
Soft Computing
https://doi.org/10.1007/s00500-021-05974-0

APPL ICAT ION OF SOFT COMPUTING

A distorted copula-based evolution model: risks’ aggregation in a
Bonus–Malus migration system

Enrico Bernardi1 · Silvia Romagnoli1

Accepted: 8 June 2021
© The Author(s) 2021

Abstract
In this paper, we put forward a new model to compute the loss distribution of an automobile insurance company’s portfolio
evolving by a bonus–malus system. We allow for a continuous evolution of the demographic-economic system based on a
migration’s rule which is refreshed in discrete time, i.e., at the monitoring times. Therefore, the migration’s probabilities are
discretely updated through a technique based on the combinatorial distributions of claims’ arrival in the rating classes. This
technique is hierarchical copula-based, a natural tool permitting us to represent the co-movement between claims’ arrivals
and distorted due to the formalization of an arrival policy of claims, that restricts the set of combinatorial distributions to those
representing the most probable scenarios, therefore distorting the loss function. At every monitoring date, the copula-based
model computes the migration’s probabilities and the loss function which accommodates for a discrete-time dynamic of the
claims’ reserving and the capital requirements. An empirical application, the evaluation of the claims’ reserving and the
capital requirements for different kinds of hierarchies are analyzed, with real data originating with the General Insurance
Association of Singapore.

Keywords Demographic-economic evolution · Distorted copula · Migration’s probabilities · Bonus–Malus system ·
Hierarchical Archimedean copula · Capital requirements

1 Introduction

The aggregation of risks is without doubt a topic of
paramount importance, particularly since the financial cri-
sis of 2008 one was forced to pay extreme attention to
decision-making approaches based on the minimization of
a risk measure concerning a multivariate portfolio. Here
we focus on the insurance business and particularly on the
underwriting risk side, i.e., on quantifiable risks faced by
an insurance company and entailed in his specific business.
Hence,we do not concern ourselveswith the risk-related con-
cept of uncertainty. The Solvency II regulatory framework
(see CEIOPS 2007; European Commission 2010) suggests a
risk aggregation model resting on a standard formula for the
computation of solvency capital requirements. This standard
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formula aggregates, at least in its original version, differ-
ent risk’s modules, considering only the linear correlation of
them, ignoring any kind of tails dependencies; this drawback
is sometimes mitigated by a calibration of the correlations
that takes into account also the empirical tail dependences
in one year. However, the tails do indeed represent the most
interesting part of the distribution for solvency reasons and
consequently the standard formula has been under largely
critical scrutiny (see e.g., Filipovic 2009; Ronkainen and
Koskinen 2007; Sandström 2007).
As an alternative, the directive warrants insurers to adopt an
internal model to calculate the solvency capital requirements
which should depend on a value-at-risk approach. The risk
measure proposed in the Solvency II directive is the one-
year value-at-risk at the level 0.005. Strictly related to the
capital requirement is the claims’ reserving that refers to the
modeling of the discounted reward process. It is obvious that
in order to define it, we need to specify a set of stochastic
underlying assumptions and we have at our disposal a large
selection of choices in the literature. The first application of a
continuous timeMarkov rewardprocess in life insurancefield
is attributed to Norberg (1995) while several applications of
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discrete time Markov reward processes can also be found in
Janssen and Manca (2006).
In this paper, we concentrate on an automobile insurance
company whose business rests on some form of merit-rating
in third-party liability insurance that penalizes at-fault acci-
dents by premium surcharges and rewards claim-free years
by discounts. Such a rating system is called a bonus–malus
system (BMS). This system is specified by a set of rules
assigning premiums and penalties to insureds depending on
the class they belong to and by a migration rule that governs
the evolution of the system itself built on the actual rating
and the experienced number of claims.
We therefore present here a new model to compute the loss
distribution of an automobile insurance company’s portfolio
evolving by a BMS. We admit a continuous evolution of the
system depending on a migration rule which is refreshed in
discrete time, i.e., at the monitoring times.
Therefore, the migration probabilities are discretely updated
through a technique relying on the combinatorial distri-
butions of the claims’ arrival in the rating classes. This
technique, a development ofBernardi andRomagnoli (2016),
is copula-based since the copula is the tool through which
we can represent the co-movement between claims’ arrivals,
and distorted due to the formalization of an arrival policy
of claims, that restricts the set of combinatorial distribu-
tions to those representing the most probable scenarios and
then impacts on and distorts the loss function. Moreover, we
account for a possible hierarchy in the dependency structure
which has a twofold impact, i.e., in the aggregation step and
also in the definition of the random matrix that formalizes
the arrival policy of claims. These features of the suggested
monitoring technique enable us to set us apart from the well-
known generalized linear models, where the frequency of
claim is recovered for any single group by a regression on
the risk’s factors (among them eventually theBMclaim’s his-
tory). In our model, the dependences from the risk’s factors
are taken into account in the clustering phase: this then leads
to a reduction of the complexity corresponding to the number
of homogeneous classes defined.Moreover, the novelty of the
technique introduced here can be appreciated in the global
vision of the computation as well, where the whole system,
i.e., all the classes considered together and not individually,
is analyzed: consequently also the contagion and the effects
induced by the hierarchical dependences of groups have an
important role in defining the set of possible scenarios.
In the advocated monitoring phase, the migration probabil-
ities and the loss function are evaluated as functions of the
copula volumes, a concept well-known in copula theory (see
Nelsen 2006 and Joe 1997). In Cherubini and Romagnoli
(2009) and in Bernardi and Romagnoli (2011), an algorithm
was proposed to compute analytically such volume in partic-
ular copulas’ families.

Finally, an interesting feature of the proposed model is
to join a continuous time evolution of the demographic-
economic risk, i.e., the systemic risk of insurance market,
with a discrete-time hierarchical copula-based representa-
tion of the idiosyncratic risk of the multivariate portfolio
of the company whose top level of the hierarchy stands for
the systemic dependency itself. The demographic-economic
risk is modeled as an epidemic model (see Allen 2007) with
demographic stochasticity formalized as a n-dimensional
SDE dependent on the migration’s probabilities governing
the BMS. On the other hand, the idiosyncratic risk, which
is given by a complex network of the claims’ arrivals (as
a matter of fact the idiosyncratic risk’s component depends
on individual features of insureds which imply a number
of connections among claims’ arrivals), is strictly linked to
the copula function, representing the dependency structure
of the network and potentially including any kind of tail
dependency, that provides the inputs of the demographic-
economic evolution system. It is exactly this connection of
a copula-based model, that is essentially a static tool, and
a dynamic demographic-economic environment, whose evo-
lution depends on the output of the copula-based one, which
justifies our claim of a completely new approach. The con-
nectionof idiosyncratic and systemic risk is circular,meaning
that from the copula-based model we can recover at time t
the migration’s probabilities: they will then in turn let the
dynamic system to continuously evolve until the immedi-
ate next monitoring date t + 1, thus producing the input to
update the migration’s probabilities set through the copula-
based model and so on and so forth. At every monitoring
instant, the copula-based model computes the migration’s
probabilities and the loss function which makes provision
for a discrete-time dynamic of the claims’ reserving and the
capital requirements.
Our presentation relies on a very general framework, whose
range of applicability certainly extends well over and beyond
the more specific target applications studied in detail in the
subsequent subsections. We have deemed it nevertheless of
some interest to be able to exhibit here this more comprehen-
sive scheme, summed up in Eqs. (4) and (7), since it lays the
foundational structure within which further more extensive
results will be proved.

The paper is organized as follows: in Sect. 2, we put
forward a discussion of the demographic-economic stochas-
tic evolution and the idiosyncratic copula-based network
to recover the migration’s probabilities. The risk aggrega-
tions problem and the claims’ reserving is also discussed; in
Sect. 3, we present an empirical application grounded on real
data coming from the General Insurance Association of Sin-
gapore. Themodel is then implemented considering different
kind of hierarchy and the results are compared in terms of
capital requirements; in Sect. 4, we finally draw a number of
conclusions.
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2 A new BMSwith continuous-time
evolution and discrete monitoring

The proposed model joins a continuous time evolution of the
demographic-economic riskwith a discrete-time hierarchical
copula-based representation of the idiosyncratic risk of the
multivariate portfolio of the company.
The demographic-economic risk is modeled as an epidemic
model (seeAllen 2007) andprovides the evolution in continu-
ous time of the insureds, aggregated in homogeneous classes
of risk; it is formalized as a n-dimensional SDE, dependent
on the migration’s probabilities governing the BMS.
On the other hand, the idiosyncratic risk, which is given by a
complex network of the claims’ arrivals, is strictly linked to
the copula function, representing the dependency structure of
the network. The modeling of this risk is in discrete-time and
provides the inputs of the demographic-economic evolution
system.
At every monitoring time, the copula-based model computes
the migration’s probabilities and the loss function which
makes provision for a discrete-time dynamic of the claims’
reserving and the capital requirements. Themigration’s prob-
abilities let the dynamic system to continuously evolve until
the immediate next monitoring date, thus producing the input
to update themigration’s probabilities set through the copula-
based model and so on and so forth.
A scheme of the model is proposed in Fig. 1. Here the four
decorated circles stand for the classes of risk: their compo-
sition evolves as a function of the continuous dynamic of
the population till the next monitoring date (represented by
the black bullets at the bottom of the figure). The discrete
monitoring allows to update the migration probabilities gov-
erning the continuous evolution of the population until the
next monitoring date is reached and to evaluate the forecast
figures concerning the risk’s management activities.

2.1 The demographic-economic evolution system in
continuous time

Having inmind amotor car insurance, we arrange N insureds
within n classes of risk (also called rating classes) accord-
ing to several characteristics such as age of the driver, sex,
region, type of car, mileage and so on. A set of rules assign-
ing premiums and penalties to insureds, depending on the
class they belong to and the recorded claims, will be taken
for granted.
Moreover, we presuppose that the system evolves because
the insureds may modify their status by changing class. The
rules governing the evolution are expressed by a migration’s
function that associates the actual rating class and the expe-
rienced number of claims to the new rating class.

In order to describe our migration’s assumption, we review
a general model system as presented in Allen (2007). Let
X(t) = [X1(t), X2(t), . . . Xn(t)]T denote the vector whose
j-th entry represents the number of insureds belonging to
class j at time t and we consider a migration’s assumption
sufficient to determine the evolution of the insureds’ popula-
tion once the actual allocation of all the insureds at time t = 0
is known. It is assumed that in a small timeΔt every state X j

can change by−1, 0 or+1. LetΔX(t) := X(t +Δt)−X(t)
be the global change in the time interval [t, t + Δt]. As
illustrated in Fig. 2, for j ∈ {1, . . . , n − 1} we denote
by α2 j−1 the probability per unit of time of the change
ΔX(t) = −e j + e j+1, where {e1, ..., en} denotes the canon-
ical bases of Rn ; more precisely,

α2 j−1(t, x) := P(ΔX(t) = −e j + e j+1|X(t) = x)/Δt .

This corresponds to the case where the state j decreased
of one unit, the state j + 1 increased of one unit while all
the other states remained unchanged. Similarly, we let α2 j

denote the probability of the change ΔX(t) = −e j+1 + e j .
In addition, we write β2 j−1 (resp. β2 j ) for the probability
of negative (resp. positive) interaction of state X j with the
outside, j ∈ {1, . . . , n}.
We observe that the extreme classes are characterized by
modified probabilities to access from outside that include
the upgrade/downgrade probabilities, respectively, i.e., β̂2 =
β2 + pu1 and β̂2n = β2n + pdn where pu1 stands for the
upgrading probability of class 1 while pdn is the downgrading
probability of class n.
The probabilities associated to those changes not explicitly
specified in Table 1 are assumed to be zero. We also remark
that in order to reduce the complexity of the system, we are
assuming to have a migration rule that admits movements
only from the starting class to one of the two neighboring
classes, depending on the revealed number of claims at the
previous monitoring date, i.e., to have a downgrade in case
of at least one recorded accident or an upgrade otherwise
(in case of no recorded accidents). The two extreme classes
constitute an exception, because they remain stable for the
upgrade/downgrade, respectively. Therefore, we assume to
penalize in the same measure for one or more than one acci-
dent. Nevertheless, we can imagine a different evolution rule
where the penalty is double in case of more than one accident
or any other different rule of migration.
The possible changes and the related probabilities of these
changes are shown in Table 1. There are a total of 4n − 1
changes with positive probabilities.
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Fig. 1 Scheme of a migration’s
system organized in 4 classes:
continuous evolution of the
population with discrete time
updating of the inputs

t0 t1 t2 t3

continuous evolution

of the population

continuous evolution

of the population

continuous evolution

of the population

monitoring and updating monitoring

Fig. 2 The representative
n-state dynamical system

Table 1 Possible changes in the
representative n-state system
with the corresponding
probabilities

Change Probability

ΔX(t) = −e j β2 j−1(t, x)Δt , 1 � j � n

ΔX(t) = e j β2 j (t, x)Δt , 1 < j < n

ΔX(t) = e1 β̂2(t, x)Δt

ΔX(t) = en β̂2n(t, x)Δt

ΔX(t) = −e j + e j+1 α2 j−1(t, x)Δt , 1 � j � n − 1

ΔX(t) = e j − e j+1 α2 j (t, x)Δt , 1 � j � n − 1

ΔX(t) = 0 1 − Δt
(∑2n−2

i=1 αi (t, x) − ∑2n
i=1 βi (t, x)

)

Following (Allen 2007), we can now write

P(X(t + Δt) = x)

= P(X(t + Δt) = x |X(t) = x)P(X(t) = x)

+
n∑

i=1

P(X(t + Δt) = x |X(t) = x + ei )P(X(t) = x + ei )

+
n∑

i=1

P(X(t + Δt) = x |X(t) = x − ei )P(X(t) = x − ei )

+ · · ·

=
(
1 − Δt

(
2n−2∑
i=1

αi (t, x) −
2n∑
i=1

βi (t, x)

))
P(X(t) = x)

+
n∑

i=1

β2i−1(t, x + ei )P(X(t) = x + ei )

+
n∑

i=1

β2i (t, x − ei )P(X(t) = x − ei )

+ · · · .

If we divide both sides by Δt and Taylor-expand in the
variable x the functions p(t, x) := P(X(t) = x) and the
probabilities α’s and β’s, we obtain a Fokker–Planck partial
differential equation for the density p(t, x). Such equation is
canonically associated to the stochastic differential equation

{
dX(t) = μ(t, X(t))dt + B(t, X(t))dW(t)
X(0) = X0

(1)

where W(t) = [W1(t),W2(t), . . . ,Wn(t)]T is an n-
dimensional standardBrownianmotion, B(t, x) is the unique
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symmetric square root of the covariance matrix

V (t, x) := E((ΔX(t))(ΔX(t))T |X(t) = x)/Δt,

and

μ(t, x) := E(ΔX(t)|X(t) = x)/Δt .

We refer the reader to Allen (2007) for more details on
this procedure. Using the values from Table 1, we get that

μ(t, x) = (α2 − α1 + β̂2 − β1)e1

+
n−1∑
j=2

(α2 j − α2 j−1 + α2 j−3 − α2 j−2 + β2 j − β2 j−1)e j

+(α2n−3 − α2n−2 + β̂2n − β2n−1)en . (2)

By the same token, denoting by Mj = (e j − e j+1) ⊗ (e j −
e j+1), 1 � j � n − 1 we get:

V (t, x) =
n−1∑
j=2

(β2 j−1 + β2 j )e j ⊗ e j + (β1 + β̂2)e1 ⊗ e1

+(β2n−1 + β̂2n)en ⊗ en +
n−1∑
j=1

(α2 j−1 + α2 j )Mj .

(3)

It is easy to see that V11 = γ1 + δ1, Vj j = γ j + δ j + δ j−1,
2 � j � n − 1 and Vnn = γn + δn−1, where we have put
γ j := β2 j−1 + β2 j , 1 < j < n, γ1 := β1 + β̂2, γn :=
β2n−1 + β̂2n and δ j := α2 j−1 + α2 j , 1 � j � n − 1.
We now aim to simplify the stochastic differential Eq. (1).
For that, we recall another usual fact we will have a chance
of using several times in the following. It is a consequence of
theMartingale Representation Theorem (M.R.T.): namely, if
Wj , j = 1, 2 are two independent Brownian motions then
there exists another Brownian motion W3 such that

∫ t

0
f (s)dW1(s) +

∫ t

0
g(s)dW2(s) =

∫ t

0

√
f 2(s) + g2(s) dW3(s),

for suitably regular Itô’s integrable functions f , g.
Let us now consider the j-th equation in system (1):

dX j (t) = μ j (t, X(t))dt +
n∑

l=1

Bjl(t, X(t))dWl(t).

Applying the previous remark, we get that there exists a new
Brownian motion Wj+n such that the preceding equation

becomes

dX j (t) = μ j (t, X(t))dt +
√√√√

n∑
l=1

Bjl(t, X(t))2dWj+n(t).

However, since V and B are symmetric and B2 = V we have
that

Vj j =
n∑

l=1

Bjl Bl j =
n∑

l=1

B2
jl .

Therefore, the system (1) reduces to

{
dX(t) = μ(t, X(t))dt + D(t, X(t))dW̃(t)
X(0) = X0

(4)

where W̃ = {Wj+n}1� j�n and D = diag(
√
Vj j ) (of course,

the components of the new Brownian motion W̃ will be in
general correlated). Here, we can notice how the system (4)
reduces for α and β being affine functions of X to the system
studied in Duffie and Kan (1996). A final remark is in order
for the total number of insureds N (t) := ∑n

j=1 X j (t). From

dX j (t) = μ j (t, X(t))dt +
n∑

l=1

Bjl(t, X(t))dWl(t),

which holds for every j ∈ {1, . . . , n}, we get that

dN (t) = d

⎛
⎝

n∑
j=1

X j (t)

⎞
⎠ =

⎛
⎝

n∑
j=1

μ j (t, X(t))

⎞
⎠ dt

+
n∑
j=1

n∑
l=1

Bjl(t, X(t))dWl(t). (5)

From (5), we obtain

dN (t) = m(t, X(t))dt +
n∑

l=1

⎛
⎝

n∑
j=1

Bjl(t, X(t))

⎞
⎠ dWl(t),(6)

where we setm(t, x) := ∑n
j=1 μ j (t, x). Applying again the

M.R.T., we have that there exists a Brownian motion Ŵ such
that Eq. (6) becomes

dN (t) = m(t, X(t))dt +

√√√√√
n∑

l=1

⎛
⎝

n∑
j=1

Bjl(t, X(t))

⎞
⎠

2

dŴ (t).
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But it is easy to verify that:

n∑
l=1

⎛
⎝

n∑
j=1

Bjl(t, x)

⎞
⎠

2

=
n∑

j,h=1

Vjh =
n∑
j=1

γ j

=
n∑
j=1

β2 j−1 +
n−1∑
j=2

β2 j + β̂2 + β̂2n,

and

m(t, x) = −
n∑
j=1

β2 j−1 +
n−1∑
j=2

β2 j + β̂2 + β̂2n .

As an aside, if we assume for instance that the net
interaction of our system with the outside world is null
also considering the stability of the extreme classes for the
upgrading/downgrading, i.e.,

∑n
j=1 β2 j−1 = ∑n−1

j=2 β2 j +
β̂2 + β̂2n and that the total incoming (or out-coming) only
depends on N (t), a not unreasonable assumption, we end up
with

dN (t) =

√√√√√2

⎛
⎝

n−1∑
j=2

β2 j (N (t)) + β̂2(N (t)) + β̂2n(N (t))

⎞
⎠dŴ (t),

(7)

for the evolution of N (t). Suitable assumptions on

n−1∑
j=2

β2 j−1(N ) + β̂2(N ) + β̂2n(N ),

as a functionof N will guarantee strong existence, uniqueness
and other features. For instance, if we assume the functions
β to be affine in N , then Eq. (7) becomes a so-called square
root process (see e.g., Mao 2008 for its properties and appli-
cations).
Weobserve that, assuming the probabilitiesα andβ inTable 1
to be constant (i.e., independent of t and x), then the system
(4) or equivalently (1) is explicitly solvable. More precisely,
referring to the system (1) we can write in this case

X(t) = X0 + μt + BW(t),

where now μ and B are constant vector and matrix, respec-
tively, obtained as before by the formulas (2), (3) and B2 =
V . Therefore, {X t }t≥0 is a continuous n-dimensional Gaus-
sian process starting at X0 and with mean vector tμ and
covariance matrix t BBT = t B2 = tV . We remark that, in
order to prevent possible negative values of the components
of X ,we implicitlyworkwithmax{X j (t), 0} instead of X j (t)
for any j ∈ {1, ..., n}.

In the following, we will focus on a special case rep-
resented by the assumption of a demographic-economic
evolution in continuous time with a discrete monitoring. At
every monitoring date (that will be defined in terms of a
multiple of the evolution’s step), the inputs of the system
will therefore be refreshed and the claims’ reserving evalu-
ated. Hence, hinging on the updated system, the population
will evolve until the next monitoring date,where the migra-
tion’s probabilities will be refreshed anew. The system then
evolves continuously even if the information is checked and
the network is refreshed discretely, in line with the periodic
deadlines in matter of risk management and regulation con-
cerning the claims’ reserving activity.

2.2 The discrete-timemonitoring and the
migration’s probabilities: the distorted
copula-based approach

We point out that the continuous time dynamic model
described above is coupled with a discrete monitoring
assumption corresponding to the periodic deadlines
{t1, t2, ..., tn} where the claim reserving activity must be set.
We thus assume to position ourselves at the starting time t0
and to evaluate the risk with a time horizon t1 by a forward
looking approach.
At the future time t1 and at every following monitoring date,
given the historical frequencies distributions of accidents per
class, we will retrieve the dependency structure of classes
and utilize a sampling procedure to recover the inputs of our
dynamic system, i.e., the migration’s probabilities per class
according to a given migration rule R. Such a procedure
corresponds to an advanced version of the Distorted Hier-
archical Copula model (see Bernardi and Romagnoli 2016
and Bernardi and Romagnoli 2021). Nevertheless the model
proposed here differs notably from its predecessor, since it
deals with repeatable events, with a stochastic number of
repetitions while in the cited paper one worked only with
non-repeatable events. This is a combinatoric framework
set up to recapture the distribution of a counting variable
that considers the rule responsible for the arrival of claims
(calledarrival policy): the arrival looks like the attraction by a
magnetic field, with an intensity proportional to a given prob-
ability (that is the probability of event’s occurrence) where
the joint occurrences of events are described by a dependency
structure possibly hierarchical. Thus, a hierarchical structure
induces a twisting on the arrival of claims, which in turn
characterizes the arrival policy together with the marginals.
The main new feature of this approach resides in considering
the impact of the hierarchy not only on the aggregation step,
i.e., in the computation of the probability of every scenario,
but also on the combinatorial distribution phase, i.e., in the
claims’ arrival, thus allowing for contagious phenomena.
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An arrival policy is formalized through a random matrix A,
called arrival matrix.

Definition 1 (Arrival matrix)
Given n groups with dependence structure represented by

a copula function C and of cardinality {X j , j = 1, ..., n} at
a given monitoring time, i.e., t1, let k denote the maximum
individual claim’s number and set n j := kX j , i.e., the max-
imum claim’s number for the j th group. The arrival matrix
is a random matrix A with components

Ai j =
X j∑
s=1

asi j ,

where asi j denote the i-th realization of dependent r.v.s stand-
ing for the number of claims recorded by the s-th individual
who belongs to the j-th group, according to a copula C j ,
such that

asi j =
{
h ∈ N ∩ [1, k] with probability ph,s

j

0 with probability 1 − ∑k
h=1 p

h,s
j

where h : Ω → {0, ..., k} is a r.v. representing the number
of individual claims recorded in the period from t0 to the
monitoring time t1, and ph,s

j are conditional probabilities of
dependent events, hence decreasing in h.

We observe that every row of A identifies a possible sce-
nario concerning the distribution of the random events in n
groups. Moreover, we point out that the number of columns
ofA corresponds to the dimension of the r.v.s set, i.e., n, while
the number of rows represents the number of distorted com-
binatorial distributions or the number of the combinatorial
distributions of claims considered more probable.

As a matter of fact, the arrival policy distorts the matrix
of the combinatorial distributions of claims, noted as E, in
such a way that some of these become negligible. Hence, the
mass of probability is no longer equally distributed among the
possible scenarios but turns out to be actually concentrated on
the subset of the distorted combinatoric distributions. From
a methodological point of view, in order to build the matrix
A we need to sample from the copula function representing
the dependency structure among variables.

Example 1 Assuming to have three BM classes, whose
(between-groups) dependence structure is represented by
copula C and whose cardinality at time t1 (i.e., at the
first monitoring date) turns out be X1 = 3, X2 = 1 and
X3 = 2, respectively, as output of the evolution system
described in section refevo. Let be k = 3 the max num-
ber of claims per insured and C1,C2,C3 the within-groups
dependences. Given the overall dependences and their hier-
archy (the between-link can be on the top of the hierarchy,

or we can imagine to connect the groups at different levels,
realizing a nested structure as well), we figure out to imple-
ment a sampling tool, based on the migration probabilities
and the groups’ cardinalities updated at time t1, in order to
define the arrival matrix at the same time t1. Two possible
realizations/scenarios (i.e., two rows of matrix A are going
to be considered) might be the following:

{ [0 0 3] → A11 = 3 [0] → A12 = 0 [0 0] → A13 = 0
[2 1 1] → A21 = 4 [2] → A22 = 2 [1 0] → A23 = 1

}
,

where, for example the first entry, i.e., 3, corresponds to the
sum of recorded claims as1 of insureds s = 1, 2, 3 in the first
class, in the first scenario.

We assume to work with a copula belonging to the com-
prehensive Archimedean family, i.e., a family where any
kind of tail dependence is permitted, by choosing differ-
ent copulas in the same class. As far as the Hierarchical
Archimedean family is concerned, we refer to the related
large strand of the literature (see Okhrin et al. 2013a, b and
Okhrin and Ristig 2014) and the sampling algorithm detailed
in Bernardi and Romagnoli (2016) and in Hofert and Mäch-
ler (2011), for nested copulas, i.e., tree structures where the
outermost Archimedean copula is called root copula. The
basic idea of this procedure is to provide 2n samples from the
common dependency structure and transform the obtained
variates to the multinomial margins asi j . By this device, we
create the arrival matrix A, whose i-th row is given by vec-
tor Ai . Finally, we observe that the distortion function D,
represented by the sampling algorithm, which is a function
of the set of copula’s generators {φ j , j = 1, ..., n − 1} and
the set of margins’ means per class {phj , j = 1...., n}, gives
the arrival matrix as a distorted version of the matrix E, i.e.,
A = D(E). The distortion function D is represented by the
sampling algorithm developed inHofert andMächler (2011),
in case of nested Archimedean copulas.

As seen before, the entries of the arrival matrix at time t
are the discrete r.v.s asj with values in the natural numbers
set ∀ j, s, representing the number of success in k-dependent
trials. Therefore, to recover this matrix we must consider
the available information at this time, i.e., the probabilities
P = {phj , h = 0, ..., k, j = 1, ..., n} that coincide with the
mean historical frequencies of the events for every class j
(i.e., the event to record h claims in class j). The same holds
true for every following monitoring dates. Then the dynamic
system will evolve in accord to a given migration’s rule
and the corresponding migration’s probabilities recovered
through the distorted copula approach, whose pivotal input
is the discussed current arrival matrix, as will be explained
in more detail in the following.
In order to recover the migration’s probabilities given a
migration’s rule R, we refer to the period ]t0, t1] and we
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define H j+1
i j = ∑X j (t1)

s=1 1{R j, j+1(asi j )} where R j, j+1 stands

for the migration’s rule from class j to class j + 1, which
must depend on the number of claims recorded in the j-
th class. Therefore, we assume to have a strictly ordered
ranking among the classes, whatever it is but in line with
the migration’s rule R. This is the i-th realization of a
r.v. H j+1

j that counts the events in favor to an upgrade,
from class j to class j + 1, according to the migration’s
rule R j, j+1. Hence, the corresponding migration’s proba-

bility is given by p j, j+1(t1) = E
P(H j+1

j |Ft1)

X j (t1)
, where H j+1

j
denotes the counting r.v. favoring an upgrade. For exam-
ple, if we consider a particular migration’s rule granting to
upgrade/downgrade (of one class) depending on the recorded
claims’ arrival, it is useful to introduce a new matrix H ,
whose entries are Hi j = ∑X j (t1)

s=1 1{asi j=0}. The correspond-
ing r.v. Hj counts the number of insureds in class j that have
not recorded any claims in ]t0, t1]. Hence, dependent on a
migration’s rule complying with the upgrade iff no claims
are recorded, the upgrading probability of class j at t1 is

given by puj (t1) = E
P(Hj |Ft1)

X j (t1)
while the downgrading one

would be pdj (t1) = 1 − puj (t1). In case of an open system,
we must take into account also a third probability, which is
usually residual, corresponding to the event of an external
entry or exit.

Example 2 Following Example 1, if the migration policy sets
an upgrade in case of zero-recorded claims, the correspond-
ing realizations of number of upgraded insureds are:

{
H2
11 = 2 H3

12 = 1 H3
13 = 2

H2
21 = 0 H3

22 = 0 H3
23 = 1

}
,

where H2
11 stands for the first realization of the number of

upgrading fromclass 1 to class 2.Weobserve that there are no
upgrading for the third class, since the BM structure foreseen
only 3 classes. Therefore, matrix H is given as

H =
[
2 1 0
0 0 0

]
,

and the corresponding probabilities to upgrade are:

{
pu1 = 2

3 pu2 = 1 pu3 = 0
pu1 = 0 pu2 = 0 pu3 = 0

}
.

Finally, assigning equal probability to the two scenarios, we
recover the upgrading and downgrading probabilities at time
t1, i.e.,

pu1 (t1) = 1

3
→ pd1 (t1) = 2

3

pu2 (t1) = 1

2
→ pd2 (t1) = 1

2

pu3 (t1) = 0 → pd3 (t1) = 1.

These probabilities will be the inputs of the evolution system
in (t1, t2).

We observe also that Hj is a r.v. corresponding to the sum
of X j dependent r.v.s. Therefore, in order to recover its cdf
we recall that, given two dependent real-valued r.v.s X and
Y defined on the same probability space with corresponding
copula CX ,Y (w, λ) and continuous marginals FX and FY ,
the cdf of X + Y is given by the C-convolution aggregation
formula (see e.g., Cherubini et al. 2011), i.e.,

FX+Y (t) =
∫ 1

0
D1CX ,Y

(
w, FY (t − F−1

X (w))
)
dw,

where D1C(u, v) = ∂uC(u, v) stands for the conditional
copula function. We are thus able to recover the cdf of Hj as

FHj (t) = Fa1j
(v

j
1 )

C j

∗ Fa2j
(v

j
2 )...

C j

∗ ...
C j

∗ F
a
X j
j

(v
j
X j

),

where the operator
C j

∗ stands for the C j -convolution of
Fasj ,∀s, i.e., it is the cdf of the r.v. given by the sum of a

set of dependent (through C j ) r.v.s. whose cardinality is X j .
Therefore, under the exchangeable Archimedean assumption
for C j , we have v

j
s = ys∑X j

s=1 ys
t , where t is drown from FHj

while ys is one of the X j uncorrelated draws from a sim-
ple Poisson pdf. This works because the Poisson distribution
has the property Πi P(xi ) = P(

∑
i xi ). Having so chosen a

random value of t , we are then able to randomly select a set
v j with the constraint that their sum equals t (see Whelan
2004). Furthermore, in this case we have

puj (t1) =
∑X j (t1)

s=1 1{vsj=0}
X j (t1)

.

Finally, we point out that in order to recover the dis-
tribution of the counting variable

∑n
j=1 A j , it is useful

to decompose the arrival matrix into several random sub-
matrices. In fact, each row i of A is associated to an integer
g ∈ N equal to the sum by row, i.e., g = ∑n

j=1 Ai j ,∀i . If
we select the rows associated to the same integer g, i.e., to
the same number of occurrences of the random event, we
generate a sub-matrix pg,n that is the random matrix of dis-
torted combinatorial distributions of g claims into n classes.
Indeed, the arrival matrix is the set of all the sub-matrices
pg,n,∀g, g ∈ N, g ≤ kN , where N = ∑n

j=1 X j (t1).
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2.3 Risks aggregation and claims’ reserving: the
distorted copula-based probability distribution
valuation

The following procedure computes the probabilities assigned
to the distorted combinatorial distributions of claims, repre-
senting themost probable scenarios, given an arrival policy of
claims. These scenarios correspond to a set of samples drawn
from the dependency structure of the insureds, grouped in a
set of rating classes. These probabilities are computed as vol-
umes of the copula that formalizes the dependency structure
among variables, and that we assume here to be eventually
hierarchical Archimedean (and then distorted by the arrival
policy of claims induced by the hierarchy itself), DHC for
short.

The following definition generalizes Proposition 2 in
Bernardi and Romagnoli (2013) that refers to a non-
hierarchical case where the arrival policy is assumed to be
homogeneous, assigning the same probability to every sce-
nario.

Definition 2 (DHC volume) Given a hierarchical
Archimedean copula function of dimension n, and an arrival
matrix A = {pg,n, g ∈ N, g ≤ kN }, where N =∑n

j=1 X j (t), the volume of the DHC defined by the n-

dimensional box S = [uh, v] with uh, v ∈ [0, 1]n,uh ≤
v, h = 1, ..., kX(t), may be represented as:

VDHC (S) =
kN∑
g=0

(−1)g
Dd (g,n)∑
i=1

DHC(c(pg,n(i))),

where Dd(g, n) denotes the number of distorted combinato-
rial distribution (d.c.d. Dd(g, n) stands for the number of the
combinatorial distributions of claims in the corresponding
sub-arrival matrix pg,n , i.e., the most probable ways to dis-
tribute g claims into n rating classes) of g claims into n rating
classes, pg,n(i) is the i-th rows of the sub-arrival matrix pg,n
whose dimension is Dd(g, n) × n, c(pg,n(i)) is a vector of

dimension n such that ci, j = v j if p
(i, j)
g,n = 0 and ci, j = uhj

if p(i, j)
g,n = h, where uhj , v j are the j-th element of the cor-

responding vectors and ci, j denotes the (i, j)-th element of
the corresponding vector and DHC(c(pg,n(i))) is the hier-
archical Archimedean copula computed for the i-th d.c.d. of
the sub-arrival matrix pg,n .

As pointed out previously, our approach is copula-based
in the sense that, given a copula function representing the
dependency structure of a given set of variables, we consider
a random event, i.e., the claim’s arrival which may include
such variables, and define a counting variable on this event.
Moreover, we consider a particular kind of copula, i.e., the
DHC one, which is defined through the arrival policy of

Fig. 3 Graphical representation of VDHC(S) in three dimensions

claims formalized by the arrival matrix A. The main tool of
this technique is exactly the volume of such kind of copula
that is represented in three dimensions in Fig. 3. As it is
clear from the graphical representation of the volume, it is
recovered through Definition 2, as a linear combination with
sign of several sub-volumes of the 0–1 cube.

Definition 3 (Claims’ counting variable linked to a n-
dimensional DHC) In the same setting of Definition 2,
the claims’ counting variable linked to the copula function
DHC(c(pg,n(i))) is given by

r(i) = �(pg,n(i)),

which counts the number of claims in the i-th row of the
sub-arrival matrix pg,n . Clearly, we have r(i) = g,∀i, g ∈
N, g ≤ kN where N = ∑n

j=1 X j (t).

Our aim is to recover the probability distribution of the
claims’ counting variable linked to an-dimensional DHC . In
order to achieve this, we consider the distorted setting where
the claims’ arrival is studied through the set of scenarios
having the greatest probability mass, in accord to a claims’
arrival policy assumption.

Definition 4 (Probability distribution of the claims’ count-
ing variable linked to a n-dimensional DHC) In the same
setting of Definition 2, the probability distribution of the
claims’ counting variable linked to the n-dimensional DHC ,
with marginals uh ∈ [0, 1]n, h = 1, ..., kX(t) and arrival
matrix A, is the function Pr : [0, kN ] → [0, 1] where
N = ∑n

j=1 X j (t), such that:

Pr (g) =
Dd (g,n)∑
i=1

VDHC (Si (pg,n(i))), g ∈ N, g ≤ kN ,

where pg,n(i) is the i-th row of the sub-arrival matrix pg,n ∈
M(Dd(g, n)×n) (hereM(x×y) stands for the set ofmatrices
whose dimensions are x and y, respectively), representing
the i-th d.c.d. of g claims into n rating classes and where
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VDHC (Si ) is the volume of the DHC computed for the box
Si = [ui , vi ] ∈ R

n × R
n , determined for the i-th d.c.d. of g

claims into n rating classes following the rule:

– if p(i, j)
g,n = 0, ui, j = ∑kX j

h=1
uhj and vi, j = 1 for j =

1, ..., n and i = 1, ..., Dd(g, n);
– if p(i, j)

g,n = h, h > 0, ui, j = 0 and vi, j = uhj for j =
1, ..., n, h = 1, ...kX j (t) and i = 1, ..., Dd(g, n),

where uhj , j = 1, ..., n, h = 1, ...kX j (t) are the historical
claims’ frequencies for the j-th class.

We observe that the i-th d.c.d. of the sub-matrix pg,n gen-
erates a pair of coordinates, i.e., the i-th d.c.d. generates the
box Si where we compute the corresponding DHC-volume.
The sum of the volumes computed for all the coordinates
generated by the d.c.ds of pg,n represents the probability
to count the more likely distributions of g claims, given a
claims’ arrival hypothesis, i.e., given A.

Example 3 Let us consider the arrival matrix at time t1 of
Example 1, i.e.,

A =
[
3 0 0
4 2 1

]
,

and be given uh , where uh1 , h1 = 1, ..., 9 gives the prob-
ability to record h1 claims in class 1, uh2 , h2 = 1, ..., 3
gives the probability to record h2 claims in class 2 and
uh3 , h3 = 1, ..., 6 gives the probability to record h3 claims in
class 3.We observe that we are considering only two possible
scenarios that correspond to a total number of claims g1 = 3
and g2 = 7, respectively. Coherently with the notation of
Definition 4, we have:

p3,3(1) = [3 0 0]
p7,3(1) = [4 2 1],

where both the previous sub-matrices account for just one
scenario. These sub-matricesmust be connectedwith the cor-
responding probability of this scenario, evaluated as a volume
of the copula which represents the dependence structure of
the system; hence, we go on defining the boxes S1(p3,3(1))
and S1(p7,3(1)). We have:

p(1,1)
3,3 = 3 → u1,1 = 0, v1,1 = u31

p(1,2)
3,3 = 0 → u1,2 =

3∑

h=1

uh2, v1,2 = 1

p(1,3)
3,3 = 0 → u1,3 =

6∑

h=1

uh3, v1,3 = 1,

and S1(p3,3(1)) = [u1, v1], where:

u1 = [0
3∑

h=1

uh2

6∑

h=1

uh3]

v1 = [u31 1 1].

Similarly, we have:

p(1,1)
7,3 = 4 → u1,1 = 0, v1,1 = u41

p(1,2)
7,3 = 2 → u1,2 = 0, v1,2 = u22

p(1,3)
7,3 = 1 → u1,3 = 0, v1,3 = u13,

and S1(p7,3(1)) = [u1, v1], where:

u1 = [0 0 0]
v1 = [u41 u22 u13].

Finally, the volumes VDHC (S1(p3,3(1))) and
VDHC (S1(p7,3(1))), which stand for the probability of these
two scenarios, respectively, can be evaluated.

Definition 5 (Cumulated probability distribution of the
claims’ counting variable linked to a n-dimensional DHC)

In the same setting of Definition 2 and Definition 4,
the cumulative probability distribution of the claims’ count-
ing variable linked to the n-dimensional copula DHC with
marginals uh ∈ [0, 1]n, h = 1, .., kX, is the function Fr :
[0, kN ] → [0, 1], Fr ( j) = P(r ≤ j) = ∑ j

g=0 Pr (g) where
Pr (g) = P(r = g), such that:

Fr ( j) =
i∑

g=0

Dd (g,n)∑
i=1

VDHC (Si (pg,n(i))), g ∈ N, g ≤ kN ,

where VDHC (Si ) is the volume of the distorted hierarchical
Archimedean copula computed in the box Si = [ui , vi ] ∈
R
n × R

n , determined for the i-th d.c.d. of g claims into n
rating classes following the rule explained in Definition 4,
where pg,n(i) is the i-th row of the sub-arrival matrix pg,n ∈
M(Dd(g, n)×n) corresponding to the i-th d.c.d. of g claims
into n classes.

In order to provide the relevant information for risk manage-
ment activities, we associate a sum of money to the state of
the system; we pass then from the probability distribution
of a counting variable, i.e., the number of claims at time t ,
to the definition of a reward process. This will be defined in
discrete time corresponding to the set of monitoring dates
and it will be characterized by amounts of money that will
be positive if they are benefits or negative if they are costs
for the insurer. The purpose of this model is to represent
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a generic insurance portfolio; hence, a useful tool for actu-
arial problems. Our approach is completely different from
previous contributions in the literature because the premi-
ums and benefits are jointly modeled in discrete time and
associated to probabilities depending on a complex network
where a hierarchical copula stands for the connections of
the insureds and governs the happening of claims, making
provision for a continuous evolution of the demographic-
economic system between two monitoring dates. Therefore,
the system evolves continuously even though the informa-
tion is checked and the network is refreshed discretely: this
induces us to overcome on the one hand the static nature
of copula-based model and, on the other hand, to introduce
a stochastic evolution of the insureds’ population related to
the variations of the demographic-economic setting, i.e., the
systemic risk of the insurance market.
With a particular kind of insurancewith grounds on a BMS in
mind, that is an incentive program designed to give a penalty
in terms of greater premium to pay for poor performance, we
then focus on automobile insurancewhere the insured’s claim
corresponds to any car accident. Obviously this application
is not restrictive and sure enough BMS has as of recent been
studiedwith care by corporations for employees or executives
unable to meet their goals for instance.
In a BMS automobile insurance the rating, indentified by the
class identity, assigns to every insured both the premium to
be paid, a function decreasing with the rating and increas-
ing with the recorded claims at the previous monitoring date,
and the benefit to receive. The net amount of money given
by the difference of premium and benefit received or paid by
the insurance company, which depends on the mean claim’s
severity, i.e., on the entries of vector Pr, and the mean pre-
mium per class, placed in vector C, characterises the value
of the reward process at time t .

Definition 6 (Cumulated probability distribution of the dis-
counted Reward at the monitoring date t) In the same setting
of Definition 5, the cumulative probability distribution of the
discountedRewardwhose single amount per class is given by
the entries (which correspond to the difference of the class’s
premium and the benefit paid by the insurance company) of

the n-dimensional vector Ye− ∫ t
0 r(u)du and where the short

rate r(.) is assumed to be deterministic, is theFt -measurable
function FR,t : [0, Ŷ′X(t)e− ∫ t

0 r(u)du] → [0, 1] such that:

FR,t ( j) =
∑

g,i :Rg,n(t,i)≤ j

VDHC (Si (pg,n(i))), g ∈ N, g ≤ kN ,

where Ŷ = Pr − kC, Rg,n(t, i) = Y′pg,n(i)e− ∫ t
0 r(u)du and

as before VDHC (S j ) is the volume of the distorted hier-
archical Archimedean copula computed for the box Si =
[ui , vi ] ∈ R

n × R
n .

As noticed inDjehiche andLöfdahl (2014), the problemof
risk aggregation is closely related to that of claims’ reserv-
ing. As far as the aggregation of risks and capital charges
problems are concerned, the cumulative distribution of the
Reward may be used as basic input for an internal model
built on a value-at-risk approach over a specified horizon
defined as a multiple of the monitoring step. For example,
given the cumulative distribution of the discounted t-reward,
his p-quantile can be used to compute the value-at-risk over
the period [0, t] and recover the capital charge as to be the
economic capital, i.e., the distance of the value at time 0 of
the portfolio and the p-quantile of the discounted t-Reward.
The discounted reward is, realistically, a r.v. representing the
systemic risk, i.e., the risk related to the variations of the
economic-demographic setting, and the idiosyncratic one,
i.e., the risk related to the specific features of the company’s
portfolio, at time t of the insurer and his expected value (at
time 0) should correspond to the reserve at time 0 for the
entire portfolio.

3 Empirical application

In this section, we apply our model to real data in order to
consider the aptness of the dependency structure and of the
distortion brought about by the arrival policy of claims linked
to a portfolio of car’s insurances. The data originate from the
General Insurance Association of Singapore, an organization
consisting of a set of insurance companies in Singapore (see
the organization’s website: www.gia.org.sg). It is a common
practice to combine different experiences in a so-called inter-
company database in order to glean important information
about the competitors. From this database, which has been
used in several research projects and publications as Frees
and Valdez (2008) and Frees (2010), several characteris-
tics are available to clarify and interpret automobile accident
frequency. These characteristics contain vehicle-related vari-
ables, for instance age or type, and also person-related level
characteristics, likes gender, age or previous driving expe-
riences. We’ll restrict our analysis to data concerning the
year 1993 where the documented rewards’ number permits
to recover the claims’ frequency of the whole portfolio.
The first thing we must deal with is the classification of
insureds in classes of risk. To this purpose, we report in
Table 2 the description of the analyzed variables that will
be used for clustering.

The claim’s frequency concerning the period of observa-
tion is analyzed in the following tables. The result of 7483
observations, we report in Table 3 at the bottom the number
of observations for every number of claims: we observe that
the 93.5%of the observations didn’t reveal any claim while
487 register at least one claim. Moreover, the effects of the
vehicle features concerning the recorded claims are demon-
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Table 2 Clustering variables description

Variables Description

Sex insured The gender of the insured maybe
male (M), female (F) or unspecified
(NS).

Age The age of the insured is grouped
into seven classes numbered from
0 to 6, stating for ≤ 21, the
interval (22, 25], (26, 35], (36, 45],
(46, 55], (56, 65], and finally ≥ 66.

Vehicle type The vehicles are classified as car (A)
and other as motorcycle or truck.

Vehicle age It is grouped into seven classes num-
bered from 0 to 6, stating for < 1
year, 1, 2, the interval [3, 5], [6, 10],
[11, 15], and ≥ 16.

PC It distinguishes a private vehicle
from a commercial one.

No claims discount It grades the past experience of the
insured. Higher grade means better
experience.

Claims count Number of claims in one year.

Exposure Exposure to risk of the insured.

Table 3 Claim’s percentage versus vehicles’ features

Claim’s number 0 1 2 3 NumObs %

Vehicle type

Car 92.53 7.05 0.39 0.03 3842 51.34

Other 94.51 5.05 0.36 0.08 3641 48.66

Vehicle age

0 93.28 6.24 0.45 0.03 3079 41.15

1 91.34 7.93 0.29 0.44 681 9.10

2 89.01 10.37 0.62 0.00 646 8.63

[3, 5] 91.83 7.65 0.52 0.00 771 10.30

[6, 10] 94.37 5.30 0.32 0.00 924 12.35

[11, 15] 97.34 2.58 0.09 0.00 1164 15.56

≥ 16 98.17 1.83 0.00 0.00 218 2.91

NumObs 6996 455 28 4 7483 100.0

% 93.5 6.1 0.4 0.1 100.0

strated here:wenotice howcars seem to have a slightly higher
experience on claims with respect to other types of vehicles,
and the age of vehicle does not seem to have a monotone
dependance on the number of claims, showing the maximum
impact for age between 1 and 5 years.

In Table 4, we just consider the private car segment and
report the claim’s frequency for every discussed insured fea-
tures.We remark how gender doesn’t appear to impact on the
claim’s frequency, while at the same time higher frequency
is attributed to the class of insured of age between 46 and
65. Finally, the variable NoClaimsDiscount (NCD in the fol-

lowing) discloses an inverse relation of the claim’s frequency
and the past experience: better past experience corresponds
to lower claim’s frequency.

Reckoning on the variables described before and follow-
ing a codification and a normalization toward a homogeneous
scale for each and every one of them, we reduce the com-
plexity of the problem by a clustering procedure. Here we
decided to implement a semi-unsupervised self-organizing
map (SOM for short in the following) which refers to a par-
ticular type of artificial neural network advanced byKohonen
(1982) and derived from the Euclidean metric, where the
number of clusters is optimal in terms of a minimization of
the clustering error defined as a sum of confusions (seeWang
et al. 2006). More precisely our purpose is to separate the
sample in rating classes as much homogeneous as possible,
via a competitive layer for classification problems, composed
of a topology function, calculating the neurons positions in a
hexagonal pattern and a distance function (that in our applica-
tion is the Euclidean distance) employed to find the distance
between the layer’s neurons once their positions have been
given. SOM is a single-layer characterized by a weight func-
tion and an input function corresponding to the vectors of
the clustering variables described and detailed in Table 2.
The layer takes up a weight (that is randomly initialized)
from the input: subsequently the processes of adaptation and
training renew theweights via the learning function. Training
occurs until a maximum number of iterations (fixed on 103

in this application) or until the performance goal is met. In
the application at hand, the optimal number of classes turns
out to be four.
Table 5 reports the main features defining the four rating
classes. The reported percentage of the group’s complexity
are particularly descriptive. The first cluster is made up by
insured of not specified gender and mainly of age lower or
equal than 21, that owned other types of vehicle as motorcy-
cles in a past period whose length goes from 6 to 16 years;
they have a medium-low NCD and therefore a quite high
claims’ frequency in the past. The second cluster is composed
by a population of insureds aged from 35 to 65, more male
than female, owning a car whose age is at most 2 years; they
have a medium-high NCD and thus a low claims’ frequency.
The third cluster is constituted by insureds aged less or equal
than 21, no specified gender and owning other types of vehi-
cles of age between 3 and 5 years; they have a low NCD.
Finally, the fourth cluster is mainly composed by insured of
age from 35 and 65, they are more male than female and they
own a car whose age is at most 2 years; they have a lowNCD.

In order to implement the described model, we need to
recover the inputs of the dynamic system, i.e., themigration’s
probability, based on the available information concerning
the risk’s profile of the policies’ holders. We arrive at this
via the distorted-copula-based procedure, through which one
recovers the needed inputs starting from the network of

123



A distorted copula-based evolution model...

Table 4 Claim’s percentage
versus insureds’ features

Claim’s number 0 1 2 3 NumObs %

Sex insured

Male 92.33 7.26 0.41 0.00 3142 81.78

Female 93.43 6.14 0.29 0.14 700 18.22

Age

≤ 21 0.00 0.00 0.00 0.00 0 0.00

(22, 25] 0.00 0.00 0.00 0.00 0 0.00

(25, 35] 92.91 6.38 0.71 0.00 141 3.67

(35, 45] 91.73 7.79 0.41 0.07 1476 38.42

(45, 55] 93.20 6.27 0.53 0.00 1515 39.43

(55, 65] 93.84 6.16 0.00 0.00 536 13.95

≥ 66 89.17 10.83 0.00 0.00 157 4.09

No claims dscount

0 89.62 9.78 0.50 0.10 992 25.82

1 91.16 8.21 0.63 0.00 475 12.36

2 92.80 6.94 0.26 0.00 389 10.12

3 93.48 5.71 0.89 0.00 368 9.58

4 94.79 5.21 0.00 0.00 307 7.99

5 94.36 5.42 0.23 0.00 1311 34.12

NumObs 3555 271 15 1 3842 100.0

policies’ holders related by a copula function. The copula
function is calibrated from data extrapolating information
related to the marginal through an inverse procedure that
includes possible contagious and tail dependence effects.
Hence, from the clustering information depicted in Table 6,
we retrieve the marginal probabilities of claim’s arrival via a
Poisson model. The maximum likelihood estimates of the
Poisson parameter and the corresponding frequencies are
reported in Table 6. Here we have k = 3 and the group’s
cardinalities are detailed into Table 6.

We now move to consider the dependency structure that
plays an important role at every level of the hierarchy. As we
remarked previously, we choose to work with Archimedean
copula functions which are a comprehensive family. In this
family, we select three kinds of Archimedean copulas, i.e.,
Clayton, Gumbel and Frank: they are able to represent
all possible kinds of tail dependency (but exclusive posi-
tive dependency). Given a decreasing and convex function
φ : (0, 1] → [0,+∞) such that φ(1) = 0, then the function

C (φ)(u) = φ−1

(
n∑

i=1

φ(ui )

)
, ∀ui ∈ (0, 1],∀i = 1, ..., n,

where u stands for the vector of margins, is a n-dimensional
Archimedean copula with generator φ. Different choices of
generator specify different families of Archimedean copu-
las. It is important to remark that this class of copulas is
commonly used in multivariate applied sciences, because
the dependency structure among variables can be explained

only by means of a parameter α, functionally related to the
Kendall’s τ correlation measure.
To calibrate the dependency structure, we employed theGen-
est and Rivest (1993) procedure, detailed in Frees and Valdez
(1998), and riding on the concordance/discordance of the
clusters’ features.

Eventually a goodness-of-fit consideration permits to
select the “closest” kind of copula function if compared to the
empirical copula. The calibration technique is utilized here
using a multistage procedure in the same spirit of Okhrin
et al. (2013a); we advance with the estimate starting from
the bottom, i.e., the lowest level of the hierarchy, then mov-
ing up, with the provision that the copula parameters at lower
levels are known. By this token, at each level of this recur-
sive estimation we compute a mean-squared error (MSE for
short) that we call partial MSE (PMSE for short) and whose
mean among all levels comes into what we call total MSE
(TMSE for short). We estimate at first a unique dependency
structure at the highest level, a dependency between classes,
represented by a Kendall tau, τ1 = 0.3526 and a second level
vector of dependency parameters representing the depen-
dency within groups

τ2 = [
0.3528 0.4094 0.4276 0.4179

]
.

We observe that the first group seems to have a within depen-
dency very similar to the between one; it might imply that we
could improve the setting by increasing the number of clus-
ters in order to identify subclasses with stronger connections.
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Table 5 Features of insureds per clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4

NumObs 2297 1979 1367 1840

Sex insured M 22 0.96% 1647 83.22% 1 0.07% 1475 80.16%

F 3 0.13% 332 16.78% 0 0.00% 365 19.84%

NS 2272 98.91% 0 0.00% 1366 99.93% 0 0.00%

Age ≤ 21 2273 98.96% 0 0.00% 1367 100.0% 0 0.00%

(22, 25] 0 0.00% 0 0.00% 0 0.00% 0 0.00%

(25, 35] 0 0.00% 21 1.06% 0 0.00% 120 6.52%

(35, 45] 12 0.52% 561 28.35% 0 0.00% 903 49.08%

(45, 55] 10 0.44% 931 47.04% 0 0.00% 575 31.25%

(55, 65] 2 0.09% 352 17.79% 0 0.00% 182 9.89%

≥ 66 0 0.00% 100 5.05% 0 0.00% 57 3.10%

Vehicle type A 24 1.04% 1979 100.0% 0 0.00% 1839 99.95%

O 2273 98.96% 0 0.00% 1367 100.0% 1 0.05%

Vehicle age 0 0 0.00% 1546 78.12% 157 11.49% 1376 74.78%

1 0 0.00% 206 10.41% 242 17.70% 233 12.66%

2 0 0.00% 219 11.07% 197 14.41% 230 12.50%

[3, 5] 0 0.00% 0 0.00% 771 56.40% 0 0.00%

[6, 10] 924 40.23% 0 0.00% 0 0.00% 0 0.00&

[11, 15] 1164 50.67% 0 0.00% 0 0.00% 0 0.00%

≥ 16 209 9.10% 8 0.40% 0 0.00% 1 0.05%

NCD 0 626 27.25% 0 0.00% 398 29.11% 986 53.59%

1 577 25.12% 0 0.00% 411 30.07% 470 25.54%

2 967 42.1% 0 0.00% 485 35.48% 384 20.87%

3 21 0.91% 366 18.49% 24 1.76% 0 0.00%

4 25 1.09% 305 15.41% 19 1.39% 0 0.00%

5 81 3.53% 1308 66.09% 30 2.19% 0 0.00%

Claims count 82 3.57% 108 5.46% 103 7.53% 162 8.80%

Nevertheless, in this case the increasing in complexity (we
implemented two more splitting of the first class) happens to
be not justified by the final output improvement; hence, we
confirm the clustering in four classes.
We point out that Kendall tau of multivariate Archimedean
copulas can be analytically recovered as a function of copula
parameter or generator. Table 7 displays the copula parame-
ters and the partial/total mean square errors for the first level
of dependency, i.e.,α1, and for the dependencywithin groups,
i.e., 2, estimated following the detailed procedure. The com-
parison of TMSEs prompts that Clayton copula, whose
generator isφ(t) = 1

α

(
t−α − 1

)
, forα ∈ [−1, 0)∪(0,+∞),

is the Archimedean copula that best performs the calibration
procedure.

Along with the described dependency with a unique level
of aggregation between classes, we examine two different
hierarchical structure: a partially exchangeable and a not
exchangeable nested Archimedean copula function. These
kinds of aggregations are depicted in Fig. 4 assuming a 4-

dimensional setting. In Fig. 4a, the aggregations have been
depicted as couples but they could be generalized positing
a second level of aggregation within groups whose cardi-
nality is not necessarily equal to 2. On the other hand, the
not exchangeable aggregation is retrieved through a nested
aggregation that progresses by a first group aggregation and
by a series of single aggregations as shown in Fig. 4b sup-
posing a 4-dimensional setting. In this example, we have a
fully nested copula but we could devise also a partially nested
case that proceeds by a nested aggregation by groups while
by single ones.

We consider the following Archimedean dependency
structures:

1. One-level dependency structure, represented by a copula
function with dependency parameter τ1.

2. Partially exchangeable hierarchical structure, with two
dependency’s levels represented by τ1 and τ1 = [0.4742;
0.9069]. Here the groups’ aggregation includes at first the
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Table 6 Marginal frequencies of claim’s arrival per clusters

i h NumObs λ phi

Cluster 1 0 2211 0.039181541 0.961576128

1 82 0.037676035

2 4 0.000738103

3 0 0.000009640

2297

Cluster 2 0 1865 0.060636685 0.941165117

1 108 0.057069133

2 6 0.001730242

3 0 0.000034972

1979

Cluster 3 0 1252 0.095098756 0.909283133

1 103 0.086471695

2 9 0.004111675

3 3 0.000130338

1367

Cluster 4 0 1668 0.099456522 0.905329311

1 162 0.090040904

2 9 0.004477578

3 1 0.000148441

1840

clusters 1 and 2 and then clusters 3 and 4, whose depen-
dencies are tidily placed in ˆ(τ1).

3. Not exchangeable partially nested hierarchical structure,
whose nesting levels are given by ˆ(τ1)= [0.9069; 0.4537;
0.3526]. Here the aggregation proceeds starting by clus-
ters 3 and 4, followed by cluster 2 and finally cluster 1,
with dependencies tidily placed in ˆ(τ1).

We note how the dependency structure influences the
claims’ arrivals through the arrival matrixA, defining the dis-
torted combinatorial distributions of claims as a determinant
of the loss distribution. In our basic scenario, we resolved to
compute an arrival matrix of dimension d×n, where d = 210

corresponds to the number of combinatorial distributions of
the claims. Moreover, we choose to work with a number of
trials N = 211.
In what follows we shape the dependency structure using the
best performing Archimedean copula, i.e., the Clayton one
and then we study the listed cases of aggregation, i.e., the not
hierarchical Clayton, and the partially/not exchangeable ver-
sion of the hierarchical Clayton (PEClayton and NEClayton
respectively) for the dependency parameters computed start-
ing from the estimated Kendall τ1, τ1 and τ̂1. The sampling
from the hierarchical Archimedean structures has been done
with the algorithm proposed in Savu and Trede (2010). This
algorithm is built upon the conditional inversion method.
The exercise we present in this section is assumed to start at
the current monitoring time t0; the dataset discussed before
corresponds to time t0-information and thanks to the distorted
copula-based model we are able to compute the inputs of the
evolution model, i.e., the upgrading/downgrading probabil-
ities. We consider a BM system organized in four classes
corresponding to the clusters identified before, whose rating
level is decreasing from class 1 to class 4, and whose migra-
tion’s rule implies an upgrade (a shift of one class in the
direction from class 4 to class 1) if no claims are recorded
from the previous monitoring date and a downgrade (a shift
of one class in the direction from class 1 to class 4) oth-
erwise. In this migration’s rule, we assume that it is not
possible to remain in the same class for two consecutive
monitoring dates, except for the extreme classes which are
stable for upgrading/downgrading, respectively. Obviously,

Table 7 Copulas’ parameters
and TMSEs/max PMSEs

Copula α1 TMSE α2 max PMSE

Clayton 1.0895 0.000715 (1.0901,1.3862,1.4940,1.4356) 0.000521

Gumbel 1.5450 0.005128 (1.5448,1.6931,1.7470,1.7178) 0.007235

Frank 3.5431 0.001650 (3.5417,4.2916,4.5540,4.4125) 0.008710

Fig. 4 Partially exchangeable
and Not exchangeable
hierarchical aggregations

(a) (b)
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this assumption is not restrictive like as the described migra-
tion’s rule. Nevertheless, we assume to work with an open
systemwhere all the insureds can leave the company or enter
into every class at every time. The incoming/out-coming
probability representing the connection of the company to
the external insurance market is assumed to be a kind of sys-
temic input that is residual and equal to pe = 0.001. Hence,
given the downgrading probabilities pdi (t0),∀i , the upgrad-
ing probabilities will be pui (t0) = 1 − pdi (t0) − pe. They
are reported in Table 8 for every case of aggregation detailed
before.

3.1 Claim reserving and capital requirement: a
forward-looking approach

Claims’ reserving is a very important topic in actuarial sci-
ence. The most famous models are the chain-ladder method
and the Bornhuetter–Ferguson method whose underlying
stochastic assumptions are thoroughly discussed inWüthrich
andMerz (2008). Here we introduce an alternative stochastic
claim-reserving method to assess the prediction uncertainty
relying on the complex evolutionary approach discussed in
the previous section. To this purpose, let us consider an hori-
zon T equal to a multiple t̂ of the monitoring period, i.e.,
T = t0+ t̂ , and let the system evolve according to the dynam-
ics discussed in Sect. 2. However, the migration’s rule is left
as calibrated at time t and put together via the contemplated
dependency structure of the insurance company’s portfolio.
At every monitoring date, the migration’s probabilities are
recomputed using the new cardinalities and they will be used
as inputs of the next evolution of the demographic-economic
system. The procedure proceeds like this until the horizon is
reached. In this way, we can have a forward-looking guess
of the insureds’ grades t̂ monitoring periods ahead. We are
also able to evaluate the discounted reward distribution. We
assume for simplicity to have a null interest rate, skipping
the problem to pass from the forward to the spot evaluation,
and we fix the insurance premium equal to euro 1000 in class
1 and increasing of euro 500 for every downgrading till class
4. Moreover, we assume to have the same benefit per claim
in every class that is equal to euro 2500 (which is coherent
with the mean cost per claim of 2017 IVASS report) and that
corresponds to the mean’s claim severity at time t .
Due to the depicted evolution’s system, we recover the future
cardinalities of the classes in threemonitoring periods ahead,
i.e., t̂ = 1, 2, 3. They correspond to semestral periods, i.e., to
180 discretized (daily) steps of theEuler’s discretized version
of the dynamic system. We implement 10.000 simulations.
When every monitoring period is over, the migration’s prob-
abilities are updated and resting on them the system is left
to evolve until the next monitoring period (180 daily steps
ahead). The evolution of the insureds’ population is described
in Table 9 in terms of the variation of the group’s cardinalities

Table 8 Migration’s probabilities at time t : 1-class upgrade/downgrade
open BMS with pe = 0.001

Copula Class 1 Class 2 Class 3 Class 4

Clayton puj 0.949 0.941 0.912 0.911

pdj 0.049 0.058 0.087 0.088

PEClayton puj 0.959 0.955 0.924 0.915

pdj 0.040 0.044 0.075 0.084

NEClayton puj 0.975 0.938 0.926 0.911

pdj 0.024 0.061 0.073 0.088

Table 9 Evolution of the BMS insureds’ population in three semestral
monitoring periods

Copula ΔX(t + 1) ΔX(t + 2) ΔX(t + 3)

Clayton Class 1 +327 +334 +340

Class 2 +164 +163 +162

Class 3 +157 +163 +156

Class 4 −129 −133 −131

PEClayton Class 1 +334 +332 +336

Class 2 +166 +162 +161

Class 3 +156 +159 +151

Class 4 −135 −130 −119

NEClayton Class 1 +337 +328 +330

Class 2 +160 +163 +167

Class 3 +157 +156 +149

Class 4 −133 −129 −132

in t̂ = 1, 2, 3 monitoring periods ahead. We point out that
the evolution of the extreme classes is comprehensive of both
the insureds coming in/going out and those remaining in the
same class. As it is clear from the experiment, the system
appears to evolve toward a safer structure of the population
since the first classes exhibit an increasing behavior while
the riskiest one is decreasing. Moreover, the evolution con-
cerning the future three monitoring periods is quite stable in
time for all of the discussed aggregation models.

As far as the computation of the capital requirement is
concerned , we assume to adopt an internal model organized
along a value-at-risk approach.We compute it in terms of the
solvency capital requirement, i.e., the amount of funds that
EU insurance companies are required to hold, which corre-
sponds to the 0.995-quantile of the loss distribution over one
year (0.995-VaR).Moreover,we provide an alternative evalu-
ation of it in terms of the economic capital, i.e., the difference
of the value at time t of the portfolio and the 0.05-quantile of
the discounted (t0 + t̂)-Reward (0.05-ΔP). The computation
of both asks us to evaluate the cdf of the discounted (t + t̂)-
reward and then to recover the value-at-risk over the period
[t0, t0+ t̂]. We recover the requested cdf by the DHCmethod
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Table 10 Percentage capital requirements in three semestral monitor-
ing periods: 0.995-VaR versus 0.05-ΔP

Copula t t + 1 t + 2 t + 3

Clayton

0.995-VaR 20.28 19.64 15.95 14.38

0.05-ΔP – 1.645 1.775 1.879

PEClayton

0.995-VaR 20.26 19.63 11.92 8.831

0.05-ΔP – 9.437 6.225 8.168

NEClayton

0.995-VaR 26.89 19.14 8.854 6.158

0.05-ΔP – 7.493 7.403 6.531

implemented on the forecast insureds’ portfolio, referring to
the representation of the probabilities as linear combinations
of copula’s volumes (seeDefinition 4). On the other hand, the
expected value of the discounted (t0 + t̂)-reward stands for
the value at time t0 of the total claims’ reserve. In Table 10,
we reported the percentage capital requirement (with respect
to the t0-value of the portfolio), assuming to have a null inter-
est rate. Due the depicted evolution’s system, we recover the
future cardinalities of the classes in three monitoring peri-
ods ahead, i.e., t̂ = 1, 2, 3. They correspond to semestral
periods, i.e., to 180 discretized (daily) steps of the Euler’s
discretized version of the dynamic system. We implement
10.000 simulations. At the end of every monitoring period,
the migration’s probabilities are updated and resting on them
the system is left to evolve until the next monitoring period
(180 daily steps ahead). The evolution of the insureds’ pop-
ulation is described in Table 9 in terms of the variation of the
group’s cardinalities in t̂ = 1, 2, 3monitoring periods ahead.
We point out that the evolution of the extreme classes is com-
prehensive of both the insureds coming in/goingout and those
remaining in the same class. As it is clear from the experi-
ment, the system appears to evolve toward a safer structure
of the population since the first classes exhibit an increas-
ing behavior while the riskiest one is decreasing. Moreover,
the evolution concerning the future three monitoring periods
is quite stable in time for all of the discussed aggregation
models.

We observe that in this experiment both models used to
compute the capital requirements demonstrate a movement
toward a safer scenario than the actual one; as amatter of fact,
the 0.995-VaR is always decreasingwith a huge fall in case of
nested aggregation (which may be more sensitive to the con-
tagious effect among the risk’s classes), like as the 0.05-ΔP
is always positive, supporting the expected increasing value
of the insurance portfolio. The showed pattern of 0.05-ΔP
explains a not alwaysmonotone in time behavior but it can be
considered quite stable in tendency. We further remark that

the capital charges (evaluated at different confidence levels)
are convergent after three monitoring periods for the hier-
archical aggregation models: they are better in detecting the
dependence structure than the non-hierarchical ones. Finally,
we point out that the implementedmodelsmay represent use-
ful tools for computing the capital requirements in terms of
internal models or in the Solvency II framework. Moreover,
the inclusion of the insurance risks in Pillar I places Solvency
II straight in line to Basel’s requirement as far as the compu-
tation methods and the hedging of risks are concerned. As it
happens, capital requirements are now approached in a more
cautious way, as explained, e.g., by Basel III , where the
minimum total capital level (minimum total capital + con-
servation buffer) is fixed at 10.5 level and by the Basel IV
request on prudential reserves, to be expected higher as well
(2% more on CET1 ratio). The copula-based models lead to
a level that is not fixed within a scope, being flexible and
depending on the noticed level of risk, originating from mar-
ket data and taking into account any kind of dependencies’
effects as contagion and hierarchy on risks. Therefore, the
previous empirical exercise enables us to align the copula-
based approaches to the current more prudential approaches
in capital requirements regulation.

4 Conclusions

The financial crisis of 2008 compelled one to pay much heed
to decision-making approaches based on the minimization
of a risk measure concerning a multivariate portfolio and
highlighted as well the process of risks’ integration as an
undeniable instrument of risk management. The main focus
in this paper rests on the insurance business: a newmodel for
the integration of risks is presented, making provision for the
recovery of the loss distribution of an automobile insurance
company’s portfolio, evolving by aBMSwith n rating classes
linked by a pure hierarchicalArchimedean dependency struc-
ture.While a continuous evolution of the system is permitted,
a migration rule refreshed at discrete time, i.e., at the mon-
itoring times, will serve the dynamical system under study.
Therefore, the migration probabilities are discretely updated
through a technique based on the combinatorial distributions
of claims’ arrival in the rating classes.

The model thus put forward reveals a circular connection
of the systemic and the idiosyncratic component of risk:

– The systemic one is represented by the demographic-
economic environment that develops continuously as a
function of the migration’s probabilities governing the
BMS;

– The idiosyncratic one is given by the complex network of
the claims’ arrivals, whose dependency structure poten-
tially includes any kind of tail dependency and hierarchy,
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thus providing the inputs of the demographic-economic
systemgranting a refresh of the evolution in discrete time,
depending on the updated migration’s probabilities.

The empirical example, making use of real data com-
ing from the General Insurance Association of Singapore,
concerns itself with the implementation of our model under
different kinds of dependencies, entailing a different hierar-
chy on the rating classes: this in turn permits for different
levels of contagion in the claims’ arrival. Under these
assumptions, at every monitoring date taken into account,
we compute the migration’s probabilities and the loss func-
tion through the copula-based model, which in turn enables
a discrete-time dynamic of the claims’ reserving and of the
capital requirements, evaluated by an internal model based
on a value-at-risk approach. Therefore, this analysis makes
visible how the flexibility of copula-based models can lead
to a capital charge level that is not fixed within a range, thus
being adaptable and depending on the perceived level of risk,
coming from market data and taking into account any kind
of dependency’s effects as contagion and hierarchy on risks.
As a consequence, the previous empirical exercise enables
us to align the copula-based approaches to the current more
prudent approach in capital requirements regulation.
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