimation method;

• Adding extra information (as an example band ratio of iron as the secondary variable):
spatial variability analysis of target variable (sample variogram and its model) and
the secondary variable, the cross-correlation analysis between the target variable and
the secondary variable, and finally using the CK estimation method.

• At the end, to compare the map accuracies results, cross-validation should be per-
formed to check if adding information can improve the results.

The first approach for mapping the mineral concentration is using just the in situ
samples, which in this case are represented by the mineral concentrations from the mining
residues sampling. The ordinary kriging (OK) method can be used and the estimated
values in all nodes of the grid can be found by using Equation (2):

AOK(xi) = ∑
α

λOK
α × A(xα) (2)

where: A(xα) is the variable known in the points xa (mineral grade from samples); λα
OK are

the weights calculated with ordinary kriging method; AOK(xi) is the estimate of the main
variable in the points xi (grid nodes).

Regarding the OK model definition, its spatial variability is object of the variogram
analysis. The standard model of a stationary random function with nested structures is
presented in Equation (3):

γA(h) = anug + ∑
u

au × γu(h) (3)

where: γA(h) is the variogram model of the main variable (mineral concentration from
sampling); anug is the nugget effect; γu(h) are the models of different nested structures
(spatial components); au are the sills of each model component.

The second approach attempts to improve the estimation of the main variable, using
the secondary (auxiliary) variable. The prerequisite is to verify if a correlation exists
between two variables. The value of the correlation coefficient is defined by Equation (4):

ρAB =
σAB√

σ2
A × σ2

B

(4)

where: ρAB is the correlation coefficient between the primary (mineral’s grade from
sampling) and secondary variable; σAB is the covariance between the primary and sec-
ondary variable; σ2

A is the variance of the primary variable; σ2
B is the variance of the

secondary variable.
The CK variance allows theoretically verifying the effect of the secondary variable

on reducing the estimation smoothing. The estimates by CK can be found by applying
Equation (5):

ACK(xi0) = ∑
α

λCK
α × A(xα) + ∑

i
νCK

i × B(xi) (5)

where: B(xi) is the auxiliary variable known in the points xi (satellite grid nodes); λα
CK and

νCK
i are the weights for the primary and secondary variables calculated by CK; ACK(xi0) is

the estimate of the main (primary) variable in the points xio one of the grid nodes.
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Moreover, in the case of CK, often a linear co-regionalization model is expected
(Equation (6)): 

γA(h) = anug + ∑
u

au × γu(h)

γB(h) = bnug + ∑
u

bu × γu(h)

γAB(h) = cnug + ∑
u

cu × γu(h)
(6)

where: γA(h), γB(h) are the variogram models of the first and secondary variables; γAB(h)
is cross-variogram model between the primary and the secondary variable; γu (h) is the
structural components of variogram models; bnug is the nugget effect for the secondary
variable; bu are the sills of each component of the variogram model for the secondary
variable; cnug, cu are the sills of each component for the cross-variogram model.

The comparison of estimations obtained by the OK and CK methods is performed by
the following analyses [19]:

• The cross-validation;
• The estimation maps of minerals;
• The maps of estimation variance.

Usually, when the secondary variables are dense, namely available at more points
than the main variable, and sufficiently correlated with the main variable, CK is typically
of advantage [18].

2.2. New Perspective: Use of Spatial Components

In the case of multivariate geostatistics and in presence of a linear co-regionalization
model, the selected variables (A as the target variable and B as the secondary variable) can
be considered as a linear combination of independent random variables (factors) Ynug, Yi
monostructure, called scale components, in addition to the mean (Equation (7)):

A = mA +
√anugYA

nug + ∑
u

√
au ×YA

u

B = mB +
√

bnugYB
nug + ∑

u

√
bu ×YB

u
(7)

where mA, mB are the means of the variables A and B; YA
nug, YA

u , YB
nug, YB

u are the structural
components of the main and auxiliary variables, each of them being a {0,1} standard
variable with a specific variogram structure.

The correlation coefficient between the iso-structure components of the main and
auxiliary variable are presented in Equation (8):

ρAB
nug = E

[
YA

nugYB
nug

]
ρAB

u = E
[
YA

u YB
u
] (8)

Given the independence of factors, the total variance of the variables is just the sum of
the sills of each component. Variances and covariances are presented in Equation (9):

σ2
A = anug + ∑

u
au

σ2
B = bnug + ∑

u
bu

σAB =
√

anug × bnugρAB
nug + ∑

u

√
au · buρAB

u = cnug + ∑
u

cu

(9)

The correlation coefficient between the main (primary) and the secondary variable is
presented in Equation (10):

ρAB =
σAB√

σ2
A × σ2

B

=
cnug + ∑

u
cu√(

anug + ∑
u

au

)
×
(

bnug + ∑
u

bu

) (10)
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In the case of having several scale components, there could be an advantage of using as
auxiliary variable just one component instead of the whole initial variable. The justification
for that derives by the observation that the correlation between the main and the auxiliary
variables exists only at one scale (Equation (11)):

ρAB
uc =

cuc√
auc × buc

ρAB
u,u′ 6=u = 0 (11)

Such observation derives by the co-regionalization model, showing only one structure
in the cross variogram, or the independence of any other structure common to the main
and auxiliary variables (more generally, this approach allows also the filtering the effect of
a noise [18]).

In this paper, the methodology is performed to check the improvements of the iron
concentration maps, due to the increase of correlation when the auxiliary variable is just
the correlated component, as shown in the following relationships (Equation (12)):

σAYuc
= E[AYuc ] = cov{AB} = σAB

buc < bnug + ∑
u

bu → σ2
Yuc

< σ2
B

ρAYuc
=

σAYuc√
σ2

A×σ2
Yuc

> σAB√
σ2

A×σ2
B

= ρAB

(12)

In terms of variograms (Equation (13)):{
γB > γYuc

γAB = γAYuc

(13)

In terms of CK, using one of the components, Yuc , the estimation results are different
with respect to using the original auxiliary variable B, since the new secondary variable
and the weights differ from the original one. In fact, the component co-kriging system
(CCK) is similar to the original CK, but with different coefficient matrix, since the submatrix
of variogram of secondary variable changes (Equation (14)):

γAA γAB 1 0
γAB γBB 0 1

1 0 0 0
0 1 0 0

 6=


γAA γAYuc
1 0

γAYuc
γYuc Yuc

0 1
1 0 0 0
0 1 0 0


ACCK(xi) = ∑

a
λCCK

a × A(xa) + ∑
i

νCCK
i ×Yuc(xi)

(14)

where: Yuc(xi) is the structural component of the auxiliary variable known in the points
xi (satellite grid nodes); λα

CKY and νi
CCK are the weights for the primary and auxiliary

variables calculated by CCK; ACCK(xi) is the estimation of the main (primary) variable in
the points xi (grid nodes).

Note that YB(xi) is the true component that we do not know, so that we can implement
the CCK if we estimate it by factorial kriging (FK) which respects the actual data [18] in
Equation (15):

YFK
u (xi) = ∑

j
λFK

j B(xj)

B = mFK
B +

√
bnugYFK

nug(xi) + ∑
u

√
buYFK

u (xj)
(15)

The second part of Equation (15) can be checked to control the estimated value of
components YFK(xi). We can consider that, in case of an image band, the information is
dense and the estimation quality is satisfying, so that it looks justified to use the estimated
value of components in Equation (15).

The estimation variances σ2CK and σ2CCK allow comparing the precision of the estima-
tions. The two estimation variances are presented in Equation (16):
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
σe

2(ACK(xi0)→ A(xi0)) = ∑
α

λCK
α × γA

(
hα i0

)
+ µCK

A + ∑
i

νCK
i × γAY

(
hij0
)
+ µCK

B

σe
2(ACCK(xi0)→ A(xi0)) = ∑

α
λCCK

α × γA
(
hα i0

)
+ µCCK

A + ∑
i

νCCK
i × γAY

(
hij0
)
+ µCCK

B
(16)

Moreover, to check the adopted variogram models and to check if CCK could improve
the estimation results, cross-validation can be performed on data. The principle of cross-
validation is to remove the target variable at each sample point xα and then predict by
kriging with the proposed model. Therefore, since the true values are available, it is
possible to compute the kriging error [19].

2.3. Case Study: The Bauxite Residuals of Greece

Bauxite residues (BR) remained from Bayer processing of bauxite (also commonly
known as “red mud”) represents important strategic wastes from mining and processing
activities and they were inserted in 2020 in the list of critical raw materials for the European
Union [5]. The significant amount of raw materials within these types of residues can be
used as a new source of materials, specifically critical metals and rare earth elements [32].
Due to the analysis done on the BR, it has potential as a secondary resource for REE
extraction [33] and TiO2, V2O5, Al2O3, Fe2O3, CaO, Na2O, SiO2 resources.

The case study used in this research is the bauxite residue from the alumina refinery
of Mytilineos S.A. in Greece, located on the Gulf of Corinth, 136 km from Athens (Figure 1).
The exact location is at latitude 38.354177◦ and longitude 22.704671◦, CRS WGS84, and
its dimension is around 700 m × 600 m. Since 2006, four filter presses have been used
to dewater the BR, and since 2012, all BR produced has been filter-pressed and stored
as a “dry” (water content < 26%) by-product in an appropriate industrial landfill [31].
Producing the dry BR is currently known as the best technique for BR materials piling,
because a lower volume of deposits is stocked, with a subsequent decrease of the risk of
dam failures.

Figure 1. Location of bauxite residuals (left) and a high-resolution image of daily piling materi-
als (right).

The samples used were collected from daily accumulated materials (daily data) in-
cluding the tonnage of materials with their mean concentration value, and the area in
which they were piled within the BR areas from June to the end of July. The samples
exact locations (coordinates) were assigned where trucks discharged their daily load of
materials. Figure 2 shows the daily data during two months (June and July 2019). Therefore,
since, during the two months, materials were not over-accumulating, the Sentinel 2 image
selected at the end of July (date: 30 July 2019) is representative of materials during June
and July (accumulated in the area from the first of June until the end of July).
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Figure 2. Samples location at the end of July 2019 (a) and Sentinel-2 true color composite image
(RGB = 4,3,2); date: 30 July, 2019; the red line indicates the BR area (b).

The target RV selected is iron concentration Fe2O3 (%) as a strategic metal from samples
obtained from BR of Greece. The daily samples were analyzed through X-ray fluorescence
analysis-XRF, to obtain the iron concentration (Fe2O3%) information at alumina refinery
of Mytilineos S.A. To select the secondary variable, a preliminary test has been done to
choose the most relevant band ratio (with highest correlation coefficient) for iron mapping
(Table 1). Since the Sentinel-2 data are used in this study, the most common iron band
ratios for identifying iron [30] have been applied. It is worthwhile to note that these ratios
involve only bands at the highest spatial resolution (pixel size 10 m).

Table 1. Correlation coefficients between iron grades and band ratios of Sentinel-2 [30] at the sampling
points. The highest correlation is in bold.

Band Ratios Sentinel-2A Bands with
Their Central Wavelength

Correlation Coefficient with Iron
Concentration (ρ)

All iron oxides 4 (664.9 nm)
2 (492.1 nm)

−0.130

Ferrous iron oxides 4 (664.9 nm)
11 (1613.7 nm)

−0.349

Ferric Iron, Fe3+ 4 (664.9 nm)
3 (559.0 nm)

−0.150

Ferrous Iron, Fe2+ 12 (2202.4 nm)
8 (832.8 nm)

+
3 (559.0 nm)
4 (664.9 nm)

0.194

Ferrous silicates 12 (2202.4 nm)
11 (1613.7 nm)

−0.125

Ferric oxides 11 (1613.7 nm)
8 (832.8 nm)

0.223

From the presented correlation coefficients between iron concentration and band-
ratios (Table 1), the one with the highest correlation (ferrous iron oxides: 4/11) is chosen as
the secondary variable to map the iron concentration variability within the BR.

The histogram of iron concentration samples and the correlation between the selected
band ratios (ferrous iron oxides (4/11) band ratio) is exposed in Figure 3.

Band data are extracted from the Sentinel-2 image (see Figure 2) only inside the
boundaries of the BR area. The base map of the extracted band ratio values and the
histogram of data are shown in Figure 4.

Considering the iron concentration as the target variable and the ferrous iron oxides
band ratio as the secondary variable, it is possible, first, to map the iron variability in BR
using only iron samples. Secondly, it is possible to check if map accuracies can be improved
by adding the band ratio variable. Finally, by decomposition of the band ratio variable, in
the case of higher correlation, using one component can improve the iron estimation maps.
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Figure 3. Histogram of Fe2O3 (%) of samples (left) and correlation with band ratio ferrous iron oxides: Band4/
Band11 (right).

Figure 4. Histogram of ferrous iron oxides band ratio (left) and its base map (right).

3. Results

In the first step, using only iron samples, to perform OK, the sample variogram and
variogram model is shown in Figure 5, including two spherical structures. The red bars
below the variogram show the frequency of sample pairs used in variogram calculations.
The variogram model parameters are presented in Table 2.

Table 2. Structures and parameters of variogram models fitted on Fe2O3 (%) samples variogram.

Fe2O3 (%) Variogram Models

Nugget Effect
Spherical 1 Spherical 2

Range (m) Sill Range (m) Sill

2.3 70 2.9 180 3.4

Using the variogram model of Figure 5, it is possible to perform OK. Maps of Fe2O3
(%) concentration variability and estimation standard deviation are presented in Figure 6.

To improve the iron estimation results, in the second step, the presented secondary
variable (the ferrous iron oxides (4/11) band ratio) can be added to map the iron concentra-
tion variability.
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Figure 5. Sample variogram and variogram model for iron concentration obtained by samples Fe2O3

(%). h(m) is the distance and γ(h) is the sample variogram.

Figure 6. Fe2O3 (%) estimated map (OK) (left) and the estimation variance map (right) by performing OK.

To perform co-kriging, the sample variograms and variogram models considering
both variables (iron as main variable and ferrous iron oxides band ratio as the secondary
variable) and cross variogram are calculated and shown in Figure 7. The fitted model for
iron concentration is equal to the model used in OK. Using the same model makes the
comparisons more logical between the OK and CK. The structure and model details are
presented in Table 3.

Figure 7. Sample variograms and variogram models for iron concentration obtained by samples Fe2O3 (%) (a), ferrous iron
oxides band ratio (b) and cross-variogram (c). h(m) is the distance and γ(h) is the sample variogram.
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Table 3. Structures and parameters of variogram models fitted on Fe2O3 (%) samples, ferrous iron
oxides band ratio, and cross-variogram.

Direct variable—Fe2O3 (%)—Variogram Models

Nugget Effect Spherical 1 Spherical 2
Range (m) Sill Range (m) Sill

2.3 70 2.9 180 3.4

Auxiliary Variable—Band Ratio—Variogram Models

Nugget Effect Spherical 1 Spherical 2
Range (m) Sill Range (m) Sill

0.0027 70 0.0063 180 0.011

Cross-Variogram Models

Nugget Effect Spherical 1 Spherical 2
Range (m) Sill Range (m) Sill

0 70 −0.116 180 0.0001

Using the presented variogram models of Figure 7, it is possible to perform CK. Maps
of Fe2O3 (%) concentration variability and estimation variance are presented in Figure 8.

Figure 8. Fe2O3 (%) estimated map (CK) (left) and the estimation variance map (right) by performing co-kriging between
samples and ferrous iron oxide band ratio.

Finally, the new approach was performed by decomposition of the secondary variable
(the ferrous iron oxide band ratio).

In the first step, to choose the appropriate component, the correlation coefficients are
calculated, using the variogram models’ structures, and due to Equation (9):

γiron = 2.3 + 2.9× γ(R = 70) + 3.4× γ(R = 180)
γ f errous.iron.band.ratio = 0.0027 + 0.0063× γ(R = 70) + 0.011× γ(R = 180)
γcross.variogram = −0.116× γ(R = 70) + 0.0001× γ(R = 180)

(17)
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Hence, the correlation coefficient between components of ferrous iron oxides band
ratio and iron concentration can be calculated as bellow:

σA = 2.3 + 2.9 + 3.4 = 8.6
σB = 0.0027 + 0.0063 + 0.011 = 0.02
σAB = 0− 0.116 + 0.0001 = −0.1159
σcomponent1 = σY1 = 0.0063
σcomponent2 = σY2 = 0.011

(18)

Two components are related to the small range (R = 70 m) and the large range (R = 180).
Therefore, it is possible to calculate the correlation coefficients:

ρA/B = σAB√
σ2

A×σ2
B

= −0.1159√
8.6×0.02

= −0.279

ρA/Y1 = σAY√
σ2

A×σ2
Y

= −0.116√
8.6×0.0063

= −0.498

ρA/Y2 = σAY2√
σ2

A×σ2
Y2

= 0.0001√
8.6×0.011

= 0.0003

ρA/Y1 = −0.498 > 0.279 = ρA/B

(19)

Since the first component has the highest correlation coefficient (negative correlation)
with iron concentration, it is selected as the appropriate component to test the CCK.

In this step, to use the selected component in Equation (13), there is a need of estimat-
ing the component in all points of the grid. To do it, the CK is performed on band-ratio
data, using only the first structure of the variogram model. To check the coherency of
results from Equation (15), the estimated maps of both components (small range, R = 70 m,
and large range, R = 180 m), plus the estimated mean are shown in Figure 9.

The sum of three maps (estimated components and mean estimated) is equal to the
original values of ferrous iron oxides band ratio as Equation (15).

The small range component (R = 70 m) as having the higher coefficient correlation can
be used as the secondary variable to perform CCK.

The parameters of variogram models are shown in Table 4. The same as CK, the fitted
model on target variable (iron concentration) is equal to the previous models.

Table 4. Main parameters of the variogram model from Fe2O3 (%) of samples, first component of
ferrous iron oxides band ratio and cross-variogram.

Fe2O3 (%) Variogram Models
Nugget Effect Spherical 1 Spherical 2

Range (m) Sill Range (m) Sill

2.3 70 2.9 180 3.4
Band Ratio-Component 1 Variogram Models

Spherical 1
Range (m) Sill

70 0.0063
Cross-Variogram Models

Spherical 1
Range (m) Sill

70 −0.116

Maps of Fe2O3 (%) concentration using CCK method and its estimation variances are
presented in Figure 10.
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Figure 9. Base maps of real data values of ferrous iron oxides band ratios (upper left) and estimated components: small
range component (lower left) and large range component (lower right), and the mean estimation map (upper right), all
deposited from ferrous iron oxides band ratios.

Figure 10. Fe2O3 (%) estimated map (CCK) (a) and the estimation variance map (b), by performing CCK between iron
samples and the first component of ferrous iron oxide band ratio (Range = 70 m).
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Finally, Figure 11 shows the main statistics of the cross-validation for three solutions,
OK, CK, and CCK. Cross-validation performed by removing sample values (one-by-one)
and estimating them using the selected model and neighborhood for three methods (OK,
CK, and CCK). The scatter plots between estimated and true values of Fe2O3 (%) at 60 sample
points, standardized estimation error, and scatter plot between error and estimated values
are compared for all three solutions.

Figure 11. Statistics of cross-validation for OK, CK, and CCK results: scatter plot between true values of Fe2O3 (%) at
60 sample points and estimated values (left), standardized estimation error (central), and scatter plot between error and
estimated values (right).

4. Discussion

Mapping a metal distribution within an artificial resource, such as a mining waste
area is quite challenging and complex. Therefore, there are not many examples of using
geostatistical methods for tailings characterization. Some researchers tried to map metal
variability within mine tailings using in field samples and performed ordinary kriging.
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However, they faced with the challenge of a small number of samples while performing
geostatistical modeling [34]. Another example is characterizing the mining residues using
geostatistical co-kriging estimation [35,36]. In both examples, the traditional co-kriging
method is used. However, an efficient estimation of metal variability is essential, since
all economic evaluations are based on metals variability maps and estimation. Therefore,
the higher accuracy of the map can make the difference, when deciding whether the
exploitation of a strategical resource is economically feasible and sustainable. Iron maps
variability as the main target in this work is focused within a bauxite residue in Greece.
Most classical estimation method of OK is performed and estimation map has shown
mainly three high grade parts (more than 50% of Fe2O3) in north east and south east of
BR. The estimation standard deviation map identified the lowest estimation variance at
the samples points and a high variation where the number of samples are low (east and
middle part of the BR).

By adding EO data and specifically Sentinel-2 image (a free and easily accessible image)
at the date of sampling, the improvement of iron mapping was tested. The ferrous iron
oxides band ratio was selected as the secondary variable to see if additional information
(in a regular grid at all estimation points) can help the iron estimation mapping. Results of
CK has shown a higher variability with more anomaly points (with Fe2O3 concentration of
more than 50%) in the estimation map. Moreover, adding the band ratio data could decrease
the variability and the values of the estimation variance map. Finally, the new hypothesis of
using the most correlated component was tested. Due to the co-regionalization structures,
it was possible to decompose the band ratio values into mean, nugget effect, and two
different range components: a small range component (70 m) and a large range component
(180 m).

The correlation coefficient between each component and iron was calculated and the
first component with the small range (70 m) was selected due to its higher correlation with
iron. To use this component in the CK system, there was a need to estimate it for all grid
points, and then the estimated component was used to perform CCK. The appropriate
check was done to control the equality of Equation (13). In Figure 9, by mathematically
summing at each grid node, the values of all three maps (estimated component 1 and 2
and the estimated mean), the original map of the ferrous iron oxides band ratio is obtained.
This mathematical check confirms that the estimated component 1 can be used in the CCK
estimation based on Equation (15).

To do the comparisons among the three utilized methods (OK, CK, and CCK), in all
three estimations, the iron variogram model is the same. Moreover, the neighborhoods used
for estimations were equal, to have the same condition, while mapping the iron variability.

At the end, the cross-validation was performed to check the efficiency of three methods.
For the scatter plots between the true and estimated values of iron (Fe2O3) at sample points,
the higher correlation between the estimated values and true values is related to the CCK,
with ρ = 0.68. The histogram of the standardized estimation errors provides an idea about
the unbiasedness and also the quality of the estimate. It also helps locate the outliers, which
are outside the two vertical lines corresponding to the threshold value. In all three methods,
the mean of the histogram is close to zero and shows the acceptable estimation results.
Then the scatter plot of the standardized estimation errors versus the estimated values is
calculated, which should be with no preferential shape. The reason is the independency of
the standardized error with the estimated values. Since the two variables are theoretically
independent, this cloud should have no preferential shape, and this was confirmed by the
low correlation coefficients calculated.

5. Conclusions

Mapping the strategic metals is one of the most delicate phases, and by using satellite
images, an important improvement in the model quality of surface distribution can be
performed. Geostatistical models offer a wide variety of powerful tools for a deep study
of metals mapping and estimations. A strategic case study (a bauxite mining residue)
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is reported as an example to check the best method for mapping the iron concentration
(Fe2O3%). The proposed method of component co-kriging highlights not only the best sec-
ondary variable for iron estimation (with higher correlation coefficient), but also improves
the classical ordinary-kriging and co-kriging estimation maps. The cross-validation results
confirm the improvements of the results. Hence, to sum up:

• Remote sensing data are essential when mapping a surface feature, such as mapping
the iron concentration variability;

• Band ratio can be considered an important auxiliary variable in geostatistical modeling,
when there is correlation between in field samples and band ratios;

• Component co-kriging is an efficient method and, in case of high correlation coefficient
between one component of the auxiliary variable and the main variable (in this work,
the iron concentration), it can substantially improve the mapping results.
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