
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Precise Worst-case Blocking Time of Tasks under Priority Inheritance Protocol / Faldella, Eugenio; Loreti,
Daniela. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - STAMPA. - 70:11(2021), pp. 1901-
1913. [10.1109/TC.2020.3029328]

Published Version:

Precise Worst-case Blocking Time of Tasks under Priority Inheritance Protocol

Published:
DOI: http://doi.org/10.1109/TC.2020.3029328

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/826991 since: 2021-10-14

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TC.2020.3029328
https://hdl.handle.net/11585/826991

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

E. Faldella and D. Loreti, "Precise Worst-Case Blocking Time of Tasks Under Priority
Inheritance Protocol," in IEEE Transactions on Computers, vol. 70, no. 11, pp. 1901-
1913, 1 Nov. 2021.

The final published version is available online at:
https://dx.doi.org/10.1109/TC.2020.3029328

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/TC.2020.3029328

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 1

Precise Worst-case Blocking Time of Tasks
under Priority Inheritance Protocol

Eugenio Faldella and Daniela Loreti

Abstract—The problem of precisely computing the worst-case blocking time that tasks may experience is one of the fundamental
issues of schedulability analysis of real-time applications. While exact methods have been proposed for more sophisticated protocols,
the problem is indeed complex in case of the Priority Inheritance Protocol, even restricting the attention to uniprocessor systems,
non-nested resource accesses, and non-self-suspending tasks. Besides a very simple method leading in general to loose upper
bounds, only one algorithm of exponential complexity has been so far reported in literature to tighten such bounds.
In this work, we describe a novel approach which, leveraging an operational research technique for modeling the problem, computes
the same tight bounds in polynomial time. We then discuss the scenarios in which, assuming no conditional statements in the tasks’
code, the computed bounds derive from an actually impossible blocking chain, and we refine the initial model to more precisely
compute the worst-case blocking times for any task set in any possible operating condition.

Index Terms—Hard Real-Time Multitasking Applications, Exclusive Access Resources, Basic Priority Inheritance Protocol, Binary
Linear Programming

F

1 INTRODUCTION

THE problem of scheduling a set of hard real-time tasks
sharing exclusive access resources without missing any

deadline represents a topic of paramount importance in
every application domain characterized by tight timing con-
straints. When the tasks are scheduled according to a pre-
emptive priority-driven strategy, classical synchronization
mechanisms, like semaphores and monitors, are not enough
to avoid situations in which a higher-priority task is blocked
for an unpredictable amount of time by lower-priority tasks;
a suitable protocol must be applied instead.

The basic Priority Inheritance Protocol (PIP), proposed
by Sha, Rajkumar and Lehoczky in 1990 [1], [2], was the
first protocol specifically conceived for preventing this phe-
nomenon, called unbounded priority inversion, in uniproces-
sor systems, when tasks are scheduled according to a fixed-
priority strategy—like Rate-Monotonic Priority Ordering
(RMPO) or Deadline-Monotonic Priority Ordering (DMPO)
[3], [4]. Other protocols, like the Priority Ceiling Proto-
col (PCP), Immediate Priority Ceiling Protocol (IPCP), and
Stack Resource Policy (SRP), have been proposed afterwards
for further limiting the maximum blocking time that a
higher-priority task can experience. To this end, they resort
to precautionary blocks of lower-priority tasks [1], [5].

Nowadays, even though it does not prevent a task from
incurring multiple blocks and despite some persistent dis-
agreement over its advantages and shortcomings [6], [7], PIP
is still a very popular [8], [9], [10] and easy-to-use resource
access protocol. It is indeed natively and transparently sup-
ported by several commercial real-time operating systems
and Linux-related real-time kernels [11], [12], [13].

• E. Faldella and D. Loreti are with the Department of Computer Science
and Engineering, University of Bologna, Italy.
E-mail: {eugenio.faldella,daniela.loreti}@unibo.it

Manuscript received XXXX; revised XXXX.

When dealing with multitasking applications character-
ized by hard completion deadlines, schedulability analysis
is crucial [14], [15]. This study requires the knowledge of
the worst-case computation time of each task, the maximum
interference due to higher-priority tasks, as well as the max-
imum blocking time caused by lower-priority tasks—more
accurately these parameters are evaluated, more effective is
the analysis and significant its outcome. The focus of this
work is on the maximum blocking time.

While exact methods for the computation of the worst-
case blocking time have been proposed for protocols pre-
venting chained blocking, only a very simple algorithm
is usually employed for PIP [1], [14]. This technique—
which assumes non-self-suspending tasks served under
uniprocessor fixed-priority scheduling, and non-nested re-
source accesses—often provides just loose upper bounds.
Definitely better results are generally achievable with an
alternative algorithm of exponential complexity, based on
an exhaustive search of the solution space. It is worthwhile
pointing out, however, that also this algorithm—presented
by Rajkumar in [15]—may sometimes lead to the identifica-
tion of upper bounds that are not tight.

In this work, we start form the same assumptions
of the previous works [1], [14], [15], and we propose a
novel approach, which leverages an operational research
technique, namely Binary Linear Programming (BLP), to
compute the same blocking bounds identifiable through
the Rajkumar’s algorithm with polynomial—rather than
exponential—complexity.

Additionally, confining our attention to linear tasks (i.e.
tasks which do not contain conditional statements that affect
the execution order of any of their critical sections), we
also give a formal definition of the scenarios in which the
computed bounds derive from actually impossible blocking
patterns. Relying on this formalization, the initial model is
extended so as to permit a more precise evaluation of the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 2

Fig. 1: Execution sequences of a sample application App1

worst-case blocking time. In summary, the contributions of
this paper can be listed as follows:

a) a BLP model which, thanks to its structure, leads to the
same bounds of [15] in polynomial time;

b) a refinement of the BLP model and a demonstration
of its ability to more precisely compute the worst-case
blocking time in the case of linear tasks;

c) an extensive evaluation of the scalability, efficacy, and
accuracy of the two proposed BLP methods with re-
spect to existing techniques.

2 BACKGROUND

Let us consider a uniprocessor system and a set of N
tasks τ={T1, . . . , Tn, . . . , TN}, ordered by descending nom-
inal priority {P1, . . . , Pn, . . . , PN} (i.e. Pl<Ph ∀l>h), which
share a set of M resources {`1, . . . , `m, . . . , `M} guarded by
M distinct binary semaphores {S1, . . . , Sm, ..., SM}. Tasks
can be periodic (with unknown periods and initial release
offsets), or sporadic. For the sake of simplicity, we sup-
pose that each task has a unique priority. Every task may
access any resource more than once during its execution.
The longest critical section of the task Tn guarded by the
semaphore Sm is denoted with Zn,m, and its duration with
Ln,m. All resource accesses are not nested, and tasks do not
self-suspend.

According to PIP, each task is initially assigned its nomi-
nal priority. When a task Tn tries to access a resource `m that
is already held by a lower-priority task Tl, the priority of Tn
is temporarily transferred to Tl. In this case, Tl is said to
inherit the priority of Tn, and Tn is said to be directly blocked
by Tl. When Tl exits its critical section and releases `m, the
resource is acquired by the task with maximum priority
blocked on that semaphore. The mechanism of priority
inheritance is transitive, albeit it has been proven [14] that
transitive inheritance can only occur in presence of nested
critical sections. A lower-priority task Tl can block a higher-
priority task Tn even if they do not share any resource. This
case occurs when Tl inherits—as a consequence of a direct
block—the priority of another task Th with Ph>Pn. In this
case, Tn is said to be subjected to a push-through blocking.

As an example, let us consider an application App1
consisting of three tasks sharing one resource. Fig. 1 sum-
marizes the application details. In this example T2 does not
share any resource with T3, but it can be nonetheless blocked
if—as in Fig. 2—T1 tries to access `1 when it is already
held by T3. As an effect of priority inheritance, T2 is push-
through blocked for the duration of the critical section in T3.

In [1], the authors demonstrate that, when resource
accesses are handled according to PIP’s rules, the max-
imum number of blocks a task Tn can incur is given
by min(ln, sn), where ln and sn are, respectively, the

Fig. 2: Example of direct and push though blocking in App1

Fig. 3: Execution sequences of a sample application App2

number of lower-priority tasks and the number of distinct
semaphores that can block Tn. The constraints deriving
from PIP’s rules can be more clearly and synthetically
formulated [14] exploiting the notion of priority ceiling
Π(`m) of a resource `m, defined as the highest priority
of the tasks that use the corresponding semaphore Sm:
Π(`m)=maxn=1,...,N (Pn|Tn uses Sm), withm=1, . . . ,M . In
particular, under PIP each task Tn(n=1, . . . , N − 1) may be
blocked at most once:
(I) by every lower-priority task Tl that uses any semaphore

Sm with Π(`m)≥Pn,
(II) on every semaphore Sm with Π(`m)≥Pn that is used

by any lower-priority task Tl.
The problem of computing for all task phasings the worst-
case blocking time Bn that each task Tn may experience
is indeed complex, even in the case of non-nested critical
sections [1]. A very simple algorithm, having O(MN2)
complexity but often leading to the identification of loose
upper bounds, is described by Buttazzo in [14]. This algo-
rithm disregards the interleaving and length of independent
executions—as their presence does not influence the worst-
case blocking chain—and considers, for each lower-priority
task Tl, the set γn,l of the longest critical sections that may
contribute to the blocking of Tn, i.e. γn,l={Zl,m|Π(`m)≥
Pn}. Bn is then computed as min(Bln, B

s
n), where:

Bln=
N∑

l=n+1

max
m=1,...,M

(Ll,m|Zl,m∈γn,l)

Bsn=
M∑
m=1

max
l=n+1,...,N

(Ll,m|Zl,m∈γn,l)

The upper bounds on the blocking time deriving from
the application of this algorithm are often loose because
conditions (I) and (II) are violated, i.e. two or more critical
sections guarded by the same semaphore or belonging to the
same task may contribute to the computation of Bln and Bsn
respectively. As an example, let us consider an application
App2 (see Fig. 3) consisting of four tasks sharing three
resources. Table 1 reports the duration of the longest critical
sections of App2: each cell of coordinates Tn, `m reports
Ln,m (a 0-entry means that Tn does not access `m). The
priority ceiling of the resources is indicated in parenthesis.
The values of B1, B2 and B3 (B4 is clearly 0) deriving from

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 3

`1(P1) `2(P1) `3(P2)

T1 1 1 0
T2 3 4 2
T3 2 1 0
T4 1 0 2

TABLE 1: Duration of the longest critical sections in App2.

the outlined algorithm are:

B1=min(Bl1, B
s
1)=min(L2,2 + L3,1 + L4,1, L2,1 + L2,2)=7

B2=min(Bl2, B
s
2)=min(L3,1 + L4,3, L3,1 + L3,2 + L4,3)=4

B3=min(Bl3, B
s
3)=min(L4,3, L4,1 + L4,3)=2

While B2 and B3 are correct, B1 is clearly overestimated,
because it derives from considering in Bl1—against PIP
condition (I)—the access to the same resource (`1) by two
different tasks (T3, T4), and in Bs1—against PIP condition
(II)—the access to two different resources (`1, `2) by the
same task (T2).

Aiming to identify more accurate bounds, excluding
combinations of critical sections contrasting with the above
mentioned conditions, Rajkumar proposed a method [15]
which exhaustively considers, for every task Tn, all the
subsets of the possibly involved longest critical sections in
the N − n lower-priority tasks. The algorithm consists of
three steps.

1. Build a one-level tree, called a simpleton, for each lower-
priority task Tl that may contribute to the blocking of
Tn. The simpleton associated to Tl has as many edges
as the number of critical sections belonging to the set
γn,l. The weight of the edge associated to Zl,m is the
duration Ll,m of the longest access to `m by Tl.

2. Combine together such one-level trees, starting from
the simpleton associated with the highest priority task.
Attach all other simpletons, one at a time in descending
priority order, to the leafs of the tree under construction.

3. Explore all the paths from the root to the leaves of the
final tree, associating to each leaf a weight given by the
sum of the weights of the edges along the path. If a path
contains more edges referring to the same resource,
consider only the edge with the greatest weight. The
worst-case blocking time of the task corresponds to the
maximum weight of the leaves.

Fig. 4a exemplifies the three simpletons for the computation
of B1 in App2, corresponding to the pairs (T1, T2), (T1, T3)
and (T1, T4). The simpletons are then combined together to
create the final search tree (Fig. 4b). Correctly, the worst-
case blocking time of T1 results B1=L2,2 +L3,1=6 time unit
(t.u.). Fig. 5 illustrates how the critical sections identified
through the search tree can block T1. This allows verifying
that the computed maximum blocking time B1 is actually
possible, in the sense that (considering all release patterns)
there exists a schedule in which T1 exhibits a duration of
priority inversion equal to the claimed bound B1.

Although Rajkumar proposes a pruning technique [15]
to reduce the search space, in the worst case the computation
of the tree’s path weights requires to check all the subsets of
the longest critical sections in the lower-priority tasks that
can contribute to the block, making the complexity of the
algorithm exponential: O(N2MN).

(a) (b)

Fig. 4: Evaluation of B1 in App2 according to Rajkumar’s algorithm:
simpletons (a) and final search tree (b).

Fig. 5: Possible task scheduling of application App2 leading to the
worst-case blocking time B1 of T1 (T4 does not contribute to B1).

3 BINARY LINEAR PROGRAMMING FORMULATION

Linear Programming (LP) is a class of optimization prob-
lems that involves only linear functions as regards both the
objective and the constraints. Integer Linear Programming
(ILP) problems are particular LP problems that envisage the
set of decision variables in the solution to be composed of
integer values only. A sub-class of ILP problems is repre-
sented by BLP problems, where the values of the decision
variables are further bounded to be in {0, 1}.

Leveraging BLP, we first address the goal of computing
the same maximum blocking times identifiable with the
Rajkumar’s algorithm [15]. Analogously to that algorithm,
we assume that, during its execution, each task Tn may
require to access any resource more than once, all resource
accesses are not nested, and tasks do not self-suspend.
Likewise [14] and [15], we disregard the presence and length
of independent executions, and we define γn=

⋃
l>n

γn,l as

the set of all the longest critical sections that can block Tn
(either directly or via push-through blocking). We associate
a binary decision variable xl,m to every longest critical
section Zl,m∈γn (with 1≤n<l≤N). The role of each xl,m
is to discriminate, on the basis of the value that the BLP
solver will assign to it, whether the duration Ll,m of the
corresponding longest critical section Zl,m does contribute
(xl,m=1) or not (xl,m=0) to the maximum blocking timeBn.

As implied by conditions (I) and (II), the set of critical
sections in γn that most adversely contribute to the blocking
of Tn must be selected in such a way to be compliant with
the following constraints:

Constraint C1. Select at most one of the critical sections belong-
ing to the same lower-priority task Tl;

Constraint C2. Select at most one of the critical sections guarded
by the same semaphore Sm.

Therefore, the problem of computing the worst-case

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 4

blocking time Bn of task Tn for all task phasings can be
straightforwardly modeled through BLP as follows:

maximize Bn=
∑

∀l,m|Zl,m∈γn

xl,mLl,m

subject to ∀ Tl|∃Zl,j∈γn:
∑

∀m|Zl,m∈γn

xl,m≤1, (i)

∀ Sm|∃Zi,m∈γn:
∑

∀l|Zl,m∈γn

xl,m≤1, (ii)

∀ Tl, Sm|Zl,m∈γn: xl,m∈{0, 1}.
(M1)

The first (i) and second (ii) sets of constraints in model (M1)
correspond to the requirements C1 and C2, respectively.

Theorem T1. The bounds computed through the BLP model
(M1) are equal to those computed by the Rajkumar’s method.

Proof. By construction, the Rajkumar’s method and (M1)
start from the same search space: all the possible subsets of
γn. Then, they both rule out the same solution candidates:
those subsets of γn containing more than one critical section
belonging to the same task or involving the same resource.
The BLP model (M1) performs this exclusion by applying
constraints (i) and (ii), whereas Rajkumar by ensuring that
any root-to-leaf path of the tree contains at most one branch
for each task and for each resource.

Finally, among all the subsets of longest critical sections
satisfying conditions (I) and (II), they both take the one
(or those ones) with the larger sum of the durations: the
Rajkumar’s method considers the longest contribute for
each resource in any root-to-leaf path, and then takes the
maximum value on the leaves, whereas model (M1) uses
the objective function, which maximizes the sum of the
durations of the critical sections in the solution.

As Rajkumar’s method and (M1) start from the same
search space, rule out the same solution candidates, and
compute the maximum in the same way, conclusion of
Theorem T1 follows.

3.1 Example
We apply the model (M1) to the computation of the worst-
case blocking timeB1 of T1 in App2. For each lower-priority
task Tl (with l>1), we consider the set γ1,l of the longest crit-
ical sections that may contribute to B1: γ1,2={Z2,1, Z2,2},
γ1,3={Z3,1, Z3,2}, and γ1,4={Z4,1}. Given the complete set
of the longest critical sections that may contribute to B1,
γ1={Z2,1, Z2,2, Z3,1, Z3,2, Z4,1}, the BLP model to deter-
mine B1 is defined as follows.

maximize B1=3x2,1+4x2,2+2x3,1+x3,2+x4,1

subject to x2,1+ x2,2 ≤1
x3,1+x3,2 ≤1 (i)

x4,1≤1

x2,1 + x3,1 +x4,1≤1 (ii)
x2,2 +x3,2 ≤1

xl,m∈{0, 1},∀Tl, Sm|Zl,m∈γ1

Applying one of the ILP solving methods (e.g., cutting
planes, branch-and-bound, branch-and-cut, etc. [16], [17]),
the optimal solution of this problem is found to be:

x2,1=0, x2,2=1, x3,1=1, x3,2=0, x4,1=0.

Analogously to the Rajkumar’s method (Fig. 4b), (M1) states
that B1=L2,2 + L3,1=6 t.u.

3.2 Characterization of the BLP Model
Like any optimization problem, (M1) can be written as:

maximize LTx
subject to A x≤b x∈{0, 1}

where L is the vector of the durations of the critical sections
in γn, x is the vector of the binary decision variables, A is
the matrix of the coefficients in the constraints, and b is the
vector of constant terms. A has a column for each decision
variable and a row for each constraint. In the worst-case
scenario where the considered task Tn and all the lower-
priority tasks access all resources, the number of decision
variables would be |γn|=(N −n)×M , whereas the number
of constraints would be N − n+M .

In general ILP problems are NP-hard. However, if the
matrix of coefficients A is totally unimodular and the entries
of vector b are all integer values, it can be demonstrated [18]
that the optimal solution of the correspondent continuous
relaxation (i.e with x∈Rn instead of x∈Zn) is a vector of
integers and represents an optimal solution for the original
ILP problem too. In that case, since LP∈P , the optimal solu-
tion for the original ILP problem can be found in polynomial
time in the worst case.

As regards (M1), it is easy to see that the vector b of
constant terms is composed of integer values only: all right-
hand sides are 1. Moreover, the following lemma holds.

Lemma L1. The matrix A of the coefficients of (M1) is totally
unimodular.

Proof. An integer matrix is defined totally unimodular if all its
non-zero minors are 1 or -1. Sufficient condition for a matrix
M to be totally unimodular is to fulfill both the following
requirements [17]: 1) all the entries are 0, 1 or -1; 2) every
column contains at most two non-zero entries and the rows
of M can be partitioned into two subsets M1 and M2 such
that, if a column of M contains two non-zero entries of
the same sign, one of them is in M1 and the other is in
M2. Otherwise, if a column contains two non-zero entries
of opposite sign, they are both in M1 or in M2.

Since in any constraint of model (M1) all decision vari-
ables either appear with coefficient 1 or do not appear, the
matrix A is composed of just 1 and 0 entries, thus satisfying
the first requirement of total unimodularity. Furthermore, A
has a column for each decision variable and two sets of rows
derived from the two sets of constraints (i) and (ii). We name
these two sets A1 and A2, respectively. More precisely, A
has the following form (0-entries are omitted):

[
A1

A2

]
=

xn+1,1 xn+1,M ...xl,1...... xl,M ... xN,1 xN,M

n+1 1··········1...
l 1··········1...
N 1 ·········· 1
1 1 1 1...
m

··············

··············

··············
...
M 1 1 1

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 5

Fig. 6: Execution sequences of a sample application App3

Note that A may actually have fewer rows or columns as
not all resources and tasks may contribute to Bn, but only
those for which the corresponding Zl,m is in γn.

By construction, the sub-matrix A1 derived from (i) has
a row for each lower-priority task Tl such that ∃Zl,m∈γn.
Since each constraint of set (i) regards a different Tl, a
decision variable can appear with a coefficient different from
0 in at most one constraint of (i), and as such, in at most one
row of A1. Consequently, there cannot be more than one
1-entry in a column of A1.

By construction, the sub-matrix A2 derived from (ii)
has a row for each semaphore Sm such that ∃Zl,m∈γn. As
we do not deal with nested resource accesses, each critical
section—as well as each decision variable of (M1)—involves
only one resource. As each constraint of (ii) regards a dif-
ferent Sm, a decision variable can appear with a coefficient
different from 0 in at most one constraint of (ii), and as such,
in at most one row of A2. Consequently, there cannot be
more than one 1-entry in a column of A2.

As constraints (i) and (ii) divide A in two sets of rows,
each with at most one 1-entry per column, we can conclude
that if a column of A contains two non-zero entries of the
same sign, one of them is in A1 and the other is in A2.
Therefore, also the second requirement for total unimodu-
larity is fulfilled. Conclusion of Lemma L1 follows.

As a consequence, it is possible to apply a resolution
method (e.g., the simplex, ellipsoid, or Karmarkar’s interior
point method [17], [19]) to the continuous LP relaxation of
(M1) in order to obtain its optimal solution in polynomial
time in the worst case.

4 MODEL REFINEMENT

Let us now consider application App3 in Fig. 6, where the
only difference with respect to App2 is the order by which
T2 accesses the resources `1 and `2. The BLP computation (as
well as the Rajkumar’s method) leads to the same blocking
time B1=L2,2 + L3,1=6 t.u.

However, according to PIP rules, this blocking chain is
actually impossible. Indeed, in order to have T1 blocked by
Z3,1 and Z2,2, the corresponding resources must be acquired
before T1 is released. We can disregard T1 for the moment
and try to recreate the situation in which T2 has acquired `2
to execute Z2,2 and T3 has acquired `1 to execute Z3,1.

Looking at Fig. 7a, we note that, since T3 has lower
priority, it has to start first in order to be able to acquire `1
(at time t1) before T2 preempts it. Then, T2 must have used
`2 for three t.u. and—more importantly for our discussion—
`1 for three t.u., before being able to actually acquire `2 to
execute Z2,2. The first of these conditions can be met while
T3 holds `1, whereas the second cannot. Indeed, if we focus

(a)

(b)

Fig. 7: In case of application App3, the worst-case blocking time of T1
computed by (M1) (as well as by the Rajkumar’s method) corresponds
to an actually impossible situation. Fig. 7a and 7b report the two
possibilities: T1 blocked only on Z2,2, and T1 blocked only on Z3,1.

Fig. 8: Under PIP, Tl cannot hold `q while Tv holds `m

on instant t2 of Fig. 7a, we see that, since T2 requests `1, T3

inherits its priority and continues to execute Z3,1. Only after
this critical section is completed, T2 can acquire `1 (time t3)
for three t.u. and finally reach Z2,2 (time t4). But at this point
Z3,1 has completed already and cannot contribute to B1.
Therefore, in Fig. 7a we see that T1 is only blocked on Z2,2.
This does not mean that T1 cannot be blocked on Z3,1 at all.
Fig. 7b shows exactly this situation (T1 is blocked onZ3,1 but
not on Z2,2). Besides, this observation is totally independent
from the order in which T1 requests its resources. Actually,
it is only related to the resources requested by the lower-
priority tasks T2 and T3 even before T1 is released. In
particular, we see that Z3,1 cannot contribute to the blocking
of T1 together with Z2,2, because the latter is preceded by a
critical section involving the same resource of Z3,1.

More generally, if we consider three tasks Tn, Tl and Tv
(with Pn>Pl>Pv) as in Fig. 8, such that Tl and Tv share
the same resource `m, and Tl must access another resource
`q after having released `m (with Π(`m),Π(`q)≥Pn), we
observe that only one of the following conditions can be
true at the same time:
(a) the task Tv holds `m,
(b) the task Tl holds `q .

As (a) and (b) cannot happen at the same time, only
one of the two critical sections (the one in Tv involving
`m or the one in Tl involving `q) can contribute to the
blocking time of the higher-priority task Tn. In light of this,
it is evident that conditions (I) and (II) are not enough to
precisely compute the worst-case blocking time Bn of task
Tn. A third condition has to be taken into account:
(III) A task cannot be executing any critical section preceded

by another critical section involving a resource that is
held by a lower-priority task.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 6

In order to formalize and demonstrate this condition, we
need to modify our assumptions and introduce a novel
notation able to describe all the critical sections—not just
the longest ones—and the order in which they are executed.

4.1 Notation and properties

As in previous works, we assume again non-nested resource
accesses and non-self-suspending, periodic or sporadic tasks
executing on a uniprocessor system. Also, we now restrict
our attention to linear tasks, i.e. tasks with no conditional
statements that affect the execution order of the critical
sections. We are aware that this is a strong assumption and
the issues deriving from it are discussed in Section 7.

The k-th (k=1, 2, . . .) critical section executed by task Tn
(n=1, 2, ..., N) is denoted by zn,k. The semaphore guard-
ing the resource accessed during zn,k is denoted by σn,k
and the duration of zn,k by dn,k. Zn={zn,k|k=1, 2, . . . }
(n=1, 2, ..., N) denotes the set of the critical sections of the
task Tn sorted by execution order—i.e. for any k′, k′′|k′<k′′,
the execution of zn,k′ precedes that of zn,k′′ (zn,k′≺zn,k′′).
Additionally, we need a set of symbols to clearly describe
the scheduling of an application. Given an application A
composed of a task set τ , we consider a generic PIP schedule
S for A, and we denote with an and fn the instants when
the task Tn is released and completed, respectively. Analo-
gously, we denote with an,k and fn,k the instants when the
semaphore guarding the access to the critical section zn,k
is respectively acquired and released by Tn. When PIP is
used to enforce mutual exclusion in the access to shared
resources, the following lemma holds.

Lemma L2. If a PIP task schedule S states that a semaphore
guarding the access to a critical section zl,k∈Zl is not acquired
by task Tl before a higher-priority task Tn is released, then it can
only be acquired after Tn is completed, i.e.

∀Tl, Tn, n<l : an<al,k⇒fn<al,k

Proof. Under PIP rules, Tn is blocked by Tl only if Tl has
been preempted while executing a critical section zl,j that
can block Tn. If an<al,k, only a critical section preceding
zl,k can block Tn, so we consider a generic zl,j with j<k.
If such a critical section zl,j was indeed started and not
finished before an, we know from (I) that it is the only
critical section that will block Tn (recall that we assume
non-self-suspending tasks). Any other critical section after
zl,j (including zl,k) is delayed until the end of Tn. fn<al,k
follows.

We can now give a formal definition of condition (III)
employing the newly introduced notation.

Theorem T2. For all triplet of critical sections zn,k, zn,k′ , zl,j in
a given application A such that n<l, k<k′ and σl,j=σn,k, any
PIP task schedule of A is such that: fl,j<an,k′ Y fn,k′<al,j

Proof. By exhaustive case analysis. As σl,j=σn,k and ac-
cesses to the same resource are mutually exclusive, if task
Tn is within the critical section zn,k , then Tl cannot acquire
the semaphore guarding the access to zl,j , and vice-versa.
This entails that either zl,j is completely executed before
zn,k starts or vice-versa, i.e. fl,j<an,k Y fn,k<al,j

(a)

(b) (c)

Fig. 9: Visual representation of theorem T2. As zn,k and zl,j both
require `m, they cannot overlap in any scheduling for (II). As a result,
under PIP rules, zl,j can be either executed after (Fig. 9a) or before
(Fig. 9c and 9b) zn,k . In particular, Fig.9c shows the case of zl,j
completed before Tn starts, whereas Fig.9b shows Tn released while
Tl is within the critical section zl,j . As prescribed by T2, in none of
these cases zl,j is executed while Tn is within zn,k′ .

Let us first consider the case fl,j<an,k. As k<k′, neces-
sarily zn,k≺zn,k′ entailing that fn,k<an,k′ . We can therefore
derive that in case fl,j<an,k, the first conclusion of theorem
T2 holds: fl,j<an,k′ .

Let us now consider the case fn,k<al,j (i.e. zn,k is com-
pletely executed before zl,j). We know by construction that
an<fn,k and we can therefore say an<al,j in this case, i.e.
the critical section zl,j is certainly started after Tn. As n<l,
from Lemma L2 we know that, if the semaphore guarding
the access to the critical section zl,j is not acquired before
Tn is released (i.e. if an<al,j), then it can only be acquired
after Tn is completed (i.e. fn<al,j). It follows that the second
conclusion of T2 holds: fn,k′<al,j .

Fig. 9 depicts the situations described by T2. Model (M1)
can be now refined by taking into account theorem T2. To
this end, we introduce a new set of symbols.

Ψn,l (1≤n<l≤N) denotes the set of semaphores with
priority ceiling greater than or equal to the priority of the
task Tn, which can be acquired by a lower-priority task Tl,
thus causing a direct or push-through block to the execution
of Tn. We also define Ψn,∗ as the set of all semaphores with
a priority ceiling greater than or equal to the priority of the
task Tn which can be acquired by any lower-priority task:

Ψn,∗=
⋃
l>n

Ψn,l

Φn,l,m (1≤n<l≤N , Sm∈Ψn,l) denotes the set of critical
sections guarded by semaphore Sm in the lower-priority
task Tl, which can block (either directly or via push-through
blocking) the higher-priority task Tn, i.e. Φn,l,m={zl,k|σl,k=
Sm,Π(`m)≥Pn}. In particular, we denote with ϕl,m the
critical section among those guarded by the semaphore
Sm that is first executed by the task Tl, i.e. ϕl,m=zl,k′∈
Φn,l,m|zn,k′≺zn,k′′ ∀zl,k′′∈Φn,l,m, k

′ 6=k′′.
Φn,l,∗ (1≤n<l≤N) is the set of critical sections of task Tl

that can block the higher-priority task Tn:

Φn,l,∗={zl,k|σl,k∈Ψn,l}=
⋃

m|Sm∈Ψn,l

Φn,l,m.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 7

Analogously, Φn,∗,m (1≤n<N , Sm∈Ψn,∗) denotes the set of
the critical sections guarded by the semaphore Sm in all the
lower-priority tasks that can block Tn:

Φn,∗,m=
⋃
l>n

Φn,l,m.

The overall set of critical sections in the lower-priority tasks
which can block Tn is Φn,∗,∗ (1≤n<N):

Φn,∗,∗=
⋃
l>n

Φn,l,∗=
⋃

m|Sm∈Ψn,∗

Φn,∗,m.

Θn,l,m (1≤n<l≤N , Sm∈Ψn,l) denotes the subset of the
critical sections in Φn,l,∗ which are guarded by a semaphore
other than Sm and executed after ϕl,m, i.e. Θn,l,m={zl,k∈
Φn,l,∗|σl,k 6=Sm, ϕl,m≺zl,k}.

4.2 Worst-case blocking time computation
Aiming to refine the computation of the maximum blocking
time Bn of a task Tn over all tasks phasings, we associate a
binary decision variable xl,k to every critical section zl,k∈
Φn,∗,∗. As in the previous BLP model, the role of each xl,k is
to discriminate, on the basis of the value that the solver will
assign to it, whether the duration dl,k does contribute (xl,k
= 1) or not (xl,k = 0) to the maximum blocking time Bn.

The model (M1) must be reformulated to express C1
and C2 with the notation introduced in section 4.1, while
condition (III) originates a third constraint.

Constraint C3. For each pair (Tl, Sm) such that Tl can block
Tn on a critical section guarded by the semaphore Sm, select
either one of the critical sections following ϕl,m, or one of those
involving Sm in tasks with priority lower than Tl.

In light of this, C3 can be stated through a third set of
constraints in the following BLP model:

maximize Bn=
∑

zl,k∈Φn,∗,∗

xl,kdl,k

subject to ∀Tl|l>n:
∑

zl,k∈Φn,l,∗

xl,k ≤1, (i)

∀Sm∈Ψn,∗:
∑

zl,k∈Φn,∗,m

xl,k ≤1, (ii)

∀Tl, Sm|n<l<N ∧ Sm∈Ψn,l: (iii)∑
zl,k∈Θn,l,m

xl,k +
∑

zv,k∈
⋃

v>l
Φn,v,m

xv,k≤1,

∀Tl|l>n xl,k∈{0, 1}.
(M2)

Note that the set (iii) introduces a constraint for each pair
(Tl, Sm) such that Tl can block Tn on a critical section
guarded by the semaphore Sm. For each of these pairs, it
considers the first critical section involving Sm in Tl, that is
ϕl,m. In particular, the first sum of (iii) refers to the critical
sections following ϕl,m and not involving Sm, whereas the
second sum addresses the set of critical sections involving
Sm in any task Tv with priority lower than Tl. Constraints
(iii) fulfil the statement C3 by imposing that only one critical
section be selected from these two sets.

(M2) has a number of decision variables that depends
on the total number of critical sections (not just the longest
ones) relevant for the blocking of Tn. The dimension of

Algorithm 1 Constructive procedure for checking if a task
Tn can be blocked by all the critical sections of a set Qn.
Input: τ , a set of tasks ordered by descending nominal
priority; Tn, a task of τ ; Qn⊆Φn,∗,∗, a set of critical sections
Output: S , a possible schedule where Tn is blocked by all
the critical sections in Qn, or false if it does not exist.

1: t=0 . schedule start time
2: Y=∅ . no semaphore acquired so far
3: while τ 6=∅ do
4: Tl= task with lowest priority in τ
5: if l>n and ∃ zl,k∈Qn then
6: for each zl,k′�zl,k do
7: if σl,k′∈Y then return false end if
8: end for
9: al=t . Tl is released at time t

10: t=al,k+ε .execute Tl until the start of zl,k
11: Y=Y ∪ {σl,k} . σl,k has been acquired
12: Qn=Qn \ {zl,k}
13: else if l≤n then
14: al=t
15: t=t+ ε
16: end if
17: τ=τ \ {Tl}
18: end while
19: if Qn 6=∅ then return false end if
20: return S

(M2) is therefore |Φn,∗,∗|. In the worst scenario where Tn
and all lower-priority tasks access all resources, the sets of
constraints (i) and (ii) have the same cardinality as model
(M1) (i.e. N−n and M , respectively), while the third set
(iii) introduces an inequality for each pair (l,m) such that
Tl can block Tn on a critical section involving Sm (i.e.
(N−n−1)×M). The sub-matrix derived from (i) and (ii)
would be again totally unimodular. But, since the sub-
matrix generated by (iii) has a variable number of 1-entries
in each column, it deprives A of total unimodularity. For
this reason, the third set of constraints allows computing a
more accurate value for Bn, albeit it is no longer guaranteed
that the optimal solution is found in polynomial time.

4.2.1 Quality of the solution of (M2)
The solution found by (M2) is precise in the worst possible
case over all task phasings in the sense that, if all release
patterns are possibile, there can exist a schedule in which the
task Tn undergoes a blocking chain with duration equal to
the solution of (M2). To prove this, we need to first provide
a constructive procedure which, given a task set τ and a
subset Qn⊆Φn,∗,∗, tries to build a worst-case schedule S
where all the elements of Qn contribute to the blocking
of Tn. If such a schedule can be found, we say that Qn
corresponds to a possible blocking chain for Tn.

The procedure (presented in Algorithm 1) starts by con-
sidering all the tasks in τ by increasing order of priority. For
each Tl with priority lower than Tn, if a critical section zl,k
belonging to that task is found in Qn (Line 5), then the task
is “virtually” released and executed until the acquisition of
the aforementioned critical section (Lines 9 and 10). Also,
σl,k is added to the set Y of semaphores acquired so far
(Line 11). If such a critical section is not present in Qn and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 8

Tl has a priority lower than Tn, the task Tl is not released at
all because its execution is not interesting for the goal of the
procedure. Tn and all the higher-priority tasks are simply
released one after the other by increasing priority (Line 14).

Line 19 ensures that all the critical sections in Qn have
been started at the end of the procedure. Otherwise, the
procedure returns false. Conversely, Lines 6 to 8 ensure that
all the critical sections in Qn have not concluded before Tn
is started (because in that case, the finished critical section
could not contribute to the block of Tn).

Theorem T3. Given a setQn⊆Φn,∗,∗ of critical sections selected
according to C1, C2 and C3, it is always possible to find a schedule
in which Tn is blocked by all the elements in Qn.

Proof. By construction, Algorithm 1 returns a schedule S in
which Tn is blocked by all the elements of Qn only if the
conditions of Lines 7 and 19 are never met.

Let us focus on Line 7 first. When iterating over a generic
Tl with l>n and considering one of its critical sections
zl,k∈Qn, the condition σl,k′∈Y is satisfied if either (a) there
exists a zl,k′ strictly preceding zl,k (zl,k′≺zl,k) such that
σl,k′ was acquired by a previously considered Tv (with
v>l, recall that tasks are released by increasing priority);
or (b) zl,k itself involves an already acquired semaphore σl,k
(note that the loop in Line 6 iterates also on zl,k′=zl,k). But
from C3 we know that ∀Tl, Sm, the set Qn contains either
a critical section following ϕl,m or a zv,j such that v>l and
σv,j=Sm. From which we deduce that ∀zl,k, zv,j∈Qn|v>l
none of the critical sections preceding zl,k is guarded by
the same semaphore of zv,j (i.e. σl,k′ 6=σv,j ∀ zl,k′ |k′<k).
Therefore, case (a) is not possible because when considering
Tl, no Tv (v>l) can have acquired in a previous iteration the
same semaphore of any zl,k′ preceding zl,k. Furthermore,
from C2 we know ∀zl,k, zv,j∈Qn, σl,k 6=σv,j , so no other task
can have acquired σl,k in a previous iteration. Consequently,
case (b) is not possible either, and we can conclude that the
condition of Line 7 is never met when all the critical sections
of Qn are selected according to C2 and C3.

Let us now consider Line 19. The while loop of Lines
3 to 18 iterates over the whole task set until τ=∅. At each
iteration, a task is considered and at most one of its critical
sections is removed from Qn (Line 12). Since Qn⊆Φn,∗,∗
by construction, Qn cannot contain critical sections of tasks
with priority higher or equal to Pn. So, the only possibility
for having Qn 6=∅ after the while loop is that the input Qn
contained more than one critical section for each task. But
from C1 we know that there is at most one critical section
per task in Qn, i.e. ∀zl,k, zv,j∈Qn, l 6=v (recall that tasks do
not self-suspend). As a consequence, the condition of Line
19 is never met when all the elements of Qn are selected
according to C1. Theorem T3 follows.

4.2.2 Example

We apply (M2) to compute B1 for App3. According to the
notation in section 4.1, the ordered sets of critical sections in
each task and their durations are:

Z1={z1,1, z1,2} σ1,1=S2, σ1,2=S1

Z2={z2,1,z2,2,z2,3,z2,4} σ2,1=S2,σ2,2=S1,σ2,3=S2,σ2,4=S3

Z3={z3,1, z3,2, z3,3} σ3,1=S1, σ3,2=S2, σ3,3=S1

Z4={z4,1, z4,2} σ4,1=S3, σ4,2=S1.

d1,1=1, d1,2=1. d2,1=3, d2,2=3, d2,3=4, d2,4=2.
d3,1=2, d3,2=1, d3,3=1. d4,1=2, d4,2=1.

The priority ceiling of the involved resources are Π(`1)=
P1, Π(`2)=P1, Π(`3)=P2.

In order to compute B1, all the critical sections in lower-
priority tasks should be taken into account except those
guarded by the semaphore S3 because it has a priority
ceiling Π(`3)=P2 lower than the priority of T1. Hence:

Ψ1,2={S1, S2},Ψ1,3={S1, S2},Ψ1,4={S1},Ψ1,∗={S1, S2}.
Φ1,2,∗={z2,1, z2,2, z2,3} Φ1,∗,1={z2,2, z3,1, z3,3, z4,2}
Φ1,3,∗={z3,1, z3,2, z3,3} Φ1,∗,2={z2,1, z2,3, z3,2}
Φ1,4,∗={z4,2}.
Φ1,∗,∗={z2,1, z2,2, z2,3, z3,1, z3,2, z3,3, z4,2}.

The BLP model is defined by first associating a bi-
nary decision variable to each critical section in Φ1,∗,∗:
(x2,1, x2,2, x2,3, x3,1, x3,2, x3,3, x4,2). Then, in order to write
the constraints (iii) introduced in (M2), we also identify the
relevant sets of critical sections for each lower-priority task
Tl and each semaphore Sm∈Ψ1,l:

(l=2,Ψ1,2={S1, S2}):
ϕ2,1=z2,2, Θ1,2,1={z2,3},

⋃
v>2

Φ1,v,1={z3,1, z3,3, z4,2}.

ϕ2,2=z2,1, Θ1,2,2={z2,2},
⋃
v>2

Φ1,v,2={z3,2}.

(l=3,Ψ1,3={S1, S2}):
ϕ3,1=z3,1, Θ1,3,1={z3,2},

⋃
v>3

Φ1,v,1={z4,2}.

ϕ3,2=z3,2, Θ1,3,2={z3,3},
⋃
v>3

Φ1,v,2=∅.

This allow us to formulate the BLP model to determine B1

for App3 as follows:

max.B1=3x2,1+3x2,2+4x2,3+2x3,1+x3,2+x3,3+x4,2

s. t. x2,1+ x2,2+ x2,3 ≤1
x3,1+x3,2+x3,3 ≤1 (i)

x4,2≤1

x2,2 + x3,1 +x3,3+x4,2≤1 (ii)
x2,1 + x2,3 +x3,2 ≤1

x2,3+ x3,1 +x3,3+x4,2≤1
x2,2 +x3,2 ≤1(iii)

x3,2 +x4,2≤1
x3,3 ≤1

xl,k∈{0, 1},∀1<l≤4.

The BLP solver provides a novel solution for the maximum
blocking time of the task T1:

x2,1=1, x2,2=0, x2,3=0, x3,1=1, x3,2=0, x3,3=0, x4,2=0
B1=d2,1 + d3,1=5 t.u.

Fig. 10 shows the possible blocking chain that causes B1.

Fig. 10: Task schedule of App3 leading to the worst-case blocking time
of T1. The critical sections are denoted according to the legend of Fig. 5.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 9

5 EMPIRICAL EVALUATION

In order to experimentally ascertain the validity of the
proposed approach, we developed a simple software pro-
totype1, which allows easily specifying (through a graphical
interface) arbitrary execution sequences, and calculating the
worst-case blocking time of each task leveraging model
(M2). In addition, we conducted an extensive evaluation
of the proposed approach by comparing its performance
with those of pre-existing techniques. The solution of the
BLP model (M1) and (M2) are obtained through IBM ILOG
CPLEX solver2. The study is conducted on an average
hardware architecture: a 2,9 GHz quad-core Intel i7 with
16 GB RAM. The code to reproduce these experiments is
available on GitHub3.

5.1 Experimental setup
To evaluate the performance of the proposed approach, we
randomly generate a set of applications with a variable
number of tasks (N={5, .., 100}) taking inspiration from the
process described in [13]. For each task of any application,
a number k of critical sections is randomly chosen (with
uniform distribution) in the range [kmin, kmax]. In particu-
lar, applications with three different ranges are generated:
[5, 10] (few critical sections in each task), [20, 30] (many
critical sections in each task), and [5, 20] (mixed, some tasks
have few, some have many critical sections). The number
M of shared resources in each application is varied across
{5, 10, 15, 20}. For each critical section in each task, the
involved resource is picked with uniform distribution in a
set with cardinality M .

Since our approach only focuses on the computation
of the maximum blocking time, the generation process
disregards tasks’ worst-case execution times, periods and
deadlines, which would be instead necessary for schedula-
bility analysis. The duration of each critical section does not
influence the practicability of a blocking chain, but affects
its duration. Therefore, it is randomly chosen (uniform dis-
tribution) in three different ranges [1, 25]µs, [25, 50]µs and
[50, 100]µs, as to simulate applications with various critical
section lengths. Although the choice of these parameters
does not represent any specific real-life workload, it allows
simulating a large variety of applications, characterized
by low, medium and high resource contention. For each
application generated in this way the probability pacc of
a task with k critical sections to access a certain resource
at least once can be computed as 1 − (1 − 1/M)k. As k is
uniformly distributed in the range [kmin, kmax], we actually
have:

pacc=
1

kmax − kmin + 1

kmax∑
k=kmin

1−
(

1− 1

M

)k

5.2 Evaluation approach
The evaluation is conducted by considering the applications
generated according to the previously described procedure,
and comparing the performance of our models (M1) and

1. https://github.com/dloreti/PIP_BTCalculator
2. https://www.ibm.com/products/ilog-cplex-optimization-studio
3. https://github.com/dloreti/pip_blocking/

(M2) with those of Rajkumar [15] and Buttazzo [14]. In ad-
dition, we consider another relevant work in this field, Yang
et al. [13], which assumes non-nested resource accesses and
performs a unified comparison of several protocols, includ-
ing PIP, employing the concept of “blocking fractions” in a
multiprocessor scenario. Blocking fractions are the portion
of longest critical section that can contribute to the blocking.
This concept is used to define the decision variables of an
LP model that maximizes the task’s response time. Since the
model in [13] is devoted to schedulability analysis, it is able
to estimate other parameters besides the blocking bounds,
such as the worst-case execution time and the maximum
interference. Obviously, we restrict our attention to the LP
model of the blocking bounds under PIP.

We perform three kinds of test.
• Scalability test: in order to assess the scalability of mod-

els (M1) and (M2), we analyze the time required to com-
pute the worst-case blocking time of all the tasks in any
application. We consider how this time increases with
the dimension of the problem, i.e. when the number of
tasks in each application increases.

• Efficacy test: we compare the value of the solution ob-
tained by the five methods to understand if there is a
significant difference in the computed Bn.

• Accuracy test: to asses the quality of the solution found
by each method, we check the practicability of the
correspondent blocking times. To do so, we compute
the ratio of solutions for which Algorithm 1 can find a
possible worst-case schedule.

5.3 Results

Concerning the Scalability test, Fig. 11 reports the graphs
comparing the time to generate the solution for the
five methods. Among all possible combinations of the
configuration parameters we chose the ones correspond-
ing to four different resource contention scenarios:
low (k=[5, 10],M=20, d=[1, 25], pacc=0.32), medium (k=
[5, 10],M=10, d=[25, 50], pacc=0.54), high (k=[5, 20],M=
10, d=[25, 50], pacc=0.70), and very high (k=[20, 30],M=
5, d=[50, 100], pacc=0.99). Every point of the graph empha-
sizes the time needed to compute the blocking time for
all the tasks of the considered application. For all four
configurations, the method reported by Buttazzo (“But” se-
ries) is always the least time consuming—followed at short
distance by Yang et al. (“Yan” series)—whereas Rajkumar’s
(“Raj” series) is the most because it explores the power
set of all the longest critical sections in the lower-priority
tasks that can contribute to the block. The scalability of
our BLP models fall in between Buttazzo’s and Rajkumar’s
methods. Nonetheless, it is important to remember that
method (M1) computes the same upper bounds of Rajkumar
with significant time saving.

The result of the Efficacy test is presented in Table 2,
which reports the average value of the solution computed
by the five methods for increasing application dimensions
(i.e. number of tasks). Each value is averaged over all
the tasks of 10 different applications with high resource
contention. The bounds derived by Yang et al.’s method
were cleared of the worst-case response times (including
blocking and interference) derived for higher priority tasks,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 10

(a) Low resource contention. (b) Medium resource contention. (c) High resource contention. (d) Very high resource contention.

Fig. 11: Comparison of the time to compute the worst-case blocking time in the four relevant resource contention scenarios.

Blocking time value (µs)
Tasks Yang Buttazzo Rajkumar = (M1) (M2)

10 464 322 317 282
20 420 328 327 317
40 320 310 310 306
60 379 329 329 326
80 424 331 331 329
100 542 330 330 327

TABLE 2: Comparison of the value for the worst-case blocking time
computed by the five methods.

which are not considered by the other methods. Despite
that, Yang et al.’s method provides rather loose bounds. This
is indeed expected because the LP model in [13] is devoted
to schedulability analysis in multiprocessor scenarios where
(I) does not hold. Furthermore, differently from the present
work, Yang et al. maximize the flexibility of their approach
by allowing conditional statements in the code of the tasks.
Hence, condition (III) is also inapplicable in their scenario.
Therefore, the method [13] often rules out only the solutions
not fulfilling condition (II). From Table 2 we also see that,
while the values of Buttazzo, Rajkumar and model (M1) are
all extremely similar, model (M2) is able to provide sensibly
reduced solution values, especially for small and medium
applications.

As regards the Accuracy test, Fig. 12 shows the ratio
of computed worst-case blocking time which corresponds
to an actually possible blocking chain. For Buttazzo, Yang,
Rajkumar and model (M1) that percentage decreases sig-
nificantly with the dimension of the application. This is
indeed expected as the higher is the number of tasks, the
more probable are long blocking chains in the solution,
and as such, the more probable is that Buttazzo, Yang,
Rajkumar and model (M1) make mistakes. The BLP model
(M2) instead is always able to find a possible blocking chain.

6 RELATED WORK

As the majority of real-life systems need to deal with non-
trivial synchronization problems at application- or kernel-
level, locking protocols are a crucial component in any real-
time operating system. Among the several proposed, we
focus on PIP because of its significant practical relevance:
priority inheritance is indeed supported by the POSIX real-
time standard and hence implemented in several real-time
kernels such as RTAI, VxWorks and QNX4.

The estimation of the longest time each task can be
blocked by another with lower-priority is one of the

4. https://www.rtai.org - http://www.windriver.com/products/
vxworks - http://www.qnx.com

key points to assess the schedulability of priority-driven
deadline-constrained real-time applications (together with
the computation of the worst-case execution time and max-
imum interference). In case of uniprocessor systems, two
main methods have been proposed for PIP: the technique
exposed by Buttazzo in [14] (which is a natural consequence
of the theorems originally exposed along with PIP in [1]),
and the technique by Rajkumar in [15].

The importance of PIP is further confirmed by the
relevance of works still focusing on it, now that multi-
processor systems have become a wide-spread reality for
real-time applications [13], [20], [21], [22]. In particular,
the works [21], [22] give a precise definition of priority
inversion blocking for multiprocessor applications. As our
work conversely addresses uniprocessor real-time systems,
this term is straightforward to define in our context, and
can be reduced to the notions of direct and push-through
blocking originally given by the PIP designers (and reported
in Section 2). In the paper [20], Easwaran and Andersson
propose a response time analysis for PIP in the context of
global fixed-priority scheduling (partially grounded on the
previous work [23]). In that analysis, the authors assume
non-nested resource accesses. We adopted the same sim-
plifying (albeit rather impractical) limitation in the present
paper. Other works specifically investigated the blocking
caused by nested resource access on multiprocessor sys-
tems. In particular, Wieder and Brandenburg [24] analyze
the complexity of accurately bounding that blocking time,
finding it to be NP-hard. Ward and Anderson [25], [26]
propose a “pluggable” protocol to support unrestricted lock
nesting while guaranteeing asymptotically optimal priority-
inversion blocking bounds. Their work was later extended
by Nemitz et al. [27] ensuring that both nested and non-
nested requests are processed efficiently.

The employment of operational research concepts is not
novel in the field of real-time schedulability analysis. In this
regard, the seminal work [28] reports an LP-based com-
parison of four different protocols (MPCP, FMLP+, DPCP,
and DFLP) for partitioned fixed-priority scheduling. In the
work [13], Yang et al. extend [28] taking into account other
protocols. Interestingly the schedulability analysis of [13]
highlights that PIP—together with FMLP—performs best
over a wide range of scenarios. Analogously to our method,
which extends model (M1) in (M2), the work [29] has
recently enriched the LP model of [28] with an additional
constraint to reduce the pessimism of the computed upper
bounds. Indeed, one of the main advantages of LP-based
analysis is its extendibility.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 11

(a) Low resource contention. (b) Medium resource contention. (c) High resource contention. (d) Very high resource contention.

Fig. 12: Comparison of the ratio of possible blocking chains computed by the five algorithms.

Concerning spin locks, a popular alternative to
semaphores, another operational research technique,
namely Mixed Integer Linear Programming (MILP), has
been employed in the work [30], and later extended in
[31]. A combination of graph-based technique and ILP is
employed in [32] to identify fine-grained blocking bounds
for nested spin locks.

Since the aim of this work is just to provide a more
efficient way to compute the worst-case blocking time we
do not deepen the problems connected to schedulability
analysis. We do not model the task’s worst-case execution
time, nor the interference due to higher priority tasks.
Furthermore, differently from all operational research ap-
proaches described so far, our model (M2) starts from the
strong assumption that tasks are linear. This is essential to
formulate condition (III), and thus to improve the accuracy
of the computed bounds. Nonetheless, it also represents a
restriction that excludes the plain applicability of (M2) to
many practical workloads (unless considering one at a time
all the possible execution flows). Other relevant models in
this field [13], [30], [31] do not suffer this loss of generality.
In this regard, Melani et al. [33] recently enriched the model
of Fonseca et al. [34] with a more efficient way to compute
an upper-bound on the response time of conditional tasks.

7 DISCUSSION

Like traditional methods [1], [15], (M1) assumes only non-
nested resource accesses and non-self-suspending tasks,
while (M2) refines the initial BLP by restricting attention to
the special case of linear tasks, intending them as tasks with
no conditional statements in the code, or tasks for which
safe abstract execution sequences can be derived, so that the
order of the critical sections in their code can be considered
fixed. In fact, task’s linearity is a strong assumption that is
expected to make the applicability of (M2) to many real-
life workloads rather difficult. Like other works on this
topic, the one by Yang et al. that is considered in the
experimental evaluation, does not suffer this restriction. As
a result, the accuracy of the bounds of Yang et al. is limited
with respect to (M2), but the generality of their analysis is
greater. Therefore, we must remark that the advantages of
model (M2) come at the price of reduced applicability.

The linear tasks assumption also affects the sustainability
of any scheduling algorithm built on the theory of this
work. The sustainability of an application is the expecta-
tion that, if the system is schedulable under its worst-case
specifications, then it should remain schedulable when it

“behaves better” than the worst-case [35]. If tasks have
conditional statements, their execution presents alternative
branches, each of which may include different sequences of
critical sections. Seminal works on this topic are [36], [37],
[38], [39]. Since (M1) does not consider the execution order
of the critical sections, the computed values remain valid
also in case of conditional statements. On the other hand,
a scheduling strategy using (M2) on non-linear task sets
would need to build (and solve) a different BLP model for
each possible combination of branches in each task, making
the computing effort impractical in most cases.

Another interesting discussion regards the possibility to
further refine the blocking time values. For example in case
of periodic tasks, both the models proposed in this work
assume unknown periods and initial release offsets, and in-
vestigate the maximum blocking time over all task phasings.
In particular, we claim the result of (M2) is such that, assum-
ing all release patterns are possible, there exists a schedule
producing the corresponding blocking chain. Nonetheless,
if we knew the periods and initial release offsets of periodic
tasks, an analysis of these parameters could reveal that
the schedule found by Algorithm 1 is actually impossible
because the release pattern generating that blocking chain
can never occur. In that case, the assumption that all release
patterns are possible would no longer hold and the upper
bound found by (M2) would not be tight. In general, we
cannot preclude the possibility that modeling also other task
parameters besides those considered (e.g., release patterns,
interference, worst-case execution time, presence/length of
independent executions) could induce other constraints and
further refine the maximum blocking time.

8 CONCLUDING REMARKS

In this paper, we adopt an operational research technique
for the computation of the task maximum blocking time
under PIP rules on uniprocessor systems. Focusing on non-
nested resource accesses and non-self-suspending tasks, we
employ BLP to determine the same upper bounds provided
by Rajkumar with polynomial—rather then exponential—
complexity. Then, restricting our attention to tasks with no
conditional statements, we identify an additional constraint
set that must be satisfied in order to obtain a possible block-
ing chain. Although the complexity of the resulting model
is no longer polynomial in the worst case, the proposed
solution is able to significantly improve the accuracy of the
worst-case blocking time.

Research is underway to extend the BLP models in order
to cope with nested resource accesses.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3029328, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JULY 2020 12

9 ACKNOWLEDGMENTS

The authors wish to sincerely thank the anonymous Ref-
erees for their valuable comments, which have helped to
improve the soundness and readability of the paper.

REFERENCES

[1] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance
protocols: An approach to real-time synchronization,” IEEE Trans.
Comput., vol. 39, no. 9, pp. 1175–1185, 1990.

[2] D. Cornhill and L. Sha, “Priority inversion in Ada,” Ada Lett., vol.
VII, no. 7, pp. 30–32, Nov. 1987.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” J. ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[4] J. Y. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Perform. Eval., vol. 2, no. 4,
pp. 237–250, 1982.

[5] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-
time Syst., vol. 3, no. 1, pp. 67–99, 1991.

[6] V. Yodaiken, “Against priority inheritance,” Finite State Machine
Labs, Tech. Rep., Sep. 2004.

[7] M. Bertogna and S. Baruah, “Limited preemption edf scheduling
of sporadic task systems,” IEEE Trans. Ind. Informat., vol. 6, no. 4,
pp. 579–591, Nov. 2010.

[8] D. Zöbel, D. Polock, and A. van Arkel, “Testing for the confor-
mance of real-time protocols implemented by operating systems,”
Electr. Notes Theor. Comput. Sci., vol. 133, pp. 315–332, 2005.

[9] A. Wellings, A. Burns, O. M. dos Santos, and B. Brosgol, “Integrat-
ing priority inheritance algorithms in the real-time specification
for java,” in 10th IEEE Int. Symp. Object-Oriented Real-Time Distrib.
Comput. (ISORC’07), Santorini, Greece, 2007, pp. 115–123.

[10] I. Bicchierai, G. Bucci, L. Carnevali, and E. Vicario, “Combining
UML-MARTE and preemptive time Petri nets:an industrial case
study,” IEEE Trans. Ind. Informat., pp. 1806–1818, Nov. 2013.

[11] G. Racciu and P. Mantegazza, RTAI 3.4 Users Manual, rev 0.3, Oct.
2006. [Online]. Available: \url{https://www.rtai.org}

[12] J. Lee and H. Kim, “Implementing priority inheritance semaphore
on uC/OS real-time kernel,” in Proc. IEEE Workshop Softw. Technol.
for Future Embedded Syst., Hokkaido, Japan, May 2003, pp. 83–86.

[13] M. Yang, A. Wieder, and B. Brandenburg, “Global real-time
semaphore protocols: A survey, unified analysis,and comparison,”
in IEEE Real-Time Syst. Symp., San Antonio,TX, 2015, pp. 1–12.

[14] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd Edition, ser. Real-Time
Syst. Series. Springer, 2011, vol. 24.

[15] R. Rajkumar, Synchronization in Real-Time Systems: A Priority Inher-
itance Approach. Norwell, MA, USA: Kluwer, 1991.

[16] G. B. Dantzig, Maximization of a Linear Function of Variables Subject
to Linear Inequalities, in Activity Analysis of Production and Allocation.
New York, NY, USA: Wiley, 1951, ch. XXI.

[17] A. Schrijver, Theory of linear and integer programming. Wiley, 1999.
[18] I. Heller and C. B. Tompkins, An extension of a theorem of Dantzig’s.

NJ, USA: Princeton Univ. Press, 1956, ch. 14, pp. 247–254.
[19] N. Karmarkar, “A new polynomial-time algorithm for linear pro-

gramming,” Combinatorica, vol. 4, no. 4, pp. 373–396, 1984.
[20] A. Easwaran and B. Andersson, “Resource sharing in global fixed-

priority preemptive multiprocessor scheduling,” in 30th IEEE Real-
Time Syst. Symp., Washington, DC, USA, 2009, pp. 377–386.

[21] B. Brandenburg and J. Anderson, “Optimality results for multipro-
cessor real-time locking,” in 31st IEEE Real-Time Syst. Symp., San
Diego, CA, USA, 2010, pp. 49–60.

[22] B. Brandenburg, “Scheduling and locking in multiprocessor real-
time operating systems,” Ph.D. dissertation, Univ. of North Car-
olina at Chapel Hill, NC, USA, 2011.

[23] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in 28th IEEE
Real-Time Syst. Symp., Tucson, AZ, USA, 2007, pp. 149–160.

[24] A. Wieder and B. Brandenburg, “On the complexity of worst-case
blocking analysis of nested critical sections,” in IEEE Real-Time
Syst. Symp., Rome, Italy, 2014, pp. 106–117.

[25] B. Ward and J. Anderson, “Supporting nested locking in multi-
processor real-time systems,” in 24th Euromicro Conf. on Real-Time
Syst., Pisa, Italy, 2012, pp. 223–232.

[26] ——, “Fine-grained multiprocessor real-time locking with im-
proved blocking,” in Proc. of the 21st Int. Conf. Real-Time Netw. and
Syst., New York, NY, USA, 2013, pp. 67–76.

[27] C. Nemitz, T. Amert, and J. Anderson, “Real-time multiprocessor
locks with nesting: optimizing the common case,” Real-time Syst.,
vol. 55, no. 2, pp. 296–348, 2019.

[28] B. Brandenburg, “Improved analysis and evaluation of real-time
semaphore protocols for P-FP scheduling,” in 19th IEEE Real-Time
Embedded Technol. Appl. Symp., Philadelphia,PA, 2013, pp. 141–152.

[29] Z. Ma, R. Kurachi, G. Zeng, and H. Takada, “Further analysis with
linear programming on blocking time bounds for partitioned fixed
priority multiprocessor scheduling,” J.Inf.Process., vol. 26, pp. 540–
548, 2018.

[30] A. Wieder and B. Brandenburg, “On spin locks in AUTOSAR:
blocking analysis of fifo, unordered, and priority-ordered spin
locks,” in 34th IEEE Real-Time Syst. Symp., Vancouver, Canada,
2013, pp. 45–56.

[31] A. Biondi and B. Brandenburg, “Lightweight real-time synchro-
nization under P-EDF on symmetric and asymmetric multipro-
cessors,” in 28th Euromicro Conf. Real-Time Syst., Toulouse, France,
2016, pp. 39–49.

[32] A. Biondi, B. Brandenburg, and A. Wieder, “A blocking bound
for nested FIFO spin locks,” in IEEE Real-Time Syst. Symp., Porto,
Portugal, 2016, pp. 291–302.

[33] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional DAG tasks
in multiprocessor systems,” in 27th Euromicro Conf. Real-Time Syst.,
Lund, Sweden, 2015, pp. 211–221.

[34] J. C. Fonseca, V. Nélis, G. Raravi, and L. M. Pinho, “A multi-DAG
model for real-time parallel applications with conditional execu-
tion,” in Proc, 30th Annu. ACM Symp. Appl. Comput., Salamanca,
Spain, 2015, pp. 1925–1932.

[35] A. Burns and S. K. Baruah, “Sustainability in real-time schedul-
ing,” J. Comput. Sci. Eng., vol. 2, no. 1, pp. 74–97, 2008.

[36] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in 31st IEEE Real-Time
Syst. Symp., San Diego, CA, USA, 2010, pp. 259–268.

[37] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-
time scheduling for generalized parallel task models,” Real-time
Syst., vol. 49, no. 4, pp. 404–435, 2013.

[38] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-
time processes,” in 33rd IEEE Real-Time Syst. Symp., San Juan,
Puerto Rico, 2012, pp. 63–72.

[39] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real-time scheduling of dags,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 12, pp. 3242–3252, 2014.

Eugenio Faldella is full professor at the De-
partment of Computer Science and Engineer-
ing of the University of Bologna since 1990,
where he teaches Digital Systems and Real-
Time Systems. He is author of several publi-
cations in prestigious conferences and journals.
At present, his research activity is mainly con-
cerned with techniques for hardware-software
co-design of real-time embedded systems for
industrial automation applications.

Daniela Loreti is post-doc and assistant pro-
fessor of Operating Systems at Department of
Computer Science and Engineering, University
of Bologna. She received her Ph.D. in Computer
Science in 2016. Her research focuses on dis-
tributed systems for big data management and
stream processing as well as parallel paradigms
for high performance computing. She is also
interested in the parallelization of artificial in-
telligence techniques in the fields of Machine
Learning, Process Mining and expert systems.

	Copertina_postprint_IRIS_UNIBO(2)
	TC

